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Abstract. We say that a function space Z is factorable by X when there exists a third

function space Y such that each f from Z admits factorization f = gh, where g, h belong to X,Y ,

respectively, and ‖f‖Z ≈ ‖g‖X‖h‖Y . We consider a problem of regularization of such a factorization;

namely, suppose that f like above satisfies some additional regularity condition (i.e., is holomorphic,

smooth or is a simple function). May g, h be chosen to have the same property? Answer to such a

question when f is holomorphic leads us to factorization of Hardy type spaces. We also apply these

considerations to get factorization for Toeplitz operators on Hardy spaces.

1. Introduction

It is evident that each function in L1 may be written as a pointwise product of
two functions, one from Lp, the second from Lp′ , where, as usual, p′ is conjugate
of p. Moreover, factors may be chosen in such a way that the norm of L1 function
is equal to the product of norms of factors. This statement may be written as
L1 ≡ Lp ⊙ Lp′. The celebrated Lozanovskĭı factorization theorem states that for an
arbitrary Banach function lattice X, there holds L1 ≡ X⊙X ′, where X ′ is the Köthe
dual of X (see [Lo69, Theorem 6]; cf. also [Ma89, p. 185]). An extension of this idea
leads to the question when given two (quasi-)Banach function lattices Z,X, there
is a third one, say Y , such that Z = X ⊙ Y ? In contrary to the case of Z = L1,
such a space may not exist. Nevertheless, when it does exist, it has to be equal (up
to the Fatou property and equivalent norms) to the space of pointwise multipliers
from X to Z. For an extensive discussion on the problem of factorization we refer to
[Sc10, KLM14, KLM19].

In the present paper we are not interested in the factorization problem itself
(although we get factorization theorem for Hardy spaces as an outcome), but rather
in a kind of its refinement (i.e. regularization as it is in the title) once we know that
Z = X ⊙ Y already holds. Namely, equality Z = X ⊙ Y means that there exist
constants C, c > 0 such that, for a given f ∈ Z there are g ∈ X and h ∈ Y satisfying
f = gh and

c‖g‖X‖h‖Y 6 ‖f‖Z 6 C‖g‖X‖h‖Y .

Suppose, however, that a function f satisfies some regularity conditions (for example:
it is holomorphic, smooth, non-increasing, or is a simple function). The question is

https://doi.org/10.5186/aasfm.2020.4545
2010 Mathematics Subject Classification: Primary 46E30, 46E15; Secondary 42B30, 46J15,

47B35.
Key words: Symmetric spaces, Hardy spaces, Toeplitz operators, factorization.



812 Karol Leśnik, Lech Maligranda and Paweł Mleczko

whether g and h may be chosen to be of the same class as f and still satisfy the
above estimates, possibly with other constants.

There is a plenty of classical theorems that may be seen as regularization of fac-
torization. It seems that the most known is the one which says that each holomorphic
function in the Hardy space H1 (on the unit disc or half-plane) may be written as
a product of two H2 functions. It has a number of applications, for example in the
recent proofs of Nehari theorem (see [Pe03] or [Le19]), or it is used in the proof of
Hardy–Littlewood theorem on non-tangential maximal operator on H1 (see [BS88,
Ch. 5, Theorem 6.2]). More generally, factorization of Hp functions have been used,
among others, by Pisier in his proof of Jones interpolation theorem (see [Pi92]).

Regularization of factorization of non-increasing functions was already widely
studied in [Ca64, KLM14, KLM19] and appeared to be one of the main tools therein—
see for example [KLM14, Lemma 7] or [KLM14, Theorem 1].

Motivated by those results, we decided to separate the problem of regularization
of factorization from the mentioned context of applications and discuss its possi-
ble generalizations in different directions. We rather put our attention on general
function spaces, while their underlying measure spaces are as simple as possible. In
our paper we focus on three types of regularization—for step functions, for smooth
functions and for holomorphic functions.

The paper is organized as follows. In the next section we collect definitions and
preliminary considerations. In Section 3 we present a solution of the regularization
problem for step functions, while in Section 4 we consider the same question for
smooth functions. The main results of the paper are contained in Section 5, where
we study regularization for holomorphic functions and characterize multipliers for
abstract Hardy spaces on the disc. Then, in Section 6, we apply obtained results to
the factorization of Toeplitz operators on Hardy spaces.

2. Preliminaries

Let (Ω,Σ, µ) be a complete σ-finite and non-atomic measure space and let L0(Ω)
:= L0(Ω,Σ, µ) denotes the space of (equivalence classes of µ-a.e. equal) real-valued
measurable functions on Ω with the topology of convergence in measure on µ-finite
sets. The order |f | 6 |g| means that |f(ω)| 6 |g(ω)| for µ-almost all ω ∈ Ω. A real
quasi-Banach space X := X(Ω) ⊂ L0(Ω) is called a quasi-Banach function lattice

on Ω (quasi-Banach lattice or even q-BFL for brevity), whenever the following two
conditions are satisfied:

(i) if |f | 6 |g| µ-a.e. and g ∈ X, then f ∈ X and ‖f‖ 6 ‖g‖,
(ii) the characteristic function χE of any set E ∈ Σ belongs to X (equivalently,

L∞(Ω) ⊂ X).

The symbol X+ stands for the cone of positive elements of X. If X is a Banach
space we will write Banach lattice (or just BFL) instead of Banach function lattice.
Through the paper we will consider two kinds of measure spaces. In Section 4 either
I = [0, 1] or I = [0,∞) with the Lebesgue measure m, or the unit circle T :=
{eiθ : θ ∈ [0, 2π)} with the normalized Lebesgue measure, also denoted by m, in the
remaining sections.

Equality X ≡ Y means that spaces are equal, as well as their quasi-norms. The
symbol ‖ · ‖X ≈ ‖ · ‖Y will be used when the quasi-norms are equivalent.

A quasi-Banach lattice X satisfies the Fatou property when given any sequence
(fn) ⊂ X and f ∈ L0 satisfying 0 6 fn ↑ f µ-a.e. as n → ∞ and supn ‖fn‖ < ∞, it
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follows that f ∈ X and ‖f‖ = supn ‖fn‖. A function f ∈ X is said to be an order

continuous element of X if 0 ≤ fn 6 |f | with fn → 0 µ-a.e. implies that ‖fn‖ → 0.
The subspace of order continuous elements of X is denoted by Xo. A space X is said
to be order continuous when X = Xo.

For f ∈ L0(Ω), its distribution function is defined by µf(λ) = µ
(
{t ∈ Ω: |f(t)| >

λ}
)
, λ > 0. The non-increasing rearrangement f ∗ of f ∈ L0 is given by the formula

f ∗(t) = inf
{
λ > 0: µf(λ) 6 t

}
, t > 0.

A quasi-Banach lattice X is called symmetric (or rearrangement invariant space) if
for any f ∈ X and g ∈ L0(Ω) such that µf = µg we have g ∈ X and ‖f‖ = ‖g‖. For
f ∈ L1

loc
one defines

f ∗∗(t) =
1

t

ˆ t

0

f ∗(s) ds.

A symmetric Banach space X ⊂ L1
loc

is called fully symmetric when for any f ∈ X
and g ∈ L1

loc
(Ω) such that g∗∗(t) 6 f ∗∗(t) for all t > 0 we have g ∈ X and ‖g‖ 6 ‖f‖.

2.1. Multipliers and products. Let X and Y be a couple of quasi-Banach
lattices. The space of multipliers M(X, Y ) is defined as

M(X, Y ) =
{
f ∈ L0 : fg ∈ Y for each g ∈ X

}

equipped with the quasi-norm

‖f‖M(X,Y ) = sup
{
‖fg‖Y : ‖g‖X = 1

}
.

It particular, for Y = L1, the space of pointwise multipliers is just the Köthe dual of
X, i.e. X ′ ≡M(X,L1).

The notion of multipliers is intimately connected to the product of spaces. Recall
that for two q-BFLs X and Y the product X ⊙ Y is defined as

X ⊙ Y =
{
gh : g ∈ X, h ∈ Y

}
.

It’s worth mentioning that, in general, even if X, Y are Banach function lattices, then
the product X ⊙Y doesn’t need to be a Banach space. Indeed, the product space is,
in general, a quasi-Banach space when equipped with the following quasi-norm

‖f‖X⊙Y = inf
{
‖g‖X ‖h‖Y : f = gh, g ∈ X, h ∈ Y

}
.

We refer the reader to the recent papers [KLM14, Sc10] and references included
therein.

3. Regularization for factorization of step functions

The following theorem may be viewed as a generalization of [KLR14, Lemma 3.1],
since product spaces are closely connected with the Calderón–Lozanovskĭı construc-
tion (see [KLM14, Theorem 1(iv)]).

Theorem 3.1. Let X and Y be two fully symmetric spaces over (I,m), where

I = [0, 1] or I = [0,∞) and m is the Lebesgue measure. Suppose that f ∈ X ⊙ Y is

a step function of the form

f =

∞∑

n=1

cnχAn ,
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where (cn) ⊂ R \ {0} and (An) ⊂ I is any sequence of pairwise disjoint sets of finite

measure. Then ‖f‖X⊙Y is realized on elements of the same form, i.e.

‖f‖X⊙Y = inf

{
‖g‖X‖h‖Y : |f | = gh, g =

∞∑

n=1

anχAn ∈ X+, h =
∞∑

n=1

bnχAn ∈ Y+

}
.

If both X, Y satisfy the Fatou property, then the above formula holds with minimum

instead of infimum.

Proof. Let f =
∑

∞

n=1 cnχAn , f > 0, belongs to the product space X⊙Y . Choose
any g ∈ X+, h ∈ Y+ satisfying f = gh. Define the averaging operator T by the
formula

T : g 7→

∞∑

n=1

1

m(An)

(
ˆ

An

g dm

)
χAn.

It is evident, that T is a contraction on L1 as well as on L∞. Thus, the Calderón–
Mityagin interpolation theorem (cf. [KPS82, Theorem 4.3, p. 95]) implies that it is
also a contraction on X and on Y , since both spaces are fully symmetric. Define

g′ =

∞∑

n=1

1

m(An)

(
ˆ

An

g dm

)
χAn, h′ =

∞∑

n=1

1

m(An)

(
ˆ

An

h dm

)
χAn.

Of course, ‖g′‖X 6 ‖g‖X and ‖h′‖Y 6 ‖h‖Y . Moreover, using the inverse Chebyshev
inequality [KLM14, Lemma 1], for a fixed n, we obtain

cn =
1

m(An)

ˆ

An

gh dm 6
1

m(An)

ˆ

An

g dm
1

m(An)

ˆ

An

h dm.

Applying the above inequality to each set An we obtain f 6 g′h′. Therefore,

‖f‖X⊙Y = inf
{
‖g‖X‖h‖Y : f = gh, g ∈ X+, h ∈ Y+

}

> inf

{
‖g‖X‖h‖Y : f 6 gh, g =

∞∑

n=1

anχAn ∈ X+, h =

∞∑

n=1

bnχAn ∈ Y+

}

= inf

{
‖g‖X‖h‖Y : f = gh, g =

∞∑

n=1

anχAn ∈ X+, h =

∞∑

n=1

bnχAn ∈ Y+

}
,

since it follows by [KLM14, Proposition 1] that in definition of the quasi-norm on
product space one can equivalently put f 6 gh instead of f = gh.

To see that the above infimum is attained when both spaces have the Fatou
property it is enough to use Proposition 1 from [Re88] together with Theorem 1(iv)
from [KLM14] and apply the above averaging to elements that realize ‖f‖X⊙Y . �

4. Regularization for factorization of smooth functions

We have seen in the previous section, that regularization is possible for step
functions. It is of interest to ask if similar property holds for smooth functions. Let
f = gh, where g ∈ X, h ∈ Y with ‖f‖X⊙Y ≈ ‖g‖X‖h‖Y and assume that f is smooth
(i.e., f is in Ck(T) for some k ∈ N or k = ∞). Can we choose g, h to be smooth as
well, keeping ‖f‖X⊙Y ≈ ‖g‖X‖h‖Y ? The following theorem settles this question for
symmetric spaces on T.

Theorem 4.1. Let X and Y be two fully symmetric spaces on T with the

normalized Lebesgue measure m. Suppose that f ∈ X⊙Y and f ∈ Ck, where k ∈ N
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or k = ∞. Then for each ε > 0 there are g ∈ X, h ∈ Y , both of the class Ck, such

that f = gh and

(4.1) (1− ε)‖g‖X‖h‖Y 6 ‖f‖X⊙Y 6 ‖g‖X‖h‖Y .

Proof. Notice that if one of spaces X or Y is equal to L∞, then the statement
trivially holds, since X ⊙ L∞ ≡ X and the equality f = fχT gives the required
factorization. Thus, we may assume that both X and Y are different from L∞.

Suppose firstly, that Y is order continuous. Let f ∈ X ⊙ Y be of the class Ck

and fix ε > 0. There exist g ∈ X and h ∈ Y such that f = gh and

(1− ε/2)‖g‖X‖h‖Y 6 ‖f‖X⊙Y 6 ‖g‖X‖h‖Y .

Of course, we may assume that g > 0. Then, for an arbitrary δ > 0 we define

Aδ =
{
t ∈ T : g(t) < δ

}
, A′

δ = T \ Aδ,

and we put
uδ = gχA′

δ
+ δχAδ

, vδ = f/uδ.

Notice that since L∞ ⊂ X and 0 < uδ 6 g + δχT, we get ‖uδ‖X → ‖g‖X as δ → 0+.
Moreover,

|vδ| =
|f |

uδ
6

|f |

g
= |h|.

In consequence, ‖vδ‖Y 6 ‖h‖Y for each δ > 0.
Define further

unδ (t) = uδ ∗Kn(t) =
1

2π

ˆ 2π

0

uδ(s)Kn(t− s) ds, t ∈ [0, 2π],

where Kn is the Fejér kernel

Kn(e
iθ) =

n∑

k=−n

(
1−

|k|

n+ 1

)
eikθ =

1

n+ 1

(
sin (n+1)θ

2

sin θ
2

)2

, θ ∈ [0, 2π],

(see, for example, [Ka76, p. 12]). Then, using Calderón–Mityagin interpolation the-
orem (cf. [KPS82, Theorem 4.3, p. 95]) and the fact that convolution with the Fejér
kernel is a contraction on L1 and on L∞, we get ‖unδ‖X 6 ‖uδ‖X . Moreover, from
the fact that

uδ ∗Kn(t)− δ = uδ ∗Kn(t)− δχT ∗Kn(t) = [uδ − δχT] ∗Kn(t) > 0,

where the first equality is due to the fact that ‖Kn‖1 = 1 and the second one comes
from Kn > 0, n ∈ N, it follows that unδ (t) > δ for each t ∈ T. In consequence,

vnδ = f/unδ

is well defined and belongs to Ck, while unδ ∈ C∞. It is enough to notice that
‖vnδ ‖Y → ‖vδ‖Y 6 ‖h‖Y as n → ∞. Indeed, since unδ → uδ a.e. on T, as n → ∞, we
conclude that also vnδ → vδ a.e. on T when n → ∞. Moreover, |vnδ | 6 |f |/δ 6 C for
some constant C > 0. Therefore, by order continuity of Y we have even more than
needed, i.e. ‖vnδ − vδ‖Y → 0 as n → ∞. In particular, ‖vnδ ‖Y → ‖vδ‖Y as n → ∞.
Finally, we can see that selecting δ > 0 small and n large enough we get

(1− ǫ)‖unδ ‖X‖v
n
δ ‖Y 6 ‖f‖X⊙Y 6 ‖unδ‖X‖v

n
δ ‖Y

with f = unδ v
n
δ , as required. The second inequality in (4.1) is always true by the

definition of X ⊙ Y .
If X is order continuous, then the proof is analogous. Suppose now that both

X, Y are not order continuous, but as we noticed at the beginning, both are different
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than L∞. Then X ⊙ Yo is order continuous (see [KLM14, Corollary 1], cf. [Re88,
Proposition 4]). Further, also X ⊙ Y 6= L∞, which means that L∞ ⊂ (X ⊙ Y )o. In
consequence, (X ⊙ Y )o ≡ X ⊙ Yo, as order continuous subspaces of the same space
X ⊙ Y , while equality of norms follows from Theorem 3.1, since simple functions
are dense in both X ⊙ Yo and (X ⊙ Y )o. From the fact that f ∈ Ck it follows that
f ∈ L∞ and L∞ ⊂ (X ⊙ Y )o ≡ X ⊙ Yo. Thus we can apply the previous part to
X⊙Yo, because Yo is always fully symmetric for any symmetric space Y (see [KPS82,
Theorem 4.10, p. 105]). �

Notice that the analogous problem to the one considered in Theorem 4.1, has been
already studied for Sobolev spaces. To be more specific, one may ask if a function in
Sobolev space (or another space of smooth functions) may be factorized by functions
from another Sobolev spaces. For example, Miyachi in [Mi95] showed that it is
not the case for De Vore–Sharpley spaces Cα,k

p (see [Mi95] for definitions), i.e., each

function from Cα,k
p admits weak factorization subject to Cα,k

p1
and Cα,k

p2
spaces, but

not necessarily the strong one (for origins of weak factorization see [CRW76]). One
of the reason for such a phenomenon is that factorizing by spaces with prescribed
smoothness one needs to control at the same time the size of the function itself, as
well as its derivatives, while relation f = gh allows to control easily only factorizing
functions itself, but not their derivatives. Of course, in Theorem 4.1 we say nothing
about the size of derivatives of factors, except those derivatives exist.

5. Multipliers and products for Hardy spaces

– regularization for holomorphic functions

In this section we will consider quasi-Banach function lattices over T = {eiθ : θ ∈
[0, 2π]}. The term complex function lattice refers to the complexification of a real
function lattice X, i.e., if X denotes the (real) space, the complexification X(C) of X
is the space of all complex-valued measurable functions f on T such that the element
|f | defined by |f |(T) = |f(T)| for t ∈ T is in X and ‖f‖ = ‖|f |‖X . For simplicity of
presentation, we will rather write about function lattices instead of complex function
lattices and avoid the use of the symbol X(C), remembering however, that in this
and the next section all spaces are complex.

Moreover, we will consider Hardy spaces defined by quasi-Banach spaces. How-
ever, to avoid some pathological situations we shall restrict slightly the class of all
quasi-Banach lattices. In particular, we will need upper semi-continuity of respective
quasi-norm, that is ‖fn‖ → 0 and fn > 0 implies ‖f + fn‖ → ‖f‖. In order to ensure
it, we will assume that for a quasi-Banach lattice X there exists p > 1 such that X(p)

is the Banach space, where X(p) is the p-convexification (resp., p-concavification,
when p ∈ (0, 1)) of X defined by

X(p) =
{
f ∈ L0 : |f |p ∈ X

}

and equipped with the quasi-norm ‖f‖X(p) = ‖|f |p‖
1/p
X . To see that such assumption

ensures continuity of the quasi-norm ‖ · ‖X , let ‖fn‖X → 0, f ∈ X and assume that
p-convexification X(p) is a Banach space. Then

‖f + fn‖X = ‖f + fn‖(X(p))(1/p) = ‖|f + fn|
1/p‖p

X(p)

6 ‖|f |1/p + |fn|
1/p‖p

X(p) 6 (‖|f |1/p‖X(p) + ‖|fn|
1/p‖X(p))p

→ ‖|f |1/p‖p
X(p) = ‖f‖X .



Regularization for Lozanovskĭı’s type factorization with applications 817

Notice finally that such the assumption is slightly stronger than the so called L-

convexity, which says just that X is p-convex for some p > 0 or, equivalently, X(p) is
normable for some p > 0 (see [KR09, Ka84] for thorough discussion of this notion).

To shorten the notion we define the following class of function lattices.

Definition 5.1. A quasi-Banach function lattice X on T belongs to the class Q
if there exists p > 1 such that X(p) is a Banach space and L∞ ⊂ X ⊂ L1/p.

The latter inclusions will be useful in a moment when we consider inner-outer
factorization in Hardy spaces built upon X ∈ Q. Notice that when X is a symmetric
space and X(p) is a Banach space, then X(p) is a symmetric space and thus X(p) ⊂
L1(T) or, equivalently, X ⊂ L1/p(T). Of course, each symmetric space contains L∞

as well.
Finally, we point out that the class Q is closed with respect to pointwise multi-

pliers and products. That is, if X ⊂ Y and X, Y ∈ Q, then also M(X, Y ) ∈ Q. In
fact, if X(p) and Y (q) are Banach spaces for some p, q > 1, then X(r) and M(X, Y )(r)

are Banach spaces with r = max{p, q} since M(X, Y )(r) ≡ M(X(r), Y (r)). Evidently,
L∞ ⊂ M(X, Y ) ⊂ Y . Similarly, if X, Y ∈ Q, then also X ⊙ Y ∈ Q.

Let H(D) be the space of all analytic functions on D = {z ∈ C : |z| < 1}. Denote
by H+(D) the set of those functions f ∈ H(D) such that the radial limit f∗ exists
almost everywhere on T, where

f∗(t) := lim
r→1−

fr(t), t ∈ T,

and fr(t) := f(rt) for t ∈ T and r ∈ [0, 1).
Let X ∈ Q. We define the Hardy space H [X ] as

H [X ] :=
{
f ∈ H+ : f∗ ∈ X

}
,

with the quasi-norm

‖f‖H[X] = ‖f∗‖X .

Then H [X ] is a quasi-Banach space and—by identifying f ∈ H [X ] with f∗—may
be seen as a closed subspace of X. The detailed study of spaces H [X ] has been
presented in [BS77, MM10, KS19]. Let us also note that for particular spaces X,
the above method produces variants of Hardy spaces widely studied in the literature.
For example, if X = Lp, p ∈ (0,∞), then H [X ] = Hp is the standard Hardy space. If
X = Lϕ is an Orlicz space, then Hϕ = H [Lϕ] is the Hardy–Orlicz space (see [Le71]).
Let us highlight as well that there is another, eventually equivalent, definition of
Hardy spaces H [X ] via the growth of the function r 7→ ‖fr‖X (see [MM10] for more
details).

Let X, Y be in Q. We wish to consider pointwise multipliers between H [X ] and
H [Y ], which may be defined either as

M
(
H [X ], H [Y ]

)
=

{
f ∈ H(D) : fg ∈ H [Y ] for each g ∈ H [X ]

}
,

or as

M
(
H [X ], H [Y ]

)
=

{
f ∈ H+ : f∗g∗ ∈ Y for each g ∈ H [X ]

}
.

Notice, however, that both definitions describe the same object. This follows from
the fact that if f, g ∈ H+(D), then (fg)∗ = f∗g∗ and vice versa, i.e., if (fg)∗ and
g∗ exist, then also f∗ exists, since g∗(t) 6= 0 for almost all t ∈ T for a non-zero
function g. Moreover, in both cases M

(
H [X ], H [Y ]

)
is a subspace of H [Y ] since
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constant functions belong to H [X ]. We consider the space M(H [X ], H [Y ]) with the
associated quasi-norm

‖f‖M(H[X],H[Y ]) = sup
{
‖fg‖H[Y ] : ‖g‖H[X] = 1

}
.

Further, we will accept a slight discrepancy in notation and we will identify
function on the disc with its radial limit. This will allow us to consider the following
pointwise multipliers from a space of analytic functions to a space of measurable
functions

M
(
H [X ], Y

)
=

{
f ∈ L0 : fg∗ ∈ Y for each g ∈ H [X ]

}

equipped with an associated functional

‖f‖M(H[X],Y ) = sup
{
‖fg∗‖Y : ‖g‖H[X] 6 1

}
.

We start with the following result.

Theorem 5.2. Let X, Y ∈ Q be such that X ⊂ Y . Then

(i) H [M(X, Y )] ≡M(H [X ], H [Y ]),
(ii) M(X, Y ) ≡M(H [X ], Y ).

Proof. (i) Suppose that f ∈ H [M(X, Y )]. Then for each h ∈ X, f∗h ∈ Y . In
particular, f∗g∗ ∈ Y for each g ∈ H [X ]. Since fg ∈ H(D) and (fg)∗ = f∗g∗, it
follows that f ∈M(H [X ], H [Y ]) and

‖f‖H[M(X,Y )] = sup
{
‖f∗h‖Y : ‖h‖X 6 1

}
> sup

{
‖f∗g∗‖Y : ‖g‖H[X] 6 1

}

= ‖f‖M(H[X],H[Y ]).

Let now f ∈ H [Y ] and assume that f 6∈ H [M(X, Y )]. Thus there exists h ∈ X such
that hf∗ 6∈ Y . Take δ > 0 and define

(5.1) vδ = |h|+ δχT.

It is clear that vδf∗ 6∈ Y . However, since vδ ∈ X and vδ > δ, then log |vδ| ∈ L1. We
put gδ to be an outer function of vδ (see [Du70, p. 24]), i.e.,

(5.2) gδ(z) := exp

(
1

2π

ˆ π

−π

eiθ + z

eiθ − z
log |vδ|(θ) dθ

)
.

It is known that (gδ)∗ = vδ and hence (gδ)∗f∗ 6∈ Y as well. This means that f 6∈
M(H [X ], H [Y ]), since gδ ∈ H [X ]. Therefore,

H
[
M(X, Y )

]
=M

(
H [X ], H [Y ]

)

as sets.
To prove the required inequality on quasi-norms let ε > 0 and choose h ∈ X such

that ‖h‖X < 1 and
‖f‖H[M(X,Y )] 6 ‖f∗h‖Y + ε.

Applying constructions (5.1) and (5.2) to such chosen h we get that for each δ > 0
the outer function gδ satisfies the equality |(gδ)∗| = |vδ| = |h| + δχT. Thanks to
the upper semi-continuity of quasi-norm of X we get ‖(gδ)∗‖X = ‖vδ‖X → ‖h‖X as
δ → 0. Since |h| 6 |(gδ)∗| we conclude

‖f‖H[M(X,Y )] − ε 6 ‖f∗h‖Y 6 ‖f∗(gδ)∗‖Y 6 ‖f‖M(H[X],H[Y ]),

where the last inequality holds for δ > 0 so small that ‖(gδ)∗‖X < 1. This means
that ‖f‖H[M(X,Y )] 6 ‖f‖M(H[X],H[Y ]) and the proof of (i) is finished.

The proof of (ii) is analogous and therefore will be omitted. �
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In order to study products of Hardy spaces we will need the following auxiliary
result.

Proposition 5.3. [Ka04, Proposition 5.1] If log+ |f |, log+ |g| ∈ L1(T) and fg ∈
H1 \ {0}, then log |f |, log |g| ∈ L1.

Point (i) of the theorem below is a generalization of [Ka04, Theorem 5.2] and
[Le19, Theorem 3.6]. It fits into subject of the paper, since it should be treated as
a holomorphic regularization for factorization. The second point will be applied in
the next section.

Theorem 5.4. Let X, Y ∈ Q. Then

(i) H [X ]⊙H [Y ] ≡ H [X ⊙ Y ],
(ii) H [X ]⊙ Y ≡ X ⊙ Y .

Proof. (i) The inclusionH [X ]⊙H [Y ] ⊂ H [X⊙Y ] with ‖f‖H[X⊙Y ] 6 ‖f‖H[X]⊙H[Y ]

is evident. We need to show that H [X ⊙ Y ] ⊂ H [X ] ⊙ H [Y ] with ‖f‖H[X⊙Y ] >

‖f‖H[X]⊙H[Y ]. Let f ∈ H(X ⊙ Y ). Since for some p0, p1 > 0, X ⊂ Lp0 , Y ⊂ Lp1 ,
we have X ⊙ Y ⊂ Lr, where 1/r = 1/p0 + 1/p1. In consequence, f ∈ Hr and
so f admits the inner-outer factorization (see [Du70, Theorem 2.8]), i.e., f = φF ,
where φ is an inner and F is an outer function, and |f∗| = |F∗|. Let g ∈ X, h ∈ Y
be such that F∗ = gh. We have F 1/r ∈ H1 and (F∗)

1/r = ψ|g|1/r|h|1/r, where
ψ = F∗/|F∗|. Evidently, log+ |g|1/r, log+ |h|1/r ∈ L1 and from Proposition 5.3 we

get that log |g|1/r, log |h|1/r ∈ L1, which means that also log |g|, log |h| ∈ L1. It is
therefore enough to take

G(z) = exp

(
1

2π

ˆ π

−π

eiθ + z

eiθ − z
log |g(θ)| dθ

)
.

Then G is an outer function of g and |G∗| = |g|. Consequently, taking v = F/G we
see that v is analytic on D and

|v∗| =
|F∗|

|g|
= |h|.

Therefore, F = Gv and so

f = φGv,

while ‖φG‖H[X] = ‖g‖X and ‖v‖H[Y ] = ‖h‖Y , which gives the required factorization.
(ii) Once again, the inclusion H [X ] ⊙ Y ⊂ X ⊙ Y and inequality ‖f‖X⊙Y 6

‖f‖H[X]⊙Y are evident. We will prove the opposite. Let h ∈ X ⊙ Y and choose
f ∈ X, g ∈ Y such that h = fg and ‖h‖X⊙Y > ‖f‖X‖g‖Y − ε. We may assume that
0 6 f and ‖f‖X = 1. For δ > 0 define

Aδ =
{
t ∈ T : f(t) < δ

}
, A′

δ = T \ Aδ,

and put

uδ = fχA′

δ
+ δχAδ

.

Then 1 = ‖f‖X 6 ‖uδ‖X . We choose also

vδ = gχA′

δ
+
h

δ
χAδ

.

Thus |vδ| 6 |g| and we have

h = uδvδ.
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Similarly, as in (5.2) from the proof of Theorem 5.2 we may choose aδ to be the outer
function of uδ, since log uδ ∈ L1. Then |(aδ)∗| = uδ. Taking

bδ =
vδuδ
(aδ)∗

we obtain |bδ| = |vδ| and h = (aδ)∗bδ, while aδ ∈ H [X ]. Moreover,

‖h‖H[X]⊙Y 6 ‖aδ‖H[X]‖bδ‖Y 6 ‖aδ‖H[X]‖g‖Y → ‖f‖X‖g‖Y 6 ‖h‖X⊙Y + ε,

when δ → 0. In consequence, we get

‖h‖H[X]⊙Y 6 ‖h‖X⊙Y ,

as required. �

As a corollary from the above theorems we get immediately the following Loza-
novskĭı’s like factorization theorem for Hardy type spaces.

Corollary 5.5. Let X, Y ∈ Q and assume that X factorizes Y , i.e.,

X ⊙M(X, Y ) ≡ Y.

Then H [X ] factorizes H [Y ], i.e.,

H [X ]⊙M
(
H [X ], H [Y ]

)
≡ H [Y ].

Proof. Using Theorems 5.2 and 5.4 and our assumption we have

H [X ]⊙M
(
H [X ], H [Y ]

)
≡ H [X ]⊙H

[
M(X, Y )

]
≡ H

[
X ⊙M(X, Y )

]
≡ H [Y ]. �

6. Application to factorization of Toeplitz operators

In this section we apply the previously obtained results to study of factorization
of Toeplitz operators on Hardy spaces. Consider the Riesz projection P which is
formally defined on L1 by

P : f 7→
∞∑

k=0

f̂(k)eit,

where f̂(k) stands for the k-th Fourier coefficient of f . It is known, that P is bounded
on a symmetric Banach function space X if and only if X has nontrivial Boyd indices,
i.e. pX , qX ∈ (1,∞) (see [FGJ73], while definition of Boyd indices and their properties
may be found in [LT79, p. 131]).

Assume also that X, Y are Banach function spaces such that L∞ ⊂ X ⊂ Y ⊂ L1

and the Riesz projection P is bounded on Y . Then for each a ∈M(X, Y ) the Toeplitz

operator Ta : H [X ] → H [Y ] defined as

Ta : f 7→ P (af)

is bounded with a norm ‖Ta‖ 6 ‖P‖Y→Y ‖a‖M(X,Y ) (see [To87, JPS84, Le19, KS19]
for studies of Toeplitz operators acting between distinct Hardy spaces).

Below we present how results from the previous section may be used to factorize
Toeplitz operators acting between Hardy spaces. It may be seen as a version of
the classical Maurey factorization theorem for Toeplitz operators. Notice, however,
that Hardy spaces are not Banach lattices, thus one cannot apply Maurey’s theorem
directly (see also [AK07] for discussion in the subject).
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Theorem 6.1. Let X, Y be Banach function lattices with the Fatou property

such that L∞ ⊂ X ⊂ Y ⊂ L1 and the Riesz projection P is bounded on Y . If X
is p-convex and Y is p-concave for some p ∈ (1,∞), then each Toeplitz operator

Ta : H [X ] → H [Y ], where a ∈ M(X, Y ), factorizes strongly through Hp, i.e., there

exist b ∈M(Lp, Y ) and φ ∈ H [M(X,Lp)] such that a = bφ and the following diagram

commutes

H [X ] H [Y ]

Hp

Ta

Mφ
Tb

where Mφ : f 7→ φf is the multiplication operator with a symbol φ.

Proof. Our assumption together with the outcome of [Sc10, Theorems 3.3, 3.4
and 3.8] implies that

X ⊙M(X, Y ) = Y, Lp ⊙M(Lp, Y ) = Y, X ⊙M(X,Lp) = Lp.

In consequence,

X ⊙M(X,Lp)⊙M(Lp, Y ) = Lp ⊙M(Lp, Y ) = Y = X ⊙M(X, Y )

and, applying Lemma 4 (i) from [KLM19], we get

M(X,Lp)⊙M(Lp, Y ) =M(X, Y ).

Now, if a ∈ M(X, Y ) is a symbol of the Toeplitz operator Ta : H [X ] → H [Y ],
then Theorem 5.4 (ii) gives a factorization

a = φb,

where φ ∈ H [M(X,Lp)] and b ∈ M(Lp, Y ). On the other hand, H [M(X,Lp)] =
M(H [X ], Hp) and so both operators

Mφ : H [X ] → Hp and Tb : H
p → H [Y ]

are bounded. Thus, for f ∈ H [X ]

Ta(f) = P (af) = P (bφf) = Tb(Mφf),

which finishes the proof. �

Remark 6.2. Let X, Y, Z be Banach function lattices with the Fatou property
such that L∞ ⊂ X ⊂ Z ⊂ Y ⊂ L1 and the Riesz projection P is bounded on Y . One
may then repeat the above proof to get factorization through H [Z] space provided
we know that

(6.1) M(X, Y ) =M(X,Z)⊙M(Z, Y ).

In fact, we assumed concavity and convexity of respective spaces in the above theorem
only to get (6.1) for Z = Lp. For example, for a triple of Lorentz spaces it may be
easily deduced from [KLM19] when (6.1) holds.
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