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Abstract. First, we are concerned with a lemma on the difference quotients due to Halburd,
Korhonen and Tohge. We show that for meromorphic functions whose deficiency is origin dependent
the exceptional set associated with this lemma is of infinite linear measure. In particular, for such
entire functions in this set there is an infinite sequence {rn} such that m(rn, f(z + c)/f(z)) 6=

o(T (rn, f)) for all rn. Then we extend this lemma to the case of meromorphic functions f(z) such
that logT (r, f) ≤ ar/(log r)2+ν , a, ν > 0, for all sufficiently large r, by using a new Borel type
growth lemma. Second, we give a discrete version of this Borel type growth lemma and use it to
provide an extension of Halburd’s result on first order discrete equations of Malmquist type.

1. Introduction

The lemma on the logarithmic derivatives is one of the key results needed in
proving Nevanlinna’s second main theorem [25], as well as an important tool in ana-
lyzing value distribution of entire and meromorphic solutions of differential equations
[22]. Nevanlinna theoretic approach by Ablowitz, Halburd and Herbst [1] to study
difference Painlevé equations leads to a need of finding extensions of value distribu-
tion theory for difference operators. A lemma on difference quotients for finite order
meromorphic functions was introduced in two independent studies, by Halburd and
the first author [16, 17], and by Chiang and Feng [8]. The lemma on difference quo-
tients was later on extended to include meromorphic functions f(z) of hyper-order
less than one by Halburd and the first and the second author [19] and recently to
include meromorphic functions with hyper-order equal to 1 and with minimal type
by Zheng and Korhonen [31]. For a non-constant meromorphic function f(z) on the
complex plane, the order σ and the hyper-order ς of f are defined, respectively, as

σ = σ(f) = lim sup
r→∞

log T (r, f)

log r
,
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and

ς = ς(f) = lim sup
r→∞

log log T (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic. The lemma on difference quotients
for meromorphic functions of hyper-order ς < 1 introduced in [19] takes the form

(1.1) m

(

r,
f(z + c)

f(z)

)

= o

(

T (r, f)

r1−ς−ε

)

,

where ε > 0, c ∈ C \ {0} and r → ∞ outside of a set of finite logarithmic measure.
A set E is said to have finite logarithmic measure if

´

E∩[1,∞)
dr/r < ∞. The version

of (1.1) relies on an independent asymptotic estimate for T (r, f) [19]. The estimate
by Chiang and Feng [8] for meromorphic functions of finite order σ can be written
in the form

(1.2) m

(

r,
f(z + c)

f(z)

)

= O(rσ−1+ε),

where r → ∞ without an exceptional set. Chiang and Feng [9, 10] and, indepen-
dently, Bergweiler and Langley [5] have obtained Wiman–Valiron type estimates for
difference quotients in the case of order < 1 meromorphic functions. These results
extend a Wiman–Valiron method for differences due to Ishizaki and Yanagihara [21].
Recently, Chiang and Feng [11] obtained the Askey–Wilson logarithmic difference es-
timate for meromorphic functions of finite logarithmic order, and Cheng and Chiang
[6] proved a lemma on the logarithmic Wilson differences for finite order meromorphic
functions.

Zheng and Korhonen [31] prove the necessity of the appearance of the exceptional
set in (1.1) by providing an example of entire function of finite order such that
m(r, f(z + c)/f(z)) 6= o(T (r, f)) for all r in a set E of infinite linear measure (i.e.
´

E∩[1,∞)
dr = ∞) and of positive finite logarithmic measure. In Section 2 we further

study the behavior of m(r, f(z + c)/f(z)) in the exceptional set in (1.1) for a class
of meromorphic functions whose deficiency is dependent on the choice of origin. For
such meromorphic functions the error term O(rσ−1+ε) on the right hand side of (1.2)
is bigger than the characteristic T (r, f) for a large part of the positive real line. We
show that for such meromorphic functions the exceptional set in the estimate (1.1) is
of infinite linear measure and in the entire function case there is an infinite sequence
{rn} in the exceptional set such that for all rn,

m

(

rn,
f(z + c)

f(z)

)

6= o(T (rn, f)).

In Section 3 we extend the lemma on difference quotients to a slightly more general
case where f is a meromorphic function such that log T (r, f) ≤ ar/(log r)2+ν , a, ν >
0, for all r sufficiently large by showing that for such functions

m

(

r,
f(z + c)

f(z)

)

= o

(

T (r, f)

(log r)ν−ε

)

,

where r → ∞ outside of a set of finite logarithmic measure. A key tool in the proof
of this extension is a new Borel type growth lemma. A purely discrete form of the
Borel lemma is given in Section 4, which extends a result due to Al-Ghassani and
Halburd [2]. Finally, we obtain a Malmquist type theorem for first order discrete
equations in Section 5 as an application of the discrete Borel lemma.
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2. Growth of the difference quotients in the exceptional set

For a meromorphic function of finite order σ, we can also obtain the error term
O(rσ−1+ε) in (1.2) from the estimates given in [16, Lemma 2.3] or [19, Lemma 8.2]
by suitably choosing the coefficients there. Zheng and Korhonen [31] have given an
alternative proof of (1.2) using a different approach. Unlike in the estimate (1.1),
when σ ≥ 1 the growth relation between the error term O(rσ−1+ε) and T (r, f) is
unclear apart from a set of infinite logarithmic measure [18, Corollary 3.3]. Consider
a meromorphic function whose lower order is a finite number λ which is defined by

λ = λ(f) = lim inf
r→∞

log T (r, f)

log r
.

Let ε > 0 be given. Then the above definition implies that T (r, f) ≤ rλ+ε holds for
all r in a set of infinite logarithmic measure [13]. We choose an infinite sequence {rn}
such that rn+1 ≥ 2rn, r1 > 1 and that

lim
n→∞

log T (rn, f)

log rn
= λ.

For the given ε > 0, it follows that there is an integer N0 such that T (rn, f) ≤ rλ+ε
n

for all n > N0. Now for all r ∈ [rn/2, rn], n > N0 we have

T (r, f) ≤ T (rn, f) ≤ rλ+ε
n =

(rn
r

)λ+ε

· rλ+ε ≤

(

rn
rn/2

)λ+ε

· rλ+ε = 2λ+ε · rλ+ε.

Obviously, the set E = ∪∞
n=1[rn/2, rn] has infinite logarithmic measure. Thus, if

σ − 1 ≥ λ, then there is a constant a > 0 such that rσ−1+ε ≥ rλ+ε ≥ aT (r, f) for all
r ∈ E. Recall that the deficiency d(0, f) of a meromorphic function f for the value 0
is defined as

d(0, f) := 1− lim sup
r→∞

N(r, 1/f)

T (r, f)
= lim inf

r→∞

m(r, 1/f)

T (r, f)
.

Valiron [28] (see also [26, p. 271]) proved the following result concerning the depen-
dence on the choice of origin of the deficiency of any meromorphic function f : If the
characteristic function T (r, f) of f satisfies

(2.1) lim
r→∞

T (r + 1, f)

T (r, f)
= 1,

then the deficiency of f is independent on the choice of origin, that is, d(0, f(z)) =
d(0, f(z+ c)) for any nonzero constant c. Moreover, if f has finite order σ and lower
order λ, then the condition (2.1) can also be replaced by σ − λ < 1. Thus we have

Theorem 2.1. Let f be a meromorphic function of finite order σ and ε > 0. If

d(0, f(z)) 6= d(0, f(z + c)) for some nonzero constant c, then O(rσ−1+ε) 6= o(T (r, f))
for all r in a set of infinite logarithmic measure.

Chiang and Luo [12, p. 455] have pointed out that the estimate (1.2) together
with [8, Theorem 2.1] implies the finite order case of Valiron’s result above since
when σ − λ < 1 the error term O(rσ−1+ε) = o(T (r, f)) for all r → ∞, but we also
need to know what happens to O(rσ−1+ε) when the deficiency is dependent on the
choice of origin.

Theorem 2.1 shows that if we remove the exceptional set in the estimate (1.1)
and formulate the error term in terms of the order of a meromorphic function, then
the error term can grow faster than T (r, f) on a much larger part of the positive
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real line. For meromorphic functions whose deficiency is dependent on the choice of
origin, we may suppose without loss of generality that d(0, f(z)) > d(0, f(z + c)),
where c 6= 0 is a constant. For these functions, we prove the following

Theorem 2.2. Let f be a meromorphic function of hyper-order less than 1 and

d(0, f(z)) > d(0, f(z + c)) for some c 6= 0. Then the exceptional set in (1.1) is of

infinite linear measure. In particular, if f is entire, then for any infinite sequence

{rn} such that

lim
n→∞

m (rn, 1/f(z + c))

T (rn, f(z + c))
= d(0, f(z + c)),

we have

lim inf
n→∞

m (rn, f(z + c)/f(z))

T (rn, f(z))
≥

d(0, f(z))− d(0, f(z + c))

1 + d(0, f(z + c))
.

Theorem 2.2 shows that for meromorphic functions of hyper-order < 1 whose
deficiency is dependent on the choice of origin, the exceptional set out of consideration
in the proof of (1.1) in [19] is of infinite linear measure. Obviously, the infinite
sequence {rn} is in the exceptional set for all sufficiently large rn. It is still unknown
whether m(r, f(z + c)/f(z)) 6= o(T (r, f)) holds on a set of infinite linear measure for
any meromorphic function f whose deficiency is dependent on the choice of origin.

To prove Theorem 2.2, we first prove the following Proposition 2.3, which is
concerned with a counterpart of condition (2.1) and complements the result due to
Valiron [28] (see also [26, p. 271]) mentioned above.

Proposition 2.3. Let f be a non-constant meromorphic function. If d(0, f(z)) >
d(0, f(z + c)) for some c 6= 0, then there exists a constant 1 < C < ∞ such that

T (r + |c|, f) ≥ CT (r, f)

for all r in a set with infinite linear measure.

Proof. For simplicity, denote d1 = d(0, f(z)) and d2 = d(0, f(z + c)). Then
0 ≤ d2 < d1 ≤ 1. Recall the following double inequalities from [13, p. 47] (see also
[1, 30]),

(1 + o(1))T (r − |c|, f(z)) ≤ T (r, f(z + c)) ≤ (1 + o(1))T (r + |c|, f(z)),(2.2)

(1 + o(1))N(r−|c|, 1/f(z)) ≤ N(r, 1/f(z + c)) ≤ (1 + o(1))N(r+|c|, 1/f(z)),(2.3)

where r → ∞ and N(r, 1/f) is the integrated counting function for zeros of f . Then
we have

N(r, 1/f(z + c))

T (r, f(z + c))
≤ (1 + o(1)) ·

N(r + |c|, 1/f(z))

T (r + |c|, f(z))
·
T (r + |c|, f(z))

T (r − |c|, f(z))
.

By letting r → ∞ and taking the superior limit on both sides of the above inequality,
we get

(2.4) lim sup
r→∞

T (r + |c|, f)

T (r − |c|, f)
= ∞

in the case d1 = 1 and

(2.5) lim sup
r→∞

T (r + |c|, f)

T (r − |c|, f)
≥

1− d2
1− d1

in the case d1 < 1. Let C be a real constant such that 1 < C < ∞ when d1 = 1 and
1 < C3 < (1− d2)/(1− d1) when d1 < 1. Define the set

(2.6) E = {r : T (r + |c|, f) ≥ CT (r, f)}.
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We claim that this set has infinite linear measure. Otherwise, the inequality

(2.7) T (r + |c|, f) ≤ CT (r, f)

holds for all r outside an exceptional set with finite linear measure. Recall the
following lemma from [18, Lemma 3.1]: Let µ be a positive, strictly increasing dif-
ferentiable function of r defined on (r0,∞) for some r0 and let g1(r) and g2(r) be
two non-decreasing functions for all r0 < r < ∞ such that g1(r) ≤ g2(r) for all
r ∈ (r0,∞) \ E, where the exceptional set E satisfies

ˆ

t∈E∩[r0,∞)

dµ(t) < ∞.

Then, for a given ǫ > 0, there is an r̂ ≥ r0 such that g1(r) ≤ g2(s(r)) for all r ≥ r̂,
where s(r) = µ−1(µ(r) + ǫ). An application of this lemma with µ(r) = r to (2.7)
yields that, for a given ǫ such that 0 < 3ǫ ≤ |c|, there is a large enough r0 such that
for all r ∈ [r0,∞),

T (r + |c|, f) ≤ CT (r + ǫ, f).

Thus the superior limit of T (r+ |c|, f)/T (r+ ǫ, f), as r approaches ∞, is at most C.
But then

lim sup
r→∞

T (r + |c|, f)

T (r − |c|, f)
≤ lim sup

r→∞

T (r + |c|, f)

T (r + ǫ, f)
·

T (r + ǫ, f)

T (r − |c|+ 2ǫ, f)
·
T (r − |c|+ 2ǫ, f)

T (r − |c|, f)

≤ C3,

a contradiction to (2.4) or (2.5). Hence the set defined in (2.6) must be of infinite
linear measure and our assertion follows. �

Proof of Theorem 2.2. To obtain the estimate (1.1), the Borel type growth
lemma [19, Lemma 8.3] which holds for all r outside of a set of finite logarithmic
measure is needed. Proposition 2.3 implies that this set is of infinite linear measure
since the constant C in Proposition 2.3 satisfies C ≥ 1 + η/rδ when r is sufficiently
large. However, the estimates in [19, Lemma 8.2] and in [19, Lemma 8.3] are inde-
pendent to each other and the exceptional set in [19, Lemma 8.3] will not appear in
(1.1) whenever T (r, f) satisfies

lim sup
r→∞

T (r + |c|, f)

T (r, f)
< ∞.

From the proof of Proposition 2.3 we see that this case is possible when d(0, f(z)) < 1
under our assumptions. So we need to consider the exceptional set which is defined
as:

(2.8) E1 =

{

r : T

(

r + |c|+
r + |c|

ξ(T (r + |c|, f))

)

≥ CT (r + |c|, f)

}

,

where, as in the proof of [16, Theorem 2.1] and [19, Theorem 5.1], the function ξ(x)
is chosen as ξ(x) = xε/2 when f is of finite order and ξ(x) = (log x)1+ε/3 when f is
of infinite order respectively and ε > 0 satisfies (ς + ε/3)(1 + ε/3) < 1.

For simplicity, denote d1 = d(0, f(z)) and d2 = d(0, f(z+ c)). By assumption we
have d1 > d2. It follows from Proposition 2.3 that for some finite constant C > 1
the set E2 = {r : T (r + 2|c|, f) ≥ CT (r + |c|, f)} is of infinite linear measure. From
the definition of E1 in (2.8), it is seen that there is a sufficiently large r0 such that
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E2 ∩ [r0,∞) ⊆ E1 ∩ [r0,∞). Thus the exceptional set in (1.1) must be of infinite
linear measure. Moreover, if f is an entire function, then we deduce that

T (r, f(z + c)) = m(r, f(z + c)) ≤ m(r, f(z)) +m

(

r,
f(z + c)

f(z)

)

= T (r, f(z)) +m

(

r,
f(z + c)

f(z)

)

.

(2.9)

Note that d1 > d2, and let {rn} be an arbitrary sequence such that

lim
n→∞

m (rn, 1/f(z + c))

T
(

rn, f(z + c)
) = d2.

Then, for any ε satisfying 0 < 2ε < d1 − d2, we have

(2.10) m

(

rn,
1

f(z + c)

)

≤ (d2 + ε)T (rn, f(z + c))

for all sufficiently large rn. By (2.9) and (2.10), we get

(2.11) m

(

rn,
1

f(z + c)

)

≤ (d2 + ε)T (rn, f(z)) + (d2 + ε)m

(

rn,
f(z + c)

f(z)

)

for all sufficiently large rn. By the definition of d1, for the given ε > 0, we have

(2.12) (d1 − ε)T (r, f(z)) ≤ m

(

r,
1

f(z)

)

≤ m

(

r,
1

f(z + c)

)

+m

(

r,
f(z + c)

f(z)

)

for all sufficiently large r. Then it follows from (2.11) and (2.12) that

m (rn, f(z + c)/f(z))

T (rn, f(z))
≥

d1 − d2 − 2ε

1 + d2 + ε

for all sufficiently large rn. Thus our assertion follows by taking the inferior limit of
the left-hand side of the above inequality and then letting ε → 0. �

We conclude this section by introducing some examples of finite order meromor-
phic functions having the property d(0, f(z)) 6= d(0, f(z + c)) for some constant c.
The first one is due to Belinskĭı and Gol’dberg [3] who constructed a meromorphic
function with order 1 such that

d(0, f(z)) = 1, and

d(0, f(z + c)) = 0, for some c 6= 0.

This example also shows that the finite order case of Valiron’s result above is sharp.
For the existence of such meromorphic functions, see also [24]. The second one is due
to Miles [23] who proved: There exists an entire function f of order 3/2 < σ(f) < ∞
such that

d(0, f(z)) = 0, and

d(0, f(z + c)) ≥ ρ > 0, for all c 6= 0,

for some ρ < 1 independent of c. For Miles’ function, it can actually be shown that
m(r, f(z + c)/f(z)) 6= o(T (r, f)) for all r in a set E with infinite linear measure [31].
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3. Extension of the lemma on the difference quotients

In this section, we extend the estimate (1.1) to a slightly more general case
where the hyper-order of a meromorphic function f is allowed to equal 1. In another
paper [31], two authors of the current paper studied this case using different ideas
and showed that the condition log T (r, f) = o(r) along only one infinite sequence can
guarantee that m(r, f(z + c)/f(z)) = o(T (r, f)) for all r outside a small exceptional
set. The method here is due to Halburd, Korhonen and Tohge [19] and for the
function in the lemma below we give an estimate with an error term smaller than
the one in [31, Theorem 1.4] when ν ≥ 1.

Lemma 3.1. Let f be a non-constant meromorphic function. If there exist two

positive constants a and ν such that log T (r, f) ≤ ar/(log r)2+ν for all sufficiently

large r, then for a given small ε > 0,

(3.1) m

(

r,
f(z + c)

f(z)

)

= o

(

T (r, f)

(log r)ν−ε

)

,

for all r outside of an exceptional set with finite logarithmic measure.

Proof. Without loss of generality, we may suppose that f(0) 6= 0,∞ for otherwise
we write w(z) = zkf(z), where k is an integer chosen so that w(0) 6= 0,∞. Let C > 1
and r0 be such that T (r, f) ≥ x0 > e for all r ≥ r0. From [7, Lemma 3.3.1] we know
that there is a positive, non-decreasing and continuous function ξ(x), x0 ≤ x < ∞,
such that the inequality

T

(

r +
r

ξ(T (r, f))
, f

)

≤ CT (r, f)

holds for all r outside of a set E satisfying

(3.2)

ˆ

E∩[r0,R]

dr

r
≤

1

logC

ˆ T (R,f)

x0

dx

xξ(x)
+O(1),

where R < ∞. For a given ε such that 0 < 2ε < ν, we choose

ξ(x) = (log x)(log log x)1+ε.

It follows from (3.2) that the following closed set

(3.3) E =

{

r : T

(

r + |c|+
r + |c|

ξ(T (r + |c|, f))
, f

)

≥ CT (r + |c|, f)

}

has finite logarithmic measure. Note that in the above definition we have chosen ξ(x)
without separating into the finite order case and the infinite order case of T (r, f) as
in (2.8). This may result in an exceptional set a little larger than E1 in (2.8) when
f is of hyper-order less than 1, but it makes no difference for our purpose to give an
error term small compared to T (r, f). Let

α = 1 +
1

ξ(T (r + |c|, f))
.

Then,

(3.4) T (α(r + |c|), f) = T

(

r + |c|+
r + |c|

ξ(T (r + |c|, f))
, f

)

≤ CT (r + |c|, f)
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for all r outside of the set E. By assumption log T (r, f) ≤ ar/(log r)2+ν for all r ≥ r0
and so we have from [19, Lemma 8.2] that

m

(

r,
f(z + c)

f(z)

)

= O

(

(log T (r+|c|, f))(log log T (r+|c|, f))1+ε

δ(1− δ)rδ
T (r+|c|, f)

)

= O

(

a(r + |c|)(log a(r + |c|)− (2 + ν) log log(r + |c|))1+ε

(log(r + |c|))2+νδ(1− δ)rδ
T (r + |c|, f)

)

.

(3.5)

By choosing h(r) in Lemma 3.2 below to be h(r) = (log r)1+ε, we see that T (r, f)
satisfies (3.7) and so we have

(3.6) T (r + |c|, f) = T (r, f) + o

(

T (r, f)

(log r)1+ε

)

,

for all r → ∞ outside of an exceptional set of finite logarithmic measure. Then the
estimate (3.1) follows by choosing δ = 1 − 1/ log r and combining (3.5) and (3.6)
together. �

Lemma 3.2. Let T : [0,∞) → (0,∞) be a non-decreasing continuous function

and let s ∈ (0,∞). If

(3.7) lim sup
r→∞

h(r)h(rh(r)) logT (r)

r
= ζ,

where ζ ∈ [0,∞) and h : [r0,∞) → (0,∞) is an increasing function such that
ˆ ∞

r0

1

th(t)
dt

converges, then

(3.8) T (r + s) = T (r) + (ζ + o(1))

(

T (r)

h(r)

)

for all r outside of a set E of finite logarithmic measure.

Proof. For a fixed constant η ∈ R+ such that η > ζ , assume that the set
Fη ⊂ [1,∞) defined by

(3.9) Fη =

{

r ∈ R+ :
T (r + s)− T (r)

T (r)
· h(r) ≥ η

}

is of infinite logarithmic measure. Note that Fη is a closed set and therefore it has a
smallest element, say r0. Set rn = min(Fη ∩ [rn−1 + s,∞)) for all n ∈ N. Then the
sequence {rn}n∈Z+ satisfies rn+1 − rn ≥ s for all n ∈ Z+, Fη ⊂

⋃∞

n=0[rn, rn + s] and

(3.10)

(

1 +
η

h(rn)

)

T (rn) ≤ T (rn+1)

for all n ∈ Z+.
Suppose that there exists an m ∈ Z+ such that rn ≥ nh(n) for all rn ≥ m. But

then,
ˆ

Fη∩[1,∞)

dt

t
≤

∞
∑

n=0

ˆ rn+s

rn

dt

t
≤

ˆ m

1

dt

t
+

∞
∑

n=1

log

(

1 +
s

rn

)

≤
∞
∑

n=1

log

(

1 +
s

nh(n)

)

+O(1) < ∞,
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which contradicts the assumption
´

Fη∩[1,∞)
dt/t=∞. Therefore, the sequence {rn}n∈Z+

has a subsequence {rnj
}j∈Z+ such that rnj

< njh(nj) for all j ∈ Z+. Since rn+1−rn ≥
s, we may assume without loss of generality that s ≥ 1, by taking another subse-
quence of {rnj

}j∈Z+ such that rnj+1
− rnj

≥ 1 if necessary. By iterating (3.10) along
the sequence {rnj

}j∈Z+, we have

T (rnj
) ≥

nj−1
∏

ν=0

(

1 +
η

h(rν)

)

T (r0)

for all j ∈ Z+. It follows that

rnj
≥ r0 + njs ≥ njs ≥ nj

for all j ∈ Z+, and so

lim sup
r→∞

h(r)h(rh(r)) logT (r)

r

≥ lim sup
j→∞

h(rnj
)h(rnj

h(rnj
))

(

log T (r0) +

nj−1
∑

ν=0

log

(

1 +
η

h(rν)

)

)

rnj

≥ lim sup
j→∞

h(nj)h(njh(nj))

(

log T (r0) + nj log

(

1 +
η

h(rnj
)

))

njh(nj)

≥ lim sup
j→∞

h(nj)h(njh(nj))

(

log T (r0)+nj
η

h(njh(nj))
log

(

1+
η

h(njh(nj))

)

h(njh(nj ))

η
)

njh(nj)

≥ lim sup
j→∞

η · nj · (1 + o(1)) · h(nj)h(njh(nj))

njh(nj)h(njh(nj))
= η,

which contradicts (3.7) since we have assumed η > ζ . Hence the logarithmic measure
of Fη defined by (3.9) is finite and, since η can be arbitrarily chosen, we have

T (r + s) = T (r) + (ζ + o(1))

(

T (r)

h(r)

)

,

for all r outside of a set of finite logarithmic measure. Therefore the assertion (3.8)
follows. �

Lemma 3.2 is an extension of the growth lemma in [19, Lemma 8.3]. For a small
ε > 0, we may choose h(r) = rε so that the hyper-order of T (r) is less than 1 and
get [19, Lemma 8.3]. We remark that the condition in (3.7) cannot be extended to
the case of ζ = ∞. This can be seen from the function T (r) = er which satisfies
T (r + 1) = eT (r) for all r ≥ 0.

Note that the relation (2.3) also holds for the counting function N(r, f). By this
fact and combining (3.6) with the double inequality (2.2), we immediately get the
asymptotic relations

T (r, f(z + c)) = (1 + o(1))T (r, f(z)),(3.11)

N(r, f(z + c)) = (1 + o(1))N(r, f(z)),(3.12)
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where r → ∞ outside of an exceptional set of finite logarithmic measure. The relation
(3.11) can also be derived from (3.1) and (3.12).

4. Discrete Borel type growth lemma extensions

Osgood [27] and, independently, Vojta [29] observed that Nevanlinna’s theory of
value distribution and Diophantine approximation theory appear to be analogous on
a deep level. Based on this observation Vojta composed a “dictionary” between the
two theories. In this dictionary Nevanlinna theory appears to be ahead of Diophan-
tine approximation theory in the sense that deep open conjectures in Diophantine
approximation correspond to known classical results in Nevanlinna theory. Despite
of the highly promising formal connections between these two theories, there are not
many new results in Diophantine approximation which were born as a result of using
a proof from Nevanlinna theory with concepts from number theory. The main rea-
son for this is the lack of an analogue for the derivative in Vojta’s dictionary. Most
classical results in Nevanlinna theory rely—one way or another—on the concept of
derivative in their proofs.

By replacing the continuous variable r in Lemma 3.2 with a sequence of positive
numbers, we have the following discrete analogue of Lemma 3.2. The method of
proof of Lemma 3.2 does not rely on derivatives, which enables us to use a discrete
version of its proof. Our result is an extension of [2, Lemma 8] due to Al-Ghassani
and Halburd, who applied their result to consider non-linear discrete equations with
solutions yn ∈ Q having slow height growth in terms of n.

For clarity, in what follows we use h(n) = hn for a discrete sequence {hn}.

Lemma 4.1. Let {Tn}n≥n0 (n0 > 0) be a non-decreasing sequence of positive

numbers and let s be a fixed positive integer. If

(4.1) lim sup
n→∞

h(n)h(nh(n)) log Tn

n
= ζ,

where ζ ∈ [0,∞) and h(n) is an increasing sequence of positive numbers such that

∞
∑

n=n0

1

nh(n)
< +∞,

then

(4.2) Tn+s = Tn + (ζ + o(1))

(

Tn

h(n)

)

,

for all n outside of a set E of finite discrete logarithmic measure, i.e.
∑

n∈E 1/n < ∞.

Proof. For a fixed constant η ∈ R+ such that η > ζ , assume that the set Fη ⊂ N

defined by

(4.3) Fη =

{

n ≥ n0 :
Tn+s − Tn

Tn
· h(n) ≥ η

}

is of infinite discrete logarithmic measure, i.e.
∑

n∈Fη
1/n = ∞. Let r0 = min(Fη)

and, for all n ∈ N, set rn = min(Fη ∩ [rn−1 + s,∞)). Then the sequence {rn}n∈N
satisfies rn+1 − rn ≥ s for all n ∈ Z+, Fη ⊂

⋃∞

n=0[rn, rn + s] and

(4.4)

(

1 +
η

h(rn)

)

Trn ≤ Trn+s ≤ Trn+1
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for all n ∈ Z+. Suppose that there exists an integer m ∈ Z+ such that rn ≥ nh(n)
for all n ≥ m. But then, there is a positive constant S such that

∑

j∈Fη

1

j
≤ S +

∞
∑

n=m

[nh(n)]+s
∑

k=[nh(n)]

1

k
≤ S +

∞
∑

n=m

ˆ [nh(n)]+s

[nh(n)]−1

1

t
d t ≤ S +

∞
∑

n=m

ˆ nh(n)+s

nh(n)−2

1

t
d t

≤ S +
∞
∑

n=m

ln

(

1 +
s+ 2

nh(n)− 2

)

≤ S +
∞
∑

n=m

s+ 2

nh(n)− 2
< ∞,

where [nh(n)] denotes the largest integer not exceeding nh(n), which is a contradic-
tion with the assumption

∑

j∈Fη
1/j = ∞. Therefore, the sequence {rn}n∈N has a

subsequence {rnj
}j∈Z+ such that rnj

≤ njh(nj) for all j ∈ Z+. Then, as in the proof
of Lemma 3.2, by iterating (4.4) along the sequence {rnj

}j∈Z+, it can be shown that
rnj

≥ nj for all j ∈ Z+ and that the superior limit of h(n)h(nh(n)) log Tn/n along
the sequence rnj

is ≥ η, which yields a contradiction to (4.1). We omit those details.
This implies that the discrete logarithmic measure of Fη defined by (4.3) must be
finite, and so

Tn+s = Tn + (ζ + o(1))

(

Tn

h(n)

)

,

for all n outside of a set of finite discrete logarithmic measure. Thus the assertion
(4.2) follows. �

Analogous to the continuous case, we take h(n) in Lemma 4.1 to be h(n) =
(logn)1+ε, where ε > 0, n ≥ n0 > e. Let a, ν be two positive numbers and {Tn}n≥n0

a sequence of n such that log Tn ≤ an/(log n)2+ν for all sufficiently large n. Then
{Tn}n≥n0 satisfies the condition (4.1) and so by Lemma 4.1 we have

Tn+s = Tn + o

(

Tn

(log n)1+ε

)

,

where n → ∞ outside of a set of finite discrete logarithmic measure. Also, the
function Tn = exp(en) shows that ζ in Lemma 4.1 cannot be extended to the case of
ζ = ∞.

5. Malmquist’s theorem for discrete equations

The algebraic entropy [4, 20] of a discrete equation is defined as

lim
j→∞

log dj
j

,

where dj is the degree of the jth iterate of a discrete equation as a rational function
of its initial conditions. If the algebraic entropy of a discrete equation is zero, then
this is considered to be a strong sign of integrability of the equation. Consider as an
example discrete equation

(5.1) yn+1 = R(n, yn) =
P (n, yn)

Q(n, yn)
,

where P (n, yn) and Q(n, yn) are coprime polynomials in yn having rational coefficients
in Q[n]. For the autonomous version of (5.1), we have dj = [degy0(R)]j and so the
algebraic entropy is equal to log degy0(R) in this case. This implies that the algebraic
entropy of (5.1) is zero if and only if (5.1) is the discrete Riccati equation. For a
review on applications of algebraic entropy to the second order discrete equations,
see [14].
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Halburd [15] has shown, assuming that the heights of the coefficients are small
compared to the height of the solution, that the heights of iterates of the discrete
equation (5.1) over number fields grow exponentially, unless degy0(R) = 1. Using this
idea of Diophantine integrability, Al-Ghassani and Halburd obtained an extension of
this result to the second order case by singling out the discrete Painlevé II equation [2].

As the final result of this study, we will apply Lemma 4.1 to give an improvement
of Halburd’s result on the first order discrete equations. Before stating the result,
we need one more definition. Let k be a number field, and let {yn}n∈N ⊂ k be
a solution of (5.1), where the coefficients are in k[n]. For x ∈ k we denote by
H(x) the height and by h(x) = logH(x) the logarithmic height of x. We say that
{yn}n∈N is admissible if the logarithmic heights of all coefficients of (5.1) are of the
growth o(h(yn)) as n → ∞ outside of an exceptional set of finite discrete logarithmic
measure

∑

n∈E 1/n < ∞. This definition is an exact Diophantine analogue of the
notion of admissible meromorphic solution of a difference equation in the spirit of
Vojta’s dictionary [29].

Theorem 5.1. Let k be a number field, and let {yn}n∈N ⊂ k be an admissible

solution of (5.1), where the coefficients are in k[n]. If

lim sup
n→∞

log
∑n

k=1 h(yk)

n/(logn)2+ν
= 0

for some ν > 0, then degy0(R) = 1.

Proof. By taking the logarithmic height of both sides of (5.1), it follows that

h(yn+1) = degy0(R)h(yn) + o(h(yn))

as n → ∞ outside of an exceptional set E of finite discrete logarithmic measure.
Therefore,

n+1
∑

k=1

h(yk) = degy0(R)
n
∑

k=1

h(yk) + o(h(yn)),

and so, by applying Lemma 4.1 with Tn =
∑n

k=1 h(yk), we have the assertion. �
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