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Abstract. Let R be a compact surface and let Γ be a Jordan curve which separates R into
two connected components Σ1 and Σ2. A harmonic function h1 on Σ1 of bounded Dirichlet norm
has boundary values H in a certain conformally invariant non-tangential sense on Γ. We show that
if Γ is a quasicircle, then there is a unique harmonic function h2 of bounded Dirichlet norm on Σ2

whose boundary values agree with those of h1. Furthermore, the resulting map from the Dirichlet
space of Σ1 into Σ2 is bounded with respect to the Dirichlet semi-norm.

1. Introduction

Let R be a compact Riemann surface and let Γ be a quasicircle separating R
into two complementary components Σ1 and Σ2. Given a function h on Γ, do there
exist elements of the Dirichlet space of Σ1 and the Dirichlet space of Σ2 that have
h as their boundary values? In this paper we show that h is the boundary value
of an element of the Dirichlet space of Σ1 if and only if it is the boundary value of
an element of the Dirichlet space of Σ2. This leads us naturally to a concept that
we refer to as the transmission of a harmonic function from Σ1 to Σ2 through the
quasicircle Γ. The transmission of a Dirichlet-bounded harmonic function on Σ1 is
obtained by first taking the boundary values on Γ, and then finding the corresponding
Dirichlet-bounded harmonic function on Σ2 with these same boundary values. Our
main result is that the resulting transmission map between the Dirichlet spaces of
Σ1 and Σ2 is bounded (Theorem 3.29).

In the case when Γ is a Jordan curve separating the Riemann sphere into two
components, the authors showed that the transmission exists and is bounded if and
only if Γ is a quasicircle [28]. Our proof here of the general case uses sewing techniques
for Riemann surfaces. Along the way, several other results are established which are of
independent interest. For example, we show that a function on a Jordan curve is the
boundary values of an element of the Dirichlet space of one of the complementary
components Σ if and only if it has a Dirichlet-bounded harmonic extension to a
doubly connected neighbourhood, one of whose boundaries is the Jordan curve. Here,
boundary values are obtained from a conformally invariant notion of non-tangential
limit, and we show that boundary values exist except on a set of capacity zero.

We define capacity zero sets along the boundary in terms of charts on doubly-
connected neighbourhoods induced by Green’s function. It is possible to do this in
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greater generality [23, 25, 26], for example in terms of the ideal boundary. However
our approach is sufficiently general for the purposes of this paper, and leads as directly
as possible to the transmission theorem.

Similarly, we also required an extension of A. Beurling’s theorem (concerning
boundary values of harmonic functions with bounded Dirichlet energy) to Riemann
surfaces with boundary. The generalization of Beurling’s theorem to Riemann sur-
faces is due to Kuramochi, phrased in terms of what he calls N-fine limits [13]. We
give a proof using the charts induced by Green’s function, in terms of a conformally
invariant notion of non-tangential limit, in the case that the boundary is a Jordan
curve in a compact surface. This can conveniently be compared to Sobolev traces
in the case that the boundary is sufficiently regular. Again, we found this to be the
most direct line to the proof of the transmission theorem on quasicircles. We do
not claim originality for the existence of one-sided boundary values, except perhaps
for developing an approach which facilitates the application of sewing techniques,
as it does in the present paper. Indeed, the reader will recognize the ghost of the
conformal welding theorem throughout the paper.

A central issue is that it must be shown that a set of capacity zero with respect to
one side of the curve Γ must have capacity zero with respect to the other. We show
that this holds (once again) for quasicircles. Note that this is not true for harmonic
measure: a set of harmonic measure zero with respect to one side of a quasicircle need
not have harmonic measure zero with respect to the other (indeed, this fact prevents
us from using several sources). In particular, transmission is not even a well-posed
problem for non Dirichlet-bounded harmonic functions, even though boundary values
might exist up to a set of harmonic measure zero. Further discussion can be found
in [21].

In the case of the sphere, the existence of the transmission is intimately con-
nected to the Riemann boundary value problem (i.e. the jump problem) on quasi-
circles, Faber-type approximations on the Dirichlet space and Grunsky inequalities
for quasiconformally extendible maps, and generalized period matrices [21, 28, 29].
The results of the present paper make the extension of these connections to general
Riemann surfaces possible [30], as will be shown in upcoming publications.

As is common practice, we will denote constants which can be determined by
known parameters in a given situation, but whose value is not crucial to the problem
at hand, by C. The value of C may differ from line to line, but in each instance could
be estimated if necessary.

Acknowledgments. The authors are grateful to the referee, whose suggestions
have improved the overall presentation of the paper.

2. Preliminaries

2.1. Green’s functions and decompositions of harmonic functions In
this section we collect some well-known theorems and establish notation.

If R is a Riemann surface and Σ ⊂ R is compactly contained in R, then we
say that g(z, w) is the Green’s function for Σ if g(·, w) is harmonic on Σ\{w},
g(z, w) + log |φ(z)− φ(w)| is harmonic in z on a local parameter φ : U → C in
an open neighbourhood U of w, and limz→z0 g(z, w) = 0 for all z0 ∈ ∂Σ and w ∈ Σ.
Green’s function is unique and symmetric, provided it exists. In this paper, we will
consider only the case where R is compact and Σ ⊂ R is bounded by a Jordan curve,
so that the Green function of Σ exists, see e.g. Ahlfors and Sario [1, II.3].
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Let ∗ denote the dual of the almost complex structure, that is

∗(a dx+ b dy) = −b dx+ a dy

for a one form a dx + b dy written in local coordinates z = x + iy. The one-form
∗dg has a multi-valued primitive ∗g which is locally a harmonic conjugate of g. By
Stokes’ theorem, if Σ is an open set, compactly contained in R bounded by a single
positively oriented simple closed curve Γ, then

(2.1)

ˆ

Γ

∗dg = −2π.

Theorem 2.1. (Royden [24]) Let R be a compact Riemann surface. Let E ⊆ R
be a closed subset, and O be an open set containing E. Given a harmonic function U
in O\E there is a harmonic function u in R\E such that U −u extends harmonically

to O if and only if
ˆ

Γ

∗dU = 0

for some cycle Γ homologous in O\E to the boundary of O. The function u is unique

up to a constant.

We will require a special case of this theorem throughout this paper, which we
state in the next section.

2.2. Collar neighbourhoods. We will use the following terminology. By a
Jordan curve on a Riemann surface R, we mean a homeomorphic image of S1 in R.

We use the following terminology for charts near a curve Γ.

Definition 2.2. Let Γ be a Jordan curve in a compact Riemann surface R.

(1) A collar neighbourhood of Γ is an open doubly-connected set A bordered by
Γ and Γ′, where Γ′ is a Jordan curve which is homotopic to Γ and such that
Γ ∩ Γ′ is empty. A collar chart for Γ is a collar neighbourhood A together
with a biholomorphism φ : A→ A where A is an annulus in C.

(2) A doubly-connected neighbourhood of Γ is an open connected set A containing
Γ, bounded by two non-intersecting Jordan curves, both homotopic to Γ. A
doubly-connected chart for Γ is a biholomorphism φ : A → A where A is an
annulus in the plane C and A is a doubly-connected neighbourhood of Γ.

The condition that the image of φ is an annulus is not restrictive, since if the
image were any doubly-connected domain, then one could compose with a conformal
map onto an annulus [18].

Definition 2.3. We say that a Jordan curve Γ in a Riemann surface is strip-
cutting if it has a doubly-connected chart φ : A→ C.

A Jordan curve in C or C̄ in the usual sense is strip-cutting, by the Jordan–
Schönflies theorem, see e.g. [33]. Also, an analytic curve is by definition strip-cutting.
By shrinking the domain of the doubly-connected chart, one can always arrange that
Γ1 and Γ2 are analytic curves in R and φ is conformal on the closure of A. We say that
a Jordan curve separates R if R\Γ has two connected components. A strip-cutting
Jordan curve need not be separating.

Remark 2.4. If Γ is a strip-cutting Jordan curve, then letting B be one of the
connected components of A\Γ, it is easily seen that Γ is a doubly-free boundary
arc of B in the Riemann surface R, see Gauthier and Sharifi [8]. If we choose the
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boundaries of A to also be strip-cutting, then A and both components of A\Γ are
then Jordan regions in R in their sense.

Furthermore, these domains are themselves bordered Riemann surfaces [8, The-
orem 5.1]. Similarly, if a strip-cutting Jordan curves separates a compact surface R,
then the components of the complement are bordered surfaces.

We will also need the following fact, which follows directly from standard results.

Lemma 2.5. Let Γ be a strip-cutting Jordan curve in a compact Riemann sur-

face R. Every collar chart φ : A→ A extends continuously to a bijection from A∪Γ
to A∪ γ where γ is one of the boundary circles of A. The restriction of the chart to

Γ is a homeomorphism onto the circle.

Proof. Let A1 and A2 be domains in C bordered by non-intersecting homotopic
Jordan curves. Given a conformal map f : A1 → A2, f has a continuous, one-to-
one extension from the closure of A1 to the closure A2, whose restriction to either
boundary curve is a homeomorphism onto one of the boundary curves of A2 [6,
Theorem 3.4, Sect 15.3].

By the definition of strip-cutting Jordan curve, there is a map φ0 : A0 → A1 of
a collar neighbourhood A0 to a doubly-connected domain A1 bounded by two-non-
intersecting homotopic Jordan curves, which has a homeomorphic extension taking
Γ to one of the curves. Namely, one can take φ0 to be the restriction of a doubly-
connected chart to one side of Γ. Given an arbitrary collar chart φ : A → A, one
may apply the previous paragraph to φ ◦ φ−1

0 (possibly shrinking the domain), and
thus φ = (φ ◦ φ−1

0 ) ◦ φ0 has the desired homeomorphic extension. �

Remark 2.6. More general extension theorems for Jordan regions on Riemann
surfaces can be found in [8].

It is well-known that the boundary of a topological manifold with boundary has
a collar, see e.g. [5, Theorem 2, page 339]. A particular collar neighbourhood and
chart can be constructed using Green’s functions in a standard way. Let Γ be a strip-
cutting Jordan curve in a compact Riemann surface R, and assume that Γ separates
R into two components Σ1 and Σ2. Choose one of the components Σ and let g denote
its Green’s function. Let A ⊂ Σ be some collar neighbourhood of Γ.

Fix a p ∈ Σ and let gp(z) = g(z, p). The one-form ∗dgp has a multi-valued
primitive g̃p which is a local harmonic conjugate of gp.

Let γ be a smooth curve in A which is homotopic to Γ, and let m =
´

γ
∗dgp.

Then the function
φ = exp [−2π(gp + ig̃p)/m]

is holomorphic and single-valued on some region Ar bounded by Γ and a level curve
Γr = {z : g(z, p) = r} of gp for some r > 0. A standard use of the argument principle
show that φ is one-to-one and onto the annulus {z : e−2πr/m < |z| < 1}. By Lemma
2.5 φ has a continuous extension to Γ which is a homeomorphism from Γ onto its
image. By increasing r, one can also arrange that φ extends analytically to Γr.

We call this collar chart the canonical collar chart with respect to (Σ, p). It is
uniquely determined up to a rotation and the choice of r in the definition of domain.
The level sets g(·, p) = ǫ are simple closed analytic curves for ǫ ∈ (0, r) for some
r > 0, but will not necessarily be simple or connected curves for general ǫ.

There are of course many possible equivalent definitions of quasicircle; we fix
one now. In the plane C, we say that a quasicircle is the image of S1 under a
quasiconformal map of C. On a Riemann surface, we will use the following definition.
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Definition 2.7. A simple closed curve Γ in a Riemann surface is a quasicircle if
there is a doubly-connected chart φ : A→ B ⊂ C for Γ such that φ(Γ) is a quasicircle
in C.

In particular, a quasicircle is a strip-cutting Jordan curve.

2.3. Dirichlet and Sobolev spaces. In this section we establish notation, and
collect some results on Sobolev spaces on Riemann surfaces.

We define the Dirichlet spaces as follows. Let R be a compact Riemann surface,
and let Σ ⊆ R be open. A function f : Σ → C is harmonic if f is C2 and d ∗ df = 0.
Equivalently, in a neighbourhood of every point, there is a local coordinate expression
for f so that f is harmonic.

The space of complex one-forms on Σ has the natural inner-product

〈ω1, ω2〉Σ =
1

2

¨

Σ

ω1 ∧ ∗ω2;

Denote by L2(Σ) the set of one-forms which are L2 with respect to this inner product.
We define the harmonic Dirichlet space by

Dharm(Σ) = {f : Σ → C : f ∈ C2(Σ), d ∗ df = 0 and df ∈ L2(Σ)}.

We can define a degenerate inner product on Dharm(Σ) by

(f, g)Dharm(Σ) = 〈df, dg〉Σ .

If we define the operators

∂f =
∂f

∂z
dz and ∂f =

∂f

∂z̄
dz̄

in local coordinates, then the inner product can be written as

(2.2) (f, g)Dharm(Σ) = i

¨

Σ

[
∂f ∧ ∂g − ∂f ∧ ∂g

]
.

Denote the holomorphic and anti-holomorphic Dirichlet spaces by

D(Σ) = {f ∈ Dharm(Σ) : ∂f = 0},

D(Σ) = {f ∈ Dharm(Σ) : ∂f = 0}.

Of course D(Σ) = {f : f ∈ D(Σ)} so the notation is consistent. These two spaces
are orthogonal with respect to the inner product given by (2.2).

Next we gather some standard results from the theory of Sobolev spaces which
we shall use in this paper. For more specific details of the discussions below, as well
as the theory of Sobolev spaces and elliptic boundary value problems on manifolds,
we refer the reader to [32], and for the theory of Sobolev spaces in domains of Rn we
refer to [16].

Let (M,h) be a compact Riemann surface endowed with a hyperbolic metric h

and f a function defined on M . Set dσ(h) :=
√
| det hij| |dz|

2 which is the area-
element of R, where hij are the components of the metric with respect to coordinates
z = x1 + ix2. We define the inhomogeneous and homogeneous Sobolev norms and
semi-norms respectively of f as

(2.3) ‖f‖H1(R) :=
(¨

R

|f |2 dσ(h)
) 1

2

+
(¨

R

df ∧ ∗df
) 1

2

,
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and

(2.4) ‖f‖Ḣ1(R) :=
(¨

R

df ∧ ∗df
) 1

2

,

thus the Dirichlet semi-norm and the homogeneous Sobolev semi-norm are given by
the same expression.

Observe that since any two metrics on R have comparable determinants, choosing
different metrics in the definitions above yield equivalent norms. When necessary to
specify the underlying metric, we will use the notation H1(R, h). Now if R is a
compact Riemann surface and Σ is an open subset of R with analytic boundary ∂Σ
then the pull back of the metric hij under the inclusion map yields a metric on Σ.
Using that metric, we can define the inhomogeneous and homogeneous Sobolev spaces
H1(Σ) and Ḣ1(Σ). However these definitions will a-priori depend on the choice of
the metric induced by R, due to the non-compactness of Σ, unless further conditions
on Σ are specified.

We will also use the fractional SobolevH
1

2 (M) on a compact smooth n-dimensional
manifold M , whose definition we now recall.

First, we define the Sobolev space H
1

2 (Rn), which consists of tempered distribu-
tions u such that

´

Rn(1 + |ξ|2)1/2|û(ξ)|2 dξ <∞, where û(ξ) is the Fourier transform
of u. Now, let M be an n−dimensional smooth compact manifold without boundary.
Given a distribution f ∈ D ′(M) (see e.g. [32] for details) one says that f ∈ H1/2(M),
if for any coordinate patch (φ, U) of M and any ψ ∈ C∞

c (U), ψf |U ◦φ−1 ∈ H1/2(Rn).
To define the Sobolev norms, one starts with the smooth atlas (φj, Uj) and the

corresponding smooth partition of unity ψj with ψj ≥ 0, suppψj ⊂ Uj and
∑

j ψj = 1,
and then one defines

(2.5) ‖f‖
H

1
2 (M)

:=
∑

j

‖(ψjf) ◦ φ
−1
j ‖

H
1
2 (Rn)

.

As is well-known, different choices of the atlas and its corresponding partition of
unity, produces norms that are equivalent with (2.5), see e.g. [3, Proposition 11.2,
p. 68].

A rather fundamental fact in the study of boundary value problems is the Sobolev
trace theorem that asserts that for f ∈ H1(Σ) the restriction of f to the smooth
boundary ∂Σ is in H1/2(∂Σ), and the trace operator is a bounded linear map, see
e.g. [32, Proposition 4.5, p. 334].

Remark 2.8. It is important to note that in all cases we consider the H1/2 space
of ∂Σ in this paper, we assume that Σ ⊂ R for a compact surface R and that ∂Σ
is an analytic curve (and in particular smooth) and thus an embedded submanifold
of R. Thus the charts on ∂Σ can be taken to be restrictions of charts from R. For
roughly bounded Σ, the boundary ∂Σ can be endowed with the manifold structure
obtained by treating it as the ideal boundary of Σ. However, we will not apply the
Sobolev theory directly to such domains. Indeed in those cases the boundary is of
course not a submanifold of R.

Proposition 2.9. Let Ω be a bounded domain in Rn with Lipschitz boundary,

then H1(Ω) = Ḣ1(Ω) as sets.

Proof. This is a special case of a more general result (which is even valid for
domains whose boundaries are unions of continuous graphs), which is given in [16]
(the Corollary on page 21) and the remark that follows that corollary. It is also
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explicitly stated for Sobolev spaces more general than just H1(Ω) in [17, Proposi-
tion 1.25.2]. �

In light of this result we have

Theorem 2.10. Let R be a compact surface and let Σ ⊂ R be bounded by a

closed analytic curve Γ. Fix a Riemannian metric ΛR on R as follows. If R has genus

g > 1 then ΛR is the hyperbolic metric; if R has genus 1 then ΛR is the Euclidean

metric, and if R has genus 0 then ΛR is a spherical metric. Let H1(Σ) and Ḣ1(Σ)
denote the Sobolev spaces with respect to ΛR. Then Ḣ1(Σ) = H1(Σ) as sets.

Proof. It is of course true that H1(Σ) ⊂ Ḣ1(Σ) and ‖ · ‖Ḣ1(Σ) ≤ ‖ · ‖H1(Σ).

Therefore it remains to show the non-trivial inclusion Ḣ1(Σ) ⊂ H1(Σ).
We deal with the most complicated case first. Assume that R is hyperbolic.

Let Π: D → R be the holomorphic universal covering map. Fix p ∈ Σ and choose
closed curves γ1, . . . , γ2g based at p generating the fundamental group of R based at
p. Homotopic representatives can be chosen so that (1) the curves do not intersect
except at p, (2) the curves are smooth, except possibly at p, where they meet at
non-zero angles mod 2π, and (3) each curve intersects Γ at most finitely many times.
The last condition can be arranged because Γ is a compact analytic curve. Let
γ = γ1 ∪ · · · ∪ γ2g.

By cutting R along these curves, one obtains an open fundamental region D ⊂ D
such that Π is injective on D. Moreover, Π maps the closure of D onto R, and the
boundary of D onto γ. Since R is compact the fundamental region is compactly
contained in D. The conditions on γi ensure that Ω = D ∩ Π−1(Σ\γ) is an open set
bounded by n piecewise smooth curves, meeting at non-zero angles at the vertices.
If γ does not intersect Γ, then Ω has two boundary components one of which is Π(γ)
and the other is Π(Γ); otherwise, ∂Ω is connected.

Now the pull-back of ΛR under Π is equal to the Poincaré metric λ(z)2|dz|2 on
D. Thus since γ ∪ Γ has measure zero in R, for any h ∈ H1(Σ) we have

(2.6) ‖h‖H1(Σ,ΛR) ∼ ‖h ◦ Π‖H1(Ω,λ(z)|dz|2)

and

(2.7) ‖h‖Ḣ1(Σ,ΛR) ∼ ‖h ◦ Π‖Ḣ1(Ω,λ(z)|dz|2).

Since the closure of Ω is contained in D, there is a constant C > 1 such that

1/C ≤ λ(z) ≤ C

uniformly on Ω; thus the Poincaré metric is comparable to the Euclidean on Ω and
so

(2.8) ‖h ◦ Π‖H1(Ω,λ(z)|dz|2) ∼ ‖h ◦ Π‖H1(Ω,|dz|2)

and

(2.9) ‖h ◦ Π‖Ḣ1(Ω,λ(z)|dz|2) ∼ ‖h ◦ Π‖Ḣ1(Ω,|dz|2).

Now by Proposition 2.9, since Ω is a bounded domain in R2 with Lipschitz
boundary, we have that Ḣ1(Ω, |dz|2) = H1(Ω, |dz|2) as sets.

Combining this with (2.6), (2.7), (2.8), and (2.9) completes the proof in the case
that g > 1.

If g = 1, then the argument proceeds in the same way, except that the covering
map directly induces an equivalence between the Euclidean metric on R and the
Euclidean metric on the plane, so estimates of the form (2.8) and (2.9) are trivial.
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If g = 0, then R is conformally equivalent to the Riemann sphere and isometric
to the sphere with the spherical metric |dz|2/(1 + |z|2)2 (up to a scale factor). Thus
we assume that ΛR = K|dz|2/(1+ |z|2)2 for some constant K. Since the fundamental
group is trivial we may obviously omit the step of cutting along curves. Applying
an isometry of the spherical metric, one can assume that Σ ∪ Γ does not contain
the point at ∞; that is, Σ is a bounded subset of the plane bordered by an analytic
curve. One now proceeds as in the hyperbolic case, using the fact that the spherical
metric satisfies

1/C ≤
K

(1 + |z|2)2
≤ C

on Σ. �

Remark 2.11. Theorem 2.9 is also true for more general Sobolev spaces Hk(Σ)
where k ∈ N.

In the proof of the boundedness of the transmission operator on the Dirichlet
spaces (Theorem 3.29), we will also need the following estimate for Sobolev norms of
harmonic extensions, which is a consequence of the Dirichlet principal.

Lemma 2.12. Let Σ be a Riemann surface bounded by an analytic curve Γ (in
the sense that Σ ⊂ R where R is a Riemann surface and the boundary of Σ is an

analytic curve in R). For any u, v ∈ H1(Σ) with the same trace in H1/2(Γ) almost

everywhere, such that u is harmonic, ‖u‖Ḣ1(Σ) ≤ ‖v‖Ḣ1(Σ).

Proof. This can be proved in a similar way as in the case of domains in Rn with
smooth boundary which relies on two ingredients, namely Rellich’s theorem and the
Poincaré’s inequality (see i.e. [9, Section 1.2, pages 419–420]). Thus, for manifolds
with smooth boundary, the proof proceeds just as in the Euclidean case, where one
replaces the aforementioned theorems with the ones valid on manifolds with smooth
boundary. The Rellich theorem in this setting is given in [32, Proposition 4.4, p.
334], and the validity of the Poincaré inequality is a consequence of the boundedness
of Σ (with respect to the metric on R). �

Finally, we need the existence of decomposition of Dirichlet-bounded harmonic
functions on doubly-connected regions. First, we need a lemma.

Lemma 2.13. Let Γ be a strip-cutting Jordan curve in a compact Riemann

surface R, bounding a Riemann surface Σ with Green’s function g. Let p ∈ Σ. There

is a collar neighbourhood A ⊂ Σ of Γ, such that p /∈ A and

(gp, gp)A =

¨

A

dgp ∧ ∗dgp <∞,

where gp := g(·, p).

Proof. Let Γǫ = {z : g(z, p) = ǫ} be a level curve of Green’s function. For s
sufficiently small, we obtain a collar neighbourhood bounded by Γs and Γ. Let A be
the domain bordered by Γ and Γs.

For any r ∈ (0, s), Γr is a simple closed analytic curve, and

ˆ

Γr

∗dgp = c,
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where c is some constant independent of r. Thus by Stokes’ theorem we see that

(dgp, dgp)A =

¨

A

dgp ∧ ∗dgp = lim
ǫ→0

ˆ

Γǫ

gp ∗ dgp −

ˆ

Γs

gp ∗ dgp

= lim
ǫ→0

ǫ

ˆ

Γǫ

∗dgp − s

ˆ

Γs

∗dgp = lim
ǫ→0

(ǫ− s)c = −cs.

Thus c is negative real and (dgp, dgp)A <∞. �

Corollary 2.14. Let R be a compact Riemann surface and let A be a doubly-

connected domain in R bounded by strip-cutting Jordan curves Γ1 and Γ2. For

i = 1, 2 let Bi be the component of the complement of Γi containing A. Let p1 be a

point in B1\clA (cl denotes the closure). Let gp1(w) be Green’s function on B1 with

logarithmic singularity at p1. Every h ∈ D(A) can be written as

h = h1 + h2 + cgp1,

where h1 ∈ Dharm(B1) and h2 ∈ Dharm(B2) and c ∈ C.

Proof. Choose a smooth curve Γ in A which is homotopic to Γ1 and Γ2. Using
equation (2.1), there is some constant c ∈ C such that h− cgp1 satisfies

ˆ

Γ

∗d(h− cgp1) = 0.

Applying Theorem 2.1 to h−cgp1 shows that h = h1+h2+cgp1 for some hi harmonic
in Bi for i = 1, 2. For any such decomposition, we have by Stokes’ theorem

ˆ

Γ

∗d(h1 + h2) = 0,

so the c is uniquely determined. So if H1 + H2 + Cgp1 is any other decomposition,
then c = C, and by the uniqueness statement in Theorem 2.1 H1 = h1 + e and
H2 = h2 − e for some constant e.

Now let Γ′ be a curve in A homotopic to Γ1. Let A′ ⊂ A be the collar neigh-
bourhood of Γ1 bounded by Γ1 and Γ′. Choose Γ′ so that (dgp1, dgp1)A′ < ∞; this
can be done by Lemma 2.13. Since h2 is harmonic on an open neighbourhood of the
closure of A′, h2 ∈ D(A′)harm. Also, since A′ ⊂ A and h ∈ Dharm(A), it follows that
h ∈ D(A′)harm. Therefore h1 = h−h2− cgp1 ∈ D(A′)harm. Since h1 is harmonic on an
open neighbourhood V of the closed set B1\A

′, it thus is also in D(U)harm for some
open set U ⊂ V containing B1\A

′. Thus h1 ∈ Dharm(B1). A similar argument shows
that h2 ∈ Dharm(B2). �

3. Transmission of harmonic functions

In this section we derive the main results.

3.1. Null sets. We need a notion of zero-capacity set on the boundary of
Riemann surfaces Σ contained in a compact surface R. For our purposes it suffices
to consider the case that the boundary is a strip-cutting Jordan curve.

Definition 3.1. Let Γ be a strip-cutting Jordan curve in a compact Riemann
surface R, which separates R into two connected components. Let Σ be one of the
components, and let φ be the canonical collar chart with respect to (Σ, p). We say
that a Borel set I ⊂ Γ is null with respect to (Σ, p) if φ(I) has logarithmic capacity
zero in C, see [7] for the definition of the logarithmic capacity.
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This is independent of p, and of the choice of collar chart. In the statement of
the theorem below, recall that by Lemma 2.5 every collar chart has a continuous
extension to Γ.

Theorem 3.2. Let Γ be a strip-cutting Jordan curve in a compact Riemann

surface R which separates R into two connected components. Fix one of these and

denote it by Σ. Let I ⊂ Γ be a Borel set. The following are equivalent.

(1) I is null with respect to (Σ, q) for some q ∈ Σ;

(2) I is null with respect to (Σ, q) for all q ∈ Σ;

(3) There exists a collar chart φ : A→ A for A ⊆ Σ such that φ(I) has logarithmic

capacity zero;

(4) φ(I) has logarithmic capacity zero for every collar chart φ : A→ A for A ⊆ Σ.

Proof. It is clear that (2) implies (1), (1) implies (3), and (4) implies (2). We
will show that (3) implies (4).

If K ⊂ S1 = {z : |z| = 1} is a Borel set of logarithmic capacity zero, and φ
is a quasisymmetry, then φ(K) has logarithmic capacity zero [28, Theorem 2.9],
ultimately relying on [2]. Since the inverse of a quasisymmetric map is also a qua-
sisymmetry (and in particular a homeomorphism), we see that a Borel set K has
logarithmic capacity zero if and only if φ(K) is a Borel set of logarithmic capacity
zero.

Now let φ : A→ A and ψ : B → B be collar charts such that A and B are in Σ.
By composing with a scaling and translation we can obtain maps φ̃ and ψ̃ such that
the image of Γ under both φ̃ and ψ̃ is S1; we can also arrange that S1 is the outer
boundary of both A and B by composing with 1/z if necessary. By Lemma 2.5,

φ̃ ◦ ψ̃−1 has a homeomorphic extension to S1. By Schwarz reflection principle, it has
an extension to a conformal map of an open neighbourhood of S1, so it is an analytic
diffeomorphism of S1 and in particular a quasisymmetry. Thus ψ̃(I) has logarithmic

capacity zero if and only if φ̃(I) has capacity zero. Since linear maps z 7→ az+ b take
Borel sets of capacity zero to Borel sets of capacity zero, as does z 7→ 1/z, we have
that φ(I) has logarithmic capacity zero if and only if ψ(I) does. This completes the
proof. �

Thus, we now see that we may say that “I is null with respect to Σ” without
ambiguity. This result can be improved for quasicircles to allow the possibility that
the collar charts are in different components.

Theorem 3.3. Let Γ be a quasicircle in a compact Riemann surface R, sepa-

rating R into two connected components Σ1 and Σ2. Let I ⊂ Γ be Borel. Then I is

null with respect to Σ1 if and only if I is null with respect to Σ2.

Proof. Let g : U → V be a doubly-connected chart in a neighbourhood of Γ.
By shrinking U if necessary, we can assume that U is bounded by analytic curves
γ1 and γ2 in Σ1 and Σ2 respectively, and that g has a conformal extension to an
open set containing the closure of U so that g(γ1) and g(γ2) are analytic curves in
C. Let φ : A → A be a collar chart in a neighbourhood of Γ in Σ1 and ψ : B → B
be a collar chart in a neighbourhood of Γ in Σ2. For definiteness, we arrange that
the outer boundary of both annuli A and B is S1, and that φ and ψ both take Γ
to S1. This can be done by composing with an affine transformation and z 7→ 1/z
if necessary. Let Ω+ denote the bounded component of the complement of g(Γ) in
C̄ and Ω− denote the unbounded component. We assume that g takes U ∩ Σ1 into
Ω+, again by composing with z 7→ 1/z if necessary. Finally, by possibly shrinking
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the domain of g again, we can assume that the analytic curve γ1 is contained in the
domain of φ.

Thus, φ◦g−1 is a conformal map of a collar neighbourhood W of g(Γ) in Ω+ onto
a collar neighbourhood of S1 in D, whose inner boundary φ(γ1) is an analytic curve.
By the previous paragraph it has a conformal extension to an open neighbourhood
of g(γ1), and thus the restriction of φ ◦ g−1 is an analytic diffeomorphism from g(γ1)
to φ(γ1). Thus if we let W ′ be the Borel set in Ω+ bounded by g(γ1), then there is
a quasiconformal map F of W ′ with a homeomorphic extension to g(γ1) equalling
ψ ◦ g−1. The map

(3.1) Φ(z) =

{
F (z), z ∈ W ′,

φ ◦ g−1(z), z ∈ W ∪ g(γ1),

is therefore a quasiconformal map from Ω+ to D. A similar argument shows that
ψ ◦ g−1 has a quasiconformal extension to a map from Ω− to D.

Since g(Γ) is a quasicircle, there is a quasiconformal reflection r of the plane
which fixes each point in g(Γ). Thus ψ ◦ g−1 ◦ r ◦ (φ ◦ g−1)−1 has an extension
to an (orientation reversing) quasiconformal self-map of the disk. Thus it extends
continuously to a quasisymmetry of S1, which takes Borel sets of capacity zero to
Borel sets of capacity zero. Furthermore, on S1, this map equals ψ ◦ φ−1. Since the
same argument applies to φ ◦ ψ−1, we have shown that φ(I) has capacity zero in S1

if and only if ψ(I) has capacity zero in S1. This completes the proof. �

Let Γ be a strip-cutting Jordan curve in R. We say that a property holds quasi-
everywhere on Γ with respect to Σ if it holds except on a null set with respect to Σ.
Thus we define the following class of functions.

B(Γ; Σ) = {h : Γ → C}/ ∼ k,

where h1 ∼ h2 if h1 = h2 quasi-everywhere with respect to Σ. By Theorem 3.3, if Γ
is a quasicircle separating R into connected components Σ1 and Σ2, then B(Γ,Σ1) =
B(Γ,Σ2). Thus we will use the notation B(Γ) in this case.

3.2. The class H(Γ) for simply-connected domains. We will need a notion
of non-tangential limit for points on the boundary of a Riemann surface Σ contained
in a compact surface R, when the boundary of Σ is a strip-cutting Jordan curve. This
notion is designed to be conformally invariant, and thus not depend on the regularity
of the boundary. Indeed, it could be phrased in terms of the ideal boundary, but we
will not require this or pursue it beyond making a few remarks.

We begin with simply-connected domains. A non-tangential wedge in D with
vertex at p ∈ S1 is a set of the form

W (p,M) = {z ∈ D : |p− z| < M(1 − |z|)}

for some M ∈ (1,∞). As usual, we say that a function f : D → C has a non-
tangential limit at p if the limit of f |W (p,M) as z → p exists for all M ∈ (1,∞). One
may of course equivalently use Stolz angles, that is sets of the form

S(p, α) = {z : arg(1− p̄z) < α, |z − p| < ρ}

where α ∈ (0, π/2) and ρ < cosα, [19, p. 6]. It is easily seen that if T : D → D is a
disk automorphism, then f has a non-tangential limit at p if and only if f ◦ T has a
non-tangential limit at T (p).

Definition 3.4. Let Ω ⊂ R be a simply-connected domain in a compact Rie-
mann surface which is bordered by a strip-cutting Jordan curve. We say that
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a function h : Ω → C has a conformally non-tangential limit at p ∈ ∂Ω (CNT
limit/boundary values for short) if and only if h ◦ f has non-tangential limit at
f−1(p) for a conformal map f : D → Ω.

Observe that by Carathéodory’s theorem f has a homeomorphic extension taking
S1 to ∂Ω, so f−1(p) is well-defined. Note also that if f and g are conformal maps
from D to Ω, then h ◦ f has a non-tangential limit at f−1(p) if and only if h ◦ g has
a non-tangential limit at g−1(p), since g−1 ◦ f is a disk automorphism. This shows
that the notion of conformally non-tangential limit is well-defined.

We have the following result of Beurling/Zygmund, phrased conformally invari-
antly.

Theorem 3.5. [7] Let Γ be a strip-cutting Jordan curve in a compact Riemann

surface R and let Ω be a component of the complement. Assume that Ω is simply

connected. Then for every H ∈ Dharm(Ω), H has a conformally non-tangential limit

at p for all p except possibly on a null set in Γ with respect to Ω. If H1, H2 ∈ Dharm(Ω)
have the same conformally non-tangential boundary values except possibly on a null

set in Γ, then H1 = H2.

This theorem follows immediately for the statement on the disk, together with
conformal invariance of the definition. We will shorten this statement to say that
the boundary values exist “conformally non-tangentially quasieverywhere” or “con-
formally non-tangentially” with respect to Ω.

Let Γ be an oriented Jordan curve in C. Let Ωi, i = 1, 2, denote the distinct
connected components of the complement of Γ in C̄. Temporarily let H(Γ,Ωi) denote
the set of functions h ∈ B(Γ,Ωi) which are CNT limits of some H ∈ D(Ωi) quasi-
everywhere.

If H(Γ,Ω1) = H(Γ,Ω2) then there would be induced maps of the Dirichlet spaces

r(Ω1,Ω2) : Dharm(Ω1) → Dharm(Ω2) and r(Ω2,Ω1) : Dharm(Ω2) → Dharm(Ω1).

If Γ is a quasicircle, this is indeed the case, and in fact this characterizes quasicircles.

Theorem 3.6. [28] Let Γ be a Jordan curve in C. The following are equivalent.

(1) Γ is a quasicircle;

(2) H(Γ,Ω1) ⊆ H(Γ,Ω2) and the map r(Ω1,Ω2) is bounded with respect to the

Dirichlet semi-norm;

(3) H(Γ,Ω2) ⊆ H(Γ,Ω1) and the map r(Ω2,Ω1) is bounded with respect to the

Dirichlet semi-norm.

Thus, for quasicircles in C̄, we will denote H(Γ) = H(Γ,Ω1) = H(Γ,Ω2) with-
out ambiguity. In contrast to Theorem 3.5, Theorem 3.6 is non-trivial and not a
tautological consequence of Beurling’s theorem.

Remark 3.7. In [28], the boundary values are given as limits along images of
radial lines under a conformal map f : D → Ω. Since all elements of Dharm(Ω)
have CNT limits quasieverywhere, and the limits along these curves must equal the
conformally non-tangential limit when it exists, the theorem above is an immediate
consequence.

3.3. Conformally non-tangential limits. We now give the general definition
of CNT limits. We do this by replacing the map f with the canonical collar chart.
However, it is not immediately obvious that the definition is independent of the choice
of singularity in Green’s function, so we temporarily make the dependence on the
singularity explicit.
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Definition 3.8. Let R be a compact surface and Γ be a strip-cutting Jordan
curve Γ which separates R into two components, one of which is Σ. Fix q ∈ Σ and
let φ be the canonical collar chart induced by Green’s function with singularity at q.

(1) For a function H : Σ → C, we say that H has a CNT limit at p ∈ Γ with
respect to (Σ, q) if H ◦ φ−1 has a non-tangential limit at φ(p).

(2) We say that H has CNT boundary values quasieverywhere with respect to
(Σ, q) if H has CNT limits at all p ∈ Γ except possibly on a null set with
respect to Σ.

We now show that the definition is independent of the singularity.

Theorem 3.9. Let Γ be a strip-cutting Jordan curve in a compact surface R
which separates R into two components, one of which is Σ. Fix points q1, q2 ∈ Σ.

Then a function H : Σ → C has a CNT limit at p ∈ Γ with respect to (Σ, q1) if and

only if H has a CNT limit with respect to (Σ, q2).

Proof. Let φ1 and φ2 be collar charts induced by q1 and q2 respectively. Then
φ2 ◦ φ

−1
1 : A1 → A2 is a conformal map between some collar neighbourhoods A1 and

A2 of S1 in D. By Lemma 2.5 and Schwarz reflection [19], φ2 ◦ φ
−1
1 has a conformal

extension to a map g : A∗
1 → A∗

2 where A∗
1 and A∗

2 are open neighbourhoods of S1

obtained by adjoining S1 and the symmetric regions under z 7→ 1/z̄.
Fix any Stolz angle S at p, and denote by B(p, ǫ) the open disk of radius ǫ at

p. Since g is conformal at φ2(p), for ǫ sufficiently small g(B(p, ǫ) ∩ S) is contained
in a possibly larger Stolz angle at φ1(p), and a similar statement holds for g−1. This
completes the proof. �

Henceforth, we will say that H has a CNT limit with respect to Σ.

Remark 3.10. (Conformal invariance of CNT limit) It follows immediately from
conformal invariance of Green’s function, that existence of CNT limits is conformally
invariant in the following sense. If Σ′ ⊂ R′ and Σ ⊂ R are bounded by strip-cutting
Jordan curves, for any conformal map f : Σ′ → Σ we have that H : Σ → C has CNT
boundary values at p with respect to (Σ, q) if and only if H ◦ f has CNT boundary
values at f−1(p) with respect to (Σ′, f−1(q)). By Theorem 3.9, we therefore have
that H has a CNT limit with respect to Σ at p if and only if H ◦ f has a CNT limit
at f−1(p) with respect to Σ′.

Finally, we observe that the proof of Theorem 3.9 does not depend on the fact
that the collar charts are canonical. Thus, we have the following.

Theorem 3.11. Let Γ be a strip-cutting Jordan curve in a compact surface

R which separates R into two components, one of which is denoted by Σ. Let

H : Σ → C.

(1) H has a CNT limit at p if and only if there is a collar chart φ in a collar

neighbourhood of Γ such that H ◦ φ−1 has a non-tangential limit at φ(p).
(2) H has CNT boundary values quasieverywhere on Γ if and only if there is

a collar chart φ in a collar neighbourhood of Γ such that H ◦ φ−1 has non-

tangential limits quasieverywhere on S1.

We see that this definition is independent of the regularity of the boundary by
design. In contrast, the main results, which involve limiting values from both sides
of the curve, cannot be obtained from conformal invariance, and depend crucially on
the regularity of the curve Γ. The reader should keep this in mind through the rest
of the paper.
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3.4. Boundary values of harmonic functions of bounded Dirichlet en-

ergy on doubly-connected domains. In this section, we show that the existence
of CNT boundary values of Dirichlet-bounded harmonic functions quasieverywhere
only requires the harmonic function to exist on a collar neighbourhood.

Theorem 3.12. Let Γ be a Jordan curve in C, and let A be a collar neighbour-

hood of Γ. Let Σ be the component of the complement of Γ in C̄ which contains

A. If H ∈ Dharm(A), then H has CNT boundary values quasieverywhere on Γ with

respect to Σ.

Proof. Set Γ1 = Γ and let Γ2 be the other Jordan curve bounding A. Set B1 = Σ
and let B2 be the component of the complement of Γ2 containing A. Let q′ ∈ B1\clA.
Given any H ∈ Dharm(A), by Corollary 2.14 we can write H = h1 + h2 + cgq′ where
hi ∈ Dharm(Bi), gq′ is Green’s function on Σ = B1 and c ∈ C. Now gq′ and h2 are
continuous on Γ1, so in particular they have CNT boundary values quasieverywhere
with respect to Σ. Since h1 ∈ D(B1), by Theorem 3.5 it has CNT boundary values
quasieverywhere in H(Γ,Σ). Thus H has CNT boundary values quasieverywhere on
Γ with respect to Σ. �

Let Γ be a Jordan curve in C and let Σ be one of the connected components of
the complement. By Theorem 3.5 every element of D(Σ) has CNT boundary values
quasieverywhere on Γ with respect to Σ. Define H(Γ,Σ) to be the set of functions
in B(Γ,Σ) obtained in this way.

Theorem 3.13. Let Γ be a Jordan curve in C. Let A be a collar neighbourhood

of Γ and Σ be the connected component of the complement of Γ containing A. Then

given any H ∈ D(A), its boundary values h ∈ B(Γ,Σ) are in H(Γ,Σ).

Proof. Let B1, B2, and the decomposition H = h1 + h2 + cgq′ be as in the proof
of Theorem 3.12 above. Since h2 is harmonic on an open neighbourhood of Bc

1, it
has bounded Dirichlet energy on the interior of the complement of B1. Thus it has
boundary values in H(Γ1) by Theorem 3.6. Since h1 ∈ Dharm(B1) and gq′ is zero on
Γ, this shows that the boundary values of H are in H(Γ) = H(Γ, B).

If Γ is not a quasicircle, let f : Ω → Σ be a conformal map where ∂Ω is a
quasicircle and Ω ⊂ C is simply connected. The claim now follows from conformal
invariance (Remark 3.10). �

We then immediately have that

Corollary 3.14. Let Γ be a Jordan curve in C̄. Let Σ be one of the components

of the complement of Γ in C̄. The following are equivalent.

(1) h ∈ H(Γ,Σ);
(2) There is a Dirichlet-bounded harmonic extension of h to a collar nbhd A in

Σ;

(3) There is a Dirichlet-bounded harmonic extension of h to every collar nbhd A
in Σ;

where by extension we mean that the boundary values equal h CNT quasieverywhere.

For quasicircles, Theorem 3.6 allows us to remove the condition that A is in a
fixed component.

Corollary 3.15. Let Γ be a quasicircle in C̄. The following are equivalent.

(1) h ∈ H(Γ);
(2) There is a Dirichlet-bounded harmonic extension of h to a collar nbhd A;
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(3) There is a Dirichlet-bounded harmonic extension of h to every collar nbhd A;

where by extension we mean that the boundary values equal h CNT quasieverywhere.

3.5. Boundary values of Dharm(Σ) for general Σ.

Theorem 3.16. Let R be a compact Riemann surface and Γ be an analytic

Jordan curve in R which separates R into two components, one of which is Σ. Let A
be a collar neighbourhood of Γ in Σ. For any h ∈ Dharm(A), h has CNT boundary

values quasieverywhere with respect to Σ. Furthermore there is an H ∈ Dharm(Σ)
whose CNT boundary values agree with those of h quasi-everywhere. This H is

unique and given by the harmonic Sobolev extension of the Sobolev trace of h in

H1/2(Γ).

Proof. We can shrink A so that the inner boundary is also analytic. Since h ∈
Dharm(A), it has a Sobolev trace h̃ ∈ H1/2(Γ). Thus there is a unique H ∈ Dharm(Σ)

whose Sobolev trace equals h̃.
Let B1 be the connected component of the complement of Γ containing A, and

let B2 = A ∪ clΣc. Fix q ∈ Σ\A and let h = h1 + h2 + cgq be the decomposition
guaranteed by Corollary 2.14. The restriction of h2 to Γ is a C∞ function on a
compact set, so it is in H1/2(Γ). Therefore there is an h3 ∈ Dharm(Σ) whose Sobolev
trace equals h2 almost everywhere on Γ. But since h2 is continuous on Γ, by the
solution to the classical Dirichlet problem [1] there is a harmonic function which is
continuous on the closure of Σ which agrees with h2 on Γ. This function obviously
equals h3, so we see that h3 extends continuously to Γ. In particular, h3 has CNT
boundary values with respect to Σ everywhere.

Since h2 and gq are also continuous on Γ, they have CNT values everywhere on
Γ with respect to Σ. Also, h1 has CNT boundary values quasieverywhere on Γ by
Corollary 3.14 since it lies in Dharm(Σ) (and similarly for H). We conclude that h,
h1 + h2, h1 + h3 all have CNT boundary values which agree quasieverywhere on Γ.

Thus the proof will be complete if we can show that H = h1 + h3. But this
follows immediately from the fact that the Sobolev trace of h3 equals the Sobolev
trace of h2 almost everywhere, so the Sobolev trace of H equals the Sobolev trace of
h1 + h2 = h almost everywhere. �

Actually, a version of this theorem holds for strip-cutting Jordan curves, though
we cannot identify H with a Sobolev extension.

Theorem 3.17. Let R be a compact Riemann surface and Γ be a strip-cutting

Jordan curve in R which separates R into two components, one of which is Σ. Let A
be a collar neighbourhood of Γ in Σ. For any h ∈ Dharm(A), h has CNT boundary

values quasieverywhere on Γ with respect to Σ. Furthermore, there is a unique

H ∈ Dharm(Σ) whose CNT boundary values agree with those of h quasi-everywhere.

Proof. There is a compact surface R′ and a Σ′ bounded by an analytic strip-
cutting Jordan curve Γ′ in R′, and a conformal map f : Σ′ → Σ. This can be
obtained for example by completing Σ to the double R′. Let Σ′ be the subset of
the double corresponding to Σ. The inclusion map is conformal from Σ to Σ′ and
identifies ∂Σ with an analytic curve Γ′.

We now apply Theorem 3.16 to Σ′, A′ = f−1(A), and h′ = h ◦ f , resulting in an
H ′ ∈ Dharm(Σ

′) whose CNT limits agree with those of h′ quasi-everywhere. Applying
the conformal invariance of CNT limits (Remark 3.10) completes the proof. �
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Remark 3.18. The reader should observe that there is no Sobolev space H1/2(Γ)
for general quasicircles Γ, and therefore there is no meaningful identification of CNT
limits with Sobolev traces in this generality. However, if the quasicircle is sufficiently
regular, e.g. Ahlfors regular, then H1/2(Γ) can be replaced by an appropriate Besov
space, see [10] and [11].

We now make the following definition.

Definition 3.19. Let Γ be a strip-cutting Jordan curve in a compact Riemann
surface R, which separates R into two components, one of which is Σ. Let H(Γ,Σ)
be the set of functions in B(Γ,Σ) which are the boundary values quasi-everywhere
of an element of D(Σ)harm.

By Theorems 3.11 and 3.17, we immediately have the following characterization
of H(Γ,Σ).

Corollary 3.20. Let R be a compact Riemann surface and Γ be a strip-cutting

Jordan curve which separates R into two components, one of which is Σ. Then

u ∈ H(Γ,Σ) if and only if there is a collar neighbourhood A and an h ∈ Dharm(A)
whose CNT boundary values equal u quasi-everywhere.

Later, we will see that for quasicircles, H(Γ,Σ) is independent of the choice of
component of the complement of Γ. By definition, CNT limits in a collar neighbour-
hood of S1 are non-tangential limits. Thus by Theorem 3.17 we immediately have
the following.

Corollary 3.21. Let A = {z : r < |z| < 1}. If h ∈ Dharm(A) then h has

non-tangential limits except possibly on a Borel set of capacity zero in S1.

The map from Dharm(A) to Dharm(Σ) obtained by taking boundary values and
then extending to Σ is bounded. This fact will be useful in future applications so we
record it here. Let Γ be a strip-cutting Jordan curve in R which separates R. Let
A be a collar neighbourhood of Γ contained in one of the connected components Σ1.
By Theorem 3.17 the CNT boundary values of D(A) exist. We then define

G : Dharm(A) → Dharm(Σ1), h 7→ h̃,

where h̃ is the unique element of Dharm(Σ1) with boundary values equal to h.

Theorem 3.22. Let Γ be a strip-cutting Jordan curve which separates R, and

let Σ be one of the components of the complement. Let A be a collar neighbourhood

of Γ in Σ. Then the associated map G : Dharm(A) → Dharm(Σ) is bounded.

Proof. The boundedness estimate that we are aiming to prove is

‖G(A,Ω)h‖Dharm(Σ) ≤ C‖h‖Dharm(A),

which is valid for h ∈ Dharm(A). First, observe that we can assume that the inner
boundary of A is analytic. To see this, let A′ ⊆ A be collar neighbourhood whose
inner boundary is analytic. Since ‖ h|A′ ‖Dharm(A′) ≤ ‖h‖Dharm(A), it is enough to show
that G is bounded with respect to the Dharm(A

′) norm.
Next, observe that because CNT boundary values and the Dirichlet norms are

conformally invariant, it is enough to prove this for an analytic strip-cutting curve
Γ, and this can be arranged for example by embedding Σ in its double. Thus, we
can assume that ∂A′ is analytic. Furthermore, the existence of the solution to the
Dirichlet problem with boundary data in Sobolev spaces (see e.g. [32, Proposition 4.5,
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p. 334]) and the fact that Γ ( ∂A, yields that

‖ h|Γ ‖H1/2(Γ) ≤ ‖ h|∂Ω ‖H1/2(∂A) ≤ C1‖h‖H1(A).

Also, the harmonic Sobolev extension H of h|Γ satisfies

‖H‖H1(Σ) ≤ C2‖ h|Γ ‖H1/2(Γ)

(see e.g. [32, Proposition 1.7, p. 360]). This together with the estimate for ‖h|Γ‖H1/2(Γ)

above yields that

(3.2) ‖G(A,Σ)h‖H1(Σ) ≤ ‖h‖H1(A).

Now if one applies (3.2) to the harmonic function h− hA where hA is the average of
h given by 1

|A|

´

A
h, then one has that

‖G(A,Ω)h−G(A,Ω)hA‖H1(Σ) ≤ C‖h− hA‖H1(A).

Moreover, we know that

‖G(A,Ω)h‖Dharm(Σ) = ‖G(A,Ω)h−G(A,Ω)hA‖Dharm(Σ)

≤ ‖G(A,Ω)h−G(A,Ω)hA‖H1(Σ)

and that

‖h− hA‖H1(A) = ‖h− hA‖Dharm(A) + ‖h− hA‖L2(A)

≤ ‖h‖Dharm(A) + ‖h‖Dharm(A) = 2‖h‖Dharm(A),

where the inequality ‖h − hA‖L2(A) ≤ C‖h‖Dharm(A) is nothing but the Poincaré–
Wirtinger inequality. This yields the estimate ‖G(A,Ω)h‖Dharm(Σ) ≤ 2C‖h‖Dharm(A)),
and completes the proof. �

3.6. Transmission in quasicircles. In this section we show that if Γ is a sep-
arating quasicircle in a compact surface R, and Σ1 and Σ2 are the connected compo-
nents of R\Γ, then the CNT boundary values quasieverywhere of any h1 ∈ Dharm(Σ1)
are also CNT boundary values of a unique h2 ∈ Dharm(Σ2) quasieverywhere. This
“transmission” of h2 is bounded with respect to the Dirichlet semi-norm.

We first show the result for analytic Jordan curves Γ.

Theorem 3.23. Let R be a compact Riemann surface and Γ be an analytic

Jordan curve separating R into components Σ1 and Σ2. Then H(Γ,Σ1) = H(Γ,Σ2).
That is, for every h1 ∈ Dharm(Σ1), there is an h2 ∈ Dharm(Σ2) so that the CNT
boundary values of h1 and h2 agree quasieverywhere on Γ. Furthermore, h2 is unique

and given by the harmonic Sobolev extension of the trace of h1 in H1/2(Γ).

Proof. First observe that Γ is in particular a quasicircle, so a set is null with
respect to Σ1 if and only if it is null with respect to Σ2 by Theorem 3.2. Since Γ is an
analytic curve, by definition there is a doubly connected neighbourhood U of Γ and
a chart φ : U → A such that φ(Γ) = S1. We may choose A so that it is an annulus
A = {z : r < |z| < 1/r} for some r < 1, and let A1 = U ∩ Σ1 and A2 = U ∩ Σ2.

Let h1 ∈ Dharm(Σ1). Now h1 has CNT boundary values quasieverywhere, and
therefore h1 ◦ φ|A1

has non-tangential boundary values on S1 by definition, and also
h1 is in Dharm(r < |z| < 1). Hence u(z) = h1 ◦ φ(1/z̄) is a harmonic function on
Dharm(1 < |z| < 1/r). Now since z 7→ 1/z̄ takes wedges inside D to wedges inside
cl(Dc), one readily sees that u has non-tangential boundary values agreeing with those
of h1 ◦φ, everywhere the latter boundary values exist. Thus u◦φ−1 ∈ Dharm(A2) and
u ◦ φ−1 has CNT boundary values agreeing with those of h1.
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The claim now follows by applying Theorem 3.16 to u ◦ φ−1. �

For quasicircles, Theorem 3.23 motivates the following definition for analytic
Jordan curves separating R into Σ1 and Σ2.

Definition 3.24. We define the transmission operator

O(Σ1,Σ2) : Dharm(Σ1) → Dharm(Σ2)

through an analytic Jordan curve Γ, to be the function which takes h ∈ Dharm(Σ1)
to the harmonic function on Dharm(Σ2) with the same conformally radial boundary
values. Define

O(Σ2,Σ1) : Dharm(Σ2) → Dharm(Σ1)

similarly.

Below, we show that this is well-defined for quasicircles.
Next we investigate the boundedness of the transmission operator in various

settings (related to the regularity of Γ).

Theorem 3.25. Let Γ be an analytic strip-cutting Jordan curve in a compact

Riemann surface R. Assume that Γ separates R into connected components Σ1 and

Σ2. Then O(Σ1,Σ2) : Dharm(Σ1) → Dharm(Σ2) is bounded.

Proof. Note that in contrast to the proof of Theorem 3.29, here the assumption
that the curve is analytic cannot be removed by conformal invariance, since a con-
formal map of one side of Γ does not preserve CNT boundary values taken from the
other.

The transmission procedure is as follows. Start with h1 ∈ Dharm(Σ1) which by
Theorem 2.10 is also in H1(Σ1), so we can restrict it to the boundary to obtain a
trace which is in H1/2(Γ). Furthermore

(3.3) ‖h1|Γ‖H1/2(Γ) ≤ C‖h1‖H1(Σ1).

Now solve the Dirichlet problem with h1|Γ as Dirichlet data to obtain a unique
harmonic function h2 := O(Σ1,Σ2)h1 in H1(Σ2) that verifies

(3.4) ‖h2‖H1(Σ2) ≤ C‖h1|Γ‖H1/2(Γ),

see e.g. [32, Proposition 1.7, p. 360].
Finally combining the estimates (3.3) and (3.4) yields that

(3.5) ‖O(Σ1,Σ2)h1‖H1(Σ2) ≤ C‖h1‖H1(Σ1).

Now for a compact Riemannian manifold M , with or without boundary, one
has for functions f ∈ H1(M) with

´

M
f = 0 the Poincaré inequality

´

M
|f |2 ≤

C
´

M
|∇f |2, see e.g. [15] page 75 estimates (1.6) and (1.7). Therefore if

´

M
f 6= 0

then one can apply the aforementioned Poincaré inequality to g := f − fM with
fM = 1

|M |

´

M
f for which one has

´

M
g = 0. This yields that

´

M
|f−fM |2 ≤ C

´

M
|∇f |2

for f ∈ H1(M). Now applying estimate (3.5) to the harmonic function h1 − h1Σ1

and follow the same reasoning as in the proof of Theorem 3.22, one readily sees that
‖O(Σ1,Σ2)h1‖Dharm(Σ2) ≤ C‖h1‖Dharm(Σ1). �

To extend this result to quasicircles, we require the following Lemma.

Lemma 3.26. Let R be a compact surface and Γ be a quasicircle, separating R
into components Σ1 and Σ2. Let Ω be a collar neighbourhood of Γ in Σ2. There is

a Riemann surface S and a quasiconformal map f : R → S such that f is conformal

on the complement of the closure of Ω and f(Γ) is an analytic Jordan curve.
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Proof. Let A be a doubly-connected neighbourhood of Γ such that the closure of
A is contained in Ω. Let Γ1 and Γ2 be the boundaries of A in Σ1 and Σ2 respectively;
these can be taken as regular as desired (say, analytic Jordan curves). Denote Ar,s =
{z : r < |z| < s}. Let ψ : A → Ar,1/r be a biholomorphism (which exists for some
value of r ∈ (0, 1) by a classical canonical mapping theorem [18]). If Γ1 and Γ2 are
analytic, then there is a biholomorphic extension of ψ to an open neighbourhood of
the closure of A taking Γi to the boundary curves; for definiteness, we assume that
Γ1 maps to |z| = r and Γ2 maps to |z| = 1/r (which can of course be arranged by
composing ψ by z 7→ 1/z). Let E1 denote the region bounded by ψ(Γ1) and ψ(Γ),
and E2 denote the region bounded by ψ(Γ2) and ψ(Γ).

We claim that there is a map φ : Ar,1/r to an annulus As,1/r for some 0 < s <
1 < 1/r with the following properties:

(1) φ is quasiconformal;
(2) φ takes ψ(Γ) onto S1;
(3) φ is a biholomorphism from E1 onto As,1;
(4) φ has an analytic extension to an open neighbourhood of |z| = r;
(5) φ is the identity on |z| = 1/r.

To see this, again applying the classical canonical mapping theorem, there is a biholo-
morphic map G1 : E1 → As,1 for some s ∈ (0, 1). This has a homeomorphic extension
from Γ to S1 by Lemma 2.5. By [20, Corollary 4.1], there is a quasiconformal map
G2 : E2 → A1,1/r which equals G1 on ψ(Γ) and the identity on |z| = 1/r. Set

φ(z) =

{
G1(z), z ∈ E1 ∪ Γ,

G2(z), z ∈ E2.

Since φ is a homeomorphism and Γ has measure zero, φ is quasiconformal. All the
properties then follow immediately, except (4), which is a consequence of the Schwarz
reflection principle.

We now construct the surface S by sewing as follows. Remove the closure of A
from R to obtain two disjoint Riemann surfaces R1 and R2. Join As,1/r to R1 and
R2, using ψ ◦ φ|Γ1

to identify points on Γ1 with their image on |z| = s, and ψ ◦ φ|Γ2

to identify points on Γ2 with their image on |z| = 1/r. The resulting S is a Riemann
surface with a unique complex structure compatible with that on R1, As,1/r, and R2

by [20, Theorem 3.3]. (For analytic curves and parametrizations this is standard, see
e.g. [1]; however to sew Γ2 one needs the stronger result). Observe that ψ ◦ φ(Γ) is
an analytic curve in S, which can be seen by using the identity map as a chart.

The map from R to S given by

f(z) =





z, z ∈ R1 ∪ Γ1,

ψ ◦ φ(z), z ∈ A,

z, z ∈ R2 ∪ Γ2.

is easily checked to be well-defined by applying the equivalence relation on the seams.
It is quasiconformal on each patch, with homeomorphic extensions to Γ1 and Γ2 and
since the seams and their images are quasicircles and thus have measure zero, f is
quasiconformal on R. The map f is clearly conformal on R2, which includes Σ2 minus
the closure of Ω. Since the identification at Γ1 is analytic, and ψ ◦ φ is conformal on
E1, f is conformal on Σ1 [1]. This proves the claim. �
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Theorem 3.27. Let R be a compact Riemann surface, and Γ be a quasicircle in

R. Assume that Γ separates R into two components Σ1 and Σ2. The following are

equivalent:

(1) h ∈ H(Γ,Σ1);
(2) h ∈ H(Γ,Σ2);
(3) h is the CNT boundary values quasieverywhere of an element of D(A) for

some collar neighbourhood A of Γ in Σ1;

(4) h is the CNT boundary values quasieverywhere of an element of D(A) for

some collar neighbourhood A of Γ in Σ2.

Proof. By Theorem 3.20 (1) is equivalent to (3) and (2) is equivalent to (4).
Assume that (1) holds. Let ψ : A → A be a doubly-connected chart in a neigh-

bourhood A of Γ. Let h ∈ H(Γ,Σ1), so that it has an extension H ∈ Dharm(Σ1).
Then H ◦ ψ−1 is in D(ψ(A∩Σ1)). Thus its boundary values h ◦ ψ−1 are in H(ψ(Γ))
by Corollary 3.14. Let Ω1 and Ω2 be the components of the complement of ψ(Γ) in
C̄, where Ω1 contains ψ(A ∩ Σ1). Since ψ(Γ) is a quasicircle, the CNT boundary
values of h ◦ψ−1 are in both H(Γ,Ω1) and H(Γ,Ω2) by Theorem 3.15. Thus there is
a G ∈ Dharm(Ω2) with CNT boundary values equal to h ◦ψ−1 quasieverywhere. Now
G◦ψ ∈ D(A∩Σ2), so by Theorem 3.17 it has CNT boundary values quasieverywhere
in H(Γ,Σ2); by conformal invariance of CNT boundary values (Remark 3.10) these
equal h quasieverywhere. Similarly (2) implies (1). �

So for quasicircles, we can now define

H(Γ) = H(Γ,Σ1) = H(Γ,Σ2).

Furthermore, this shows that the transmission operator O(Σ1,Σ2) is defined for
general quasicircles. In order to prove the boundedness of the transmission operator
when the boundary curve is a quasicircle, we will need the following lemma:

Lemma 3.28. Let A = {z : r < |z| < 1}. If h ∈ H1(A) then the non-tangential

limits agree almost everywhere with the boundary trace taken in the sense of Sobolev

spaces.

Proof. Since the annulus is an example of an (ε, δ) domain in the sense of Defini-
tion 1.1 of [4] (the boundaries are two smooth bounded curves), using Theorem 8.7
(iii) in [4] withD = ∂A = {|z| = r}∪{|z| = 1}, which is 1-Ahlfors regular, and taking
s = 1, p = 2 and n = 2, we have that their condition s− n−d

p
= 1− 2−1

2
= 1

2
∈ (0,∞)

is satisfied. Thus, Theorem 8.7 (iii) in [4] yields that the Sobolev trace belonging to
H1/2(D) agrees almost everywhere (since the 1-dimensional Hausdorff measure on D
is the 1-dimensional Lebesgue measure) with the non-tangential limit of the function
h ∈ H1(A). �

Now we are ready to state and prove the main result concerning the Dirichlet
space boundedness of the transmission operator.

Theorem 3.29. Let R be a compact Riemann surface, and let Γ be a quasicircle

which separates R into two connected components Σ1 and Σ2. Then O(Σ1,Σ2) and

O(Σ2,Σ1) are bounded with respect to the Dirichlet semi-norm.

Proof. The proof proceeds as follows. We need only show that O(Σ1,Σ2) is
bounded, since we can simply switch the roles of Σ1 and Σ2. By Theorem 3.25 the
theorem holds when Γ is an analytic curve. We apply Lemma 3.26 to map a general
quasicircle to an analytic one. By using the Dirichlet principle, we can show that
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the original transmission is bounded. Throughout the proof, all of the transmissions
take place through quasicircles (at worst), so the transmissions exist by Theorem 3.27
and the boundary values of the transmitted function exist CNT quasieverywhere and
agree with the original function CNT quasieverywhere.

Now assume that Γ is a quasicircle, and not necessarily an analytic curve. Let
f : R → R′ be the quasiconformal map obtained from Lemma 3.26. Denote f(Σi) =
Σ′

i for i = 1, 2 and f(Γ) by Γ′.
Fix h ∈ Dharm(Σ1). Now h ◦ f−1 ∈ Dharm(Σ

′
1) and thus it has a transmission

O(Σ′
1,Σ

′
2)(h ◦ f−1), and furthermore

(3.6) ‖O(Σ′
1,Σ

′
2)(h ◦ f

−1)‖D(Σ′

2
) ≤ C‖h ◦ f−1‖D(Σ′

1
) = C‖h‖D(Σ1)

by Theorem 3.25. Since f is a conformal map from Σ1 to Σ′
1, Remark 3.10 applies.

Now let g : Σ′′
2 → Σ2 be a conformal map where Σ′′

2 is an analytically bounded
Riemann surface. Observe that g is independent of f ; we will need this ahead. Such
a map exists by Lemma 3.26 (or more directly by embedding Σ2 in its double). The
function [O(Σ′

1,Σ
′
2)(h ◦ f−1)] ◦ f ◦ g is in Ḣ1(Σ′′

2) by change of variables and the

fact that [O(Σ′
1,Σ

′
2)(h ◦ f−1)] ◦ f is in Ḣ1(Σ2) by quasi-invariance of the Dirichlet

semi-norm. By Theorem 2.10, [O(Σ′
1,Σ

′
2)(h ◦ f

−1)] ◦ f ◦ g is in H1(Σ′′
2).

Now let ũ be the Sobolev trace of [O(Σ′
1,Σ

′
2)(h ◦ f

−1)] ◦ f ◦ g in H1/2(Γ′′), which
exists because Σ′′

2 is analytically bounded. We claim that

(3.7) ũ = h ◦ g a.e.

Roughly, this can be seen by cancelling f−1◦f in the expression [O(Σ′
1,Σ

′
2)(h◦f

−1)]◦
f ◦g, but the proof requires careful comparison of Sobolev and CNT boundary values
of the transmission.

Let φ be a collar chart on a doubly connected neighbourhood V of Γ′′ in the
double of Σ′′

2. Choose the domain of definition V of φ to be such that it contains an
analytic curve γ in Σ2 which is such that f is conformal on an open neighbourhood of
g(γ). This can be accomplished by adjusting f if necessary, which is possible because
g was independent of f .

Now let ψ be a collar chart on a collar neighbourhood U of Γ′ in Σ2 which contains
f ◦ g(V ∩ Σ′′

2). In particular, ψ ◦ f ◦ g(γ) is an analytic curve. It can be arranged
that ψ takes Γ′ to S1 by composing with a conformal map. We need to show that
the map ψ ◦ f ◦ g ◦ φ−1 extends to a quasisymmetry of S1. To see this, restrict this
map to the region W bounded by S1 and φ(γ). Since φ(γ) and its image α is an
analytic curve (and in particular a quasicircle), and ψ ◦ f ◦ g ◦ φ−1 is a real analytic
diffeomorphism from φ(γ) to its image, there is a quasiconformal map Φ taking the
region D bounded by φ(γ) to the region D′ bounded by α, with boundary values

ψ ◦ f ◦ g ◦ φ−1. The map Φ̃ : D → D given by sewing these two functions together
along φ(γ), that is

Φ̃(z) =

{
ψ ◦ f ◦ g ◦ φ−1(z), z ∈ W ∪ φ(γ),

Φ(z), z ∈ W,

is a homeomorphism on D. Since it is quasiconformal except on the measure zero
set φ(γ), it is quasiconformal. Thus by the Ahlfors–Beurling extension theorem,
ψ ◦ f ◦ g ◦ φ−1 extends to a quasisymmetry of S1 as claimed.

Now O(Σ′
1,Σ

′
2)[h ◦ f−1] ◦ f ◦ g ◦ φ−1 is in the Dirichlet space of an annulus A.

Thus by Corollary 3.21 it has non-tangential boundary values except possibly on a
null set in S1. Since ψ ◦ f ◦ g ◦ φ−1 (and its inverse) is a quasiconformal map of D+,
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it and its inverse take Stolz angles inside larger Stolz angles by a result of Jones and
Ward [12] (see section 3 proof of Theorem 1.1 in that paper). Therefore since the
harmonic function

(3.8) [O(Σ′
1,Σ

′
2)[h◦f

−1]◦f ◦ g ◦φ−1]◦ (ψ ◦f ◦ g ◦φ−1)−1 = [O(Σ′
1,Σ

′
2)[h◦f

−1]◦ψ−1

has non-tangential limits quasi-everywhere by Lemma 3.21, so does [O(Σ′
1,Σ

′
2)(h ◦

f−1)] ◦ f ◦ g ◦φ−1. Furthermore, the non-tangential limits of O(Σ′
1,Σ

′
2)[h ◦ f

−1] ◦ψ−1

equal h◦f−1 ◦ψ−1, so since ψ ◦f ◦g ◦φ−1 has a homeomorphic extension to S1 which
is a quasisymmetry, the non-tangential limits of [O(Σ′

1,Σ
′
2)(h ◦ f−1)] ◦ f ◦ g ◦ φ−1

equal h ◦ g ◦ φ−1.
Now Lemma 3.28 shows that the non-tangential limits of [O(Σ′

1,Σ
′
2)(h◦f

−1)]◦f ◦
g ◦φ−1 equal the Sobolev trace. Thus the Sobolev trace in H1/2(S1) of [O(Σ′

1,Σ
′
2)(h◦

f−1)] ◦ f ◦ g ◦ φ−1is h ◦ g ◦ φ−1. Thus, since φ is an analytic map from an open
neighbourhood of the analytic curve Γ′′ to an open neighbourhood of S1, the Sobolev
trace ũ of [O(Σ′

1,Σ
′
2)(h ◦ f−1)] ◦ f ◦ g is h ◦ g. This proves (3.7).

Let u be the harmonic Sobolev extension of ũ. We claim that

(3.9) u = [O(Σ1,Σ2)h] ◦ g.

To see this, observe that [O(Σ1,Σ2)h] ◦ g ◦ φ−1 has non-tangential limits on S1,
except possibly on a null set, by Corollary 3.21, and these are h ◦ g ◦ φ−1. Again by
Lemma 3.28, the Sobolev trace of [O(Σ1,Σ2)h] ◦ g ◦ φ

−1 thus equals ũ ◦ φ−1. Since
φ is analytic on an open neighbourhood of Γ′′, the Sobolev trace of [O(Σ1,Σ2)h] ◦ g
equals ũ. By uniqueness of the harmonic Sobolev extension on analytically bounded
surfaces, u = [O(Σ1,Σ2)h] ◦ g as claimed.

Recalling that ũ is the Sobolev trace of [O(Σ′
1,Σ

′
2)(h ◦ f

−1)] ◦ f ◦ g, by (3.9) and
Dirichlet’s principle as formulated in Lemma 2.12 we obtain

(3.10) ‖u‖Ḣ1(Σ′′

2
) ≤ ‖[O(Σ′

1,Σ
′
2)(h ◦ f

−1)] ◦ f ◦ g‖Ḣ1(Σ′′

2
).

Now Theorem 2.10, and conformal invariance of Dirichlet energy yield that

‖[O(Σ1,Σ2)h]‖Dharm(Σ2) = ‖u‖Dharm(Σ′′

2
) = ‖u‖Ḣ1(Σ′′

2
)

(3.10) ≤ ‖[O(Σ′
1,Σ

′
2)(h ◦ f

−1)] ◦ f ◦ g‖Ḣ1(Σ′′

2
)

= ‖[O(Σ′
1,Σ

′
2)(h ◦ f

−1)] ◦ f‖Ḣ1(Σ2)
.

Finally using quasi-invariance of Dirichlet energy and the estimate (3.6), there is a
K such that

‖[O(Σ′
1,Σ

′
2)(h ◦ f

−1)] ◦ f‖Ḣ1(Σ2)
≤ K‖[O(Σ′

1,Σ
′
2)(h ◦ f−1)]‖Dharm(Σ′

2
)

≤ KC‖h‖Dharm(Σ1).

Combining the two previous estimates completes the proof. �
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