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Abstract. We find a remarkable family of G2 structures defined on certain principal SO(3)-

bundles P± −→ M associated with any given oriented Riemannian 4-manifold M . Such structures

are always cocalibrated. The study starts with a recast of the Singer–Thorpe equations of 4-

dimensional geometry. These are applied to the Bryant–Salamon construction of complete G2-

holonomy metrics on the vector bundle of self- or anti-self-dual 2-forms on M . We then discover

new examples of that special holonomy on disk bundles over H4 and H2

C
, respectively, the real and

complex hyperbolic space. Only in the end we present the new G2 structures on principal bundles.

Introduction

The group G2 of automorphisms of the octonions is equally characterised as the
group of invariants of a certain 3-form φ ∈ Λ3(R7)∗. This Lie subgroup of SO(7)
gives rise to a 7-dimensional special Riemannian geometry, whose basics are very
well-known today. A G2 structure on a 7-manifold is given by a reduction of the
manifold structure group to G2. It is equivalently given by a certain 3-form over
the manifold. Ever since a thorough study by Bryant and Salamon came to light,
in [7, 8, 20], the geometry of G2 structures has deserved much attention and led to
various deep insights and questions.

Let M be a 4-dimensional oriented Riemannian manifold. The present article
finds a new family of G2 structures associated to M . They are defined on the total
spaces of two natural principal SO(3)-bundles P+ and P− −→ M , abbreviated P±,
of oriented orthonormal coframe basis {e1, e2, e3} of self-dual and, respectively, anti-
self-dual 2-forms on M .

The following gives immediately a particular case, say a preferred G2 structure
within the new family. Writing the connection 1-form ω ∈ Ω1

P±
(o(3)), induced from

the Levi-Civita connection of M on the vector bundle Λ2
±T

∗M , as

ω =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0





then a G2 structure 3-form φ on P± is defined by

φ = ω1 ∧ ω2 ∧ ω3 ∓ (e1 ∧ ω1 + e2 ∧ ω2 + e3 ∧ ω3).
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One may say that a basic knowledge of the theory up to Bianchi identity in 4-
dimensional geometry is most sufficient in order to prove φ is coclosed.

The family of G2 cocalibrated metrics explicitly found is a natural variation of
the above preferred structure. The abundance of these examples is consistent with
an existence result on spin manifolds and the h-principle of cocalibrated structures,
proved in [9, Theorem 1.8]. It is also important for the construction of Spin(7)
metrics on P±×(−ǫ, ǫ), ǫ > 0, if one proceeds with the ‘Hitchin flow’ technique. From
another perspective, the cocalibration (P±, φ) is quite surprising since it reveals a new
kind of twistorial framework for the study of oriented Riemannian 4-manifolds and,
therefore, also a potential for new functor relations between 4- and 7-dimensional
geometry. More plainly, our result compares with the well-known theorem which
says that every cotangent bundle is a symplectic manifold.

We start our study with a recast of the theory of connections on principal coframe
bundles and the Singer-Thorpe decomposition of the curvature tensor of a Riemann-
ian 4-manifolds. We have given below a quite independent proof of this decomposi-
tion. These well-known results are used along the later proofs of the main theorems.

We also present an introduction to fundamental notions and equations of G2

geometry. Then we revisit the G2-holonomy metrics on X± = Λ2
±T

∗M , constructed
by Bryant and Salamon in [8, 20], somehow willing to honour their discovery of true
G2-holonomy. We compute the fundamental torsion equations of [6, 11] on X±, for
M anti-self-dual, or self-dual for the minus case, which are finally related by an
elementary lemma about two 1-variable dependent positive functions (throughout
the paper we work in the smooth category). The torsion forms entail many new
unsolved questions. As our computations are also accomplished for the bundle of
self-dual 2-forms, we use results of LeBrun ([18, 19]) to deduce that to every K3
surface with Calabi-Yau metric there corresponds a 2-parameter family of parallel
G2 structures on Λ2

+T
∗K3.

Our last chapter contains the general equations of the new G2 structures on the
manifolds P±. These structures are always cocalibrated. There remain non-vanishing
torsion forms, which we also find.

In particular, the family of cocalibrated structures on P− over S4 or CP
2 may

be chosen to be nearly parallel, with arbitrarily chosen positive ‖dφ‖φ > 0.
The author acknowledges Anna Fino for her commenting of a first draft of this

article. He greatly acknowledges the anonymous referees who very much improved a
final version of the text.

1. Riemannian 4-manifolds and G2 structures on 7-manifolds

1.1. Frame bundle and connection forms. We start by recalling some
classical elements of differential and Riemannian geometry, which may be seen in
many references such as [15, 17]. Introducing notation, given a manifold Y and a
vector bundle E → Y , we let Ωp

Y (E) or Ωp(Y,E) represent the space of smooth
sections Γ(Y ; ΛpT ∗Y ⊗E). Also, we let Ωp

Y = Ωp
Y (R).

Let M denote a smooth n-dimensional manifold and let F ∗M be the princi-
pal GL(n,R)-bundle of coframes. A coframe e ∈ F ∗M is a linear isomorphism
(e1, . . . , en) : TmM −→ R

n, m ∈ M . The natural Lie group right-action (e, g) 7→
Rg(e) = e · g is defined by e · g = (

∑

j g
1
je

j , . . . ,
∑

j g
n
j e

j), for g ∈ GL(n,R).
Using the bundle projection π : F ∗M −→ M we have a canonical Rn-valued 1-

form θ on F ∗M , the so-called soldering form. It gives a first example of a tautological
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form, as it is defined by

(1) θe = e ◦ π∗.
Now suppose the manifold is endowed with a linear connection, that is, a co-

variant derivative ∇ on the tangent bundle of M . Given any local section s =
(e1, . . . , en) : U → F ∗M on an open subset U ⊂ M , we then have a matrix-valued
1-form ω induced by the covariant derivative: ∇ei =

∑

j e
j ⊗ωi

j . In obvious notation

we may write this as s ωi
· , with such matrix 1-form existing on U .

Now a natural extension d∇ of ∇ as a differential operator on the relevant space
leads us to the notion of the curvature tensor R∇ = (d∇)2 and, locally, to a curvature

form ρik. Respectively, a T ∗M-valued 2-form on M

(2) R∇
Z1,Z2

ei = ∇Z1
∇Z2

ei −∇Z2
∇Z1

ei −∇[Z1,Z2]e
i, ∀Z1, Z2 ∈ TM,

and a Lie algebra gl(n,R)-valued 2-form on U

(3) ρik = dωi
k +

∑

j

ωj
k ∧ ωi

j .

Of course, (2) and (3) are related by R∇ei = sρi· and, differentiating again, gives a
Bianchi identity.

More important here is the fact that the connection can be completely de-
scribed over the manifold F ∗M . Indeed, there exists a unique globally defined
ω ∈ Ω1(F ∗M, gl(n,R)) such that

(4) ∇s = s s∗ω, ∀s ∈ Ω0(U, F ∗M),

and such that, for any fundamental vertical vector field Ve ∈ TF ∗M, e ∈ F ∗M ,

(5) ω(Ve) = V
(

by definition, Ve =
d

dt

∣

∣

∣

∣

0

e · exp(tV ), V ∈ gl(n,R)
)

.

From this and the existence of time-dependent parallel sections we have that H =
kerω is complementary to the vertical tangent subbundle ker π∗ ⊂ TF ∗M . It follows
easily that R∗

gω = Ad (g−1)ω, ∀g ∈ GL(n,R). And, hence, that dRg(He) = He·g.
Let us recall the connection ∇ is given on the tangent bundle of M . Here we

must consider the torsion, defined by T∇ = d∇1. Letting s̆ = (e1, . . . , en) denote a
frame dual to the previous s, we may then define equivariantly an R

n-valued 2-form
τ on F ∗M , vanishing on vertical directions and such that T∇ = s̆ s∗τ t.

The connection 1-form of TM is −ωt, i.e. it satisfies ∇ei = −
∑

j ej ω
j
i or just

∇s̆ = −s̆ s∗ωt, because simply one requires ∇1 = 0. The following are two funda-
mental equations due to Cartan regarding the torsion and the curvature of any linear
connection on the principal bundle of coframes.

Proposition 1.1. (Cartan structural equations) We have

(6) τ = dθ + θ ∧ ω, ρ = dω + ω ∧ ω.
Proof. In order to readily establish the theory, we give the proof with as much

detail as possible. First the map s̆ s∗θt =
∑

j ejθ
js∗ =

∑

j eje
j = 1|U is the identity

endomorphism of TM . Then we have s̆ s∗τ t = d∇1|U = d∇(s̆ s∗θt) = s̆(−s∗ωt ∧
s∗θt + ds∗θt) = s̆ s∗(θ ∧ ω + dθ)t. Let us see that for a vertical direction Ve, we have
(dθ+θ∧ω)(Ve, ·) = 0. This is trivial if the second entry is vertical too, so we consider
a lift Ze·g = dRg(s∗(Z)) of Z ∈ TM , with s a section passing by e, and compute

[V, Z]e = lim
t→0

1

t
(dRexp(−tV )(Ze·exp(tV ))− Ze) = 0,
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(dθ + θ ∧ ω)(Ve, Ze) = d(θ(Z))(Ve)− d(θ(V ))(Ze)− θ([V, Z])− ω(Ve)θ(Ze)

=
d

dt

∣

∣

∣

∣

0

(θZ)e·exp(tV ) − V (e(Z)) =
d

dt

∣

∣

∣

∣

0

e · exp(tV )(Z)− V (e(Z)) = 0.

Regarding the curvature equation in (6), with the above coframe we find R∇s =
d∇(s s∗ω) = s s∗(ω∧ω+dω) which by definition is R∇s = s s∗ρ, as in (3). Arguments
such as the previous yield ρ(V, ·) = 0, proving ρ is well-defined and equivariant. �

We recall that θ, ω, and hence τ and ρ, are global differential forms on F ∗M .
A connection is said to be reducible to a principal G-subbundle Q of F ∗M , where
G is a Lie subgroup of the general linear group, if kerω|Q ⊂ TQ. The previous
classical theory extends to any vector bundle X −→ M which is associated to a
coframe principal G-bundle Q −→ M . This is, when it is given a representation
σ : G→ GL(V ), where V is a vector space, so that we may write X = Q×σ V . This
means a vector in X identifies with a pair (q, f) ∈ Q×V or any representative of its
equivalence class, (qg, σ(g−1)f), for g ∈ G, the usual orbit of G. If s is a section of
Q on an open set U ⊂M and f is any V -valued function on U , then f determines a
unique G-equivariant function f̂ : π|Q

−1(U) → V such that f = f̂ ◦s; with equivariant

meaning that σ(g−1)f̂(s) = f̂(sg), ∀g ∈ G. Reciprocally, any equivariant function
on Q determines a section of X −→ M . Finally, we covariant differentiate sections
of X through the class-independent formula

(7) ∇Z(s, f) = (s, σ̂ · s∗ω(Z)f + df(Z)), ∀Z ∈ TM,

where σ̂ : g −→ gl(V ) is the induced map from σ. To see this is well-defined on X
it is necessary to prove first (sg)∗ω = Ad (g−1)s∗ω + g−1dg, where g is any G-valued
function defined on the domain of s. However, we shall not really need this formula
in what follows.

Now we suppose M is also an oriented Riemannian manifold with metric g = 〈 , 〉.
Then there is a canonical torsion-free metric connection, the Levi-Civita connection,
and all the above remains true on the principal SO(n)-bundle F ∗

◦M of oriented or-
thonormal coframes. Because ω defines a metric connection, the matrix of 1-forms ωi

j

is skew-symmetric. Moreover, any 1-form κ = tr (κ ◦ 1) or 0-section of T ∗M satisfies
0 = d2κ = tr (R∇κ∧ 1) for a torsion-free connection. This leads to the so-called first

Bianchi identity

(8) R∇
eα,eβ

eγ +R∇
eβ ,eγ

eα +R∇
eγ ,eα

eβ = 0 .

1.2. Self-duality on Riemannian 4-manifolds. Recall that a star operator ∗
is defined on Λ2(R4)∗ by α∧∗β = 〈α, β〉 vol. Since it depends on the orientation of R4

and ∗2 = 1, we have ±1 eigenspaces Λ2
± of ∗ of equal dimension. The representation

of SO(4) on the space of 2-forms is reducible to each eigenspace and clearly contains
Z2 = {1,−1} in the kernel. Counting dimensions, we may introduce two compatible
complex structures on R

4 to further deduce the identity SO(4) = SU(2)×SU(2) /Z2.
We thus find o(4) = o(3)⊕ o(3).

Now let M be a connected oriented Riemannian 4-manifold and let us continue
with the same notation as above. Then we have a star or Hodge operator ∗

M
on M

which, moreover, commutes with covariant differentiation. Hence we have parallel
subbundles:

(9) Λ2T ∗M = Λ2
+ ⊕ Λ2

− .
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A similar picture as the one from section 1.1 then follows for the principal SO(3)-
bundles P± −→ M of oriented and

√
2-orthonormal, i.e., orthogonal and norm

√
2,

coframes of Λ2
±. The group acting is SO(3) since the rank of Λ2

± is 3. By the last term
oriented we just mean some choice made of one of the two connected-components of
the bundle of

√
2-orthonormal coframes of each of those vector bundles associated to

M .
The spaces P± are nevertheless transformed by SO(4) under the right-action.

Choosing any oriented orthonormal coframe e = (e4, . . . , e7) ∈ F ∗
◦M , we then have

two new coframes for the vector bundles of self-dual and anti-self-dual 2-forms, re-
spectively1

(10) e1 = e1± = e45 ± e67, e2 = e2± = e46 ∓ e57, e3 = e3± = e47 ± e56 .

This induced coframe (e1, e2, e3) in fact determines invariantly the above choice of
P±, and hence confirms that the Λ2

±T
∗M −→ M are oriented vector bundles. Let

us prove this on just one space, say P+, for clarity. Any oriented coframe on M
equals e · g, for some g ∈ SO(4), and any

√
2-orthonormal oriented coframe of Λ2

+ is
of the previous type, by linear algebra. The orientation of ((e · g)1, (e · g)2, (e · g)3) =
(e1 · g, e2 · g, e3 · g) = (e1, e2, e3) · g̃ is fixed by g ∈ SO(4) since this group is connected
and acts transitively. Then

(11) p+ : F
∗
◦M −→ P+ and p− : F

∗
◦M −→ P−

are equivariant maps defined by p±(e) = p±(e
4, e5, e6, e7) := (e1, e2, e3). The kernel

of the group homomorphism g 7→ g̃ is a normal subgroup H , containing {1,−1},
such that SO(4)/H = SO(3). We may say H ≃ SU(2). Hence the orientation is
well-defined by the choice in (10+).

The induced connections on P± are again denoted by an ω = ω± ∈ Ω1
P±

(o(3)),
although now given by ∇p = p p∗ω where p = p± ◦ s and s : U ⊂ M −→ F ∗

◦M is any
local section as before and

(12) ω =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 with











p∗ω1 = ω6
7 ± ω4

5,

p∗ω2 = ω7
5 ∓ ω6

4,

p∗ω3 = ω5
6 ± ω4

7.

The curvature tensor RΛ2

satisfies RΛ2

± p = p p∗ρ for a new 2-form also denoted by
ρ ∈ Ω2

P±
(o(3)). Next we define the tautological form η = p±(θ

4, . . . , θ7) as the
push-forward by p± of the soldering form components. This 2-form is abbreviated
henceforth as η = (e1, e2, e3), without risk of confusion. We find an important result,
which holds on the manifold P± by equivariance and follows consistently with all
previous structure equations.

Proposition 1.2. On P± we have

(13) dη = η ∧ ω

and

(14) 0 = η ∧ (ω ∧ ω + dω) = η ∧ ρ

1These coframes will be useful later but in separate moments, hence we only introduce the +
or − on the ei, i = 1, 2, 3, or in other objects, when necessary. We adopt the common notation
eαβ = eα ∧ eβ .
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where ρ is the curvature 2-form

(15) ρ = dω + ω ∧ ω =





0 −ρ3 ρ2

ρ3 0 −ρ1
−ρ2 ρ1 0



 with











ρ1 = ρ67 ± ρ45,

ρ2 = ρ75 ∓ ρ64,

ρ3 = ρ56 ± ρ47.

Proof. We find indeed RΛ2

± p = p p∗ρ and the formulae dω3 + ω1 ∧ ω2 = ρ56 ± ρ47,
etc. �

Let us recreate the celebrated representation theory of the Riemannian curvature
tensor, which is due to Singer and Thorpe, cf. [3]. One can prove that the curvature
tensor R∇ of the Riemannian 4-manifold M is symmetric when it is seen as a section
of S2(Λ2T ∗M), by the identity in (14). Let {e4, e5, e6, e7} be a dual frame of the
above. One defines a map R : Λ2 −→ Λ2 by

(16) 〈R(eα ∧ eβ), eγ ∧ eδ〉 = −〈R∇(eα, eβ)eγ , eδ〉 = R∇
αβγδ .

Then there are invariantly defined maps A,B,B∗, C respecting the decomposition
(9), i.e., such that

(17) R =

[

A B
B∗ C

]

.

Lemma 1.1. (Singer–Thorpe) The map R is symmetric, B corresponds to the

traceless part of the Ricci tensor Ric =
∑7

α=4〈R( , eα)eα, 〉 and trA = trC =
1
4
trgRic = 1

4
ScalM .

Proof. By all definitions, notice

R∇
αβγδ = 〈R(eα ∧ eβ), eγ ∧ eδ〉 = −〈R∇

eα,eβ
eγ, eδ〉 = −〈R∇

eα,eβ
eγ , eδ〉 = ρδγ(eα, eβ).

Using the frame e1+, e
2
+, . . . , e

3
−, we may clearly write ρi+ =

∑3
j=1 ã

i
je

j
++˜̃bije

j
− for some

scalar functions ãij,
˜̃bij . On the other hand, we have Rei+ =

∑

j
1
2
Rije

j
++

1
2
Rij̄e

j
− where

Rij follows linearly from (16). With the dual frame p±(e4, . . . , e7) = (e±,1, e±,2, e±,3)
we then have ei±(e±,j) = 2δij , e

i
±(e∓,j) = 0, ∀i, j = 1, 2, 3, and computations with (3),

(15) yield

(18) ãij =
1

2
ρi+(e+,j) = −1

2
Rij ,

˜̃bij =
1

2
ρi+(e−,j) = −1

2
Rij̄ .

In particular −ã is the matrix of A and −˜̃b is the matrix ofB∗. Also ρi− =
∑3

j=1 b̃
i
je

j
++

c̃ije
j
−, for some coefficients, and the same holds for Rei− =

∑

j
1
2
Rīje

j
++

1
2
Rīj̄e

j
−. Again

one shows c̃ij = +1
2
Rīj̄ and the three identities 2b̃ij = ρi−(e+,j) = Rīj = −2

˜̃
bij which

yield Rīj = Rij̄ . By (14) it is immediate that a and c are symmetric. For instance,
on the self-dual part, we find 0 = e2 ∧ ρ3 − e3 ∧ ρ2 = +2(ã32 − ã23)e

4567. This implies
the whole symmetry of R. In particular B∗ is the adjoint of B. Recurring to the
first Bianchi identity (8), further computations on the above coefficients yield the
relations with the tensor Ric . �

Henceforth the curvature of the vector bundle of self-dual 2-forms encodes half
of the Riemannian curvature tensor of M . A few lines of computation will show that
M is Einstein, i.e., the Ricci tensor is a multiple of the metric tensor, if and only
if B = 0. In other words, M is Einstein if and only if ∗R = R∗. If this is the
case, then clearly orthogonal planes in TM have the same sectional curvature. And
reciprocally.
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The invariant theory of SO(4) lets us define the tensors W+ = A − 1
3
trA and

W− = C − 1
3
trC, which are called the self-dual and anti-self-dual Weyl tensors of

M . The so-called Weyl tensor W = W+ +W− is conformally invariant, since that is
certainly the case with the star operator and each W± component does preserve the
Λ2

±.
The Riemannian manifold M is self-dual if W = W+ and anti-self-dual if W =

W−. Clearly the former condition reads also as (s = 1
12
ScalM = 1

3
trA = 1

3
trC):

(19) (SD) W− = 0 ⇐⇒ ∀m ∈M, ∃s ∈ R : ρi− = sei− +
3

∑

j=1

b̃ije
j
+, ∀i,

whereas the latter corresponds with ρi+ = −sei+ + . . .. In any dimension, if M is
Einstein, then s is known to be a constant.

1.3. G2 structures. G2 structures are well-known today and amount to 3-
forms of special kind on a 7-dimensional manifold. One way to describe them is
precisely within the above setting of distinguished 2-forms. Let us continue with
the notation for self-duality from (10), but now on some oriented Euclidean 4-space,
say a horizontal direction, which we complement with a 3-dimensional Euclidean
space given by an orthonormal coframe, i.e. a set of three independent linear forms
f 1, f 2, f 3, for the vertical direction. Of course, we obtain a corresponding metric
g = gV +gH in 7 dimensions. Then a linear G2 structure is defined on the direct sum
vector space, just as in [8, 20], by

(20) φ = λ3f 123 ∓ λµ2(f 1 ∧ e1 + f 2 ∧ e2 + f 3 ∧ e3).

In the above we continue to abbreviate ei = ei±. The coefficients λ3, λµ2 appearing
are dependent on real scalars λ, µ. A study of 3-forms of special type gives that
the group of automorphisms of φ, G2, is a simply-connected, compact, simple, 14
dimensional Lie subgroup of SO(7), with such special orthogonal group referring to
some new metric gφ (cf. [6]). An orientation form o = Volg = f 123e4567 may be fixed
once and for all, because the φ induced orientation is invariant by continuity on λ, µ
in some open interval. The metric gφ is given, for some m ∈ R yet to be determined,
and for any vectors u, v, by the well-known identity

(21) uyφ ∧ vyφ ∧ φ = ±6〈u, v〉φmo.

In the case of (20), after some lengthy but straightforward computations with the
dual frame, we find the following result.

Lemma 1.2. The frame f1, f2, f3, e4, e5, e6, e7 is orthogonal and satisfies 〈eα, eα〉φ
= λ3µ6

m
and 〈fi, fi〉φ = λ5µ4

m
.

Indeed the definitions induce a unique metric irrespective of ±. Now it follows
that

m2 =
1

‖f 123e4···7‖2φ
=
λ15µ12

m3

λ12µ24

m4

and hence the value of m = λ3µ4. Also the metric and canonical volume form are:

(22) gφ = λ2gV + µ2gH , Volgφ = mo = λ3µ4Volg .
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The orientations o and mo agree if and only if λ > 0. We fix µ > 0 for convenience.
Finally the star operator ∗φ for gφ gives

(23)

{

φ = λ3f 123 ∓ λµ2(f 1 ∧ e1 + f 2 ∧ e2 + f 3 ∧ e3),
ψ := ∗φφ = µ4e4567 − λ2µ2(e1 ∧ f 23 + e2 ∧ f 31 + e3 ∧ f 12).

Since the compatibility between the 3- and 4-dimensional subspace orientations
is quite arbitrary, we comment on a further detail. It is quite natural that one
starts with his own choice of a frame of self-dual 2-forms. For instance, say we pick
e1, e2,−e3 (or any other non-orientation preserving transformation in Λ2

+). Then we
may reverse the signs of f 3 and λ in order to have the same orientation, mo, but the
metric induced from the new 3-form (20) will be of signature (3,−4), a so-called G̃2

metric, where the automorphisms Lie group is now the non-compact dual of G2. In
order to have a positive definite metric we would have to start by reversing the sign
in the present −λµ2 coefficient in (20). For example, without further ado, we see
the G2 structure f 123 + f 1e1+ + f 2e2+ − f 3e3+ is used in celebrated references such as
[6, 7, 12, 13, 16].

A G2 structure on a 7-dimensional manifold X is given by a smooth 3-form φ ∈
Ω3

X of the form (20) in some given coframe f 1, . . . , e7. Then there is an induced metric
gφ and compatible orientation onX, as we have seen fibre-wise and for similar reasons
the same must hold globally. The structure is furthermore reducing the holonomy
of the Levi–Civita connection ∇ of this metric to G2 if and only if ∇φ = 0. That
is, any endomorphism of TxX induced by parallel displacement over a contractible
loop around x lies in the Lie group. Such a structure is called parallel or 1-flat. A
theorem of Fernández and Gray asserts this is equivalent to φ being harmonic, cf.
[11, Theorem 5.2].

The classification of G2 structures is further developed in [11] and [7]. It depends
on four forms τi ∈ Ωi

X for i = 0, 1, 2, 3, which appear fibre-wise in ΛiT ∗X as G2-
modulesWi of dimensions, respectively, 1, 7, 14, 27. While the first two representation
spaces W0,W1 are obvious, the third one is W2 = g2 = {τ2 : τ2∧φ = ∓∗φ τ2} and the
fourth one is W3 = {τ3 : τ3 ∧ φ = τ3 ∧ ψ = 0}. The forms indeed exist and appear in
(recall ψ = ∗φφ)

(24)

{

dφ = τ0 ∗φ φ+ 3
4
τ1 ∧ φ+ ∗φτ3,

dψ = τ1 ∧ ψ + τ2 ∧ φ.

Equations dφ = 0 and d∗φφ = 0, respectively, are those of a calibrated and cocalibrated

G2 structure. As said above, having both conditions is the same as ∇φ = 0. Like
many authors we also reserve the name G2-manifold for the parallel case. If dφ = τ0 ψ
with τ0 6= 0 a constant, then we have a pure type W0 or nearly parallel structure,
cf. [1]. For each i, the structures are called of pure type Wi if the only non-zero
component is τi. Pure type W1 is the same as locally conformally parallel, since τ1
must be closed, i.e. locally exact.

2. The Bryant–Salamon G2 manifolds

2.1. Structure equations for X+ and X−. This section is based on the
famous construction of G2 structures found in [20, 21, 8]. We give a new description
of their fundamental equations and, moreover, we find the respective torsion forms,
in Theorem 2.1 below.
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The manifolds X± = Λ2
±T

∗M = P± ×SO(3) R
3, where the representation is the

canonical one, are natural vector bundles associated to a given oriented Riemannian
4-manifold M . Such manifolds carry many rich G2 structures. We shall treat the
± cases simultaneously, occasionally forgetting the subscript notation. This shall be
the case of the 3-form φ, over X±, which is defined as follows assuming much of the
notation from previous sections.

A point x ∈ X± may be written as x = pat, where p = (e1, e2, e3) constitutes a
coframe of self- or anti-self-dual forms and a = (a1, a2, a3) is a vector of R3. Then the
2-form η from Proposition 1.2 induces another tautological 2-form, ηat, well-defined
on X±. As well as the scalar function r = 1

2
‖ηat‖2

M
= aat. By (13), we have

(25) d(ηat) = η ∧ (ωat + dat) = η ∧ f t

where

(26) f = da + aωt = da− aω.

Using either this identity or the pullback connection to X± from ∇ on M , we find

(27) dr = 2fat.

Remark. With the intent of easing the reading and no fear of inducing much
confusion, from now on we abbreviate notation by dropping the wedge product sym-
bol.

Next we introduce a diligent tool to deal with several computations. Consider
the linear map which sends α ∈ Ωk(R3), k ≥ 0, to the o(3)-valued k-form α̌ exactly
in the shape of the matrix ω = (ω1, ω2, ω3)∨ in (12). This is,

(28) if α = (α1, α2, α3), then α̌ = α∨ =





0 −α3 α2

α3 0 −α1

−α2 α1 0



 .

In coherence with our notation we also2 have ρ = ρ̌. We let ·∧ denote the left inverse
map, defined for any matrix A by A∧ = (a32,−a31, a21). We have (A∧)∨ = A if and
only if A lies in the orthogonal Lie algebra. The following identities are trivial to
check:

(29) (α̌δ̌)∧ = (α1δ2,−α1δ3, α2δ3) and (αδ̌)∨ = α̌δ̌ − (−1)deg αdeg δ δ̌α̌ .

Returning to our G2 matter, the components f = (f 1, f 2, f 3) give us the required
base of 1-forms with which one defines a structure φ in the same fashion as (20). We
define β = f 123 and vol = e4567 since in fact this is the pullback to X± of the volume
form of M . Henceforth φ = λ3f 123∓λµ2ηf t = λ3β∓λµ2 d(ηat) where λ, µ are scalar
functions on X±, cf. (23). Also ψ = µ4 vol−λ2µ2ηht where the 2-form h is defined
by h = (f̌ f̌)∧ = (f 23, f 31, f 12); notice ȟ = −f tf = f̌ 2 = 1

2
(f f̌)∨.

Proposition 2.1. We have

(30)

{

dφ = dλ3 β + λ3hρat ∓ d(λµ2)ηf t,

dψ = dµ4 vol−d(λ2µ2)ηht + λ2µ2ηf̌ρat.

2We keep the notation for ω and ρ, the only two exceptions, everywhere referring the matrices
defined earlier.
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Proof. It is easy to see that df = −fω − aρ. Applying (29) several times, we
find fωf̌ = −hω and thence

(31) dh = (df̌ f̌ − f̌df̌)∧ = (df)f̌ = −fωf̌ − aρf̌ = hω − aρf̌ .

Since β = 1
3
hf t, we have (in fact hωf t = 0)

(32) dβ =
1

3
(dh f t + hdf t) =

1

3
(hωf t − aρf̌f t − hωf t + hρat) = hρat

and

(33) d(ηht) = −ηf̌ρat.

Since ηf t is exact, (25), the result follows. �

For the solution of several G2 equations we follow [8, 20] and consider λ, µ as
functions of the half square-radius r.

Proposition 2.2. Let us consider the spaces X± = Λ2
±T

∗M with the generic
Bryant–Salamon G2 structure φ and assume λ and µ are only dependent of r. We
have that dφ = 0 implies the metric of M is Einstein.

Proof. The assumption on a function ζ on X± of being dependent only of r and
(27) imply that dζ = 2∂ζ

∂r
fat. The first line of (30) thus becomes dφ = λ3hρat ∓

2∂(λµ2)
∂r

fatηf t. It is now enough to see the case of self-duality, hence with ρ = ρ+.
Recall we have seen the Einstein condition is fulfilled with ρ+ having no anti-self-dual

terms, i.e. the vanishing of the
˜̃
bij terms in (18). If φ is closed, then indeed we must

have B = 0. �

In the following we find the torsion forms introduced in (24).

Theorem 2.1. Consider the spaces X± = Λ2
±T

∗M with the generic Bryant–
Salamon G2 structure φ and assume λ and µ are only dependent of r. Assume also
that M is anti-self-dual in the case of X+ or self-dual in the case of X−. We thus
have ρ = ∓sη̌ + ρ

B
, as in equation (19), where ρ

B
is the Einstein component, which

interchanges self- with anti-self-duality depending of which case. Then we have:

i) τ0 = 0,

ii) τ1 =
2

3λ2µ4

(

∂(λ2µ4)
∂r

− sλ4µ2
)

dr,

iii) τ2 = ∓
(

∂
∂r
(µ

2

λ2 )− 2s
)(

4λ3

3µ2ha
t ± 2λ

3
ηat

)

,

iv) τ3 = ∓λ2fρ
B
at and, in particular, τ3 = 0 if and only if M is Einstein.

Proof. i) Since the wedge of 4-forms with φ is equivariant, we find an invariant
kernel of such map and then deduce 7τ0Volgφ = (dφ)φ. Suppose by hypothesis that

d(λµ2) = Sfat = 1
2
Sdr. Finally,

(dφ)φ = (λ3hρat ± Sηf tfat)(λ3β ∓ λµ2ηf t)

= sλ4µ2hη̌atηf t − Sλµ2ηf tfatηf t = 0

because ρ
B
η = 0, ηf thη̌ = βηη̌ = 0, ηηt = ±6 vol, ηtη = ±2 vol .13 and then

fηtηf tf = ±2 vol ff tf = 0.
ii) As above, we define three functions S, T, U simply by d(λµ2) = Sfat, d(λ2µ2) =

Tfat and d(µ4) = Ufat. Note also the identity f η̌ + ηf̌ = 0, which is easy to check
and implies ηf̌ η̌ = −f η̌2 = ±4f vol. Below we will also need f tf = −ȟ. We have
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then, by (30),

∗φdψ = ∗φ
(

(U vol−Tηht)fat ∓ λ2µ2ηf̌sη̌at
)

= ∗φ
(

(U − 4sλ2µ2) vol fat − Tβηat
)

=
λ

µ4
(U − 4sλ2µ2)hat ∓ 1

λ3
Tηat.

Now, it is known that τ1 = 1
3
∗φ

(

(∗φdψ)ψ
)

(cf. [11, 13]). Hence, since hht = 0 and
ηht = hηt is a 4-form,

τ1 =
1

3
∗φ

((

λ

µ4
(U − 4sλ2µ2)hat ∓ T

λ3
ηat

)

(

µ4 vol−λ2µ2ηht
)

)

=
1

3
∗φ

(

λ(U − 4sλ2µ2)h vol at ± Tµ2

λ
hηtηat

)

=
1

3λ
∗φ (λ2U − 4sλ4µ2 + 2Tµ2)h vol at

=
λ

3λ3µ4
(λ2U − 4sλ4µ2 + 2µ2T )fat.

Since (λ2U + 2µ2T )fat = λ2d(µ4) + 2µ2d(λ2µ2) = 2d(λ2µ4), the result follows.
iii) The easiest way to find τ2, lying in the g2 representation module, seems to be

by using the formula we have just proved. Recalling (24) and the previous formula
for dψ and checking htf = β.13, we have

∓ ∗φ τ2 = dψ − τ1ψ

= (U − 4sλ2µ2) vol fat − Tβηat − 1

3λ2
(λ2U − 4sλ4µ2 + 2µ2T )fat vol

+
1

3µ2
(λ2U − 4sλ4µ2 + 2µ2T )fatηht

=
1

3λ2
(

3λ2U − 12sλ4µ2 − λ2U + 4sλ4µ2 − 2µ2T
)

vol fat

− Tβηat +
1

3µ2
(λ2U − 4sλ4µ2 + 2µ2T )ηhtfat

=
1

3λ2
(

2λ2U − 8sλ4µ2 − 2µ2T
)

vol fat +
1

3µ2
(λ2U − 4sλ4µ2 − µ2T )ηβat

= (λ2U − µ2T − 4sλ4µ2)

(

1

3µ2
ηβ +

2

3λ2
vol f

)

at.

Hence

τ2 = ∓(λ2U − µ2T − 4sλ4µ2)

(

± 1

3µ2λ3
η +

2

3λµ4
h

)

at

= ∓
(

λ2

µ2
U − T − 4sλ4

)(

± 1

3λ3
η +

2

3λµ2
h

)

at

= ∓
(

2
λ2

µ2

∂µ4

∂r
− 2

∂λ2µ2

∂r
− 4sλ4

)(

2

3λµ2
h± 1

3λ3
η

)

at

= ∓
(

∂

∂r
(
µ2

λ2
)− 2s

)(

4λ3

3µ2
hat ± 2

3
ληat

)

.
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iv) Finally, from the formulae above for dφ and τ1, we find

τ3 = ∗φ
(

dφ +
3

4
φτ1

)

= ∗φ
(

λ3hρat ± Sηf tfat +
1

4λ2µ4
(∓λµ2ηf t)(λ2U − 4sλ4µ2 + 2µ2T )fat

)

=
1

4λµ2
∗φ

(

4λ4µ2hρ∓ 4Sλµ2ηȟ± (λ2U − 4sλ4µ2 + 2µ2T )ηȟ
)

at

=
1

4λµ2

(

4λ4µ2 ∗φ (∓shη̌ + hρ
B
)− 4Sµ2ηf̌ +

1

λ
(λ2U − 4sλ4µ2 + 2µ2T )ηf̌

)

at

=
1

4λµ2

(

−4sλ3µ2(f η̌ + ηf̌)∓ 4λ3µ2fρ
B
+

1

λ
(λ2U + 2µ2T − 4λµ2S)ηf̌

)

at

= ∓λ2fρ
B
at.

Indeed, f η̌ + ηf̌ = 0 and

(λ2U + 2µ2T − 4λµ2S)fat = 2d(λ2µ4)− 4λµ2d(λµ2) = 0.

So the formula is much simplified. �

We remark that hat is also a global 2-form, just as the 2-form ηat.

2.2. New examples of G2 manifolds. With the above theorem we can con-
struct new examples of G2 structures of eight different and unusual classes. Regarding
pure Wi, i = 1, 2, 3, and other relevant types, we have further observations.

One writes, in general,

(34) τ1 =
2

3

(

d log(λ2µ4)− s
λ2

µ2
dr

)

.

In the conditions of Theorem 2.1, we can indeed find some examples of non-trivial
pure type W1 structures, i.e. locally conformally parallel. However, if 12s = ScalM <
0, then the structure is only locally conformally parallel, not globally, and in general
the induced metric gφ is not complete nor defined on the whole space. Note that
s is constant since τ3 = 0. Indeed τ2 = 0 has a solution: λ = constant and µ2 =
λ2(2sr + c1), where c1 is another constant.

Regarding pure type W2 structures, the equation τ1 = 0 does not yield so easily.
Taking λ constant, leads to a complete solution if and only if ScalM ≥ 0, giving an
answer to the problem. Taking µ a constant, leads to another solution but hardly
with the metric gφ complete.

We notice that τ1 and τ2 are closely related, by the following simple lemma which
is just calculus in the variable r.

Lemma 2.1. With λ, µ > 0, any two of the following conditions imply the third:

(35) λµ = c0 a constant, τ1 = 0, τ2 = 0.

In order to achieve pure type W3 or even G2-holonomy, one thus assumes (35);
equivalently, one assumes the system of equations λµ = c0 and ∂rµ

2 − sλ2 = 0. The
unique solution is (with c1 another constant):

(36) (µ(r))2 = (2c20sr + c1)
1

2 , (λ(r))2 = c20(2c
2
0sr + c1)

− 1

2 .
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The only existing compact self-dual Einstein 4-manifolds with s > 0, result due to
Hitchin, were pointed out in the original construction of what we have denoted by
X−. The following is well-known.

Theorem 2.2. (Bryant–Salamon [8, 20]) For M = S4 or M = CP
2 with stan-

dard metrics, the spaces Λ2
−T

∗M have a complete metric with holonomy G2.

We recall that self-dual (SD) scalar-flat 4-manifolds also give rise to interesting
complete G2 structures on X− by the same method. Raising questions similar to
the above for the G2 structure on anti-self-dual (ASD) metrics, thus pretending that
orientation would precede other requirements, we proceed with the study on X+.

Let us resume with the ScalM = 0 condition. The spin compact scalar-flat Kähler
surfaces were classified in [18, Proposition 3] and consist of the Calabi–Yau surfaces,
the flat torus modulo a finite group, here denoted M0, and the CP

1-bundles over a
Riemann surface of genus > 1 with the local product metric, here M1.

Theorem 2.3. i) Let M be any complete scalar-flat Kähler surface, with
the compatible orientation. Then the associated G2 structure φ on the man-
ifold X+ is cocalibrated, i.e. dψ = 0, if and only if λ, µ are constant. In this
case, φ is of pure type W3 and gφ is complete.

ii) The three classes of manifolds Λ2
+T

∗K3, whereK3 denotes any of the homony-
mous surfaces, Λ2

±T
∗M0, all admit complete parallel G2 structures.

iii) Λ2
+T

∗M1 is of pure type W3 and not parallel.

iv) Both classes of manifolds M2,k = kCP
2
, with k ≥ 6 (a k-many connected

sum of conjugate-oriented CP
2s) and manifolds M3,k = CP

2#kCP
2
, with

k ≥ 14, all with the scalar-flat ASD metrics described in [19, Theorem A],
admit complete G2 structures on Λ2

+T
∗Mi,k (i = 2, 3) which are of pure type

W3 and not parallel.

Proof. i) It is well-known that a Kähler surface is scalar-flat if and only if it is
anti-self-dual [10], a local result. We may thus apply Theorem 2.1 above to get the
first part. Since we have s = 0, it is indeed λ and µ constant by (36), and reciprocally.
Completeness follows by completeness of the totally geodesic fibres, by completeness
of the base manifold and the Hopf–Rinow Theorem on local product metrics (cf. [2]
for details and [8] for a similar argument, which also appears below).

ii) The only spin compact cases in i) are M0 and the K3 surfaces with Calabi–
Yau metric [18]. Since the latter and M0 are actually Einstein, all torsion tensors in
Theorem 2.1 vanish.

iii) Fibre and base of M1 have opposite sectional curvature, but M1 is not Ein-
stein, so τ3 6= 0.

iv) In [19] it is shown that the metrics considered are not Einstein, so τ3 6= 0;
again taking λ, µ constant solves equations τi = 0 for i = 1, 2. �

The classification of compact simply-connected 4-manifolds with scalar-flat ASD
metric consists of the K3 surfaces and the two classes M2,k and M3,k—the statement
of LeBrun. Bear in mind that we have been considering classes of metrics up to
orientation-preserving isometric diffeomorphism.

Determining the holonomy subgroups of G2 for the manifolds Λ2
+T

∗K3, which
confirms to be SU(2), is a simple task also accomplished in [2]. Of course, this finding
of a G2 is stated for the sake of completion. The same is true for the flat class M0 in
ii) of trivial holonomy.
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The next result, partly stated in [8], is a mirror of the Bryant–Salamon The-
orem 2.2, but its proof is not. First recall the complex hyperbolic space H2

C =
SU(2, 1)/U(2), which is a ball in C

2. From [5] we know that it is Einstein and
self-dual for the canonical orientation. Let r0 ∈ R

+ and

(37) Dr0,±M = {x ∈ X± :
1
2
‖x‖2

M
< r0} ⊂ Λ2

±T
∗M.

Theorem 2.4. Given r0 > 0, the real hyperbolic space H4 = SO(4, 1)/SO(4)
and the complex hyperbolic space H2

C, both endowed with standard metrics, are such
that the disk bundle manifolds Dr0,±H4 and Dr0,−H2

C admit a non-complete metric
with holonomy equal to G2.

Proof. First, one considers of course (36) and hence may assume c0 = 1. Hence

λ(r) = (2sr+ c1)
− 1

4 and µ(r) = (2sr+ c1)
1

4 with constant s < 0; we recall the 3-form
is φ = λ3β − λµ2ηf t and the metric is gφ = λ2gV +µ2gH for both of the base spaces.
Since we must have 2sr + c1 > 0, we see that c1 = −2sr0 and we are left to play
with the disk bundles. From [5] we know that H2

C is Einstein and self-dual for the
canonical orientation. The non-completeness of the metric is seen by the length of a
radius in the disk fibres. Indeed, taking x0 ∈ X± with

√
2 norm for the metric on M

and the curve γ(t) = tx0, t ∈ [0,
√
r0[, we have rγt = t2 and

ˆ

√
r0

0

‖x0‖φ dt =
ˆ

√
r0

0

λ dt =
1

(−2s)
1

4

ˆ

√
r0

0

dt

(r0 − t2)
1

4

∼
ˆ

√
r0

0

dt

(
√
r0 − t)

1

4

< +∞.

As the fibres are totally geodesic and spherically symmetric, a fibre geodesic exists
but it cannot be extended indefinitely. Finally, the holonomy equal to G2 follows by
a main result which is Theorem 3.1 in [2]. �

We remark the vertical radial geodesics, for s = −1, written γ(t) = ǫ(t)x0 ∈
Dr0,±M, t ∈ R, with ‖x0‖2M = 2, must have the following equation, cf. [2]:

(38) 2ǫ̈(r0 − ǫ2) + 3ǫ̇2ǫ = 0.

We note the incompleteness of the metric is in sharp contrast with the elliptic ge-
ometry case. The end of the above proof is accomplished with a general technique,
found in [2], developed with the purpose of computing holonomy on vector bundles
with spherically symmetric metrics. This procedure also gives a new proof of the
s > 0 case, i.e. the case of the Bryant–Salamon manifold.

Remark. It is interesting to see why, after all, the mirror proof of the result about
the holonomy group for the two base manifolds with constant s > 0 does not work for
the other two cases with constant s < 0. To guarantee the holonomy subgroup of G2

is the whole group, [8] applies a general criterion which says it is sufficient that there
do not exist non-trivial parallel 1-forms on the given G2 parallel manifold. Following
the article, we must first prove our manifolds Λ2

+ are not diffeomorphic to R
7. That

is true for the real hyperbolic base, a pseudo-sphere, since π3(H4) 6= 0. But false for
the complex hyperbolic ball H2

C (contrary to the CP
2 case). Also the proof continues

with representation theory of the G-module P of ∇gφ-parallel 1-form fields, where G
is the isometry group of the base manifold. P is a vector space which is, in the real
case, and should be, in the complex case, of dim < 7. The isometries preserve gφ by
construction, hence G acts on P. For our hyperbolic base spaces, G = SO(4, 1) and
U(2, 1), cf. [5], which of which are the respective mirrors of the elliptic G = SO(5)
and SU(3). We also note the orthogonal to P is not finite dimensional in Ω1

Λ2
+

so we

cannot easily argue with it. A few arguments which the reader may check, valid for
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all cases, tell us that the G action must have irreducible components of dim 0, 3 or
4. In both elliptic cases, that is impossible and further-on implies that P = 0. But
in the real hyperbolic case there do exist representations of SO(4, 1) in dimension 4,
cf. [4].

3. G2 structures on the frame bundle P±

Given the oriented Riemannian 4-manifoldM from previous sections, we consider
another fibre bundle, this time compact, with 3-dimensional fibres and canonical
2-forms. The principal SO(3)-bundle P± = P±M of oriented norm

√
2 orthogonal

frames of Λ2
±T

∗M , introduced in section 1.2, may be endowed with a family of natural
G2 structures.

We continue to denote by η = (e1, e2, e3) the tautological 2-form field and by ω, ρ
the, respectively, connection 1-form and curvature 2-form fields of o(3) matrices, all
three globally defined on the total space P±M . They are related by dη = ηω and
ρ = dω + ωω and hence also by ηρ = 0, cf. Proposition 1.2. One might recall these
equations arise equivariantly from the frame bundle of the cotangent bundle of M
and its sections, which we now disregard. Indeed ω is a connection 1-form and has the
same value for every coframe of M which induces a given self-dual or anti-self-dual
2-forms coframe.

Using the methods introduced in (28), we now define

(39) f = (ω1, ω2, ω3), ρ̂ = (ρ1, ρ2, ρ3), β = ω123.

The following identities are easy to deduce:

1

2
fω = (ω23, ω31, ω12) = (ωω)∧, ρ̂ = df +

1

2
fω, ωρ̂t = −ρf t,

β =
1

6
fωf t, ωf tf = 2β13 = f tfω, ηωf t = fωηt, ωωf t = 0

(40)

and

(41) −fρf t = fωρ̂t = ρ̂ωf t = 2(ρ1ω23 + ρ2ω31 + ρ3ω12) .

It is convenient to see further, the also purely algebraic relations:

fρf tηf t = −2(ρ1ω23 + ρ2ω31 + ρ3ω12)(e1ω1 + e2ω2 + e3ω3) = −2βρ̂ηt = −2βηρ̂t,

ωf tηf t = fωηtηf t = ±2 vol fωf t = ±12β vol,(42)

ηf tηf t = 0, ηρ̂tηf t = fηtηρ̂t = ±2 vol f ρ̂t.

Finally, the announced G2 structures are given by

(43)

{

φ = λ3β ∓ λµ2ηf t,

ψ = ∗φφ = µ4 vol−λ2µ2

2
ηωf t,

with positive scalar functions λ, µ ∈ Ω0
P±

. Again recalling ηρ = 0, let us differentiate
the components and then the forms φ and ψ:

dβ =
1

6
(ρ̂ωf t − fρf t + fωρ̂t) = −1

2
fρf t,

d(ηf t) = ηωf t − 1

2
ηωf t + ηρ̂t = η(

1

2
ωf t + ρ̂t),

d(ηωf t) = η(ωωf t + ρf t − ωωf t − ωρ̂t +
1

2
ωωf t) = −ηωρ̂t = ηρf t = 0,(44)
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dφ = dλ3 β − λ3

2
fρf t ∓ d(λµ2) ηf t ∓ λµ2η(

1

2
ωf t + ρ̂t),

dψ = dµ4 vol−1

2
d(λ2µ2) ηωf t.

Now we look for the torsion tensors.

Proposition 3.1. Let s = ScalM
12

be the scalar curvature function. We then have

(45) τ0 = ± 6

7λµ2
(µ2 + 2sλ2).

Proof. Recalling the equations for ρ in (17), we note the remarkable equation
ηρ̂t = −6s vol. With the dimensions of the vertical and horizontal 1-form subspaces
in mind, we find

7τ0Volφ = φdφ = ∓λ4µ2βηρ̂t ± λ4µ2

2
fρf tηf t +

1

2
λ2µ4ηωf tηf t

= ∓λ4µ2β(ηρ̂t + ρ̂ηt)± 6λ2µ4β vol = ±6λ2µ2(2sλ2 + µ2)β vol

and the result follows. �

Computations have shown that it is wise to fix µ and λ as constants; otherwise
they considerably weigh on the equations and do not seem to lead to any remarkable
proposition. In this setting we write a theorem, whose final statement is obtained as
usual from τ3 = ∗φdφ− τ0φ.

Theorem 3.1. For any oriented Riemannian 4-manifoldM , the spaces P± admit
a family of G2 structures defined by the above and the canonical 3-form φ = λ3β ∓
λµ2ηf t. Then we have that ψ = ∗φφ = µ4 vol−λ2µ2

2
ηωf t. For any positive constants

λ, µ, such G2 structures are always cocalibrated (τ1 = τ2 = 0) and non-calibrated.
Moreover,

(46) τ3 = λ2(∗
M
ρ̂)f t +

1

7

(

(12sλ2 − µ2)ηf t ±
(

30s
λ4

µ2
− 6λ2

)

β

)

.

We remark it is quite demanding to check that φτ3 = 0 and ψτ3 = 0, as the theory
predicts. For the first, one is confronted with the appearance of a 6-form fηt(∗

M
ρ̂)f t,

which vanishes. Indeed, between the two f we find a symmetric matrix ηtρ̂, essentially
the map A or C from (17), which one may hence diagonalise. Also checking that
ψτ3 = 0 asks for the deduction of an auxiliary result, in which Lemma 1.1 and its
proof are recalled:

ηωf t(∗
M
ρ̂)f t = ±ρ̂f tηωf t = ±ρ̂f tfωηt = ±ρ̂ηt2β

= 4
(

∓tr
{

A
C

})

vol β = ∓12sβ vol .
(47)

Then one may proceed to verify ψτ3 = 0, with deserved satisfaction.
Recall that M is anti-self-dual (respectively, self-dual) and Einstein if in referring

to P+ (respectively, P−) we have ρ̂ = −sη (respectively, ρ̂ = sη).

Corollary 3.1. The G2 structure φ is of pure type W3 if and only if M has

constant scalar curvature and µ, λ satisfy ScalM = −6µ2

λ2 . In this case, τ3 6= 0 since

(48) τ3 = λ2(∗
M
ρ̂)f t − µ2ηf t ∓ 3λ2β.

If moreover M is also ASD (SD) and Einstein, then τ3 = ± 1
2λ
(φ− 7λ3β).
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Now the vanishing of τ3 implies those curvature restrictions on duality and the
Ricci tensor. The reader may deduce the following corollary.

Corollary 3.2. [14] The structures (P−, φ) for M = S4 or CP
2, such that

s = µ2

5λ2 , are nearly parallel. Moreover, dφ = − 6
5λ
ψ.

It is not clear3 to the author which nearly parallel structures from the classifica-
tion in [14, Tables 1,2,3] are newly represented by P−S

4 and P−CP
2.

Clearly the two spaces admit G2 structures such that ‖dφ‖φ may be made ar-
bitrarily small or arbitrarily large, but this is a general feature of nearly parallel
structures. Also, again the last result shows a symmetry breaking between P+ and
P−, i.e. between positive and negative scalar curvature.

The principal SO(3)-bundle connection 1-form ω is globally defined, so we could
well define a G2 structure with f given by any other permutation of ω1, ω2, ω3. How
ever this may be done it does not lead to any remarkable results, since then the basic
equations have proved to become quite twisted.

We have proved above that cocalibrated G2 structures are quite abundant, in
coherence with [9, Theorem 1.8]. Regarding 4-dimensional geometry, they appear
naturally as, for instance, the celebrated symplectic cotangent bundle of every given
manifold. Hence there is true motivation for exploring G2 with a new natural Hamil-
tonian theory for 4-manifolds.
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