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Abstract. In this paper, we prove a higher integrability result for the horizontal gradient of a
minimizer of a functional of the type

I(Ω, u) =

ˆ

Ω

∑

i,j

ai,jXiuXju dx

whose matrix of the coefficients A(x) = tA(x) satisfies the anisotropic bounds

|ξ|2

K(x)
≤ 〈A(x)ξ, ξ〉 ≤ K(x)|ξ|2 ∀ξ ∈ R

n, for a.e. x ∈ Ω,

where the ellipticity function K(x) ∈ A2 ∩RHτ , τ opportunely related to the homogeneous dimen-

sion, and is such that the pair
(

K, 1

K

)

∈ A1.

1. Introduction

Let Ω be a bounded open set in R
n and X = (X1, . . . , Xk) be a family of vector

fields defined in a neighborhood of Ω, with real, C∞ smooth and globally Lipschitz
coefficients satisfying the Hörmander condition.

Let us consider the following functional

(1.1) I(Ω, u) =

ˆ

Ω

k
∑

i,j=1

ai,jXiuXju dx

where the matrix of the coefficients A(x) = (aij(x))i,j is symmetric and satisfies the
following anisotropic bounds

(1.2)
|ξ|2

K(x)
≤ 〈A(x)ξ, ξ〉 ≤ K(x)|ξ|2 ∀ξ ∈ R

n, for a.e. x ∈ Ω,

with

(1.3) K : Ω ⊂ R
n → [1,+∞), K ∈ L1

loc
(Ω).

We suppose that the function K is a weight belonging to the class A2 ∩RHτ , with τ
related to the homogeneous dimension, and is such that the pair

(

K, 1
K

)

∈ A1 (see

Section 2 for the definitions). Recalling that the Sobolev space W 1,p
X (Ω) is defined as

W
1,p
X (Ω) = {u ∈ Lp(Ω) : Xju ∈ Lp(Ω), j = 1, . . . , k},
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we denote by HX(Ω) the set of all u ∈ W
1,1
X,loc

(Ω) such that u ∈ L2(Ω, K dx) and u

has finite energy, i.e. verifies

(1.4) 〈AXu,Xu〉 ∈ L1(Ω).

Clearly, HX(Ω) is a vector space and, since Ω is bounded, we can make it a normed
vector space by taking the norm induced by the bilinear form

(1.5) α(u, ϕ) =

ˆ

Ω

〈AXu(x), Xϕ(x)〉 dx+

ˆ

Ω

u(x)ϕ(x)K(x) dx.

Define HX,L(Ω) as the Hilbert space obtained by taking the closure of Lipschitz
functions with respect to this norm. To be precise, the elements of HX,L(Ω) are
Cauchy sequences {uk} of Lipschitz functions. It follows from the definition (1.5) and
condition (1.2) that uk converges in L2(Ω, Kdx) and Xuk converges in L2

(

Ω, 1
K
dx
)

.
However, we do not know a priori whether an arbitrary u ∈ HX(Ω) is in HX,L(Ω)
unless we make additional assumptions on u, such as assuming Xu ∈ L2

(

Ω, 1
K
dx
)

.
Nevertheless, hereafter, when we write u ∈ HX,L(Ω) we mean that u is actually a
function in HX(Ω) ∩HX,L(Ω) and not a Cauchy sequence.

Recall the following

Definition 1.1. A function u ∈ HX(Ω) is a local minimizer for I(Ω, u) if

I(suppϕ, u) ≤ I(suppϕ, u+ ϕ)

for any ϕ ∈ HX(Ω) with compact support.

The aim of this paper is to study the regularity of the local minimizers of I(Ω, u)
which generalizes functionals of the type

F(Ω, u) =

ˆ

Ω

k
∑

i,j=1

ai,jDiuDju dx.

More precisely we shall prove the following higher integrability result:

Theorem 1.1. Let u ∈ HX,L(Ω) be a local minimizer for the functional (1.1)
with the matrix of the coefficients satisfying (1.2). SupposeK ∈ A2(Ω, ρ)

⋂

RHτ (Ω, ρ)

with τ = 1 + 2(Q−1)
n+2−Q

and such that the pair
(

K, 1
K

)

∈ A1(Ω, ρ). Then Xu ∈

L
p
loc
(Ω, 1

K
dx) for some p > 2 and there exists a constant C such that, for each

ball BR ⊂⊂ Ω, it holds

(1.6)





ˆ

−
BR

2

|Xu|p dν





1
p

≤ C

(
ˆ

−
BR

|Xu|2 dν

)
1
2

where dν = 1
K
dx.

We point out that the tools used to obtain the higher integrability are the clas-
sical ones of the euclidean case. Neverthless, here we deal with functionals whose
integrands have a degeneracy in the coefficients expressed by mean of the assumption
(1.2) and, at the same time, a double degeneracy into the geometry due to the pres-
ence of a differential operator different from the classical gradient. In particular, this
second peculiarity causes a change of metric in R

n and therefore the use of results
valid for arbitrary metric spaces.
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The study of the regularity of local minimizers of functionals depending on vector
fields of the type

(1.7)

ˆ

Ω

f(Xu) dx,

as far as we know, has been not largely studied. It seems to us that the literature
available on the regularity of solutions of equations is more vast (see for example
[17, 3, 7, 5] and references therein).

Anyway, the regularity of local minimizers of integral functionals is interesting
by itself since the passage to the Euler–Lagrange equation is not always possible.
For example, in [12], assuming that the integrand grows as |ξ|p for some p > 1, and
satisfies the following Lipschitz assumption

|f(ξ)− f(η)| ≤ β|ξ − η|p(|ξ|p−1 + |ξ − η|p−1),

it has been proven that any weak minimizer of (1.7) is actually a local minimizer.
Later on, in [13], assuming f satisfying the non-standard growth condition

c1(A(|ξ|)− 1) ≤ f(ξ) ≤ c2(A(|ξ|) + 1)

with A suitable N -function, a regularity result in the scale of Campanato spaces for
local minimizers has been obtained, as well as an higher integrability result for their
horizontal gradients.

We also indicate [11] for higher integrability results for quasi-minima of function-
als with standard and non-standard growth conditions like

c1|ξ|
p ≤ f(ξ) ≤ c2|ξ|

q

with exponents 1 < p ≤ q opportunely related.
Finally, some results of local Hölder continuity in the context of a metric mea-

sure space where the measure is doubling and the space supports a weak Poincaré
inequality, also in the case the integrand satisfies the non-standard growth condition
above are available (see [16, 1, 18]).

Concerning the case of variational integrals, whose integrands have a degeneracy
expressed through Muckenhoupt weights, we mention the pioneering paper by Modica
[19] but also the contribution given by Moscariello in [20]. Anyway, they both concern
the euclidean setting and not a metric context.

Actually, it is worth pointing out that in [5], the authors give a result of local
Hölder continuity for the weak solutions of the p-Laplace equation

div(〈AXu,Xu〉
p−2
2 AXu) = 0

where the ellipticity function is of the type considered in Theorem 1.1 (see also [6]
for the euclidean setting).

2. Notation and preliminary results

In order to frame the setting of our problem, we devote this section to some useful
notation and preliminaries. First of all, we recall the following iteration lemma (see
Lemma 1.1 in [14]):

Lemma 2.1. Let f(t) be a nonnegative bounded function defined for 0 ≤ T0 ≤
t ≤ T1. Suppose that for T0 ≤ t < s ≤ T1,

f(t) ≤ A(s− t)−γ +B + θf(s),
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where A,B, γ, θ are nonnegative constants and θ < 1. Then there exists a constant
c, depending only on γ and θ such that for every β,R, T0 ≤ β < R ≤ T1, one has

f(β) ≤ c[A(R − β)−γ +B].

2.1. Carnot–Carathéodory spaces. Let X = (X1, · · · , Xk) be a family of
vector fields defined in R

n, with real , C∞ smooth coefficients. We say that they
satisfy the Hörmander’s condition if there exists an integer m such that the family
of commutators of X1, · · · , Xk up to length m

X1, · · · , Xk, [Xi1, Xi2 ], · · · , [Xi1, [Xi1 , · · ·Xim]] · · · ], ∀ij = 1, 2, · · · , k

spans the tangent space TxR
n at every point x ∈ R

n.
For any real valued Lipschitz continuous function u we define

Xju(x) = 〈Xj(x),∇u(x)〉, j = 1, 2, · · · , k,

and we call the horizontal gradient of u the vector Xu = (X1u, · · · , Xku) whose
length is given by

|Xu| =
(

k
∑

j=1

(Xju)
2
)1/2

.

An absolutely continuous curve γ : [a, b] → R
n is said to be admissible, if there

exist functions cj : [a, b] → R, j = 1, · · · , k, such that

γ̇(t) =

k
∑

j=1

cj(t)Xj(γ(t)) and

k
∑

j=1

cj(t)
2 ≤ 1.

Observe that Xj do not need to be linearly independent and therefore functions cj
do not need to be unique. Define the distance function ρ as

ρ(x, y) = inf{T > 0: ∃γ : [0, T ] → R
n admissible, γ(0) = x, γ(T ) = y}.

If there is not any such a curve, we set ρ(x, y) = ∞. The function ρ is called Carnot–
Carathéodory distance and, since it is not clear whether one can connect any two
points of Rn by an admissible curve, it’s not clear whether ρ is a metric.

The assumption for which the vector fields X1, · · · , Xk satisfy the Hörmander
condition ensures that ρ is a metric and in this case (Rn, ρ) is said to be a Carnot–
Carathéodory space.

The following theorem, due to Nagel, Stein and Wainger [21], shows that the
metric ρ is locally Hölder continuous with respect to the Euclidean metric.

Theorem 2.2. Let X1, · · · , Xk be as above. Then for every bounded open set
Ω ⊂ R

n there are constants c1, c2 and λ ∈ (0, 1] such that

(2.1) c1|x− y| ≤ ρ(x, y) ≤ c2|x− y|λ

for every x, y ∈ Ω.

It follows that the space (Rn, ρ) is homeomorphic with the Euclidean space R
n

and therefore bounded sets in the Euclidean metric are bounded sets in the metric
ρ. The inverse is not always true but it is certainly valid if X1, · · ·Xk have globally
Lipschitz coefficients (see [10]). In the sequel all the distances will be respect to
the metric ρ, in particular all the balls will be balls with respect to the Carnot–
Carathéodory metric. We shall consider in (Rn, ρ) the Lebesgue measure | · | and
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denote by
´

−
B
f(x) dx the average of the function f on the ball B, i.e.

ˆ

−
B

f(x) dx =
1

|B|

ˆ

B

f(x) dx.

Note that the Lebesgue measure locally satisfies the following doubling condition (see
for example [21]):

Proposition 2.3. Let Ω be an open, bounded subset of R
n. There exists a

constant Cd ≥ 1, called doubling constant, such that

|B(x0, 2R)| ≤ Cd|B(x0, R)|

provided the center x0 ∈ Ω and the radius R ≤ 5 diamΩ.

Let Y be a metric space and µ a Borel measure in Y . Assume µ finite on bounded
sets and satisfying the doubling condition on every open, bounded subset Ω of Y . If
there exists a positive constant C such that

(2.2)
µ(B)

µ(B0)
≥ C

(

R

R0

)Q

for any ball B0 having center in Ω and radius R0 < diamΩ and any ball B centered
in x0 ∈ B0 and having radius R ≤ R0, we say that Q is a homogeneous dimension

relative to Ω.
It is well known that the doubling condition implies the existence of such a Q.

However, Q is not unique and it may change with Ω. Obviously any Q′ ≥ Q is
also a homogeneous dimension. For a bounded open set Ω containing a family of
vector fields satisfying the Hörmander condition, the Carnot–Carathéodory space
(Ω, ρ) with the Lebesgue measure has the homogeneous dimension Q = log2Cd.

We shall need the following version of Gehring Lemma for metric spaces with a
doubling measure µ.

Lemma 2.4. [11, 24] Let q0 ≤ q ≤ 2Q where q0 > 1 is fixed. Assume f ∈
Lr0

loc
(Y, µ) and g ∈ L

q
loc
(Y, µ), r0 > q, be nonnegative functions and suppose the

existence of constants b > 1 and 0 < ϑ < 1 such that for every ball B ⊂ σB ⊂ Y ,
the following inequality holds

(2.3)

ˆ

−
B

gq dµ ≤ b

[(
ˆ

−
σB

g dµ

)q

+

ˆ

−
σB

f q dµ

]

+ ϑ

ˆ

−
σB

gq dµ.

Then there exist nonnegative constants θ0 = θ0(q0, Q, Cd, σ) and ε0 = ε0(b, q0, Q, Cd, σ)
such that, if 0 ≤ ϑ < θ0, then g ∈ L

p
loc
(Y, µ) for q ≤ p < q + ε0 and moreover

(2.4)

(
ˆ

−
B

gp dµ

)1/p

≤ C

[

(
ˆ

−
σB

gq dµ

)1/q

+

(
ˆ

−
σB

f q dµ

)1/p
]

for C = C(b, q0, Q, Cd, σ).

Note that we used the notation σB for the ball concentric with B having radius
σ-times that of B.

2.2. Muckenhoupt weights. In the following we recall some useful definitions
and properties; we refer to [23] or [22] for more details.

Let Ω ⊂ R
n be an open, bounded and connected set. By a weight we mean a

positive function in L1
loc
(Rn). We say that a weight w is doubling in Ω if
ˆ

2B

w(x) dx ≤ C

ˆ

B

w(x) dx
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where the constant C is independent by the ball B ⊂ Ω. We say that w is locally
doubling in Ω if for each compact set V ⊂ Ω and R > 0 there exists CV,R such that

ˆ

2B

w(x) dx ≤ CV,R

ˆ

B

w(x) dx,

where the ball B has center in V and radius r < R. Given 1 < p <∞ and a weight
w, we say w ∈ Ap(Ω, ρ) if

(2.5) [w]Ap
:= sup

B

(
ˆ

−
B

w(x) dx

)(
ˆ

−
B

w(x)1−p′ dx

)p−1

<∞

where the supremum is taken over all balls B ⊂ Ω and p′ denotes the Hölder conjugate
exponent of p. When p = 1, we say that w ∈ A1(Ω, ρ) if there exists a constant c ≥ 1
such that, for every ball B ⊂ Ω, it holds

ˆ

B

w(x) dx ≤ c ess inf
B
w.

Weights belonging to a class Ap are called Muckenhoupt weights. Moreover, we say
that w satisfies a reverse Hölder inequality in Ω with exponent t > 1, and we write
w ∈ RHt(Ω, ρ), if

(2.6) [w]RHt
:= sup

B

(´

−
B
w(x)t dx

)
1
t

´

−
B
w(x) dx

<∞.

Next two Lemmas contain useful properties for the weights defined above.

Lemma 2.5. If w ∈ Ap(Ω, ρ) for some p > 1, then

1) w1−p′ ∈ Ap′(Ω, ρ);
2) ∃ t > 1 such that w ∈ RHt(Ω, ρ);
3) ∃ ε > 0 such that w ∈ Ap−ε(Ω, ρ).

As in the Euclidean case, assertion 1) is a direct consequence of the definition of
Ap weight; assertion 2) is proved in [22] and assertion 3) easily follows from 1) and
2).

Lemma 2.6. 1) If w ∈ RHt(Ω, ρ) for some t > 1, then for any x0 ∈ Ω,
r > 0 and any measurable set E ⊂ B(x0, r) ∩ Ω, we have

(2.7)

´

E
w(x) dx

´

B(x0,2r)∩Ω
w(x) dx

≤ [w]RHt(Ω,ρ)

(

|E|

|B(x0, r) ∩ Ω|

)
1
t′

.

2) If w ∈ Ap(Ω, ρ) for some p > 1, then for any x0 ∈ Ω, r > 0 and any measurable
set E ⊂ B(x0, r) ∩ Ω, it holds

(2.8)
|E|

|B(x0, r) ∩ Ω|
≤

(

[w]RHt(Ω,ρ)

´

E
w(x) dx

´

B(x0,2r)∩Ω
w(x) dx

)
1
p

and

(2.9)

ˆ

B(x0,2r)∩Ω

w(x) dx ≤ C
p
d [w]Ap

ˆ

B(x0,r)∩Ω

w(x) dx,

where Cd is a doubling constant for (Ω, ρ), that is w is doubling.
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The proof of previous Lemma can be found in [9] in the euclidean setting, we
suggest [5] for some comments useful in our context.

Finally, we recall that a pair of weights (w, v) ∈ A1(Ω, ρ) provided

(2.10)

ˆ

−
B

w(x) dx ≤ c ess inf
B
v for all B ⊂ Ω.

In the sequel, we will be interested in the following class of weights, already introduced
in [8].

Definition 2.7. Given a pair of weights (w, v), w ≤ v and an exponent 1 < p <

∞, we say that the pair is p-admissible in Ω if

1) v is locally doubling in (Ω, ρ) and w ∈ Ap(Ω, ρ);
2) for a given compact set V ⊂ Ω there exist q > p and C ≥ 1 such that , for

every ball B centered in V and 0 < r < 1, it holds

r

(

´

rB
v(x) dx

´

B
v(x) dx

)

1
q

≤ C

(

´

rB
w(x) dx

´

B
w(x) dx

)

1
p

.

This class of weights are fundamental for our aims since their properties imply
the following two-weights Poincaré inequality (see [4] for X = ∇ and [8] for the
general case). We point out that the definition of p-admissible weight was given in
[15].

Theorem 2.8. Let 1 < p <∞ and (w, v) be a pair of p-admissible weights in Ω
and consider a compact set V ⊂ Ω. Then there exists R0 > 0 (depending on V and
X) such that, if BR is a ball centered in V and having radius R < R0, then for all
u ∈ HX,L(BR) it holds

(2.11)

(

1
´

BR
v(x) dx

ˆ

BR

|u(x)−uR,v|
qv dx

)
1
q

≤ C ·R

(

1
´

BR
w(x) dx

ˆ

BR

|Xu(x)|pw dx

)
1
p

where C depends on V,Ω, X, uR,v = 1
v(BR)

´

BR
u(x)v(x) dx and the constants in the

Definition 2.7.

According to Definition 2.7, we give the following

Definition 2.9. We say that the measurable function K ∈ L1
loc
(Ω) is p0-admis-

sible if there exists 1 < p0 < 2 and C ≥ 1 such that for every ball B and 0 < r < 1,

(2.12) r

(

´

rB
K(x) dx

´

B
K(x) dx

)

1
2

≤ C

(

´

rB
K(x)−1 dx

´

B
K(x)−1 dx

)

1
p0

.

Sometimes (2.12) will be referred to as the Chanillo–Wheeden condition with
exponent 1 < p0 < 2 and constant C ≥ 1.

The following sufficient condition for locally integrable functions to be p0-admis-
sible is analogous to Theorem 4.8 in [5] (see also Proposition 4 in [6] ). For the
reader’s convenience we give the proof below.

Proposition 2.10. Let 2 > Q − n. The function K is p0-admissible provided
K−1 ∈ Ap(Ω, ρ) and K ∈ RHt(Ω, ρ) with 1 < t <∞ and 2

Q
< p <∞ satisfying

(2.13)
2t′

n
≤

(

pQ

p0

)′

− 1.

In particular, this is the case if K ∈ A2(Ω, ρ) ∩ RHτ (Ω, ρ), τ = 1 + 2(Q−1)
n+2−Q
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Proof. Condition (2.13) is equivalent to

n

2t′
≥
pQ

p0
− 1

and the assumption 1
K

∈ Ap implies, by virtue of Lemma 2.5, the existence of ε > 0

such that 1
K

∈ Ap−ε. Obviously we get

(2.14)
n

2t′
≥
pQ

p0
− 1 >

(p− ε)Q

p0
− 1

which implies
n(t′)−1

2
> (p− ε)Qp−1

0 − 1.

Setting

q =
n(t′)−1

(p− ε)Qp−1
0 − 1

,

we deduce that q > 2. Then, from the first assertion of Lemma 2.6 , we have for
0 < r < 1 that

(2.15) r

(

´

rB
K(x) dx

´

B
K(x) dx

)

1
q

≤ c r

(

|rB|

|B|

) 1
qt′

and therefore that

(2.16) r

(

´

rB
K(x) dx

´

B
K(x) dx

)

1
q

≤ c r
n

qt′
+1

= C r
(p−ε)Q

p0 .

Now, taking into account that the Lebesgue measure satisfies (2.2) and applying the
second assertion of Lemma 2.6 , we have

r

(

´

rB
K(x) dx

´

B
K(x) dx

)

1
q

≤ C

(

´

rB
K(x)−1 dx

´

B
K(x)−1 dx

)

p−ε

p0p

≤ C

(

´

rB
K(x)−1 dx

´

B
K(x)−1 dx

)

1
p0

since ε is arbitrarily small. Since it is true for every ball B and q > 2, we deduce
that K is p0-admissible. �

3. A two-weights Caccioppoli inequality and the main result

For K satisfying (1.3), it is legitimate to consider the measures

dν =
1

K(x)
dx, dµ = K(x)dx

and the Banach spaces Lp(Ω, dν), Lp(Ω, dµ) of all p-integrable functions with respect
to the measures dν and dµ equipped with the norms

||u||p,Ω,dν =

(
ˆ

Ω

|u|pdν

)
1
p

, ||u||p,Ω,dµ =

(
ˆ

Ω

|u|pdµ

)
1
p

.

In the next theorem we prove a two-weights Caccioppoli inequality. We point
out that we don’t need to assume any condition on the weight K.

Theorem 3.1. If u ∈ HX(Ω) is a local minimizer for I(Ω, u) and (1.2) holds
with K satisfying (1.3) then, for any ball BR = B(x0, R) ⊂ Ω we have

(3.1)

ˆ

BR
2

|Xu|2 dν ≤ C

ˆ

BR

|u− uR|
2

R2
dµ.
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Proof. Let t, s such that R
2
< t < s < R and define η(x) = ψ(|x − x0|), where

ψ ∈ C∞
0 (Bs) is a cut-off function such that ψ ≡ 1 on Bt, |Xψ| ≤

c
s−t

. The proof of

the existence of a such function can be found, for example, in Lemma 3.6 of [10].
Observe that η ∈ W

1,∞
X,0 (Bs), the closure of C∞

0 in W 1,∞
X , η(x) = 1 on Bt and

(3.2) |Xη(x)| =

{

(s− t)−1, t ≤ |x− x0| ≤ s,

0, otherwise.

Consider the function

v(x) = u(x) + η2(x)(uR,µ − u(x)).

For x ∈ Bs, observe that we have

Xv(x) = (1− η2(x))Xu(x) + 2η2(x)
Xη(x)

η(x)
(uR,µ − u(x)).

Since u is a minimizer and (1.2) holds, we have
ˆ

Bs

〈AXu,Xu〉 dx ≤

ˆ

Bs

〈AXv,Xv〉 dx

=

ˆ

Bs

(1− η2)〈AXu,Xu〉 dx+

ˆ

Bs

2η2
〈

A

(

Xη

η
(uR,µ − u)

)

,
Xη

η
(uR,µ − u)

〉

dx

≤

ˆ

Bs\Bt

(1− η2)〈AXu,Xu〉 dx+ c

ˆ

Bs

η2
X2η

η2
(u− uR,µ)

2K(x) dx.

Then, by (3.2), we deduce that

2

ˆ

Bt

〈AXu,Xu〉 dx ≤

ˆ

Bs

〈AXu,Xu〉 dx+ c
1

(s− t)2

ˆ

Bs

(u− uR,µ)
2K(x) dx.

The assertion follows dividing for two both sides of last inequality and applying
Lemma 2.1 and assumption (1.2). �

Now we are in position to prove our main result on the regularity of minimizers.

Proof of Theorem 1.1. Let BR = B(x0, R) ⊂ Ω. From Theorem 3.1 we
immediately have that

(3.3)

ˆ

BR
2

|Xu|2 dν ≤ C

ˆ

BR

|u− uR,µ|
2

R2
dµ.

Observe now that assuming K ∈ A2, by the second assertion of Lemma 2.6, we have
that K is doubling.

On the other hand, the assumption K ∈ A2 ∩ RHτ , τ = 1 + 2(Q−1)
n+2−Q

implies,
thanks to Proposition 2.10, that K is p0-admissible, where p0 is related to τ by mean
of (2.13), that is

2τ ′

n
≤

(

2Q

p0

)′

− 1.

Therefore we have

(3.4) r

(

´

rB
K(x) dx

´

B
K(x) dx

)

1
2

≤ C

(

´

rB
K(x)−1 dx

´

B
K(x)−1 dx

)

1
p0

.

It follows that the pair (K−1, K) verifies the two conditions of Definition 2.7 and
hence is a pair of weights p0-admissible.
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At this point we are legitimate to apply Theorem 2.8 having
(

1
´

BR
K(x) dx

ˆ

BR

|u(x)− uR,µ|
2dµ

)
1
2

≤C · R

(

1
´

BR
K−1(x) dx

ˆ

BR

|Xu(x)|p0dν

)
1
p0

.

Combining estimates (3.3) with the last inequality and recalling that the weight K
is doubling, we get

1
´

BR
2

1
K(x)

dx

ˆ

BR
2

|Xu|2 dν ≤
C

´

BR
2

1
K(x)

dx

ˆ

BR

|u− uR,µ|
2

R2
dµ

= C

´

BR
K(x) dx

´

BR
2

1
K(x)

dx

(

1
´

BR
K(x) dx

ˆ

BR

|u− uR,µ|
2

R2
dµ

)

≤ C

´

BR
K(x) dx

´

BR
2

1
K(x)

dx

(

1
´

BR

1
K(x)

dx

ˆ

BR

|Xu|p0 dν

)
2
p0

(3.5)

≤ C1

´

−
BR

2

K(x) dx
´

−
BR

2

1
K(x)

dx

(

1
´

BR

1
K(x)

dx

ˆ

BR

|Xu|p0 dν

)
2
p0

= C2

(

1
´

BR

1
K(x)

dx

ˆ

BR

|Xu|p0 dν

)
2
p0

where

(3.6) C2 = C1

´

−
BR

2

K(x) dx
´

−
BR

2

1
K(x)

dx
.

Now observe that

(3.7)

ˆ

−
BR

2

K(x) dx ≤ c ess inf
BR

2

1

K
for all BR

2
⊂ Ω

thanks to the assumption that the pair
(

K, 1
K

)

∈ A1. On the other hand, we obviously
have

ess inf
BR

2

1

K
≤

1

K
a.e. in BR

2

and therefore
ˆ

−
BR

2

K(x) dx ≤ c

ˆ

−
BR

2

1

K(x)
dx for all BR

2
⊂ Ω.

It follows that the constant C2 can be estimated by a constant independent of BR
2
,

µ, ν. Now, from (3.5), applying Lemma 2.4 with g = |Xu|p0, q = 2
p0

, f = 0 and
ϑ = 0 we easily deduce the result. �
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