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Introduction

An abstract logic, in the sense we use the term here, is a formal language which
describes mathematical structures. Its syntax is formulated by defining which objects are

sentences; a semantics for the sentences is introduced by defining when a sentence is true
in a structure. Often the semantics overrides the syntax: one is more concerned about the

expressive power of a logic than about what objects the sentences really are. However,
when necessary, a metatheory is introduced to make things clear in this respect, too. The
mostly used metatheory is set theory: sentences and structures are sets, and abstract logics
are defined by set-theoretical predicates.

In the seventies mathematicians realized that, if set theory is used as a metatheory,

set-theoretical methods can be used for deriving model-theoretical results. This approach,

initiated by Barwise in [B2], was an object of lively research for several years. However,

the research done in this area is far from exhaustive, although practically nothing has been

published recently.
The main tools of a set theorist are internal models: various sets or classes which

themselves are models of a set theory. Usually it is necessary that certain set theoretical
predicates are absolute relative to the constructed models, i.e. have the same meaning in
them. To relieve the burden, we have classified predicates by their degree of absoluteness.

The basic idea is to restrict the number of internal models taken in account when inspecting

whether a predicate is absolute relative to them. Thus you can say, broadly, that a predicate

is absolute relative to a theory if it has the same meaning in all models of the theory. Now, if
one keeps to standard set theories (i.e. to first-order set theories in a vocabulary containing
a single predicate symbol € only), there are predicates which are not absolute relative to a

theory, however strong the theory is. For example, the predicate "z is countable" is such

a predicate. The way around this is either to apply other principles to restrict the number
of internal models, such as absoluteness relative to o1-closed forcing, or to strengthen the

language of set theory with new predicates.

A logic is said to be absolute if its syntax is persistent (every object which is a
sentence in a set-theoretical universe is a sentence in extensions of the universe), and

if its semantics is absolute (the truth of a sentence in a structure is independent of the

set-theoretical universe). Absoluteness certainly restricts the expressive power of a logic:
one cannot express anything that is not absolute. For example, no logic absolute relative to
the set theory of Kripke and Platek can express well-foundedness. In a sense, absoluteness

is an abstract notion of "first-order". The semantics of a sentence in a first-order logic
depends on the elements a structure has, but the semantics of a sentence of higher order
logics depends on the subsets of a structure, as well. Moreover, the borderline between
absolute and non-absolute predicates is largely based on the fact that the elements of a set
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are independent on the set-theoretical universe, but new subsets may be introduced when
the universe is extended.

A key fact behind this approach is that the classical way of constructing formal
languages tends to produce absolute ones. One starts with atomic sentences and produces

new sentences recursively by means oflogical operations (conjunction, negation, quantifi-
cation etc.) Now it happens that the constructed logic is absolute as soon as each logical
operation is absolute. This principle will be given an exact formulation in the second part

of this work.
The set-theoretical methods are most useful when applied to absolute logics, espe-

cially to those absolute relative to a standard set theory. Among the first results is a
downwards Löwenheim-Skolem theorem (see [B2]): if a sentence / has a model, it has a

model of cardinality at most ITC(@)1. This is expectable, since cardinality is not absolute

relative to any standard set theory. Moreover, it turned out that,L-. has a special position
among absolute logics. Absolute logics have the Karp-property: if two structures satisfy
the same sentences of L*., they satisfy the same sentences of every absolute logic. Addi-
tionally, Barwise showed in [B2] that any logic, absolute relative to KP+Inf, is a sublogic

of L *. . Of course there are strict extensions of -Loo. , such as the game quantifier logics,

which are absolute for instance relative to ZFC. Through the work of Moschovakis it
became known that these logics can be approximated with L*.: each sentence of a game

quantifier logic is equivalent to a disjunction of a strict class of -Loo.-sentences. Burgess

in [Bu] further expanded this result to concern every logic, absolute relative to ZFC.

Apart from pure academic interest in the expressive power of absolute logics, the

set-theoretical methods are used to show that certain strengthenings of logics are not
absolute - and thus, in a sense, hard to define set-theoretically. A general tendency is that

absolute logics have weak interpolation properties: they have a strong implicit expressive

power but their explicit power is weak. For example, L*, is absolute relative to KP,

but not even L.r. has Delta-interpolation in a logic absolute relative to a standard set

theory (see [B2]). Moreover, no logic, absolute relative to ZFC and strong enough to
express well-foundedness, has the weak Beth interpolation property (see [Bu]). By and

large, these results reflect the general difficulty in constructing logics with interpolation
properties, for example A-closures.

There are also many other aspects of abstract model theory in which the set-theoretical

methods have proved fruitful. For a survey of them, see [V2]. In this work we restrict

ourselves to the basic problem of finding bounds for the expressive power of logics
absolute relative to certain set theories. The main contribution of this work is a new proof
method: the applications represent mainly results which have - in one form or another -
already been proved by other methods; in some cases we achieve minor strengthenings.

The first part of the work, Sections 1 - 5, is introductory: we present certain concepts,

either rarely used or otherwise non-stabilized ones, in order to fix our, terminology and to
lay a firm foundation for our work. In the second part, in Sections 6 - 8, we discuss and

prove the absoluteness of several logics. Its contents fall withing the large category of
results which everyone knows but the proofs of which are hard to find or never published.
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The third part, Sections 9 - l2,presents the new construction method which is applied

in the final part. The construction can be used for translating sentences of an absolute

logic into sentences of L*., a game quantifler logic, or into sentences of the infinitely

deep languaga M**. The main principle of the construction is as follows. Consider

a sentence $ of an absolute logic. It is true in a structure IJI, whenever a certain set-

theoretical internal model exists. We deflne a game - during which a player, l, tries to

build up a certain kind of set-theoretical structure - in such a manner that the following

statements hold:

- If I wins the game, i.e. if she has a canonical way of building the set-theoretical

structure, the internal model exists which is needed to show that / is true in 9Jt.

- If @ is true in !Jt, then I wins the game.

Then we show that this game can be coded as a game Sentence, a Sentence of -Loor, or as

a sentence of Moo-.
Applications are introduced in the final part of this work in Sections 13 - 17. We

start with some classical results by showing that finite logics, such that both their syntax

and semantics are absolute relative to KPU (the set theory of Kripke and Platek with

urelements), are sublogics of the first-order logic L.. (see [V2]), and reprove Barwise's

result: every logic, absolute relative to KP+Inf, is a sublogic of L*.. In Section 15 we

give a new proof for the Burgess's approximation theorem. Meanwhile we sidestep and

ur" ou, method to show the Craig-interpolation theorem for the countable fragments of
L*.'

Since tr-, has a special position among logics, absolute relative to a standard set

theory, and recent works on inflnitely deep languages have revealed an analogy between

both.L-, and M*n, a11d L.r. and M*+n for regular cardinals rc, we apply the new

method in order to see whether M*^ has a similar special position. Now we see that

logics, absolute relative to such models of set theory which preserve countability, are

sutlogics of M§tr,, a subclass of M*.,. As a sidestep we give an alternative proof for

the selaration thåäiem of Tuuri in [T]: ,L1+, has Craig-interpolation in M1+ 1 if .\ : rc<"

and rc-is a regular cardinal. In the final section we show that the analogy between troo.

and M*, fails, if we try to construct an approximation mapping analogous to Burgess's.

I Preliminaries

Our set-theoretical notations are standard, following U, Kn]. The words "function" and

"relation" refer to sets; the words "mapping" and "predicate" are the corresponding terms

for classes. Mappings are total, unless otherwise indicated.

If / is a function, dom(/) and ran(/) are the domain and range of f , f fr is the

function / restricted to domain dom(/) O r, and f 't r is the range of / fr. The notations

( /("), r € a) and (/(r)),6, stand for a function tr å /(r) the domain of which is 9.

If o is an ordinal, we denote by (r;,At)«o a function / the domain of which is 2a and
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for which f (Zl) : ra and f (2i + l) : U for each i. The notation { *r, yn : i e I } is to
belikewiseunderstood: itistheunionof sets {16 : i e .I}and {U : l, € I}.

If rc is a cardinal, P"(r) is the set of those subsets of r which are of cardinality less
than rc. If ) is another cardinal, rc<) stands for both the set of functions with domain in
,\ and range a subset of rc, and for the cardinality of this set. For an ordinal a, a* is the
least infinite cardinal strictly above a. For the discussion of forcing we use the notation
and terminology of [Kn]. we denote by rank(r) the set-theoretical rank of a set r.

1. Primitive recursive mappings

Though the primitive recursive mappings are a generalization of primitive recursive
functions on natural numbers, their principal relevance is not on effectiveness, but they
serye as a notion of "easily constructible". This constructibility approach has been present
ever since they were introduced. The canonical source on them is [JK], although some
details can be found in [D].

1.1. Definition. A mapping is primitive recursive (p.r.) if it can be obtained from
the initial mappings

(1) (ro, ...,rn) F-+ ri, where 0 <. i I n,
(2) (r,a) - {r,a},
(3) (r, y) - r \ s, and

(4) reu
by substitution, union, and primitive recursion as follows:

(5) if / md9o, ...,9n arep.r., then d * f (So(i),...,9*(i)), is alsop.r.,
(6) if / is p.r., then (d, a) å U"es f @, r) is also p.r., and

(7) if f is p.r., then the mapping g for which

s@,y) : f(i,a,(s(fr,2) : z e y))

is also p.r.

A predicate is primitive recursive if its characteristic mapping is primitive recursive. A
set a is primitive recursive if the constant mapping tr å a is primitive recursive.

1.2. Definition. Let f be a mapping. A mapping is primitive recursive in f if it
can be obtained from the initial mappings above and from / by substitution, union, and
primitive recursion. A mapping is primitive recursive in a predicate if it is primitive
recursive in the characteristic mapping of the predicate. It is similarly deflned when a
mapping/predicate/set is primitive recursive in a mapping/predicate/set.

Jensen and Karp in UKI do not consider the initial mapping n å u to be primitive
recursive. However, the primitive recursive mappings in our sense are exactly the Prim(a;)
functions in their sense. Instead of the recursion schema 1.1(7) Devlin uses a stronger
recursion schema in his work [D]. We present it in the form of the following lemma,
which implies that Devlin's definition equals ours.
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1.3. Lemma. If g and h are p.r, andrank(g) < rank(r) for every g e h(r), there
exists a p.r. mapping f such that

f (r) : g(r, ( f (y) : y e h(r))).

Proof. Let g and h be primitive recursive and assume that rank(g) < rank(r)
whenever g e h(r). Define a transitive closure along ä by induction: let

t(r,,O): {r} and t(r,n -t l) : t(r,,n) u U n(U)
u€t(r,n)

for each r and n € o and let TC6(r) : LJ,€. t(r,n). Now TC;, is primitive recursive,
x e TC6(r), and TC7,(r) is h+ransitive: h(y) e TC6(r) whenever y e TC6(r).

If X is a set, denote by Xo the set of the elements of X having rank less than
a. We define a mapping F by induction on ordinals in such a way that whenever X is
ä-transitive, F(a, X) will be the mapping / restricted to Xo: let

F'(0, x) : 0,
F(a+ L,X): F(a,X)u(g(r,F(a,X)lt(")) : r e X,rank(r) : a), and

F(1, X): 
.!, 

F(a, X), if 7 is a limit.

Since rank is primitive recursive, the mapping .F, is primitive recursive. An easy induction
shows that F(a, X) is a function the domain of which is Xo, and, moreovel F(a, X) e
F(a,Y) whenever X e Y and the set X is h-transitive. Let f (n) : F(rank(r) *
1, TC;,(e))(r) for every n. Clearly

f (*) : s(r, F(rank(r), TC7,(r))lh(r)),

and if 9 e h(r), then rank(g) < rank(r) and TC,,(g) e TC7,(r), so thus

r'(rank(r), rC,,(r))(s) : r'(rank(y) + 1, tC7,(r))(s) : /(s).

This implies that / is the required mapping. tr

In the literature there exist very detailed descriptions and proofs of the kinds of
mappings and predicates that are primitive recursive. The proofs of the following facts
can be found in [D, JK].

- The p.r. mappings are closed under definition by cases; e.g. if ,R is a p.r. predicate

and /, g are p.r. mappings, the mapping

is p.r.

.. ,_\ [ X") if B (*), and
at/l r 

lg@) otherwise
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- The p.r. predicates are closed under negation, conjunction, disjunction, and bounded
quantification.

- Set-theoretical separation and collection are p.r. operations. In other words, if ,R is
a p.r. predicate and if / is a p.r. mapping, the mapping

r * {f(*,y) : y e n n R(r,y)}

is p.r.

- Thepredicates"r ey","tr istransitive","u isordinal","u isanorderedpaif',"tr
is a relation", "xD is a function", and "r is finite" are p.r.

- The mappings r *+ l)fi, (r,y) ,-. r l) A, (*,y) ,-- , I y, (r,A) - (r,9) (ordered
pair), r r* dom(r), r v* ran(r), (*,A) å tr x y, (f ,r) ,- f (r), (f ,r) ++ f'tr,
(f , r) - f fr, r r-* TC(r), and r r-+ rank(r) are p.r.

- Ordinal arithmetics (sum, product, etc.) is p.r.

The following two properties will become important later.

1.4.Lemma. (i) If f is p.r, so is the mapping r ;. C1@), where Cy@) is the

smallest superset of r closed under f .

(ii) If f is a p.r mapping, there exists a p.n mapping bS, increasing on ordinals, such

thatfor all sets frt,.. .,zn

rank(/(r1, .. ., r.)) < by(rank(rl), . . ., rank(r,)).

Proof. For the claim (i) define g(0, r) : r and

S(m + l,r) : g(m,r)U { f(yr,...,Un) i Ur,...,An € S(m,r)).

NowCy(r) : LJ,€, g(n,r). Theclaim(ii)isshownbyinductiononthedefinitionof the

primitive recursive mappings: it is trivial to find the mappings b7 for the initial mappings

and the substitution rule. The union rule is set by equation

rank({J f @,r)): {J rank(/(d,r)).

Finally,therankof(9(i,z)),eaisthemaximumofrank(g)-l2andsup{rank(g(d, z))+3:
z e a\;thus, if g is defined from / by the primitive recursion scheme 1.1(7), it is enough

thatbn satisfies

bn(d, 0) : br(d, §, @ + 2) u Up(bs(d, z) + 3)).

n
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2. Definability in set theory

In this work we make use of various set theories, both conventional theories with only
a single predicate e in their vocabulary and expanded theories with auxiliary predicates

and constants. The Å,0-, Ir-, and ll1-formulas are defined as usual, even in expanded

vocabularies.

2.1. Definition. Let T be a set theory. A predicate A is Ln-definable in 
" 

(Af,) if
there is a fu-formula B such that T I A ** B. The >f *d fIfl predicates are deflned

likewise. A predicate A is A1-definable in f (LTif it is both >fl and IIf.
A (partial) mapping F is h-definable in 7 if there is a As-formula B such that

T I B(i,A) * A : F(i) and r tVdlStA B(i,v)'

If, moreover, T I Villy B(i,a), we say that the mapping F is totally Ln-definable in
7. The definition of a mapping being (totally) »T ,fiT , or Afl is achieved similarly. Note

that a mapping is totally Efl exactly when it is totally Afl.

The weakest conventional set theory we are using is the set theory of Kripke and

Platek; it is denoted by KP and has the axioms of extensionality, foundation, pair, union,

fu -separation, and fu -collection.
It has a frequently used expanded variant: KPU, the set theory of Kripke and Platek

with urelements. In addition to the relation symbol €, its vocabulary has an auxiliary

unary predicate symbol U to distinguish urelements from sets. The axioms of KP must

be slightly modified to cover the urelements, for instance the axiom of extensionality is

VrYy((-tJ(r) t' -U(y) AYz(z e r <-+ z e a)) '-+ r : U),

and the axioms of separation and collection must indicate that the new set is not an

urelement. (This implies that an empty set is not an urelement.) Apart from the axioms

of KP, KPU contains a new axiom which states "no urelement contains elements".

The theories KPU and KP are nicely treated in [B4]. They are nearly the same theory:

KP is equivalent to the theory KPU U {U : A}. To give reader an idea of the strength of
KPU we list some of its elementary properties. The same properties hold for KP, too.

- KPU implies Er-collection and A1-separation.

- The predicates "tr C A", 
*r : {y,z}", "tr - (y,r)", "n is an ordered pair",

"tr : '!J x z" , "tr is a relation", "r is a function", and"tr is one-to-one function" are
r KPUa0

- The predicates "r, is transitive" , "tr is an ordinal", "r is a limit ordinal", "tr e u)",

and "r - t ,," are ÅfPU,

- Themappingsdom,ran,(/, r) - f fr,and (f ,r) * f"rarctotallylfu.
- Let R be a predicate which is A1-deflnable in KPU through a formula 4i6. If

a predicate ,9 is Ar-definable in KPU u {R * /p}, where -R is a new relation

symbol, then ,S is Ar-definable in KPU.

11
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Let a mapping r. be totally 11 -definable in KPU through a formula $ p. If a predicate
(or a mapping) is 11 -definable in KPU U {F (i) - y e ö r (i,y) }, it is E1 -definable
in KPU.

KPU allows definition by recursion: if G is a Xflu mapping, there is u >f'u mapping
.F' such that

KPU F F(d,A) : G(i,a, (F(i, z) : z e fC(Y))).

If 2l : (A, E,. . .) *d 2f : (A' ,8', . . .) are structures of a vocabulary of an
(expanded) set theory such that 21 is a substructure of2lt and for every a e A

{be A: E(b,a)}: {be A': E'(b,a)},

we denote il Cerd 2l:t and say that the structure 2ll is an end extension of 2L (or that the
structure 2[ is an initial substucture of %').

If 2l: (A,8,...) is a structure in a vocabulary of an (expanded) set theory, its
well-founded partWf(»J) is the largest well-founded initial substructure.

2.2. Proposition (Truncation lemma [B4]). If % is a model of l(PU, thenWf(%) is
amodel o/KPU. The same holdsforl{P. !

From this the reader should not hasten to conclude that KPU and KP are "equal"
theories in sense that wherever KP occurs it can be replaced with KPU by only remarking
that urelements exist. Therp are some pitfalls, one of them being the notion of infinity:
the predicate "u is flnite" is Å1-definable in KP but only E1-definable in KPU. As to the
first claim, finiteness is Ar-definable in KP * Inf (KP with the axiom of infinity), since the
mapping r,-- P.(r) is totally l1-definable in KP * Inf. (The same argument shows that
flniteness is A1-definable in KPU * Inf, too.) Since KP * -Inf implies that all sets are

finite, we can conclude that "r is finite" is Åfl. On the other hand, finiteness is trivially
I1-definable in KPU. In order to see that it is not fl1-definable, note that by first-order
compactness the theory containing KPU and the axioms

- a is a set of urelements,

- a;Qaforie.u,
- c is a finite ordinal (i,e. a successor ordinal having no limit ordinals below itselfl,

and

- / is a one-to-one function from a onto c

has a model 2[ in which the set a has a nonstandard finite cardinality c. By the truncation
lemma Wf(21) is a model of KPU, obviously containing o, but naturally o cannot be finite
in it.

Among stronger conventional set theories we mention ZFC. Although the theory
becomes much stronger, the number of Å1 - and E1-definable predicates does not increase
dramatically. Some examples of ÅfFC predicates which are not Afl will be presented
when discussing logics.
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To close this section, we present a proposition binding together the notion of primitive
recursiveness and definability. We say that a set Ais admissible if itistansitive and (A, e)
is a model of KP. Thus an admissible set containing r,., is a model of KP + Inf.

2.3. Proposition (UKl). (i) Primitive recursive mappings are totally Z1-definable
in KP * Inf.

(ii) A transitive set A is admissible and u e A if and only if A is closed under primitive
recursive mappings and (A, e) satisfiesZl-collection scheme. tr

3. Expanded set theories

The E1- and Å1-deflnable predicates are our main interest: we want to strengthen

the set theory sufficiently to obtain as many Ar-definable predicates as possible. As it is
known, beyond ZFC there is a multitude of flrst-order extensions by strong axioms, e.g.

the existence of diamonds, boxes, and measurable cardinals. Certain axioms, such as "all
sets are constructible", produce new E1-deflnable predicates (e.g. the well-ordering of the

universe). However, certain predicates, such as "r is countable", will never become Å1-

definable in this way. The way to proceed beyond these limits is to expand the vocabulary

of the set theory with new predicates.

To have an example, we add a new constant symbol n and a binary predicate P.
Consider the theory

ZFC(P") : ZFCU {rc is a cardinal } u {P(r, a) * u : P"(r)}.

Now "lr| ( K" and "l*l I K" areeven fu-definable in ZFC(P"). Wg say that a predicate

.R is E1(P")-definable if it is I1-definable in ZFC(P*). We similarly define h(P")-
deflnability. Note that the Ir (2")- and År(2")-definable predicates are closed under the

restricted quantifications "Vn e P"(y) . . ." and ")tr e P"(A) . . i'.
The problem with this approach is that very little is known about these kinds of

expansions. Fortunately something can be achieved using the same means as in conven-

tional set theory. To illustrate this, we next show a reflection property for E1 (2" )-formulas
analogous to the known Levy reflection property: if .\ is an uncountable regular cardinal,

@(r) is a E1-formula, and a € /{r is such that /(a) holds, then /(a) holds in }1o. See for
example Ul for the proof.

Let P be a predicate, A an extensional set, and let c be the Mostowski collapsing

function of A. If for eYery a e A

P(a) <==+ P(o)o,

we say that the set A reflects the predicate P. Moreover, if for every a e A

P(o) <=+ P(ca),

we say that the reflection is strong. A set A reflects a mapping F it A is closed under F
and A reflects the graph of F. One of the basic results in set theory is that every flrst-order
definable predicate is reflected by a countable set, although not necessarily strongly.
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3.1. Lemma. Let ö0, . . . , ön be formulas of an expanded vocabulary {e , n}, let n
be a regular infinite cardinal, and let A be a set. There exists B ) A such that n e B, B
strongly reflects P *, B reflects each formula $i, and. lB | < max{ K<" , lAl<"}.

Proof. We may assume that the sequence ö0,. . ., @, contains the axiom of exten-
sionality, and formulas "a C y" and

"r : P*(y) *-Vz (z € r <-+ z e g A1f 1a < n(l:r ---+ aone-to-one))".

Moreover, we may assume that the universal quantifier does not occur in the formulas

ö0, . . . , ön, and that all the subformulas of each formula occur in the sequence. If C is a

class, denote
Ö : { r e C : Yy eC (rank(r) < rank(y)) }.

For every formula /; of form )rr!6(ry. . .,n*,r) deflne mapping

Ht("r,...,r*): Ö, where C : { r : $(rv "',fr^,t)}'
If d; is not of the above form,let H6(r1,...,r*): 0. If lrl < o,letF(r) be the set of
one-to-one mappings from r to lrl; otherwise let F(r) : fi.

Given a set X, let L(X) be the union of X, Hi(t1,...,r*) for i ( n and

ntt...,r* € X, F(r) for r e X, {P"(r) : r e X}, and P"(X). l-nt C be the

least set containing A and {0, 1,..., rc} such that L(C) : C. ltcould be shown that

the set C strongly reflects the formula "P*(*) - y" and that it reflects the formulas

ö0, . . . , ön,bltit is too large for our purposes. We use the axiom of choice to pick a small

subset of it. Let < be a well-orderingof C. Define foli ( n functions

hn(*r,...,r*): 1 {-ino Ht(ru "''r,,)} rf H;(r1' "''rn) * A'and
'- \O otherwise,

and let /(r) similarly pick a finite subset of .F,(r). These functions are clearly defined for
arguments in C, and their values are subsets of C. For a subset X of C,let K(X) be the

unionof setsX, h6(i)tori /-nandd e X, /(r) for r e X,{P"(r) : r e X },and
P"(X). Let

Bs:Au{O, 1)...,K}t Ba*r-K(B*), and Bt: U Bo,,
a<'Y

whereTdenotesalimitordinal. Clearly AU{0, 1,.. .,K} - Bs

and, since rc is regular, K (B ") - B *. Let B - B o.

Claim A: B reflects the formulas do, . . . ,, Ön.

Suppose Öt, is of form )rrh(*r,. . ..)rrn,r), and letr 1, . . .

Since K(B) : B, ht(*r,. . . , rrn) g B, and thus

Ö;(*1 r...,fr*) <a )r € HÅrl,...,fr*){(*r,
<+ 1r € ht(r 1, . . . , fr*) ,h(*r, .

<+ )r € Blb(*r,...,rrn,fr).

g 81 q 82 g C,g

,, fr* be elements of B.

" rfr*rr)
..,rfr*rf)
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Since the sequence ö0, . . . , ön is closed under subformulas, an easy induction shows that
all formulas in the sequence are reflected in B.

Especially the above claim implies that B is extensional. Denote the Mostowski
collapsing function of (.B, €) by c. Now cK : rc,

r : P^(y) *Yz(z € r <-+ z e y A1f )a < o(l: tr'--+ aone-to-one))

is true in B for all elements r,U e B, andwhenever a,b e B,

agb <+ [og b]' <+ ca q cb,

i.e. the relation e is strongly reflected in B.

Claim B.' B strongly reflects the relations "lrl < K"afld"y e P*(t)".

Thereflectionof "y e Po(r)" followsimmediatelyfromthereflectionof "lrl < rc",

soitisenoughtoshowthelatter. Suppose ae B.If lcol < rc,then anB isasubsetof
B having cardinality less than rc. since K(B) : B, a o B is in B' By extensionality

a f\ B : a, andthus lal ( rc. If lol < o, then /(a) is nonempty, which makes lal < rc in
B. Finally, if lal < n \n B, then lcal ( rc, since the truth of X1-sentences is preserved in
extensions.

Claim C: B reflects "y : Po(*)" strongly.

Suppose aandb are elements of B. If b: P*@), then [b : P*(o))B follows
immediately from the claim B. Suppose lb = P"(a)lB. Clearly the claim B implies

cbe P*(ca). Ontheotherhand,if risinP^(ca),thenrgivesrisetoasubsetyof Bf,a
suchthat cA: nandlyl ( rc. SinceP"(B) g K(B): B,y isanelementof B. Thusthe

claim B implies ly e P"(a) - bl',and so r : cU € cb. Finally, suppose cb : P*(ca).
Now d : P*(a) e K(B) : B, and we have already seen that cd : P^(ca). Thus

cb : cd,, and by extensionality of B we must have b : d.

Claim D: lBl ( max{rc<^, lAl<"}.

If X is an infinite set, obviously

Denote ).6 : lBl. Clearly ,\o : max{rc, lAl}. By induction one can see that }o ( Åo<"

for each a I n: the limit step is trivial, and for the successor step note that if .\ ) rc,

().^)., : )(,. Thus lBl : ), ( lo(". !

3.2. Theorem. If n is a regular cardinal, Q is a21(P*)-formula, and p, ) n is a

cardinal such thatY), < p(^<" < p), then H, reflects $.

15
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Proof. It is not hard to see that 11, reflects P* for eyery p ) rc. Thus for every
aeH*

[Ö(")]('.'''P*'")'- Ö(a).

On the other hand, suppose a e H, is such that $(a) is true. Assume ö(o) :3rtlt(a,r),
where 1b is Ls(P"). Choose b such that tlt(a,b) is true. Let rlt* be the formula ty'

where each occurrence of the symbol P is replaced with a formula defining P*, andlet
A: TC({a, o}) u {b}. gv Lemma 3.1 there exists B I A such that B strongly reflects
Po,lrb*(a,ä)]8, and lBl S lAl<" < p. Thus cB,theMostowski collapse of B, is in H,",
reflects Po, andlrrlt* (a, r) holds in cB I This implies that $(a) holds in (cB, e ,Pn, n),
andsince/isaX1-formula,$(a) holdsin (Hp,e,Pn,K). tr

One could not have a better result, since any H, reflecting all E1(P")-formulas must
satisfy Yrly(y : P "(r)). If Ä < p,, thenÅ is an element of H *;thus ?"()) is in ä, and

ITC(P"()))| : lP"())l * ) : Å<' + Å < pt,.

4. Tbees and games

If ,S is a partial ordering and z € ,5, denote the set of predecessors of u by preds(u)
(or pred(u) if ^9 is clear from the context). The notation succs(u) stands for the set of
immediate successors of z. A chain of apartial ordering is a linearly ordered subset. Each
subset X of a partial ordering ,9 spans an initial segment inits(X) and an end segment

ends(X)

init5(X) :{ue S :)u € X(u<

A tree is a partial ordering where sets of predecessors are well-ordered. A minimal
elementinatreeisaroot,amaximalelementisaleaf.Atreehasuniquelimitsifu:u
whenever pred(z) : pred(o) and the order type of pred(u) is a limit ordinal. Unless

otherwise indicated, trees have a single root. A maximal chain is called a branch. A tree

is a leaftree if each branch has a leaf (or, equivalently, if each chain has an upper bound).
A tree is a rc, )-tree if it has a single root, unique limits, each element has less than rc

immediate successors, and each branch is of length less than ). When the number of
successors is inessential, we speak about Å-trees. A path in a tree is a strictly increasing

sequence (r)<e of elementssuchthatpred(u;) : {ui : i <i}foreachi. If Tisa
tree, [7] is the set of its branches. If u is an element of 7, then T, : endz({a}) is the

subtree consisting of the element z and its successors. If X is a subset of 7, denote

TIX): initT(X) u endT(X).

The partial ordering 
"[X] 

is a tree, which contains the elements in X, their predecessors,

and all their successors. The ordinal type of pred, (t) for an element f, denoted by ht" (l),

,) ),
u) ).
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is called the height of t in T. The height of a tree T ,ht(T) is the supremum of the ordinal
types of its branches.

Trees are usually compared using embeddings: we write ^9 < T if there exists a
function f : S -- T which preserves the tree order (/ need not be one-to-one).

If 7 is a tree, o? is the tree of paths in ?, ordered by end extension. An infimum
S I7 of two trees ,S and 7 is the tree of pairs (s, t), where the elements s e ,9 and t e ?
have the same height. The tree ,5 I 7 is ordered by

t7

(r,f) S (t',t')

A supremum,S O T of single-rooted trees

of ,S and T, L.e.

S @T: (^9 x {o})u (T x {t})l -,,
where (s,i) -, (t,j) itand only if either (s,i) : (t,j) or i I j andboth s and f are
roots. For every tree S and T, it can be shown that T I oT, oT I T, and ^9 I T and
,S O 7 are the infimum and supremum of trees ,S and 7 relative to (.

The sum S + T of trees S andT is obtained by placing a copy of 7 on top of each
branch of ^9. In other words,

.s + T - .s x {0} u ([s] x T) x {1}

so ordered that

(r,0)<(t,O) <+ t1s,
(r,0) < ((b,t),l) <+ s e b, and

((r, r), 1) < ((b, t), 1) <==+ a: b and s I t.

The product ,S ' 7 of trees ,5 and T is constructed by replacing each element of 7 with
a copy of ,9 and by replicating the subtrees when necessary. To be exact, the tree ,S . 7
consistsof tuples (g,t,t),wheres €,S, t e T, andg:predr(t) -- [S]. Itisorderedby
setting (g,t,t) I (g',s',t')tf andonlyifeither g: gt,t:t', ands ( sort <tt,
g - g'lpredr(t), and s e g' (t).

A tree is well-founded if its every
leaftree. Let T be a well-founded tree.

and
r(r) - sup{ r(a) + 1 :

is called the rankfunction of T . The supremum of its range is called the ordinal of the tree
7. For each ordinal a the tree Bo of strictly decreasing sequences of ordinals less than o
is a well-founded tree having ordinal a. Moreover lBo | : lol if a is infinite. In the next
two lemmas we show that the mapping which maps a well-founded tree to its ordinal is
not primitive recursive but, however, effective enough so that admissible sets are closed
under it.

,S and 7 is constructed by identifying the roots

branch is flnite. Thus a well-founded tree is a
The (unique) function r for which dom(r) - T

Aesucc(") )foreveryr€T

2 20753
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4.1. Lemma. Let f be a mapping such that f (T) is the ordinal of T whenever T is
a well-founded tree. Then f is not p.r

Proof. Assume for the purpose of contradiction that there is a p.r. mapping / which
maps every well-founded tree to its ordinal. Let gbe an increasing p.r. mapping such that

for every set r
rank(/(r)) < e(rank(r)).

Let,y: g(u+u)+l. Sincegislr-definable,Tmustbecountable. Chooseawell-founded
ffee T : (w,/-7) such that its ordinal is 7. Now rank(T) < u * q.r, but rank(/(?)) : 7,
which is a contradiction. D

4.2.Lemma. Let A be an admissible set. If T e A is a well-founded tree (in the

true universe), the rankfunction of T and the ordinal of T are elements of A.

Proof. We show by induction on 7 that for every r e T there is r* e A which is a

rank functionof T*. Note that "r is a rank function of T*" is a Åfl-formula (free variables

r, r,T). Let pbe the rank function of 7.
It p(r):0,thenclearly r*: {(r,0)} e A. Suppose p(r): aandro e M for

every a for which p(y) < a. Thus

Vg € succ(r) 3r € A (r is a rank function of To).

Since l1-collection and A1-separation schemes hold in an admissible set, the set R* :
{ro, y e succ(z) } is in A. Since p(y) : ro(y) for each y,this implies that o and

r* : U R* U {(r,a)} are elements of A. The rank function of ? is r,, where z is the

root of T, and the ordinal of 7 is ! ran(r,). tr

Intuitively, a game for two persons is based on rules which determine the acceptable

moves and the winner. Here we name the players V and l, and follow the convention

that V is male and I female. In the following formal definition the rules determining the

acceptable moves are presented as a tree of acceptable game positions. The root of the tree

is the initial position, and the successors of each position are those positions into which

one comes with an acceptable move. A play terminates when a flnal position, a leaf of the

position tree, is reached. The opponent of the mover in the final position wins the play

(i.e. the first player unable to move loses).

4.3. Definition. (1) A game is a pair (R,m), where R is a leaftree having a single

root and unique limits and m: R -* {V, l} maps positionsto movers. The branches

of the position tree are called plays. A player wins a play if hisiher opponent is the

mover in the final position of the play.

(ii) An initial segment T e ,R is a V-strategy (1-stategy) if it is a leaftree and

succp(u) : succr(u) for every u e T such that m(u) : 1(m(u) : V). De-

note by straty(G) (strat3(G)) the set of V-strategies (3-strategies) of the game G.
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(iii) A V-strategy (3-strategy) T is complete if its every leaf is a leaf of -R.

(iv) A complete V-strategy (3-strategy) 7 is a winning strategy of V (l) if V (3) wins
every play in [7]. We say that V (l) wins the game G if V (l) has a winning strategy.

This deflnition, though rigorous, is technical, so in practice one usually deflnes games

by means of verbal description. To have an example, consider a so-called Ehrenfeucht-

Frarss6 game. Let % and E be structures having the same vocabulary, and let 7 be a tree.

The game E,F7(21,!8) is played as follows: for as many ordinals i as possible

- V chooses an element t,i e T such that the sequence (ti) i<u is strictly increasing.

- V chooses a model (% or E)and an element q fromthe model.

- f chooses an element o6 from the other model. If za was chosen in 2l and ui in98,
denote ai : 'tti, and bi : ui; otherwise denote bt : u,i, and a6 : a,;. Player f must

choose u,; such that the function {(oi,bi) i i < i } is a partial isomorphism from
ilto 8.

This continues as long as either player is unable to move: the player who is flnally unable

to move, is the loser.

This description can be tumed into a rigorous deflnition of a game for example in the

following way: the position tree of the game EG7(%, E) consists of sequences (r;);<€,

where

- r31 is an element of the tree ? such that the sequence (rz;)u<e is strictly increasing.

- r3i+r is a pair (rt, u) where ra is either il or E and ui is an element of the model

T,i,

- r3i+z is a pair (yo,u) where gi is the model other than r; aurrd ua is an element of
the model gti. Moreover, the partial isomorphism condition must be satisfied.

The mover in position (rn)n<e is 3 if ( : 3( * 2 for some (, and V otherwise.

A dual of a game G is the garr€ -G, where the roles of the players are switched. In

otherwords,if G: (R,m),then-G: (ft,m/),where m'(u) - I <+ m(u): y16.

every position u. Clearly 3 wins G if and only if V wins -G. A game is determined if
either player has a winning strategy.

A strategy is described as a tree rather than as a function, as what is sometimes called

a quasi-strategy. A usual way to present a winning strategy for a player, say J, is to
describe how I must make her choices in order to win a play. Consider for example the

Ehrenfeucht-Frarssd game presented above. We assume that a certain number, say (, of
moves have already been made, i.e. elements ti, a;, zrrd b; for i ( ( have been picked

from 7, 21, and !8, respectively. We suppose that V picks t6 and, sit1l, 06 in 2I. Then we

describe which kind of element I must pick in !8. This results in a strategy: the strategy

consists of those positions (ri n<e where the elements r3.;..,u2 satisfy the requirements laid

down for the elements picked bY 3.

However, this simple construction is not always enough: in some cases I needs to

maintain an auxiliary construction during the play. The next lemma flrmly states that

certain auxiliary constructions can be used when describing a strategy.
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4.4.Lemma. Let G : (R, m) be a game. Suppose there is a set A and a tree S of
sequences (ut, at)<g where ui e R and a; e A such that the following hold.

(i) If (ui,a;)<e is in S, then \u);a1 is a path in R.

(ii) If (u6,o);SeisinS andm(uq) :Y (m(u):l),thenforeveryu€+t € succ.(?r€)
there is 061r € Asuchthat (ui,a6)6<611 € ,9.

(iii) If (u;,ot)«e is in S, m(u) :1(m(ui : V), and succ*(?r€) f 0, there is
u1ar e succn(u€) and a41r e A such that (u;, ai);<6-,.1 € ,S.

(iv) If t is limit, \rt,o);<€ is in S, anduq : sup{ u; : i < (}, thereis o1 € A such

that (u0,, a;);<e € S.

(v) If (ut, a) i<€ is maximal in

Then 1(V) wins G.

S, then m(ue) - Y (*(re) - l).

Proof. Let < be a well-ordering of A. Let ,9* be the set of those \q, o) <e e ,5 for
which

ai : rlin{ a'; e A : (u1,ai)13t e S} forevery i < €'

Now,if (u;)<eisapathinR,thereisatmostonesequence (o)<esuchthat (ua,aalaaq e

^9*. Moreover, (i)-(v) hold for ^9*, and thus

f : {uq e R : l(ual;aq1(a);<e (q, o)x€ €,S. }

is a winning strategy of I (V) in G. tr

To illustrate this, let us briefly discuss a case in which forcing has no effect on a
game. Let Ä be an ordinal. A game G : (R, m) is Ä-open ().-closed) if there exists a set

A e R of positions such that the height of each position in A is less than ,\ and f (V) wins
a play p e lBlexactly when p a A + 0. Note that once this kind of set A exists, there is
a canonical way of picking one: the set of such minimal positions u e R that I (V) wins
each play containing the position u. Moreover, note that if the position tree is a )-tree,
the game is both .\-open and )-closed.

Let IF be a notion of forcing and let G : (R,rn) be a game. The first problem we
encounter is that G might not be a game in the extended universe: the position tree may
have new branches with no flnal positions. We solve the problem by adding the missing
positions. If the game is open or closed and all the new positions are high enough, there is
a natural way of attaching a mover to these new positions. Define first a canonical lP-name

for the extended position tree: let .ä contain the pairs (o, p) where either p : 1p and u is
a canonical name for an element of -R, or p forces u to be a branch of .ä having no upper
limit. Note that ,R is a set, since we may assume that the lP-names for the branches of rR

are subsets of F x .å.

Suppose then that G is open: let A e .R be the canonical set witnessing it. Define
frto tobe a canonical lP-name for a function from E to players, which maps each position
in .R in the same way as m and each new position to either V or 3 depending on whether
the new position is above a position in A or not. To be exact, let ftto be such that
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le ll tu"(il) - fn(ä) if u is in B,
p ll- fir"(b) - V if p forces b to be a branch
bnÄ*A,and,
p ll- fir"(b) - I if p forces b to be a branch
b n Ä:0.

2T

of å without an upper limit and

of A without an upper limit and

Let Go be a lP-name for the pair (8, r7r,). Define lP-name G. for a closed game G in a
similar way.

4.5. Lemma. Let G: (4, m) be a game andletP be a )-closedforcing.

(i) If G is )-open, P forces Go to be a Å-open game. Moreover Y wins G if and only if
P forces Y to win G o.

(ii) If G is Å-closed, P forces G. to be a )-closed game. Moreovet l wins G if and
only ifP forces 1 to win G..

Proof. It is enough to show (ii), since (i) is similar. Let A e .B be the canonical
set witnessing a game G : (R,rn) closed._Clearly IP forces_E to be a leaftree, and it is
not hard to see that lP forces dom(nfu") : ,?; thus IP forces G. to be a game. Since lP is
)-closed, the height of every new position in 6" is at least ,\. Thus a condition p forces V

to win aplay bin G. if and only if the set of those conditions q ( p which force bn Ä + A

is dense.

Suppose that IP forces I to win G.. Informally, 3 wins G as follows. First choose
po € IP and a lP-name S such that p6 forces ^9 to be a winning strategy of 3 in Ö".
One immediately sees, that ps forces S n ,{ : A. Let us e R be the root of E: now
ps ll il,s e ^9. Then suppose p6 ll il,i e ,S and m(u;) : V. If ui is a leaf, I has won,
otherwise suppose that V moves into position u;..,u1 € succ(u;). Since p6 forces ,S to be

a winning strategy and ft,.(il,;) : V, pi ll il.i,r1 e ,S. Choose P;+t - h. On the other
hand, if pa ll il,; e ,S and m(ut) : 1, LLi cannot be a leaf, since pa forces ^S to be a
winning strategy and h"(il;) : l. Thus there exists P+t I pi and u+r ) ui such that
p+t ll il+r e ^9. At limit k let un be the limit position of z6 (i < k) and, if k < ), let
ppbe a lower bound for pi (i < k). In this way we can play up to height ) in the position
tree, thus reaching a position u1. But row u6 ( A for each i < .\, which implies that !
must finally win the play, independently of how she continues above height ).

Using Lemma 4.4 this strategy is formally described as follows. Choose po € F and

,9 as above. Let 7 be the tree of sequences (ur,p);<n such that (ul-)n.n is a path in .8,

(pr);<-in{*,.rl isanincreasingsequenceinlP, andp6 forces (tt e S foreachi < min{k, Å}.
Then 7 satisfies the conditions of Lemma 4.4, which was shown by the informal proof.

To see the converse, suppose that S is a winning strategy of f in G. Define a lP-name

§ for a strategy of I in d.: let § contain pairs (ä, le) for u e S and pairs (b, p) whenever
p forces å to be a branch of § without a maximal element. It is not hard to see that IP

forces ,§ to be a complete !-strategyin G". Moreover, since G. contains no new positions

of height less than ), IP forces S n Ä: § n Ä : A,which immediately implies that § is
a winning strategy of I in G 

".
u
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A frequently occurring auxiliary construction is a phantom game. In a phantom game

construction I wins a game G by playing another game G/ in the background: whenever
player V makes a move in G, she maps this move to certain move or moves of V in the

garte G' , uses the winning strategy of I there, and again maps moves in the game G' to
her moves in G. This will be carefully formulated below.

4.6. Definition. Let G : (R,m) andG' : (R',m')be games. The game Gt is an

1-phantom of G (or G is aY-phantom of G/) if there exist functions

fv: R + stratr(G' ) and f=: R' + strat=(G)

such that the following conditions hold:

(i) u < u + fy(u) e /v('u) for every u,u e R, and similarly for /3.
(ii) If o is maximal in /y(z) and z is maximal in /3(a), both u and u are flnal positions.

(iii) If uisafinalpositionof Rand u e Rt issuchthat?, € /v(z)nz e /3(u),then
/y(u) is a complete V-strategy in the game G/ restricted to n'[{t,}] (i.e. in the game

G/ restricted to positions compatible with o); and similarly for /3.
(iv) If u e Rando € R'are finalpositionssuchthatu e "f=(u),u € /y(z), and

*'(r): V, then m(u) :Y'
The functions /y and f= are called reductionfunctions.

The moves are mapped between the games G and G' with the functions /v and /3.
For example, the function /v maps a position u in the game G to a V-strategy in G': the

strategy tells us which moves of V in G' correspond to the moves in u. The condition (ii)
prohibits a deadlock: a situation where neither /3(T.,) tells I how to continue in position

u in the game G nor /y(u) tells V how to continue in G'. The condition (iii) ensures that

a phantom game provides one with enough information for playing the game through.

Finally, the condition (iv) states that if a play in G and a play in G/ are coupled by the

reduction functions, the winners are related.

4.l.Lemma. Let G and Gt be games. If G' is an1-phantom of G, then

lwinsQt I SwinsG and V winsG + Y winsGt.

Proof. We use Lemma 4.4.ltis enough to show the first implication, since the other

case is similar. Suppose ? is a winning strategy of I in Gt . Let,9 be the tree of sequences

\w,r;);<e,where \r)<eisapathof -rR, (z;);qq isanincreasingsequenceof positionsin
?, and ua e fi(u;) A ai e fv(u,) for every i < (. We need to show that the requirements

of Lemma4.4 hold.

4.4(i): Trivial.

4.4(i1):Let(u;,u);<ee S,m(uq) =Vandu€+r € succn(u€). Since/3isan3-strategy
and (i) holds, one can choose ae+l : u€.
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4.4(i1i): Let \u;,r)x€ e S, m(uq) : I and succa(u€) * A. I-,et o4a1 be a maximal

elementof /y(u6)oTabove everyu;fori ( (. Now(ii)implies"f=(re+r)nsucc6(u€) I
A, andit is enough to choose ug-p1 from this set.

4.4(iv): Let € be a limit and suppose (q,o);<e is in 5 such that u€ : supi<€ ui exists in

,R. Since ?r€ : supi<€ ui exists in 7, the assumption (i) implies that (u6, ut)xe is in ,S.

4.4(u): Let (u6,u)«t be maximal in ^9. The claims  .a (ii)-(iv) shown above imply that

( is asuccessor, say t: i+ 1, and u4isafinalpositionin.R. By (iii) there is aflna]
position o above ua in fy(u;) O 7. Now m/(o) must be V, since ? is a winning strategy

of l, and ui e fa(u) by (i), so (iv) implies m(u1) :y. tr

Though precise, the lemma above is technical and in practice often inconvenient.

This is why an informal presentation is usually preferable. Consider games G and G'. For

simplicity, assume that in the games the players pick elements alternatively from some

sets. Suppose V starts the game G by picking an element os. We then informally describe

which kind of element V must pick in the phantom game G', i.e' we describe the first

move of V in the strategy /v(ao). This element may depend on os; let it be b6' Suppose 3

answers ö1. Then we, similarly, describe the strategy f=(bo,br) by indicating which kind

of element I must pick in G. This element 01 ma] depend on both as and b6, b1. This

game-playing can be presented in the form of a diagram, see Diagram 1'

V: bo : f @r)

= 
ibr

I i at - g(bo, br)

Y:br: f (oo)...,ar)
I i br+r

Diagram 1: Phantom game diagram

On the left side of the diagram there are the moves in the game G, on the right side

the moves in G/. A notation like ar : 9(bo,b1) indicates that the element 01 ma! depend

on b6 and b1. Note that the moves of V in the game G and the moves of I in G' must be

freely chosen. This gives rise to the reducing functions: for example, given a position

y :-(b1)<e in the game G' ,every such positionu : (a)ia6 in the game G which is not

too torg unä which satisfies the described dependencies belongs to the strategy f=(')'
The requirements (i)-(iii) of Lemma4.7 are usually trivial to check, so one only

needs to 
"n.r." 

only that the requirement (iv) holds, namely, that if p and q are plays on

Gt
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the left and right side of the diagram, respectively, then I wins p whenever 3 wins q.

The phantom game construction was presented above assuming there is only one
phantom game. Actually there can be number of phantom games (games on the right side
of the diagram). For example, a game G gets three phantom games Gr, Gz, and G3 as
follows. We define three reduction functions fvJ, fv,z, and "fv,r which reduce the moves
of V in G to moves of V in the phantom games. On the other hand, the reduction function
/3 has three arguments: a position in each game G1, G2, and G3.

5. Logics

Our logical setting is according to [E], and we use set theory as a metatheory.
Vocabularies are single-sorted, and metatheoretically they are sets of symbols. Each
symbol contains information of its kind (relation, function, constant), arity, and name. We
use no separate variable symbols. In some cases we join vocabularies to two-sorted ones:
if o and r are vocabularies, (o; r) is a two-sorted vocabulary, where the symbols of o are
of sort 0, the symbols of r are of sort 1, and the sorts are separated (i.e. terms of different
sort do not occur in the same atomic formulas).

Structures are pairs (M, F), where M is a nonempty set and f. is a function which
maps a vocabulary to interpretations. If llt: (M,f') is a model, Voc(!JI) : dom(tr,) is
the vocabulary of lll. If r is a vocabulary, Str(r) is the class of those structures which have
the vocabulary r. By (llt,-R) we denote the structure gJI expanded with a new relation R
(or any other interpretation of a symbol) and by (%;A) the obvious two-sorted structure
in vocabulary (Voc(2I); Voc(A)) which one gets by putting together the structures 2[ and
ts.

An abstract logic is apur (L,la), where f is a binary predicate between vocabular-
ies and sentences, usually denoted by "ö e L(r)", *d Fc is a ternary predicate between
models, vocabularies, and sentences, usually denoted by "Dll I r1,y ö". It is customary
to speak about "the logic L" and to shorten the predicates "d € L" arrd*Yfi 

= 
/" if there

is no risk of ambiquity. An abstract logic is assumed to have the following properties:

- Syntactic expansion property: it $ e L(r) and r ! o, then $ e L(o).
- Isomorphism property: lf llt ry It and ,lt I 0, then [t I /.
- Reductionproperty: 1t$ e L(r) andr e Voc(!JI),then

,ttlö s ffilrl$.
A logic 4 has the substirution property if for every n-ary relation symbol R and for

every sentence $ e L(r U {R}) and $ e L(r U {*r,...,r*}) there exists a sentence

$. e L(r) such that for every structure lJt e Str(r)

llt? Ö. <:+ (rm, ,het\ I Ö,

where ,!m : { (o,,. ..,an) e Mn i (rlt,at,...,a*) I rl:}, and if similar conditions
hold for the other kinds of symbols. In this case we denote ö* : ölR - th(rr, . . . , rn)],
leaving out the constant symbols if there is no ambiquity.
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The most trivial logic we use is ,L6or4" containing only atomic and negated atomic
sentences. The logic L.. extends Lbo"ic by conjunction, disjunction, negation, and
universal and existential quantification. For an infinite cardinal rc, the logic .L,, extends
L.. by conjunction and disjunction of less than K sentences, and L*. by arbitrary
conjunctions and disjunctions. The logic.L-o extends L*. by existential and universal
quantification over less than rc variables. troo- allows quantification over any number of
variables. All the above logics can be extended using Lindström quantifiers.

The game logic .Loo6 is the logic Zoo. extended by conjunctive and disjunctive game

sentences of form

(Y*nl7n)0., ölroAo . . .niUi) and ()*1-Y71.)n., ö{*oyo...r&r).

The Vaught game logics 7-, extend the logics L*o by conjunctive and disjunctive
Vaught sentences

V
i{t -t

A
ilt*t

(V*o A 1yo
a;e A

(1*o V Yyo
a;e A

V )0.*
b;e A

A )0.*
b;e A

A
iln

V
i<-n

Öonuu...a;an(roAo . . . rtat) and

Öonan...a;ur(roAo''' riAi).

The sentences of the logic Mos are pairs (7, L), where T is a rc,.\-leaftree and -L is a
labelling function the domain of which is 7 and the values of which satisfy the following
conditions:

- If u € 7 is a leaf, I(z) is a sentence in the basic logic L6o";..

- If u e 7 is not a leaf, I(u) is A, V, o. a quantification symbol Vr or 1r, where r
is a constant symbol.

- If L(u) is Vr or 3r, then u has exactly one successor and there is no o € pred(z)
such that I(u) is Vr or lr.

The vocabulary of a M^I-sentence $ - (7, L) is defined as follows. For each u e T let
c(z) be the set of those constant symbols which occur in I(u) for u < u. Each branch
p e lT) has a maximal element uo and, as mentioned above, L(u) is a sentence of L6o"1".

The vocabulary of the sentence @ is

Voc(/) : U Voc(I(ar))\.(,ro).
pc-lTl

If u is a node in the syntax tree 7 of a M,i) sentenc e $, the sentence Öu : (Tu, L lT.)
is a subsentence of $.

The semantics of the logic M *s is deflned by a game. I,rut ö : (7, L) be a sentence

of M*1and let lJlbe a structure such that Voc(d) ! Voc(IJI). Informally the semantic
game S(!Jt, @) is played as follows: during the game we traverse the syntax tree 7 from
root to leaf. Player V makes a move when we are in a node labelled Vr or 7\: if the node
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is labelled Vr, he picks an element from the model, and in any case he picks a subformula
(i.e. a successor in the syntax tree). Player I moves similarly in nodes labelled 1r or [.
Finally, when a leaf is reached, I wins if the basic sentence, which is the label of the leaf,

is true.
Formally the positions of the semantic game are tuples (2, /), where u e T and f

maps the constants of set c(u) to elements of !JI. The ffeeT171- is ordered by

(u,f)<(u,9) e uluAf e g.

The mover in a non-final position (2, /) is V it L(u) is I or Vz for some constant r,
and I otherwise. Each play p in the semantic game has a flnal position (uo, fr), where

uo is a leaf of T and /o interprets the constants in c(zo). Player f wins the play p if
»nU; I L(u), where tJlt(fr) stands for the model Dt expanded by interpretations /r.

Let it be noted here that the semantic game of a Moo--sentence is not always

determined. The restriction of M** to those sentences the semantic game of which is

always determined is denoted by M!3',.

lf ö : (7, L) e M**,the quantifier rank of / is the tree

qr(d) : {u e T : L(u)is aquantification }.

If ? is a tree, MSr is the class of those ö e M** for which qr(ö) < f .

The expressive power of a logic can be approached from two angles. The first

approach is to look at single sentences only. Each sentence @ of an abstract logic determines

u itu.r Mod(d) of structures in which the sentence / is true. For logics L and Lt
wewrite L < Lt if foreachsentence Ö € L thereisasentence Ö'e L'suchthat
Mod(/) : Vtod(d'). Moreover, a mapping t: L -'+.4' such that for every structure !/[

ffi?c$ e,Jtlgt(ö)
is called a translation The following chains give trivial examples of translations:

Lbori" I L.. I L.,. a L*. I L*., and L*. I L*c 1V*. 1V*r.

On the other hand, it is known that.L-6 does not translate into -Loo-: it is not hard to

write a sentence of Z-6 stating "(M, S) is a well-ordering of type ^y * 'Y", but this is not

expressible in ,Loo- (see [M]).
If A is aclass, amapping o:A x L -- L'is called adisjunctive approximationif fot

every sentence Q of 4 and for every structure lJt

ffi lc $ e ffi ?r, o(r,Ö)forsome r € A.

A conjunctive approximationis defined similarly. If the class A is ordered, we usually

try to build the disjunctive approximation in such a way that o(r, ö) + o(Y, /) whenever
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A I r. Sometimes the approximation has even the following restriction property: for
every set X of structures there is r e A such that, whenever lJl e X,

ffi?r0 e ffilg a(r,ö).

The idea of approximations originates from classical descriptive set theory in the middle
of 1960's. Through the works of Moschovakis the ideas spread to game quantification,
and Vaught finally introduced the approximations of V-. and .Loo6 into I-. ([Va]).

Another way to compare the strength of various logics is to look at their ability of
distinguishing models. For structures 2[ and E denote %: 8(L), if the structures satisfy

the same sentences of logic 4. It is clear that if there is a translation from L to Lt , there

is an approximation, too. Moreover, if there is an approximation from 4 to .C', then

Zl.: B(L') + %: A(L)

for every two structures 2[ and E having the same vocabulary. We will see later that the

converse of the latter implication does not always hold'
The problem of, whether two models can be distinguished with some logic can

sometimes be solved using a game of two players. Typically, each logic has its own game,

the Ehrenfeucht-Frarssd game presented in the previous section is a suitable game for the

MJanguages. Without proof we state the following proposition:

5.1. Proposition ([Kt]). Let T be a tree. Player 1 wins E,F7(21,8) if and only if
»: ts(M<r). D

The main bulk of this work is a study of translations and approximations between

various kinds of logics. We close the preliminary section with an easy case.

The essential difference between M*. and.L-. is syntactical. A sentence of M*.
is set theoretically flat: the tree rank of its well-founded syntax tree is not related to

the set-theoretical rank of the sentence. On the other hand the set-theoretical rank of a
sentence of L*. always exceeds the tree rank of its syntax tree. We saw earlier that the

mapping which gives a tree rank for a well-founded tree is not primitive recursive. Next

we show that the same holds for the translation mappings from M-. to Loo.: there exists

no primitive recursive one, but the canonical one is effective enough so that admissible

sets are closed under it.

5.2. Lemma. There exists no p.r translationfrorfl M*. into Loo..

Proof. Note first that for every ordinal a

f wins EFB-(2I, A) <+ 2t: E(M3B') <+ 2t: B(L\.),

where Bo is the canonical well-founded tree having ordinal a and L§. is the logic I-.
restricted to formulas of quantifier rank less than or equal to a. The first equivalence
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above is Proposition 5.1, the latter is a known fact due to
clear that (r, e ) : (0,e) (L*.) if and only rf a - P.

Let us say that ordinals a and p are 1-equivalent, a
{, and 4 such that

a-u)'Y.C+rt and p-u7

ordinal 7 for which C + ^t - a by a - §.

Claim A: If a and B arc 7-equivalent,6 < "'1, and o' ( a, there exists B/ < B such that

a' -6 0' and u: at -a 0 - 0'.

Note first that 4 * ,,)6 : ,,)6 whenever1 < ,0. This implies that a -6 a :- at, if
a ! at > a.,6. Supposethenthat a : d . e* rl and 0 : u^ . € + rt,where ( and ( are

nonzero(theothercaseistrivial). lf at:u1 'C*rltfor some4', letBt:wt.€lrl'-
Obviously a' -1 0' and a: at : q t q' : 0 - p', which implies the claim. On the other
hand, if at < u1. (, let(' ard n' < ro be such thatat :,,)6 . e' + rl'. Choose €' : 0if
C' :0, and €' : 1 otherwise. Let g' : u6 . €' + rl'.Clearly a/ and Bt are 6-eqlivalent.
Since

o'+16:,,)6. (C'+ l) 1u7.e 1a,
the ordinals e.: e.t and a are 6-equivalent. Moreover,

p'+u6:ro(€' + 1) < 16.2<a1 10,

and thus P -- P' -6 B, which completes the proof of the claim A.

Claim B; If ordinals o and p are 7-equivalent, then (a, e) = (0, €) (rt.).
By the equivalence stated in the beginning of the proof it is enough to show that

I wins EF6, ((a, e), (P, e )). Suppose we are in the middle of a play, the players have
chosen n elements from each model, and V has chosen a descending chain of ordinals

a. - ag + "'* Qn, P-00*"'+0n.
Assume 3 has managed to make such choices that a1 Md & arc'ln-1-eeuivalent for each

i (here "y-t :7). Suppose V picks 1n I ^ln-t and, say, an element in a. This element
belongs to one of the segments a; and splits it into two parts a6 : a1 + al'. Since the

segments were originally 7,-1-equivalent, by the claim A ! manages to pick such an

element in p that splits the corresponding segment pa into two parts & : 0l + p'u' and,

Karp tKpl. From the above it is

- ^y p, if there exist ordinals C,

mOfeOVe\ Ati - jn

Claim C: There is

pl and a|t -.yn P'o' . In this way J wins the game.

no p.r. translation from M*, to L*r.



Absolute logics 29

For contradiction, suppose that t is a p.r. translation from M*, into L*.. I-et g be
a p.r. mapping, increasing on ordinals, such that rank(t(r)) < 9(rank(r)) for every set r.
Letl : g@ + u) + l, and let ö1be a sentence in M*, which is true in u;r and false in
ut .2. Since'y is obviously countable, we may assume that the set theoretical rank of /,
is less than a.r * a.r. Now, by the claim B above, the quantifier rank of t($.r) - and thus
its set-theoretical rank - must exceed 7, which is a contradiction. D

5.3. Lemma. There is a translation t: M*, + L*., primitive recursive in a
mapping which maps every well-founded tree to its ordinal.

Proof. Let $ : (7, L), where 7 is the syntax tree and tr is the labelling. Clearly the
syntax operations of Loo, are p.r.; denote them by OP6, OPy, etc. Thus we are able to
define a p.r. mapping s: Ord x 7 --+ L*. by induction as follows:

- If w is a leaf in 7, define s(0, tr.r) : L(w).

- If s(o, tu) is defined, define s(0,w) : s(a, u.,) for each B > a.

- If s(o, z) is deflned for every successor u of w, define

s(o * 1, w) : OP76l{ s(4, u) : u € succ(u.,) }.

- Those values s(a, to) that are not deflned by the above rules are left undefined.

It is not hard to see that s(a, tr,,) is a sentence equivalent to the subsentence $- whenever
a is at least the tree rank of u in 7. Now we can choose t(ö) : s(1,root(T)), where 7
is the ordinal of ?. tr

5.4. Lemma. Suppose A is admissible and $ e M*.1\ A. There is @* e L*, n A
such that »lt I ö a s)ll I ö* fo, every model lll.

Proof. Admissible sets are closed under the primitive recursive mapping s deflned in
theproofofthepreviouslemma(theinitialmappingråuisnotneededforconstructing
s). Since admissible sets are closed under the mapping which maps well-founded trees to
their ordinals, the result follows immediately from the previous lemma. !

5.5. Lemma. There exists a p.r translationt: M.. - L...

Proof. I-et ö e M,,. The rank of the syntax tree of { is now finite. Thus, if s is the
p.r. map of the proof of 5.3, we can choose t(ö) : s(u , ö). tr
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II Absoluteness

As it is generally known, we have set-theoretical structures abundantly at hand in the

set-theoretical universe. One of the standard tools in set theory has always been playing
with these "internal models" for showing certain interesting facts about the set-theoretical

universe. When constructing an intemal model, we usually want it to share some set-

theoretical properties of the real world. This is where the concept of absoluteness comes

in.
Basically, absoluteness is a property of a definable predicate relative to a pair of

structures: a predicate is absolute relative to the structures if it expresses the same thing
in both of them. In the general case it is of course hard to specify what "the same thing"
denotes. Thus we only consider pairs (2I, A) where 2[ is a substructure of ls, and define

that a predicate P is absolute relative to (%,ts) if and only if, for every element a of 21.,

the predicate P(a) is true in 2{ exactly when it is true in E.
If then 2l e ts are models of a set theory 7, is there any general way of indicating,

which definable predicates are absolute? If one considers such arbitrary models, a result

of first-order model theory states that only those definable predicates are absolute which

are provably equivalent to an existential formula and to an universal formula. Since this

leaves out a large number of interesting predicates, it is a tradition to deal with only

thosepairsof structures QI,A) whereEisanend-extensionof 21. Thuswedefinethata
predicate is absolute relative to a set theory 7 if it is absolute relative to (2I, !8) for any pair

of models of ? such that 2l C"na E. These predicates can be syntactically characterized:

an application of interpolation by Feferman and Kreisel tFK, Fl indicates that a predicate

is absolute relative to a theory 7 if and only if it is A1-definable in 7.

For some predicates it is hard to flnd the theories relative to which they are absolute,

but there are other means of restricting the pairs of structures to be taken in account.

Since the notion of forcing can be defined even in models of a weak set theory (e.9. KP)'

it is natural to deflne a predicate as absolute relative to forcing if it is absolute relative

to (21,2[*), where 2[ is a model of a set theory and 2l* its generic extension. Of course

we may additionally demand that such forcing has certain special properties, such as

u1-closedness.

Persistence is defined similarly as absoluteness: a predicate P is upwards persistent

relative to (2t, !8) it P(a) holds in ls whenever it holds in 2[. Persistence downwards and

persistence relative to a theory is deflned analogously.

6. Absolute logics

6.1. Definition. Let T be a set theory. An abstract logic L is absolute relative to

7 if there is a lfl-predicate P and a Åfl-predicate Q such that the following claims are

provable from 7:
(i) If r is a vocabulary, then

öe L(r) s P(r,ö).
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(ii) If r is a vocabulary, ö e L(r), and if yJt e Srr(r), rhen

QQIL,r, ö).»t?r1"1 ö <+
If thepredicatesP andQ areÅfl-definable,wesaythatthelogic Lisfirst-orderrelative
toT.

Similarly, for a pair 2[ C"na E of models of set theory, a logic L is absolute relative
to (%,ts) if the predicate"$ e L(r)" is upwards persistent and the predicate ,ll lq"l ö
is absolute relative to (21, !3). Moreover, if the syntax predicate is absolute, we say that L
isfirst-order relative to (21, !S).

The concept of an absolute logic was first presented by Barwise in [84]. He chose
the syntax of an absolute logic to be 11 instead of 41, since he did not want to rule out
certain logics like L.,.. ln order to have a name for the absolute logics with an absolute

syntax I call them first-order logics following Burgess in [Bu]. In many contexts there is
no practical difference, and one can turn an absolute logic into a first-order logic simply
by changing the syntax.

The latter formation, the absoluteness of a logic relative to a pair of structures, is
useful when there exists no nice theory relative to which a logic could be absolute. Thus,
when we say that a logic is absolute relative to, say, cirl-closed forcing, we mean that it is
absolute relative to (\,%*) for every model 2l of ZFC and its generic extension 2I* in an

rr.r1-closed forcing.

Since we are dealing with various different set theories, a natural question is, does

absoluteness relative to some theory 7 imply absoluteness relative to some other theory
Tt. If the theory Tt is a consistent extension of 7, the answer is clearly yes, no matter
whether ?' has more predicate or constant symbols. Thus the fragments of ZFC (e.g. KP)
or extensions of ZFC (e.g. ZFC(P,, )) do not propose any problems.

A more problematic case is the theory KPU. The difficulties arise from the fact that
the concept of a structure is different in KPU from the other theories: we demand that the

universe of a structure must consist of urelements only. Thus, when giving a set-theoretical
deflnition for a logic, say L.. in KPU and in ZFC, it is not immediately clear that the

definitions really define the same logic.
The "sameness" problem of the logics can be solved by reducing them to the metathe-

ory. Considerfirstalogic Linasettheoreticaluniv'erseV. ThelogicL isactuallya
pair of formulas in a metalanguage, andV is an element of a metauniverse. Suppose that

the metauniverse is set-theoretical. Each vocabulary r in V gives rise to a vocabulary

rv in the metauniverse, and similarly each structurelllin V gives rise to a structure
rJJlv in the metauniverse. Moreover, a sentence Ö e V can be turned into a structure

öv : (TC({d}), €) in the metauniverse. We may call these objects rv, lllv, and

$v metaform,s of the set-theoretical objects r,lJl and @. The set-theoretical predicates

"ö € L" and "llt ! @" thus naturally turn into predicates between metaforms' Thus, if
we have a deflnition of a logic .C for example in both KP and KPU, we may compare the

definitions by examining the predicates between metaforms. To illustrate the method, we

will next show that absoluteness relative to KPU implies absoluteness relative to KP.
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6.2.Letnna. If a logic L is absolute (first order) relative to KPU, it is absolute
(first-order) relative to KP.

Proof. It is enough to show the result for an absolute logic, since the first-order logics
are treated similarly. Let P and Q be the 11- and A1-predicates, respectively, which define
a logic 4 in KPU. We need to flnd a l1-predicate P* and a Å1-predicate Q* which define
the same logic in KP. The basic idea is to deflne in KP an internal model (Y*, €*, t/.) of
KPU, and mappings llt;- llt* and z r-* r* which transfer structures of 7 into structures

in V* and sets (vocabularies, sentences) into pure sets of I/*.
Let the class of urelements U* be the class of pairs (2, 0) for r € V . LetV* be the

class of pairs (r, a), where either o : 0 or r C V* and a : sup{ 0 : 1a (A, 0) e r } + 1.

Let (y, 0) e* (*,o) if and only if (y, 13) e r and a > 0. The predicate I/* is clearly Afl,
and the predicates €* and U* are fu-definable.

The class (V* , e* , U. ) is now a model of KPU: for example, to see the Å6-collection

schema, suppose that

V(y, 0 e* (r, a) )(2, t) lö(@, a), (y, A), Q,''»lv.

holds with / being a fu-formula. Now td(. . .)]v. is Afl, so by the A1-collection schema

there exists a € V such that

v(y,0 e* (*,a)1(2,"i e alö(@,o),(a, A),Q,tD)v. .

By A1 -separation o* : a(1V * exists in I/, and the required collection (a*, sup ran(a- ) + 1 )

exists in I/*.
Define embeddings

u:V -- U* , fr r* (r,0) and
j:V -- V*,tr t--+ ({ j(y) i a e r }, rank(r) + 1).

Clearly u is totally fu-definable and j is totally Å1-definable in KP. The embedding j
makes the pure part of I/* isomorphic with V , and it is used to map vocabularies and

sentences. Thus we are able to define the syntax:

$ e L- (r) a lP(j(r), i(il)lv. 'e. 'u.) .

It is not hard to see that this relation is Efl.
To embed structures, suppose ltt: (M,F,) e Str(r). We let lJl* beapai (M", F*)

inV*, where M* is the set of u(r) for r € M inV* and .F'* is defined in the obvious

way in order to make 9Jt* a j(r)-structure. Let

ttt lc-?) ö e lQQJt. , i("), i(Ö)))(v* '€-* 'u*) .

This relation is Af , and we have no problems in seeing that these relations deflne a logic
.C* in KPU, which is the same logic as 4. tr
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In the other direction we slightfully strengthen the theory KPU. Recall from Section
2 that the predicate "r is finite" is absolute relative to KP, but not absolute relative to
KPU. Moreover, we shall later see that the logic Lrr(Qo) is flrst-order relative to KP,
but not flrst-order relative to KPU. The problem in reversing the implication lies in that
in KP one cannot have a large set without large ordinals, but in KPU this is possible. Let
the high rank axiom, HR, state that for every set r of urelements there exists a one-to-one
mapping from r to pure sets. This axiom is not provable from KPU: let [/ be an infinite
setof urelements. ThenV.(U),thecollectionof setsof finiterankbuiltfromurelements
in [/, is a model of KPU and contains infinite sets of urelements, but every pure set in it
is finite.

6.3. Lemma. Logic L is absolute (first-order) relative to KP if and only if it is
absolute (first-order) relative to I{PU + HR.

P roof. We have already sssll "3". The proof of " ---}" is similar to what was done
above. The internal model l/* of KP is the class of pure sets. It is not hard to see that Y*
is Å1-definable in KPU. Define logic L* using the equivalencies

g e L.(r) a lP(r,g)lv- and

lttlr"G) g + =f (f,M---+V* isbijective AlQff"rN,r,il)v.)
e V/ (f , ttt --+ V* is bijective -- lQ!"ytt,r, ö)lv- ).

In order to see the last equivalence we need the high rank axiom.

7. Absoluteness of L-languages

The sentences of .L-languages are inductively built from atomic formulas using logical
operations. Since inductive construction is absolute (relative to KPU), the tr-languages
will be absolute as long as the operations used for building them are absolute. For .L-
languagesitismostnaturaltodeflnethreepredicates: unarypredicate"ö e L" toindicate
which objects are sentences, a function Voc which maps a sentence to its vocabulary, and
the truth predicate.

For example, the flrst-order logic L.. is built from atomic sentences by negation,
conjunction, disjunction, and quantification. Thus its syntax is generated by a set of rules
such as

- atomic sentences are sentences of Lr.,
- if $ and 'ry' are sentences of L.., then @ A T/ is a sentence of L..,

and so on. A semantics is deflned recursively: forexample, the truth of Q n{ in a structure
9Jt depends on the truth of Q inllt and the truth of r! inllt. The next definition gives an

abstract formulation of this kind of language definition.

7.1. Definition. (1) Asyntaxruleis apairof mappings (/, tr) suchthatthefollowing
conditions hold:

33
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(i) / is a partial binary one-to-one mapping.
(ii) If f (*,Y): z,thenr CTC(z).
(iii) o is a binary mapping and ran(u) is a class of vocabularies.

(2) A syntax rule (/, u) spans a language 4 by recursion

öe L <+ lXlu(Xe L^Ö:f(x,y)).
The vocabularies of these sentences are given by mapping Voc, which is defined by
recursion: if ö : f (X, A) is in 4, then

Voc(@) : o(VoclX, g)'

(3) A semantics rule attached to a syntax rule (/, u) is a pair (q, Q), where q is a
mapping and Q is a relation such that the following conditions hold:

(i) If the vocabulary of a structure lJt contains the vocabulary of Q : f (X,y),
ther- q(ltt,{) is a set of pairs (Yl,rb), where ,! e X and Voc(T/) e Voc(9[f).

(ii) If Ull = YJlt, then for every S e Lthere exists a bijection f:q(llt,$) '-.
e(ffi',/) suchthatif (ttt',rb'): f (ll,T/),then 4s: rb'andlt 

-ry 
[t'. More-

over, if t: q(»lt,Ö) -- 2,then

Q2tt,ö,t) e Q(rfl,ö,to f-\.
(4) AsemanticsruledeflnesasemanticsforthelanguageLbytecursion: if Ö: f (X,y)

and Voc(!Jt) I Voc(@), then IJI lp S |f and only if

egtr,@, r), where t: q(!Jt, ö) - 2, (lt,rh)* 
{ å ;trTri;$' 

and

(5) A syntax rule and a semantics rule together form a language rule.

The mapping f of a syntax rule maps a set r of already existing sentences and an

auxiliary set-theoretical object y to a new sentence f(*,A).Since (ii) in the definition of
the syntax rule implies that

f (X,A) : $ I rank(,1p) < rank(/) for every tb e X,

the recursive definition of the language L in (2) is valid, and the definition gives rise to

a natural well-founded order on L: "r! is an immediate subsentence of @" if there exist

X and 3r such that tlt € X and Ö : f (X,y). The vocabulary mapping Voc is defined

recursively along this subsentence relation.
The semantics is deflned in a similar way recursively along the subsentence relation:

the truth of a sentence S in a structure ![l is determined, once we know the truth of
certain immediate subsentences of @ in certain other structures. The mapping q gives the

subsentence-structure pairs, and the predicate Q indicates how their semantics influences

the semantics of @. Finally, the condition (ii) in the semantic rule ensures that the language

rule really spans a logic: it implies that the logic is closed under isomorphism of structures.
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7.2. Example. Let us see how first-order logic fits in this frame. We start by defining
language rules for single logical operations. Atomic sentences are produced with a rule
satisfying

f @, Ö) - 4i when / is atomic, u(A , Ö) : the vocabulary of /,
s(»tl,ö) : A, QQIt,$,t) + / is true in !Jt'

The other logical operations are not much harder: for example, negation is defined by a
rule satisfying

f ({ö},-) - -ö, a(ö,- r,-): r,
q(ltt,-ö) : {(rtt,ö)}, QQJt,-Ö,t) e t(rlt,Ö) : O,

and existential quantification by a rule satisfying

f ({Ö},h) :1Y6, u(Ö'-' r,1r) - r \ {r},
q(!tl,1rS):{((rn, a),ö): ae M}, Q\l\lr$,t) 3:1 | e ran(t).

These pieces of language rules can easily be combined into a single rule.

7.3. Definition. Let T be a set theory. A language rule is absolute relative to T
if the mappings / and o of the syntax rule, and the mapping g of the semantic rule are

E1-deflnable in ?, the relation Q of the semantic rule is Ar-definable in 7, and if

T I (f ,u) is a syntax rule and (q, Q) is a semantic rule .

Moreover, if the syntactical mappings / and u, and the predicates"(r,y) e dom(/)" and

"$ e run(f)" are A1-definable in 7, we say that the language rule is first-order relative

toT.

7.4. Lemma. ktT ) l{P (orT r KPU). If a logic L is spannedby a rule which is

absolute relative toT (first-order relative toT), then L is absolute relative toT (first-order

relative to T).

Proof. Syntax: Consider first the case of an absolute language rule. To see that the

predicate "ö € L" is Er-definable in ?, note that Ö e L if and only if there is a set ,S

consisting of pairs (T/, 9) such that

(i) (d,3r) is in ,9 for some U, and

(ii) if (d, y) is in ,S, there exists X such that

,b : f (X,y) and Vq e X 1z(q, z) e S.

Similarly, voc({) : r if and only if there is a function u such that

(i) 
"(d) 

: 7, and
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(ii) for each rlt in dom(u) there exists X and y such that

l(X,a): rlt, X C dom(z), and u(th) : u(ulX,y).

Thus Voc is I1-deflnable in 7. Now

$e L(r) s $e L^Voc(/) Cr.

In the case of a flrst-order syntax rule, the predicate ö e L is Afl, since it is defined
by 

^l-recursion:
öe L s $ e ran(/) 

^Vrvy(f(r,y):ö---+re 
L)

e $ e ran(/) nhly(f(r,y):önre L).

In this case the rnapping Voc is totally l1-definable, and thus $ e L(r) becomes a

Åfl-predicate.

Semantics: Denote P(ylt,ö,t) it and only if t is a mapping from pairs (Yt,',lr) to {0, 1}
such that the following conditions hold:

(i) (rI, {) is in the domain of f.

(ii) If (n, rb) is in the domain of f , then q(n,lb) is a subset of the domain of t.
(iii) ,(m, {) : I if and only ff Q(n,r!,tfq(n,r!)).

By recursion on the structure of the sentences in ,C one can easily deflne a mapping
(ö,rlt) *+ t6,»r such that P(rlt,$,t6,») whenever Ö e L and llt e Str(Voc(/)).
Suppose, namely, that $ : l(X,y), and suppose t,p,y1is defined for every th e X and
It e Str(Voc(r/)). t-et

to,tx: {((rrf, il,i)} u U{ r,l,r't | (n,rb) e sQJt,ö)),

where i e {0, 1} is picked with Q in the obvious way. Now an easy induction on the

structureof /showsthatif Voc(d) e Voc(lJt) andP(lll,$,t),thenrJt? ö if andonly
if t(tJlt, ö) : t. Thus we conclude: it $ e L and Voc(@) C Voc(!Jl), then

»x? o <+ rr (p(»x,ö,t) 
^t(»t,ö): 

r)

<=+ Vt (p(»x,ö,t) - t(tJlt,ö) : l).

Everything stated above is provable from ?, and the predicate P is clearly Efl. tr

This theorem can be applied for showing some logics as well as certain closure
operations to be absolute. As Example 7.2 suggests, it is convenient first to define rules

får single logical operations, and then to combine these rules into rules of languages.

We say that language rules (f ,u,Q,Q) and (f',a',q',Q') are compatible if f u /' is a
one-to-one mapping, and whenever 0 - f (X,A) : f'(X,g), then u(t,A) : u'(t,A),
q(Ytt, ö) - qt (11t, $), and Q(rlt, $,t) 3 Q' (»lt, ö't).
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7.5.Lemma. Suppose R: (f ,o,q,Q) and Rt : (f',r',q',Q') are compatible
language rules. There exists alanguage rule R* : (/*, ...) suchthat f* : f u f', and
logics L and Lt defined by R and Rt, respectively, are sublogics of L*, the logic defined
by R*. Moreovet if R and R' are absolute (first'order), then so is R*.

Proof. Define the rule R* as follows: let /* : f U f ' , arrd

( o(u,y) if (dom(z), e) e aom(7;,
u*(u,Y) : \ ,'(u,v) if (dom(z), v) e dom(/'), -d( undefined otherwise.

Define q* and Q* in a similar way. tr

Next discuss some rules. Usually there are no problems in defining the individual
rules to be pairwise compatible. However, we concentrate here on the logical contents

of the rules without stressing compatibility. Though we occasionally define incompatible
rules, even they can be made compatible by minor changes. So there is no objection to
assuming that all rules used for constructing a logic are compatible.

7.6. Example. Let Lbe a logic. The trivial language rule defined by

f $, ö) - ö <=+ ö e L,, ,(0, Ö) - voc (Ö),

q($,A)- A,, QQJt,ö,t) e YIt ?r ö

is absolute relative to 7 (first-order relative to 7) if and only if 4 is absolute relative to 7
(flrst-order relative to 7).

7.7. Example. The following rules are first-order relative to KPU: atomic sentences,

negation, conjunction (of two sentences), infinite conjunction (of arbitrary size), and

existential quantification. (We have already presented some of these in Example 7.2.)

Thus the logics .L.. and L*. are first-order relative to KPU.

7.8. Example. Countable conjunction is absolute relative to KPU, since it can be

defined by the following rule:

f (X,0)- A X when X is countable

?, (( ,4),he x ,0) - U+ e x r,,b ,

q(r:fi,[x) - {(»tt,rl,) :1, e X},

Thus the logic Lrr, is absolute relative to KPU.

7.9. Lemma. LetT ) KP orT I KPU. ALindströmquantifierQ ruleisfirst-order
relative to T if and only if the class defining Q is A'1-definable in T.
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Proof. To simplify notations, consider a quantifler Q of type (1, 1), i.e. a quantifier
binding two sentences and one constant in each sentence. (The general case is similar.)
As we know, the semantics of a sentence Qry$(r)rb(y) is defined by the equation

,ttl Q*yö(dr!@) s (t17t,Ön,r/'t\ e Ks,

where öm : {a e M : (llt,a)= ö},arrdlu'»r issimilar. Letnow

f (X,a)- z e X:{ö,1b},U: {(ö,"),?b,d,)1,andz:Qcdörb,
a (t, y) : (t(ö) \ {"}) u (t(lb) \ td}) when s : ((ö, 

"), 0h, d,)),

q(ltt, Qcd$r!) : { ((ffi, a), ö), ((lJt, o), th) i a e M }, arrd

QQlt,Qcdö,b,t) <+ (M, Öm'',''l"tt'') e Kq,

where ön'' : {a e M : t((!lt,a),ö) : I } and r!m'' i"similar. The mappinEs f , u,

and q are clearly 1fl. fo see that Q is Afl, note that

(M,ön'',r/ffir) e Ke

: lA f S (E : O'tt,'A ,9 : ,hm,' rl (M, R,S) e rcq)

<+ VAVS (A: 4»t,'A ,S : ,lr*,' - (M, R,S) e rcq).

7.10. Example. First consider the well-foundedness quantifler

WF: { (4, <) : ( is well-founded }.

It is known that

(A,<) is well-founded aa l/; A -» Ordinals order-preserving

<+ VX g A(X contains a minimal element).

Moreover, this can be shown in KP -| E1-sep. Thus the quantifier WF and the logics

.L,.(WF) and I-.(WF) are first-order relative to KP * E1-sep.

Then consider the quantiflers Qor . . . "there exists at least No elements r such that

. . . ". The quantifler Q6 is first-order relative to KP, since (M, A) e Qo if and only if A is

not flnite. Similarly, the quantifier Q1 is first-order relative to KP(Cbl) : KP U {C(r) **
r is countable). Thus the logic L..(Qo) is first-order relative to KP, and the logics

L..(Qr) and L*,(Qr) are first-order relative to KP(Cbl)'

7.11. Example. Let rc be an uncountable cardinal. The quantifier 1(r6)i4, where

lll < 
^, 

is first-order relative to

KP(P,) : KP U {rc is a cardinal } u {P(2, a) * a : p *(r)} v {V r1v P (r, v)).

n
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Let the language rule for this quantifler be

39

f(X,y)-z e X:{ö}, ge Constants, lS/l < n,andr:)Aö,
o(t,u): ,(d) \ Y,
q(!lt,){ca)6erö): {((rm, ar)rcr,$) :Vi e I(aa€ M)),
Q(»11,1{";}rcrÖ,t) <+ 1 € ran(r).

Since lgl < K <+ y e P*(y), the mapping / is §-deflnable in KP(P"). The mapping
u is clearly Åfl. fne mapping g can be defined with p.r. functions andP^, from which it
follows that both q Md Q are A1-deflnable in KP(%). Thus the logic -Loo^ is flrst-order
relative to KP(P").

7.l2.Example. The game quantiflers

and (v*,,1 
,)unjy ,).., .[,öooio...inin

are flrst-order relative to KP * E1-sep + DC, where E1-sep stands for the >l-separation
axiom and DC for the axiom of dependent choices.

It is enough to consider the Vaught game quantiflcation, since the other one is similar.

The functions are easy to deflne: let f(X,A) : zif and only if X : { d",, e I<' },
g maps I<' to pairs (c", d"), where c" is the sequence of constants which the game

quantifler binds in dr, and z is the game sentence. If t:Q" ++ r" and 3r is as above, let
u(t,y) be the union of vocabularies r" \ ran(c,) for s e .[<'. Finally,lf z is the game

sentence, let q(ltt,z) be the set of pairs ((lJl,oo,bo,...,an,bn),ry'"), where s e I<',
n : len(s), and 46, ...rbn are elements of lJt.

It A e q(ltl, z) and t: q(lll, z) -* {0, 1}, let A1 be the following tree of positions

in the semantic game of the game sentences: let a position z be in At if and only if there

is u: (a*,'ix,bn, j*)x<n I u suchthatt((fi, ao,bo)...,ak,bx),Öto,jo,...,t1",io): lfor
everyk(n.Now

Q(rtt,Z,t) e 
=A 

g q(rJt,r) (41 is a winning strategy of l)
<+ -,=B g q(r:ft, z) (Bt is a winning strategy of V).

This equivalence is provable in KP * E1-sep + DC. We give more details later, when a

more general game quantifier is discussed.

Of course one can add Lindström quantifiers to the game quantifier logics as well, pro-

ducing such logics as forexampleV*.(Q1),which is flrst-orderrelative to e.g. ZFC(P,,).
An interesting question is, what happens if we introduce a generalized quantifier to the

game prefix. For simplicity, consider quantifiers of type (1) only. (These bind a single

constant in a single sentence.) A quantifier Q is monotone if (M,.R) is in Q whenever

(M, R') is in Q for some subset Rt of R. The dual Q of aquantifler Q is defined by

(v**1an) n., .[,ö.

(M,R)€A <+ (M,M\B) fQ,
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and clearly the dual of a monotone quantifier is monotone. It is not hard to see that a
quantiflcation with a monotone quantifier Q is equivalent to a second-order quantification
as follows:

»tt I Q"ö(r) <==+ 1R e MYa e R(ttt,a) 
= 

ö.

Using this characterization we are able to define a game quantifier

(o*" 
ulrQunlyn Y ,Öo*)"' na.Önni"",*i*

with the following semantics: the sentence is true in gJt if I wins the game, where for
n<u

- Vpicks rn e M andin e I,
- 3 picks Rn e Q,
- V picks 'un e Rn,

- 3 picks An e M, jn e I, and ,S, e Q, and

- V picks un € Sn,

and where I wins a play if each sentence ötn...j* is true in (!JI, ro,. ..).

7.13. Lemma. The game quantifier defined above and its dual are first-order relative
to theory 7 f KP *21-sep * ACwhenever the quantifier Q is Aq-definable and provably
rnonotone inT.

Proof. The syntax rule for the game quantifier is defined similarly to the previous
example, and there is no problem in defining the semantic mapping g either. The predicate

Q can be based on the fact that the game sentence

(o" 
nlrQunl,n Y ,Öo-)*" na.önnio"'o*i*

has a negation

(="" 
ulrÖu*Ya*'a rQ'*) "' \.-önoio"'i*i*'

To be more exact, we can base the predicate Q on the following equivalence:

sJtt | (Y r. 
n !l,Q 

r" 
=, ",!r,Ö o *) n.. ;[,ö n i o...r. * i ^

<+ there exists a tree ,5 of sequences such that for every w e S
len(u) :62 + {rn€M:w^(rn)€S):14,
len(tr.,):6n11 + {i,*e I:w^(i-) €^9}:7,
len(u.,) :6n12+ {u.e M:w^(un) e ,9}e Q,
len(u) :6n13 + {U.e M:w^(yn)e S}+A,
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len(to) : 6n*4 + {i" e t : w^(j*) e S} +A,
len(u,) :6n*5+ {one M:w^(un) e S}e Q,and
len(to) : 6n I6 + öno...j*(ro...tr,) istrueinlJt

44 thsls exists no well-founded tree 7 of sequences such that for every w e T
len(u) : 6 + u.r is not leaf,

len(tr,,) :6nandtuisnotaleaf + {rne M : w^(rn) e T}+A,
len(tr) :6n*1 :=+ {i.e I:w^(i.)eT}+A,

4T

-6n+5 -=+ {r-€M:wn(rn) e f}€Q,and
- 6n + 6 and u is leaf -+ öa...j*(r0...'t)y1) is false tnllt.
1rn,yr,ÖunYan,lrQ'n) n" *Y,-Ö;'njn"'inj 

n

The first equivalence is easy. The tree ,S, if it exists, is nearly a winning strategy of I in
the semantic game of the game quantifier: when playing the quantifier Qun,3 picks the
set {u e M : rn(u) e S}. On the other hand, a winning strategy of 3 gives rise to
a tree ,S; however, one needs the axiom of choice to pick succ(u) for a sequence ur of
length 6n * 2 or 6n * 5.

The last equivalence is not much harder: similarly the tree T, if it exists, gives rise to
an 3-strategy in the semantic game of the dual game quantifier. Any complete extension
of this strategy is a winning strategy of l. On the other hand, a winning strategy of 3 gives
rise to a tree T satisfying the requirements; however, one needs the axiom of dependent
choices to show that 7 is well-founded. Thus we need to show the middle equivalence.

Suppose first, for contradiction, that both of the trees ,9 and 7 exist. Now 
^9 

O 7 is a
well-founded tree and thus contains a maximal element u. Since An A' f 0 whenever
(M,A) e Q and,(M,A') e S,thelengthof tris 6n-l6forsome nandw ismaximalin
7. Thus 'u., provides a sentence ö" and a sequence (ro, . .. , r.,,) such that $" is both true
and false in (!lt, ro) . . .), and so both trees cannot exist.

The fact that either of the trees S and T must exist is shown similarly as the deter-
minacy of open games. For a sequence u let P(tu) be a predicate indicating that there
exists such a well-founded tree of sequences extending w that satisfies the conditions
similar to the latter equivalent above. Suppose the tree 7 does not exist. Let ,S be the

tree of those sequences ?, which, and the initial segments of which, do not satisfy P.
One can inductively see on the length of tu that ,S satisfies the requirements of the former
equivalent.

Finally, the above equivalences are provable in the theory T.

The lemma implies, for example, that the logicV*,lQo], the logic troo,
with the above game quantifier for generalized quantifier Qo, is flrst-order
ZFC(P§-).

:

len(tu)

len(u)

<+ vrtv (

u

augmented
relative to
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7.]^[,Example. Let rc be an uncountable regular cardinal. The long game quantifiers

(V** A lyn V ) n.o A öouiu...inin and (=*, V.
ine I j *e.I n<rc ine I

together with the first-order operations make up the logic 7-^. The semantical games

attached to these sentences are not necessarily determined, and thus the same approach as

in the case of game sentences of length o is not available. However, their syntax is clearly

Ar-definable inZFC(P"), and since their semantical game is either 6-open or rc-closed,

the semantics is absolute relative to rc-closed forcing. Thus we may conclude: Voo, is

flrst-order relative to rc-closed forcing'

7.15. Example. Consider "almost all" quantifier (aa), the semantics of which is so

defined thatltt | (aa)S$(S) if and only if the set {S e P.,(M) , (rm, S) t ö}
contains a closed unbounded set.

This quantifier is first-order relative to u,.,1-closed forcing: its syntax is clearly ab-

solute, as is the semantical mapping q, which maps (!fi, (aa)S/(s)) to the set of pairs

((rn, S), @) for S € P,,(M). The obvious predicate

QQtt,(aa)SS@),t) e {S e P.,(M) : t(»lt,S): 1} containsacub

is clearly absolute relative to proper forcing (i.e. relative to forcing which preserves the

stationary subsets of P.,()) for each cardinal .\), and thus relative to r,.r1-closed forcing'

We conclude that the logics .L..(aa) and L*.(aa) are first-order relative to r.u1-closed

forcing.
In fact we could show that L,.(aa) and L*.(aa) were first-order relative to proper

forcing. However, since P., is not necessarily preserved in proper forcing, the semantic

mapping q fails to be upwards persistent. Thus a somewhat more refined argument is

needed than is presented in the proof of 7.4.

The logic L..(aa) has a fragment Lpo", where the (aa)-quantifier is only allowed

to quantify over those predicate symbols which occur positively in /. We will next see

that it is first-order relative toZFC(P.r). Define the syntax mapping / in such a way that

the syntax of each sentence consists of atriple (Ö,p,n),where / is the sentence itself and

p and n are the sets of unary relation symbols occurring positively and negatively in it,

respectively. Then it is not hard to see that the syntax is År-definable. For the semantics

note that if 
^S 

occurs positively in /,
ylt ? (oo)Sö(s) <+ 

=^s 
€ P,,(M) rJt F d(s).

Thus the semantics is Ar-deflnableinZFC(P,,).

Collect flnally all the absoluteness results presented in this section under a single

heading:

7.L6. Theorem. (1) The logics L.. and L*. are first-order relative ta KPU.

Yan A )n<K V öouiu...inin
j*el n<K
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(2) The logic L.,. is absolute relative ro KPU.

(3) The logic L..(Qo) is first-order relative to I(P.

(4) The logics L*6 andV*. are first-order relative /o KP * E1-sep + DC.

(5) The logics L..(Qr) and L*.(Qr) arefirst-order relative ro KP(Cbl)'

(6) The logics V*,IQ i, Lror, and L*r, are first-order relative to TC(P.r).
(7) The logic L*o is first-order relative to KP(P").
(8) The logic V*.[Qof is first-order relative to ZFC(Pq-).

(9) The logics L..(aa), L*.(aa), and V*., are first-order relative to a1-closed

forcing. tr

8. Absoluteness of M-languages

Let rc be a regular cardinal in this section. Since the sentences of M-languages are

not inductively constructed, we cannot investigate their absoluteness by methods given in
the previous chapter. As such they mostly resemble the game quantifiers. Next we show

that the logic M*n is first-order relative to rc-closed forcing. Recall that syntactically the

sentences of Moo* are pairs (7, L), where 7 is a rc-leaftree and L is a labelling.

8.1.. Lemma. If T is a n-tree andP is a n-closedforcing, thenP forcet i to b" o
K-tree.

proof. LetT bea tree and suppose p € P is such a condition that forces f not to be

a n-tree. Thus there is a lP-name b and ps ) p, which forces b to be a path of length rc in

?. Using rc-closedness at limits, one is able inductively to construct ta e T and po for

a I n in a such way that

po ll- b (p) - io for every P < a.

Now (t*) a<K is a path tnT, and thus 7 is not a K-ttee.

8.2. Theorem. M*o is first-order relative to n-closedforcing.

Proof. Syntax: By the above lemma the predicate "7 is a K-tree" is absolute relative

to rc-closed forcing. Since rc-closed forcing introduces no new sets of cardinality less

than rc, the predicate "? is a n-leaftree" is absolute relative to rc-closed forcing. The

absoluteness of the labelling properties is trivial.

Semantics: Recall first that »11 ? ö if and only if I has a winning strategy in the semantic

game S(fi, @). Since the syntax tree of / is a rcJeaftree, the semantic game is both rc-

closed and rc-open, and, moreover, if we denote G : S(Dt, @), a rc-closed forcing [o."9t
both the canonical closed game G. and the canonical open game G, to equal S(rrt, ö).
Thus the absoluteness of semantics follows from Lemma 4.5' tr

In the above result we use the rc-closedness of forcing for showing the absoluteness

of both syntax and semantics. In fact, the syntax of M*., is not E1-deflnableinZFC(P.r)

tr



44 Iyrki Al<kanen

and it is not even upwards persistent relative to q.r-distributed forcing (such a forcing that
an intersection of countably many dense initial segments of IP is dense). To see it, take
a bistationary set A q u1, aurtd let 7 be the tree of closed subsets of A, ordered by end
extension. Since A contains no closed unbounded set, 7 is a rc-leafuee. Label T trivially:
let L(u) : ! if u is not a leaf, and a true atomic sentence otherwise. This makes (7, L) a
sentence of M§*. However, we are able to force a closed unbounded subset into A with
an a.r-distributed forcing (see [BHK]), and thus (7, L) is no longer a sentence in M*., in
the generic extension ofthe universe.

A similar counterexample can be provided for the semantics: for a set A C u1,
denote by O(A) the linear order

» Tlo,where4o- f 1+Q tf a€ A'and

a<et 
'rrere'tlo -le otherwise'

By works of Convay it is known that O(A) = O(B) exactly when AÅB is non-stationary.
Moreover,

O(A) F Vro lrrVrzlrz 1r, (*, - sup {*0, Tt, . . .})

if and only if A contains a closed unbounded subset, and if A is non-stationary, we know
that V wins the semantic game. However, if A is bistationary, we are able both to force it
to be non-stationary and to force it to contain a closed unbounded set. Thus the semantics

of this sentence of M*., is not absolute relative to a.r-distributed forcing nor trC(Pr).

On the other hand, the following lemma shows that the semantics of determined
M-, -sentences is absolute relative to ZFC(P 

") 
.

8.3. Lemma. I*t A e B betransitivemodels of asettheory suchthatPnis absolute
relative to (A, B). Suppose $ e A is such that lQ e M*'^lA. Then for each structure
SJJT e A

Wfi= ölA s fsrtt> öl'.

Proof. Since the position tree of the semantic game S(DJI, /) is a rc-tree, the expression
"G : S(!It, /)" is absolute relative to (4, B). Thus, if ,S € A is a winning strategy of l
in the semantic game S(rrI, d) in A, it is a winning strategy of I in B as well. The result
follows from the determinacy of { in A. !

We shall see later that there is no logic, absolute relative to ZFC(P*), which would
have the same expressive power as M§rn.



Absolute logics

III Model extending

45

Usually the absoluteness of a logic 4 is used in the following way. Suppose / is a sentence
in a logic f,, absolute relative to a true set theory 7. Letlltbe a structure. The absoluteness
of "C implies thatlJt 1c1"1 ö if and only if

there is a well-founded and extensional model 2l : (A, E, . . .) of theory 7
and elements t,p,m in ,4 such that the formula * lr@ p is true in il., t
collapses into r, p collapses into /, and m collapses into a model which is
isomorphic to fi.

Thus, in a suitable language L', we are able to write a sentence ty'6 such thatlll ?t ö
turns into an RPC(f,') expression "(lll;%) | tl;6 tor some 2[". Then we hope that by
examining this RPC-expression we will be able to derive some properties of the logic L.

For example, consider the proof of the downward Löwenheim-Skolem theorem (see

IB.Z)): it L is absolute relative to a true set theory in standard vocabulary and if a sentence

ö e Lhasamodel,ithasamodelofcardinalitylessthan ITC(@)l+. Toprovethetheorem,
take first a model lJl for $. Let then Ä be a transitive set such thatlJl and $ are elements

of A and ffi l, / is true in A. If B is a small elementary submodel of A such that
TC({d}) e Bandllle B,therestriction{lll(M nB)isasmallmodelof/. Inthiscase
the sentence ry'd expressed very little about the set theoretical part U,and nothing about
the model9Jt, but enough to derive the result.

In addition to the RPC-expression a A-expression is possible: starting from the

fl1-form of the truth predicate Fr in the same way as above one gets

ffi V, ö e (»tt;il) l rb'rt,some21.

Moreover, if the logic f,' allows A-interpolation, we may be able to translate the sentences

if a logic I is absolute relative to KP, then L 1 L*.. The first thing to note is that
one needs to show the result in a countable admissible fragment; thus the interpolation
is available. Barwise first turns the expression lJt ?c ö into a Å(tr"".)-expression.
Because the models of KP satisfy the Truncation lemma 2.2,he does not need to express

"2I is well-founded". Then he uses interpolation to remove the extra sort.

Interpolation is not the only known way of removing the set-theoretical extra sort.

In some cases one can reduce the question of the existence of a set-theoretical expansion
to the question of the existence of an ordinal, thus getting approximation results:

ffi l, g e fit l rl,"for some ordinal a.

An example of this approach is given by Burgess in [Bu], where he shows that every logic,
absolute relative toZFC, can be approximated with ,L""..

This part deals with a new method of removing the set-theoretical sort. The main
idea is based on games and Kueker approximations.
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9. Kueker approximations

Let ,9 be a set. The S-approximation of a set r is

*s:{As:A€ln,S}.

The S-approximation of an urelement o is as = a.

Consider then a structure tJt € Str(f). It is a pair (M,F) where M is a set and F
maps the symbols of the vocabulary r to their interpretations. Let N g M be nonempty

and let ,S be a set. The (l/, ,S)-approximation of the model lJt is

,mivs - (rf,.F,Ns),

wheref'r/s - { (rs,f(r)fl[) : r € ro,S]. Inotherwords,FNs mapsthesymbolsin
rs to the corresponding interpretations restricted to N.

The key idea in the S-approximations is that they are similar to the original sets but

smaller: if ,S is countable, each ^9-approximation is countable. The same holds for the

(l/, ^9)-approximations of a model fi e Str(r): almost every time lJtNs is a submodel

of IJI having a restricted vocabulary rs.

To get a better idea of what the notion "almost every time" in this context means, we

briefly consider the case where the set ,9 is countable. Let P be an n-ary predicate of set

theory and let rtt . . . ,trnbe sets. we say P(rfl, . . .,rf,) holds almost everywhere (a.e.)

if for any transitive set A containing 11 , . . . , frn the set

{S e P,,(A): P(r|,...,*1)}

contains a closed unbounded set. (This definition is independent of the choice of the

set A.) Moreover, if P is a Ef-predicate and P(r) holds, then P(r") holds almost

everywhere. Finally, using the game formulation of the countable closed unbounded fllter

one can see that for every predicate P and set r

p(*t) a.e. e Vse e TC(r)3s1 e TC(r)Vs2 e TC(r)... P1r{'o'"""'};.

For more details about the S-approximations see [Kl, K2'83].
The above results give rise to the following construction. Let 4 be absolute relative

to some true set theory T I KP, Q e L(r), and lJt € Str(f ). Consider the following

game, later to be called expansion game. Ateach of his moves, player V picks an element

16 from the model and an element s1 € TC(r, /). Similarly, at her moves player 3 picks

elements !; and ti from the model and TC(r, @), respectively, and an element a; from a

given fixed set. The sets X : {ro,Ao, .-.:) and 5 : Jro, ro, . . .} constructed during the

game define Kueker approximations lltxs, rS, and /s for the model, vocabulary, and the

formula. The purpose of player f is to play in such a manner that flnally

yfixs € sr(rs), ös € L?t) and tDfixs ?r(,s) öt
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The extra moves ao, at,. . . of I are used to construct evidence of this fact. The basic idea
(though the details vary) is that whenever I wins a play, the sequence ao,att... defines
aset-theoreticalstructure(A,E,m,t,p) inwhichp e L(t),rn € Str(r), andmlr.<tlp
hold, the elements t and p collapse into rs and $s , respectively, and m collapses into'an
isomorphic copy of lJlxs. Now, the above propositions give us a good reason to believe
(what is more or less true depending on the logic) that lll ?q") / holds exactly when
player I has a winning strategy in this game. This game playing can be turned into a game
sentence in such a way that I wins the game exactly when the game sentence is true in
the model !J?.

10. Expanders

In the end of the previous section we sketched a game during which a player makes
a sequence of choices determining a structure. This will be achieved with choices deter-
mining a theory in a certain expansion language and the theory describing the structure.
In this section we define "generic" theories (i.e. theories depending on parameters) which
are used for describing expansions. These "theories" are called expanders.

Suppose r is any vocabulary (for the base structure) and let o be a finite vocabulary
without any function symbols (for the expanding part). Let ,\ be an infinite cardinal (the

cardinality of the expanding part), and for each o (,\ let Ta : T U {r; : z < a } and
oa: o U {c6 : i < o), where r0,r1,... and co,ct,... are new constant symbols. The
expansionlanguage L.rr(r,.o,a)inthetwo-sortedvocabulary (ro;ro) consists of initial
sentences in L6o";.(ro) and L..(oo), these being of a different sort, and is closed under
propositional operations (negation, finite conjunction, finite disjunction).

10.L. Definition. Let T, o, and ,\ be as above. A Å-expander f is a function such
that dom(f) : 1<r for some set I and .F(u) is a sentence in L.,o(r,a,len(tr)) for each
u e dom(f').

Call a sequence a: ) -, 1 an F-branch.It defines a theory Ths(a) : Ur<.r f @li).
lf YJt e Str(r), an f -expansion of llt over a is a model (frt, ro, . . .iil,cg, . . .) of Ths(a)
such that every element of 2l is an interpretation of a constant symbol.

The branching cardinal Kr of an expander f is the maximum of l1l+ and ,\.

Recall again the sketch in the previous section: during a game, given a structure
l!t, we construct an expansion (rll, frot . . .;2!t, . . .) with certain properties. We intend to
define an expander f such that every f-expansion of Dt is one and to play the expansion
game broadly as follows. For even ordinals i < .\ player V picks ri in llt and a; in I,
and I acts similarly for odd ordinals. Thus we get a structure llt, : (ffi,re, . . .) and a

theory Th7(a), and are able to ask whether lll* can be expanded into an f-expansion
over o. We now distinguish two games: an expansion gqme, where the purpose of I is
to play in such a way that the f-expansion exists, and a co-expansion game, where this
role is reserved for V. Before exactly defining the games (making them slightly more
complicated) we take an example.
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10.2. Example. As our sketch reveals, we are mainly interested in set-theoretical
expansions (tJlt,. . .; A,E,t,p,ffi,. . .) of a structure !It, especially in those where the

constants t, p, and rz collapse into rs, ös , *td »llxs , where r is the vocabulary of l!t,
/ is a sentence, and the sets X and .9 are picked during the game. Now we construct an

expander which gives such expansions.

Let r be a vocabulary, let / be a set (e.g. a sentence in a logic), let ,\ be an infinite
cardinal, andleto : {€, t,p,m},where t,p,ffiareconstantsymbols. Deflneanexpander
F : F(r,@, ,\) as follows. Recall that by o) we denote the vocabulary o expanded with
.l constant symbols cotctt.... Now give alias names to the constants with odd indices:

let a; : ca;11 and bi : c+t+3 for i, < ,\. Give other alias names to all the constants (i.e.

terms) in o1: let to : t,tt : P,t2: m, andh+; : ci for eachi.
Choose I :TC(r,ö) "2 x 2. Definef in suchawaythat 7f a: ((rn,on,lr.))r<x

is an f-branch, Ths(a) contains the following sentences:

(1)

(2)

(3)

(4)

(s)

(6)

(7)

(8)

(e)

( 10)

for every i, j € Å.

€ ,\.

(lI) a;*(bir,. . .,biu) <-+ R(rir,...,fr j*) wheneverz; isak-aryrelationsymbolR e r,
'i, jt, . . . , j* e Å, and similarly for the other symbols in r. Here a1* stands for the

interpretation of a symbol aa in structure rn.

Note that intentionally the theory depends on 0, and Bi only for odd ordinals i.
This expander f (r,/, ,\) is intended to be used in an expansion game where f tries

to build up the expansion. It has a counterpart f'(r,Ö,)) intended to be used in a co-

expansion game. It is similar to f, except that aa and b1 refer to constants c46 artd c4iaz

instead of c4;q1 and c4iy3, respectively, and the sentences (6) and ( 10) depend on 02, and
'821 

instead of a2i11 and 0z;+r, respectively.

€ is extensional.

t is a vocabulary.

ai € 0,i tf zi € zi )

ai-ai rf :a:zi I 
- -'--J

a;*ai tf z;*zi )

a;f p tf z;4Ö J

t; e ai At; ( t nt; # p rf a2.;qr - 0 \
t; - a,zi+l if azt+l : 1 J

m € str(t).

h € dom(m) for every i e ).
b;- b1 < > ri - riforevery i,j € Å.

t; / dom (*) tf /zt+r - 0 I c

t;-bzt+1 if Czr+; -l ltorevery?'
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Before we can look at the F(r, /, ,\)-expansions, we need a couple of set-theoretical
concepts. As we know, the well-founded part Wf(A, E) of an extensional structure (A, E)
can collapse with a Mostowski collapsing function, and partial collapses are possible for
elements in the non-well-founded part. For example, if a is an element of A, it gives rise
to an unique subset {b e A : bEa } of A, the set interpretation of o. Suppose then that
a € A is a structure in A,i.e. a is an ordered pur (m,/), where / maps some symbols to
interpretations. Moreover, suppose that dom(/) is in the well-founded part of (A, E) and
collapses into a vocabulary r. Then a gives rise to an unique structural interpretation:
a structure in Str(r), the universe of which is the set interpretation of m and where the
interpretations of symbols are defined by /.

10.3. Lemma. I*t r be a vocabulary, lJt e Str(r), ond let $ be a set. Sup-
pose (llt, frot . . .1il, co,. . .) ,, an T(r, S, \)-expansion over ((rn, on, 0t)) <». Let X :
{ro, *r, . . .} and S : {ro, ,r, . . .}. Then t4 and p% are in the well-founded part of 21,

and they collapse into rs and $s, respectively. Moreove4 the structural interpretation of
m in 2l is isomorphic to lllxs . The same holds for F'(r, ö, \)-expansions.

Proof. Sincetheonlydifferencebetween anf (r,/, ,\)-andan F'(r,ö,))-expansion
is in certain constant names, we only need to show the result for an f (r, /, ,\)-expansion.
Recall first that the elements of ,4 have names tt for i < ,\. Since (A, E) is extensional
by (1), its well-founded part Wf(A,.E) collapses. The sentences (3)-(6) imply that
a3,a?,...,t%,aurdp% areinWf(A,E),andtheycollapseintozf, rf ,...,rs,and$s,
respectively. Thus, since (2) is a fu-expression, z» is a vocabulary. The sentences (7)-
(10) imply that m is a structure in (4,,8) with vocabulary t and universe {b6, br, . . .}.
Finally, the sentence ( 1 1) implies that the structural interpretation of m in 2[ is isomorphic
tolltxs. D

I-et ? be a )-expander for vocabulary (, :o). Now flx an enumeration @s : (ö ) «»
of all the sentences in L..(os) such that each sentence /6 is in L,.(o6). Since o is finite,
this enumeration exists, and we may assume ? =+ Qy to be primitive recursive. (The
latter statement holds, since we may assume o to be hereditarily finite and thus a p.r.
constant.)

10.4. Definition. Let f be a )-expander for vocabulary (r; o) and let sJlt be a
T-structure. An expansion gameEG(rN,.F) is played as follows: foli ( )

- V chooses r21 € M, and a2i € 1, and

- f chooses rzt+r e M, azt+r e i, and {t. e {AyQ), -(Dr(e)}.
Player I wins if there exists an f-expansion (llt,ro,...:21,...) over (on)r.^ which
satisfies tlt6for i < ,\ and sentences )url:@) - {(czt) whenever th alrrd i < ) are such
thatos(i) :1utbfu).

A co-expansion game EG* (DI, f) is played similarly, except that the players switch
roles, i.e. V chooses the sentencesTy';, the witnessing constant for ös(i) is c2lql instead
of c21, and V wins the play if an f-expansion exists.

4 20753
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Now we can clarify the principal construction method used in this work: having
a sentence @ in an absolute logic, we build expanders f and ?' such that it »lt 

= 
Ö,

then I wins EG(fi, F), and otherwise V wins EG* (rrt, f/). Then we either transfer the

expansion games to game sentences or combine the games and produce a sentence in
M**.

We continue by presenting the tools with which we can show that a player in an

expansion game has a winning strategy. Recall that a game is .\-closed if, whenever V

wins a play, he knows it before ) moves have been played.

10.5. Lemma. Let ? be a ),-expander and suppose lll is a structure. The game

EG(rn, F) is )-closed andEG* (»N, F) is ),-open.

Proof. A play of EG(9JI, f) gives rise to a sequence ro, nt,. . . of elements of 9Jt

and to theories Th3(o) and

Y: { 4;t. : i < 
^} 

u {1ur!(u) -tb(czr): i < ,\and<Ds(i) :1ut!@)}.

Moreover, f wins the play if and only if the theory Thy@) U Y has a model of form
(llt, rn, . . . ;21), where each element of 2I is an interpretation of a constant. But since Y,
when consistent, is a complete Henkin theory, it has a term model2[v. Thus V wins the

playif andonlyif eitherYisinconsistentor (ffi,ro,Uo,'..;2ty) isnotamodelof some

F(ali,). Since F(tr) is obtained from sentences in L6o';.(rUran(r)) and L..(oUran(c))
with propositional operations, in orderto decide whether (yJl, . .. ;2tv) is a model of .P(tu)

we need to know only a finite fragment of Y and a finite number of constants fro,It, . . ..

so, if v wins the play, we know it before playing all the ) steps. Thus EG(!JI, f) is

)-closed.
Similarly we see that EG* (»t,,f) is Å-open.

As we stated in Lemma 4.5, Å-open and )-closed games are

forcing in a sense. This is also true for the expansion games.

10.6. Lemma. Itt T be a ).-expander and let P be a notion of ),-closed forcing.
Suppose lJt e Str(r).

(i) If P forces ) to winEG(fr. F), th"n l wins E;c(rll., F)-
( ii) If P force s V to win EG* (ilt, F), th", Y wins EG. (YN, f).

Proof. It is enough to show (i), since (ii) is similar. Note that since IP adds no new

sequences of length less than .\, f is an expander in the generic extension and thus we can

construct expansion games there. The result immediately follows by Lemma 4.5, since,

lf G : EG(rm, f),1P forces Ec(rit, F) : G". n

The usual way of showing that I wins an expansion game EG(rm,.F) is to take a

suitable expansion (sJlt;il) and during the expansion game pick such elements from 2[ that

the theory constructed in the game will be true in (»ll;»). The following validity game

indicates, which kinds of expansions are suitable for this purpose.

tr

immune to Å-closed
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10.7. Definition. Let f be a.\-expander in vocabulary (r; o), lJI e Str(r), and

2t € Str(o). Avalidity gameYG(lJl,2l,3) is played as follows: for i < Ä

- V chooses r2i e M, cz.; e A, and a2; € -I, and

- f chooses :Lzt+t e M, cz;+t € ,4, and a2aq1 e I.
Denoting a : (atl«x, player I wins the play if (rll,nyt...;il,co,...) it a model of
Th7(a). If I wins the game Vc(rrf, 2l,F),we say that ? isvalidin (»It;%).

One defines a co-validity game YG* (lJl,2L, F) in a same way as the validity game

Vc(rff,2l,f),exceptthatVwinsaplay inVG*(9JI,ry,3)it(ffi,r0,...;21,cs,...) isa
model of Ths(a). The expander f is co-valid in (lll;2t) if V wins VG*(!II,il, f).

10.8. Lemma. Let F be a \-expander and let llt be a structure. If ? is valid in
(lJt;21) for some 4, thenl winsEG(ltl, f). Similarly, if f is co-valid in (!lt;21) for some

21, then V wins EG* (Ylt, ?).

Proof. We show only the expansion game case, since co-expansions are dealt with
similarly. Suppose I wins VG(rn, 2t, .F). She wins EG(fi,3)by playing Yc(rll,2!', F)
in the background as follows: at his ith move, V picks fr2i e M anda2; e 1. First player I
chooses such an element c2; e A that 4 | lutlt(u) - {(czr) it @FQ) : lutb(u). Then
she lets V move t2i, czi t a2i in the validity game, and gets an answer fizi+t t c2i+r 1 azi+t'
In the expansion game she moves rzt+t e M and azt+t e -I, and chooses Ty'; in such a

way that it is true in 2t.

Playing in this way she finally has sequences (ri);4.r and (c;);a1 of elements of
llland2l,respectively,andanf-branch a: (a;);<». Moreover, (rN,..';2[,...) isa
model of Th7(a), of each rh; Q a )), and of the Henkin sentences. Let (!8, c6, . . .) be

the structure (21,"0,...) restricted to those elements which are interpretations of some

constant. Since the Henkin sentences Srlt(") - t!(czn) hold in 21, E is an elementary

submodel of 21, and thus (IJl; E) is an elementary submodel of (lll;2[) (relative to

language L",r(r,d, 
^)), 

which implies the claim' !
As an application we show that the basic expanders of Example 10.2 are valid in very

many structures.

10.9. Lemma. Let r be a vocabulary, rrt € Str(?-) and let $ be a set. If 9J is an

end extension of (TC({»lt,r,Ö}),e,r,Ö,11t), then F(r,ö,)) is valid in (llt;%), and

F'(r, ö, \) is co-valid in Qn;21.).

Proof. We may assume TC(yJl,r,Ö) e 21. Player I wins the validity game

VG(rm, 21, F)by obeying the following rules'

- If. tt" is an element of D[t, pick 821"a1: 1 and r2k+t : tt. Otherwiselet p21r4 : 0

And r2k+t : rO.

- If t* is an element of TC(r,@), pick azk+t : I and 221"a1 : f*. Otherwise let

a2k+t :0 and z2kq1 : zg.

- Choose c4k+t : ak: zk andca4l3: bk: rk'
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Player V wins the co-validity game VG* (rn, ry, F') by obeying the following rules:

- If tp is an element of lJl, pick p21" : 1 and n2p : t7". Otherwiselet Azx : 0 and

rzk : r0, where rs is any element of 9/1.

- If tx is an element of TC(r, /), pick dzk : I and z2p : t*. Otherwise let o26 : I
and z2a : fi.

- Choose c4k : ak : zlc tfid c4k+2 : bk : r*.
tr

11. More expanders

The basic expanders f(r,ö,Å) and f'(r,ö,,\) of example lO.2 as such are not
very useful: the last two lemmas in the end of the previous section show that 3 wins
Ec(rrt, T(r, ö, Å)) for every structure !Jt. However, they become useful if we add more

features to them. This is done with regulators.

Recall from the previous section that a,\-expander describes an expansion through

a theory in the expansion language L.,o(r,o,\). A regulator extends this theory by
sentences in the language Lr.(os).

11.1. Definition. Let o be a vocabulary and suppose ,\ is a cardinal as in the previous

section. A),-regulatorBisafunctionsuchthatdom(R) : /() forsomesetland7?-(,rrr)
is a sentence in Lr.(o6n1-y) fot eachw.

Call a sequence a: .\ ---+ I aR-brancft. It defines a theory ThTs(a) : U;<.r G(a fi).
Astructure2t e Str(o1) isR-regularovera if 2I F Th73(a) andeveryelementof 2Iis
an interpretation of a constant symbol.

The branching cardinal Kv of a regulator 7?- is the maximum of lll+ and ,\.

We shall see later that if f is a.\-expander and? is a )-regulatol we can construct

such an expander F(R) that every F(R)-expansion is a R-regular f-expansion.

11.2.Definition. Let77- be a.\-regulator, and suppose 21 e Str(o). The validity
game VG(2t, R) is played as follows: for i < )

- V chooses c2; € A, and a21 e 1, and

- I chooses czt+r e A, and o"2i4 € I.
Denoting a : (a;);<x, player I wins the play if (21,cs,. . .) is a model of Th73(a). If I
wins the game VG(21, ?), we say that 7P-is validin2l.

The co-validity game VG.(21, 7l) is defined similarly.

11.3. Example. As shown in the previous section, each f (r,o, Å)-expansion was

set-theoretical and had certain properties. Next I present a regulator, by which we can

make the expansions well-founded.
Let 7 be an ordinal, o : {e ,t,p,m}, and let ) be an infinite cardinal. Similarly to

Example 10.2, rename all the constants in a1: let to: t,tt: P,t2: Ttt,andt3a.;: ct
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foreachi. Construct1,?c,'y'^ ---+ Lrr(os)insuchawaythatfora?-brancha: (lu)n.^

Th2(a) : {ti 4 ti : i,j < Å and'yzj+r I "'tzt+r}.

This regulator, which we denote by R(l),is valid in every A e V.r: the winning strategy
of I is to choose 'yzt+r : rank(t;). Moreover, every R(1)-regular structure 2[ is well-
founded: for each 'i the set-theoretical rank of tfl in 2t is less than or equal to'yzt+t.

The obvious counterpart of the above regulator, R'(l), is co-valid in every A e V.,r,

and every Rt(1)-regular structure is well-founded.

If ap: ,\ ---+ 16 for k :0,. . .,n ate functions, denote by ,o . ar, . . an the function

Å * 1o x .I1 x ...ln, i å (as(i),or(i),...,o,*(i)).

11.4. Lemma. Suppose F is a \-expander andR1, . . . ,Rn are Ä-regulators. There

exists a Ä-expander f* : ?(Rt, . . . ,Rn) such that the following hold.

(i) If dom(F) : -I<) and dom(Rx) : If,^ for each k, thendom(f.) : /*(r, where

I*:Ix11x...xIn.
(i» If 

" 
is valid in (ltt,2l) and each Rp is valid in \, then ?* is valid in (llt,il).

(iii) Let (llt,rn,...;21,10,...) be an f*'expansion olt€r as'at"'an. There exist
permutation ("9)u..r, ...,kT)«x of (c),;ax such that (lJt,rs,...;21,"3, 

"?,...)is an F-expansion ov€r as and (21,"$,"f ,...) ," Rp-regular over apfor every
le : 1r... )n.

(iv) rcy- : max{ny, KRrr..., K'--}.
(v) The mapping (f ,Rr,. . .,Rn) ;+ F* is p.r.

Proof. We show the case n : 2 only, the general case being similar. For nota-

tional convenience suppose the expander f produces sentences in vocabulary (r.r; or ) :
(r U {rs,yo,.. .})o u {cs,do,. . .}) and the regulators 3' and f" produce sentences in
vocabularies o\ : o U {16, d!0,...} and o'l : o t) {"!d,dt,...}, respectively. Let the

vocabulary of the expansion language of f* be (q; oi), where o\: o u {"ö, dö,'..).
Let functions (, (', and C" rename constants in such a way that for each e

ektr): "i, ((cs+r) : dät+r, eku+z): dät+2, C(dt): där,

C'kL,) : "i, e'k\n+) : d\r+2, C'k\o+) : d\t,, C'(d') : däo+r,

C" k!) : "i, e" k!n+) : dä;, C" kln+) : dät+r, e" (d!i') : där+z'

These are the permutations mentioned in (iii).
Suppose the domains of f , F' , and f" are 1<), 1'<), and l"'),respectively, and

let-I* : I x Itx.f/'. Foranelement w" - ((ai,a'i,a'f))i<t.of 1*S) letw: {o)i.n
and deflne similarly w' andw".I-pt

( r@ri)ld if len(u.) :37,
f*(r*) : I F'(w' U)t('] if len(ar.) :3i * l,

lF"(r" U)[("] if len(tr.,.) :3i +2.
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This makes F* an expander. The claims (i), (iv), and (v) are trivial. For (iii) note that if
a* is an f*-branch, then

Thr. (o.) : rhr(a)[(] u Thr' (o')[('] U Ths" @")lC")'

Thusanf*-expansionisamodelof e.g.Ths(a)[(],andhence(iii)holds. Soweneedto
show (Ii).

Claim: If I wins the games vc(rrt, 21., ?), vG(21, ?t), and VG(21, f"), she wins also

vc(rm, %,f").
player I wins vc(rn, 21, f*) by playing the other three games in the background. In

the validity game VG(9II,%, f*) elements are picked from DJt, 21, a::rd the parameter set

.[*. Elements from llt are picked only in the games VG(rn, », F*) and VG(!JI, », f),
so their reduction is trivial, as is the reduction of the parameters. Thus the whole problem

lies in reducing the elements picked from 2I. The following strategy is applied.

First V picks cfi e A in Vc(rrt, 9.,,F*). Player I lets V pick cfi in every phantom

game (i.e. co : cL - cld : cfi), and gets three elements do, d!0, dfl in retum, each from a

different phantom game. She reserves her next three moves in VG(IJI, U., f") for these

elements and continues likewise. This sets the reducing function /3. Meanwhile she

continues the phantom games as follows. The first move of V in VG(IJI,», F) was cfi,

and then I answered do. She lets V pick dlo and dff at his next two moves, then cf , and

so on. The other phantom games are played in a similar manner. See Diagram 2 for the

whole construction.
Supposethat3 winseachplayontheright. Now, if a* : ((or,o!n,o!n'),(b;,b'n'b'i'))<»

and a, a' , and a" are as above, then for example

(l!1, rs, a0, . . . i 21, cö, do, d!o, d,!d, . . .) is a model of Th7 (a),

which by our variable renamings implies

(lJl, rs, Uo t . . . i *, cö, do, cl, dlo, ci, d,!i, . . .) is a model of Ths (a) [(].

Thus I wins the play on the left. tr

As an application of the lemma consider the expander F : f (r, 4i) of Example I0.2

and the regulator n: R(l) of Example 11.3. Now F(R) is an expander. Moreover, if
IJt is a structure in vocabulary r, arrdl is so large that!!t, T, and $ are elements of Vr, then

f (R) is valid in (llt;V.r, e, r, Ö,DI). On the other han-d, if. (!Jt, . . . : A, E, t, P, m, . . :)
is a f1a;-e*p-.ion, thän (4, E) is well-founded andt%, p%, arrrdzn{ collapse into rs,
ds, and into a model isomorphic with lltxs for certain sets X and ,S.

12. Expanders and logics

The final stage in our sketch is to turn an expansion game into a sentence of a logic.

That is, having an expander f we construct a sentence / such that I wins EG(glt,1F) if
and only if 4t is true in fi. The expansion game is so designed that the transformation- into

a game sentence is particularly easy.



vc(rrt,%,r.)

ro, cö, (oo, a!0,, o'd)

Uo, do, (bo ,b'o,b'd)
rt, cI, (at, atr, o'l)

yr, d!0, (bt,b'r,b'{)

fiz, c;, (or, g,;, o';)

Az, dld , (br, b'r,b';)

rz, cä, (or, a\, o';)

il, (bt,b\,b'l)

"ä, 
(o+,, aL, o'l)

12.1. Lemma.

ör:
t*.Qr:
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vc(rrt,2L, F) vG(2L,Rt) VG(2l,nz)
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=

V

=

V

l
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=

V

=

V
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Diagram2: The phantoms of Vc(rrt ,%, f*).

Suppose T is a ),-expander. There exist game sentences

(Y*ro A )rzr+, V )0.^ A ,hor...azi+, and
az;eA azi+reA - i<.\

()*ro V Yrzr+, A )0.^Arbl,,...azi+,
azt.eA azi+teA i<.\

inVoy, where each tft- and r![ are in L..(rs), and the following claims hold.

(i) )wins EG(rm, f) if and only if llt_L Ör.
(ii) Y wins EG* (rtrt, f) if and only if lll 

= 
07.

(iii) n - KF.

(iv) The mappings f ,- Ör and F ,- Ö7 are p.r

Proof. The game sentence $y drectly codes the expansion game of the expander f.
The problem of the construction lies in eliminating the extra expanding sort from the

sentences given by the expander: if the expansion language had no sentences of the
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expanding sort, one could directly set r!* as F(w). Now recall that during the expansion
game a complete theory about the expanding sort is constructed using the enumeration Og
of the language L..(os). This complete theory can be used to eliminate the extra sort.
The elimination rule is simple: replace each initial sentence of the expansion language
occurring in the complete theory with "16 : try".

To start with the technical details, suppose that the domain of f is .I<Å . Let A : I x2.
For tu : ((oi,li))i.t. e A<^ let F(tu) be the sentence ?((oi)i.u), and let

G(r)

Thus f'gives the same sentences as F, and G enumerates the complete theory on the
expanding sort. For w e A3^ denote the cumulated theory by F(Tr.') : { F(wli,) : i, <
len(tr) and i < ) ), and tet G1u.') be obtained similarly from G.

The sentences of the expansion language were obtained from initial sentences in
L uo"*(rx) and L..(o s) by propositional connectives. I-et H (u , u) be obtained from the
sentence r'(a)by

- replacing each initial subsentence of .F(o) which exists in G(u.,) with ro : fi;, and

- replacing each initial subsentence of r,(o) the negation of which exists in G(u)
with rs f rs.

However, it F(u) has initial subsentences which, or the negations of which, do not exist
in G('u), let H(u,tr) be undefined. This function ä does the sort elimination, but we
cannot simply choose tfs- as H(w,to), since the initial subsentences of sort 1 occurring
in f'('u) might not yet be present in G(u). Moreover, we must settf;- identically false if
it turns out that G(tr) is inconsistent.

Define a function f : A<^ ---+ Ord in such a manner that for eachw and i < /(tr) the

sentence H(wli,Tr.,) is defined: let /(0) : g,

:{
)rrb@) + ?h("r*) if len(u) -ar(k) if len (*) -
-Or(/c) if len (r) -
frs - frs otherwise.

4k and @r(k) - lurb(u),
4k+2andlzn+r:0,
4k + 2 and 1z*yl - 1, and

it H (u I f (*), wA (r)) is defined,
otherwise,

and let f (u) - supi(ren(u, ) f (uli) if len(u) is a limit. Deflne

F* ( u\- [ a (* I f (u) , w) if deflned, and
\*/ Lro-frs otherwise,

and let F* be obtained from .F,* in the same way as f is obtained from F. Now the

deflnitions imply: if o:) - A, then F.(r) : {H(ali,a) : i, < 
^}. 

Finally let for
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w e A<) of even successor length

F. (wlk)
ro*ro

fro:fro

if len(tu) - 4k + 2,

if len(tl) - 4k + 4 and there exists a sentence r7 e G(r)
such that -,rl e G(n), and

otherwise.

th- :

This ends the construction of the game sentence $y. The other game sentence /l is
constructed likewise. The claims (i) and (ii) are shown similarly, and claim (iii) is trivial,
so we only show (i) and (iv).

ClaimA: I wins EG(rn, f) if and only if DJt I ör.
"+" Suppose I wins E;G(ylt,F). Player f wins the semantic game otllt I Qy
by playing EG(rN,f) in the background as follows. Suppose V moves rz.; e llt and
(orn,^lro) e A. Player I lets V trroya r2i,a2; inthe expansion game and gets an answer
frzi+ttd2i+r,rlti. Let her move frzt+t e llt and (ozt+t,lz;+t) e B in the semantic game

where ^l2i+r : 0,if $i : @r(i), 216rd "yzt+t: 1, otherwise.
Suppose then that f wins the play in the expansion game. Then we have a sequence

a : ((a;.,1;)),;<.1 and elements tr6, zq, . . . such that for some structure 2[

(7,*o,rt, . . .;») 
= 

F(a) tt G(a).

Clearly (lJl, rs,. ) F H (ali, a) for every i < 
^ 

(H replaces true subformulas with true
subformulas and false ones with false ones); thus each ry'- is satisfied in (!Jt, rs, . . .), and

I has won the semantic game.

"t-" Suppose f wins the semantic game of ,lt I ör. Player I wins EG(r0t, F) by
playing S(lll, ör) in the background, mapping the moves similarly to the previous case.

Suppose I to have won the play in the semantic game. Denote a: ((a;,n))<>,. Now

(llt,rs,, . .) F |;os;for every even successor ordinal i < .\.

This implies that G(a) does not contain any sentence with its negation, and is thus a
consistent and complete Henkin theory. Let2l.be the term model of G(a). Effecting the

replacement F(u) r-. H(w,a) backwards we see that (fi, .. .;U) is a model of F(a).
Thus I wins the expansion game.

ClaimB; The mapping F r--+ $y isp.r.

Mapping f v- F is trivially p.r. Since the enumeration @s is p.r. relative to ), the

mappings T,- G,f ,-. F,andf t* Garep.r. Thus f v* H isp.r.,andsince/was
defined by primitive recursion, F t- F* is p.r. Thus (?,r) - lb- is p.r., which implies
that F r-+ @s is p.r. tr

Recall again our principal construction method: given a sentence, say /, in a logic we
try to construct a pair of .\-expanders (f, f') such that if @ is true in a structure, say 9II,



58 Iyrki Ak<kanen

then I wins EG(IJI , ?), andotherwise V wins EG* (rlt,f). Plays of the expansion games

give rise to set-theoretical expansions ofthe structure !JI, which corroborate certain facts

concerning Kueker-approximations lltxs and/s of the structure lJI and the sentence /;
these approximations are determined by the moves made during the plays. For example,

an ?-expansion may verify that /s is true inlJlxs. Suppose then that we are able to
play both the expansion game and the co-expansion game simultaneously, and that at the

end two plays define the same Kueker-approximations. Now, in favourable conditions,

the expansions corroborate controversial facts: in our canonical example the f-expansion
indicates that $s is true inlJtxs , and f'-expansion indicates it to be false. This implies

that if we play the games simultaneously, either I loses the play in the expansion game

or V loses the play in the co-expansion game. Since the former game is closed and the

latter is open, the player who will lose (his/her) game will know it before the end of the

game. This fact can be used to truncate the game and to transfer the pair of games into a

sentence in Moos.
What was required from the pair of expanders above was that one could play them

simultaneously tying certain moves together, and that this kind of simultaneous playing

resulted in either 3 losing the expansion game or V losing the co-expansion game. Next

we deflne a couple of concepts to express these requirements: the former is expressed by

saying that the f-branch and the ft-branch meet on a cofilmon ground, and the latter by

saying that the expanders are disjoint'

12.2. Definition. lret H be a set. )-expanders F and f/ with domains -I<^ and

1'<),respectively, lieonacommongroundHlf I: H x"'and It: H x"'. Moreover,

7f a : ((o0,...)),;<.r is an f-branch and a' : ((a!;, '.'))r.^ is an f'-branch such that

at : att for each i, we say that the branches a and at meet on H.
Expanders F and F' arc disioint if for every f-branch a and for every f/-branch

o/ either the branches do not meet on a common ground, or there exists no structure

(»tt;21;E) such that (!Jt; U) lThy@) and (rJt; !$) I Ths,(o').

12.3.Example. The basic expanders f(r,/,)) and f'(r,Ö,,\) lie on a com-

mon ground TC(r,$). Moreover, if (yJt,r,o,.'.;2I) is an f-expansion over a and

(lll,rs,...;U:') is an f'-expansion over a' such that a and a' meet on TC(r,/), the

structural interpretations of rn in 2I and N are isomorphic, and t in 2I collapses into the

same set as t in 2[/, as does p inil andillt .

l2.4.Lemma. If F and f' are disjoint ),-expanders andllt is a structure, either)
does not winEG(lJl, f) orV does not winEG* (lJt, Ft).

Proof. Let dom(f) - (H x.I)<) and dom(f') : (H x 1')'), i.e. suppose that H
is a comr.non ground for F and f/. Suppose, for contradiction, that f wins E;G$n, F)
and V wins EG* (tJN, f'). Play the two games simultanously as follows: for i < )

- pickz2; € M,az.i e H,bri € Itandl:t;bythewinningstrategyofVinEG(!JI,f'),
and let V play r2i, (a2i,b2.;) inEc(rn, f), where b2; is arbitrary, and
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- pick rzt+r e M, azt+r e H, b2;q1 € 1, and tlti by tJ;Le winning strategy of 3
in EG(IJI, ?), and let 3 play t2i+rt(orn+r,bto*) in EG*(rm, ?t) with an arbi-
ffal.y bLt+t.

l-et a : ((rn,b,))u<^ and a' : ((aub'))u.^. The structure (l!|,rn,...) has both an

f-expansion over o and an f'-expansion over a' , arrd the f-branch a and the f/-branch
at meet, which contradicts the disjointness of the expanders. tr

12.5. Lemma. Suppose f and F' are disioint Ä-expanders. There exists a Mns
sentence Q such that the following conditions hold.

(i) If lwinsEG(ltt,f), thenrll= ö.
(i» IfV winsF;G* (lll, F), thenrlt * ö.

(iii) n:max{nr,Kr,}.
(iv) The mapping (F, F') ;+ $ is P.r

Proof. I-et

6, : (Yrr 
"|*o=oruYo)n.^ 

.A^1hoouo..';ui and

ö7,: (=ro,,Yo,rou 
oo[o,)0.^.A 

/ä0a0..., a

be the game sentences given by Lemma 12.1 such that

I wins Ec(rrt, f) if and onlY if fi I Ör, and

V wins EG. (rn, f) if and only if IJt I 0?, .

Fornotationalconvenience assumethatA: H x I andA' : H x.I/, withIlthecommon
ground of f andf'where the games are disjoint.

First consider sequences A : lut) t. such that, for each i, ua,t is the variable symbol r;,
,u4i+t : (t;., ou,ol) is in H x I x I' ,ua;r.2 is the variable symbol yi, andu4,;a3 : (t;,b6,b')
isinff x I x It. Givensuchz,letw6: ((sl, a;),(h,å;))+l+r<r"n(a; anddenote

Ya: { rh- i w:wal'i forsomei}.

Similarly, denote w| : ((s;, ,',) , (t* Öl))+,;+r<r"n(a; , and likewise obtain Yt, ftom $:r, .

Let the syntax ftee T of / consist of those sequences a of the above form for which the

theory Yat,; U Y!,.n is consistent for every z < len(A).

ClaimA: 7 is .\-leaftree.

Clearly ? is a Ä+ l+ree. Suppose, forcontradiction, thatI is aleaf of 7 having

height Å. By first-order compactness Y, u Y! is consistent. Now the length of both u.ra

and w', is Ä, and they give rise to an f-branch a and an Ft-btanch o' which meet. Let
(lll,rs,...)b"amodelforY,TUY!. Asshownintheproof of Lemma12.l,thereexist
structures 2t and 2ll such that (lJt, ...;21) is amodel of Thp(o) and (IJI,...;2I') is a
model of Th7(a/). This contradicts the disjointness of F and ft.
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Now, if u is a leaf of T, then len(A) -
inconsistent. Define labelling L as follows:
when len(a) - 4i, let

Iyrki Ak<kanen

4(i + 1) for some i, andthe theory Y, U Y! is
let L(A) - A Y, if u is a leaf, and otherwise,

L({r) - Yrt,
L(un (*o,a;)) - )r;, and

This makes up a sentence ö - (T,L) in Mn», where rc need not be larger than the
maximum of 111 x I x ltl+ and ,\.

Claim B: If I wins EG(IJI, f), then ,lt 
= 

ö.

Suppose I wins EG(rn, f). Then ffi I ör. Player f wins S(r[t, d) by playing
S(!ll,ör)inthebackgroundasfollows:whenVpicksr; e Mand(tu,on,at) e HxIxlt
in S(![t, /), 3 lets V pick r; and (s* at) e A in S(llt, ör), and gets an answer Ut. € M,
(ti,b) e A. She moves h and (to,bn,bt) tor an arbitrary bi in S(!m, /). When the

semantic game S(9Jt, {) ends, she continues S(IJI, ör) in an arbitrary way. If I wins the
play of S(DJI,Sy),then trivially f wins the corresponding play of S(9Jt, /).
Claim Ci If V wins EG*(!It, f), then ,lt I ö.

Suppose V wins EG*(rn, f). Then ,It 
= 

ö7,. Player V wins S(rn, d) by playing
S(Ylt, ö7,) in the background in a similar way to the claim B. Suppose then that we have
played up to a leaf u in S(rlI, d), V playing in S(!JI, /i,) with a winning strategy. Now
we know that (9Jt, . . .) F Yl, and since Y.7 u Y/" is inconsistent, (ffi, .. .) is not a model
of Ya. Thus V won the play of S(rrI, d).

Claim D; The mapping (3,?') r-+ / is p.r.

Lemma 12.1 implies thatthe mappings (f ,il) * Ya and(f' ,a) ++ Yt, are p.r. The
testing of whether Yd U Y; is consistent is p.r., since the theories are quantifier-free (see

the proof of 12.1). Thus (F, f') r--+ ? is p.r. The labelling is trivially p.r. tr

IV Logics absolute relative to various set theories

In this final part of this work we show certain characteizations and limits for the expressive
power of logics absolute relative to various set theories. We start from weak set theories
and proceed towards stronger ones. In the three first sections we present new proofs
for certain known facts; for example, we will see that I*. is a maximal logic absolute

relative to KP * Inf, and that every logic, absolute relative to ZFC, can be approximated
with -Loor. In the two last sections we investigate to what extent this special position of
troo. among logics applies to M-languages.
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13. Logics absolute relative to KPU

We begin applying the concepts introduced in the previous part by presenting a result
of Vii?iniinen in [V2]: if the syntax of a logic, flrst-order relative to KPU, is finite, then
the logic is a sublogic of L... Since we are dealing with a logic, flrst-order relative to
a set theory with urelements, we assume here that the set-theoretical universe contains
urelements, that vocabularies and sentences are pure sets, and that the elements of the
structures are urelements.

13.1. Lemma. Let L be first-order relative to KPU, let r be a hereditarily finite
vocabulary, and let $ be a hereditarily finite sentence in L(r). There exists a pair of
disjoint w-expanders F, 3t such that the following conditions hold.

(i) If ,lt F t ö, then ) wins EG(ltt, T).
(iil If ylt*r. ö, thenY winsEG*(llt,?t).
(iii) The branching cardinal of ? and Ft is u.
(iv) The mapping (r,ö) * Q+ is p.r

Proof. Let o : (€,U,t, p, m, s R) Re,, where € is a binary relation, [/ is an unary re-
lation, and all the other symbols are constants. We construct the expander T by modifying
the basic expander of Example 10.2 as follows. Let r. and o. be the vocabularies r and
o, augmented with u new constant symbols xorxltr. . . and aT,bo,at)bL .. ., respectively.
For each hereditarily finite set r let p,,(a) be a flrst-order sentence such that whenever
(A, E) ? U*[a), then a is in the well-founded part of (A, E) and collapses into r. Let the
domain of ? be 1<', where I : {0, 1}. Let to,tt, .. . enumerate all the constants in o..
Define f in such a way that for any f-branch a : (c"t)<, the theory Ths(a) contains
the following sentences.

(1) Finite subset of KPU.

(z) t"o(d 
^ 

p"(t) A Aae" pR(sR).

(3) m € Str(r) np e L(t) Aml4g p.

(a) dom(rn) e U.

(5) b; € dom(rn) for every i, e a.
(6) bi : bj * *o : rj for every i, i e a.

(T :" e dom(m) i.f az;+r 
? ) for every i e u.' tt:bzt+t fia2.;q1 :l )

(8) sn-(bj,,...,bj*) <+ R("j,,...,nj^) forevery jt,...,jn e u andforany
n-ary relation symbol R € r, and similarly for the other symbols in r.

Let Tt be defined similarly, except that constants a; are used instead of b;, and in the

sentences (7) az; is used instead of a2;'ry.
The claims (iii) and (iv) hold trivially, and the expanders clearly lie on a common

ground (0). The claims (i) and (ii) are shown similarly; we show only (i) and that the

expanders are disjoint.
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Suppose lJl I cO) $. Let A be a transitive model of KPU such that lll, $, r e A
and the sentences (1)-(4) hold in 2l: (A,e,AlU,r,$,111,...). By Lemma 10.8 we

need ro show that f is valid in (Dt; 2I). Player I wins the validity game VG(9JI,\, F) as

follows. Suppose V moves tz,i € M , and aa € A. We may assume about the enumeration

t,i. (i < a.,) that tt has already been chosen during the play. Let ! pick nzi+r : t.; and

at:0if t.i e M,andr2i+r: 116 and ai: I otherwise; andletherpickbi : rt. Clearly

now (1)-(9) hold in (llt;U.).Thus (i) holds.

Consider first an f-expansion (llt,rn,. . .i A, E,U,t,plrrl) .. .) over (o;)4a.. De-

note2l : (A,E,U) and X : {r0,rr,...}. Since 2I is a model of (1), the rela-

tion .E is extensional. Because 2l satisfies (4)-(6), there exists a collapsing function

c: wf(21) -- (v, e , u) such that c(ö;) : u;. The sentence (2) indicates that each s6 like

t and p are in Wf(2{), ,(rn) : R, c(t) : r, and c(p) : @. Sentences (+)-(Z) imply that

the universe of rn collapses into X, the universe of fiiX. Now the vocabulary of c(m)

is c(t) : r, and thus (7)-(9) imply c(rn) : lJllX. Since both il and' its well-founded

part Wf(2t) are models of (a sufficiently large part o0 KPU' Wf(2I) models (3) by the

absoluteness of 4. Using the absoluteness of .C between c//Wf(2t) and the real universe

we flnally see that rJtlx lr Ö.

Similarly, if an f/-expansion (frt,ro, . . .i A' ,. . .) exists, then IJI|X f 2 $. Thtts

the ft-expansion cannot exist together with an f-expansion (ffi, ro, . . .i A,. . '), and we

have seen that the expanders are disjoint. tr

13.2. Theorem. Let L befirst-order relative /o KPU. There exists a primitive recur-

sive translation t: (L x Voc) IHF - + L.. such that

mlO e lttlt(d.
proof. If r and $ e L(r) are hereditarily finite, the previous lemma gives us a

disjoint pair (T,f/) of expanders on a common ground. With Lemma i2.5 this pair turns

into a sentence it M.., and the final turn into a sentence of Laa is made with Lemma

5.5. tr

Since tr.. is flrst-order relative to KPU (Theorem 7.16), we have the following

result, which appears already in [V2] Corollary 3.1.5:

13.3. Corollary ([V2]). L.. is the strongestfinite logic which is first-order relative

to KPU. tr

There is not much room for extending this result. As shown in Theorem 7.16, the

logic L..(Q6) is flrst-order relative to KP and relative to KPU+Inf, but as it is well

known, the quantifier Qs is not definable in Lr* We cannot even extend the result to

logics which are absolute relative to KPU: consider the following (somewhat artificial)

logic L, for which

ö e L(r) aa ö e L,,(Qo)(r) and the axiom of infinity is true, and

»t ?Le) ö <=+ YJt 

=L--(eo)(,) 
Ö,
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This logic is absolute relative to KPU and semantically equivalentto L,.(Qs).
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14. Logics absolute rclative to KP+Inf

The logic I-. has a remarkable position among absolute logics. Barwise has

namely shown that L*. is the maximal logic, absolute relative to KP * Inf (see [B2]).
We begin this section by showing this result in its full power: each logic, absolute relative
to KP * Inf, has such a translation into L*- that admissible sets containing c.r are closed
under it.

14.1. Definition. If ,C is a logic and A is a transitive set, the logic La is defined by

Ö e Le(r) <=+ r, Ö e A and lÖ e L(r)lo
lJtlro ö <+ ffi1, ö.

We denote L.q : (L*.)A. lf L is absolute relative to KP+Inf, for every vocabulary
r and for every sentence / there exists an admissible set A (e.g. H * for rc : lfC(r, d) l+)
such that ö e Le(r). Moreover, if 4 is first-order relative to KP, then La : L 11 A for
admissible sets A. Otherwise the inclusion Le e L o A may be strict.

l4.2.Lemma. If L is absolute relative to KP+Inl then for each ordinal 1, for each

vocabulary r, andfor each sentence $ e L(r) there exists a disjoint pair (f.r,Fi) of
u-expanders so that the following conditions hold.

(i) Suppose A is admissible and ö e L,q,. There exists "y e A such that

ffi\, ö +)winsEG(llt,f",), and

ffi f , ö + Y wins EG* (!Jt, ?'.r).

(ii) rcr: KF,: max{lTC(r,ö)l+,1+}.
(iii) The mapping (r,ö,1) e (f1,"'.r) is fn

Moreover, if the logic L is first-order relative /o KP+Inf, we may assume ft : fo and
f\: f6fo' every "Y'

Proof. Let o : (e,t,p,rn) andlet 3u : T(r,$,u)be the basic expander of
Example 10.2. I*t r, and o. be r and o, augmented with constants to,rt,... and

corctr..., and let f6,11,... enumerate the constants of o.. Denote a: ct, g : c3,

TLu : c5, and n; : c6+2i+t for i < uu. Define a regulator R-, as follows: let its domain
be f<',where I : u x (f + 1), and let its values be such that for b : ((at,11))aa. the
theory Th73(b) contains the following sentences:

(1) A finite subset of KP * Inf.
(2) 0(t,p,o), where 0 is the fu-sentence for which

KP * Inf F 1r0(t, p, *) # p e L(t).
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(3) m e Str(t) Am lr;-) p.

@) pt(nt) Ani e n. for every i < u.

(t) ',',1H itrZ:1:',I ?'* j, ) ro. every i e a.

(6) g is a one-to-one function from dom(rn) to n..
(7) tt, * t,; if 1z,i+r - 7, for i < 3.

(8) ,r # t1 if 1 * 'yzi+r I tzt+t, for every i, i 1 u.

I,et F., : Fa(R) . Construct f{ similarly by starting from the basic expander F' (r , $, u) ,

and adding a regulator 7lf , similar to?-, except that the constant names a, g, andn6 for
i 1 u refer to constants c7 with even indices, a2; is used instead of a2,;11in (5), 726 is

used instead of "yzt+r in (7) and (8), and (3) is replaced by

(3') * € Str(r) Am Vr@ p.

The claims (ii) and (iii) are trivial, so we need to show (i) and that (f , f') is a disjoint
pair of expanders.

To see (i), suppose ö e Le(t) andlll ?r<"1 Ö. Choose such r e Athat0(r,$,r)
holds in (,4., e). Let 1 - max{rank(r),rank(@),rank(r)} + 1 e A. I-rtlP be a forcing
which forces the model !/l to be countable. Because of Corollary 10.6 it is enough to show

that I wins E;G(»l,f) in the generic extension of the universe relative to IP. Thus, let us

nextworkinthegenericextension. LetBbeanadmissiblesetsuchthatA e B,llle B,
and the generic enumeration f : M -- a., is in B. I.r:t E : (8, e, T, ö,!fi). The expander

fa is valid in (llt;l8), since TC(r, 0,»l) e B. We need to show that 7{, is valid in !9:
Lemma 11.4 implies that then f, is vatid in (!Jt; E), so thus I wins EG(IJI, .F.r).

Player I wins VG(8, R.r) by playing as follows. Suppose V picks c2.i e B. We

may assume about the enumeration t; (i < u.,) that an interpretation of t; has already been

chosen. Let I choose a2i+r : tt I 1 if tr is an element of c.r, and ezi+r : 0 otherwise,

and let her choose 12i+r: rank(t;) if rank(t6) ( 7, and 7 otherwise. Let her picka: r,
g : f ,fru: U,andnA: k for k < u.

The expanders f (r,S,u) and f'(r,ö,o)have a corlmon ground TC(r, @), and so

the expanders f, and ftrhave a corlmon ground TC(r, d), W" need to show that they are

disjoint. Suppose (lll, rs, . . . i A, E,t,P, n'1, . . .) is an fr-expansion over an ?-,-branchb.
Thenthestructure (YJ\,...iA,8,t,P,ffi,...) isanf6-expansionand2l - (A,E,t,p,m)
is R-r-regular. By Lemma 10.3 we know that t and p are in Wf(,4, E), and they collapse

into rs and ds, respectively, where ,S is determined by b. Moreover, the structural

interpretatio n lt of m in (4, -E) is isomorphic to 9ltxs, where X : {"0, Uo, ' . .} .

Since 2[ F (1), both (4, E) and Wf(A, E) are models of (a finite fragment o0 I(P.

The sentences (a)-(5) imply that n; is in Wf(A, E) and collapses into i for i ( r..r. Thus

both (A, E) and Wf(A, E) arc models of the axiom of infinity. The sentences (7)-(8)
imply: 17. € Wf(A, -E) whenever t2k+r ( 7, so (7) indicates o € Wf(A, E). Thus the

fu-sentence (2) is true in Wf(A, E). The sentence (16) indicates that 9: dom(rn) ---s Ttu

is a one-to-one mapping in (4, E). Thus 9:dom(rn) -- ran(g) is a bijection, there is
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mt e Wf(A, E) for which g:m = rn' , and m' collapses into a structure isomorphic to
tJltxs . Since 4 is absolute relative to KP+Inf and Wf(A, E) 

= 
(z),we have m' e Str(t),

p e L(t),andmt F p in Wf(A, E). This implies:

yltxs e str(rs), gs e c(rs1, md lll*t ?rk') ös.

Similarly one sees that if (lll,rn,. ..; A) is an ftr-expansion over an f\-branchbt,
then

YNxs' e str(rs'), $s' e L(rs'), and tJtxs' f r.6r,y ös' .

But if the branches b andb' meet on their common ground TC(r, /), the sets ,5 and ,S' are

the same set. Thus F., and Ft, are disjoint.

Finally consider a logic .C which is first-order relative to KP+Inf. Leave out the
parameter 7 from the regulator?-"r: let I : u), remove the sentences (7)-(8) from the

theories, and replace (2) with

(2') p e L(t).
The proof of the (i) is similar to above. In the proof of the disjointness of the expanders

the implication

(A,E)lpe L(t) + wf(A,n)lpe L(t)

is now easy, since as a AfP+Inr-sentence p e L(t) is absolute relative to these two models
of KP+Inf. tr

14.3. Theorem (tB2l). (i) Let L be absolute relative ro KP+Inf. Then La I La
for any admissible set A ) w.

(ii) Let L be first-order relative ro KP+Inf. There exists a translation t: L - L*.,
primitive recursive in a mapping which maps a well-founded tree to its ordinal.

Proof. (i) Let ö e Le. By Lemma 14.2 there exists a pair of disjoint expanders
(f ,f') in A such that if ,Jl 

= 
@, then I wins EG(rn, f), and otherwise V wins

F,;c.(ylt,?). By Lemma 12.5 this turns into a M*.-sentence in A and finally, by
L,emma 5.3, into a sentence of La.

(ii) is shown similarly. tr

The original proof of Barwise is based on three ideas: first, by an easy Löwenheim-
Skolem argument, one obviously needs to show only the result for countable admissible
sets. Secondly, the expression "llt lr /" is translated into a Å(,Lo".)-expression by
introducing a new set-theoretical sort. Finally, this new sort is eliminatedby interpolation
in a countable admissible fragment.

In the above approach, we could as well have used the same Löwenheim-Skolem
argument to avoid forcing when showing the claim (i) in the proof of 14.2. However, the
chosen approach produced slightly more refined result: in the case of logics which are

5 20753



66 Iyrki Akkanen

first-order relative to KP+Inf, we have an estimate for the complexity of the transformation
into -L-.. The Löwenheim-Skolem-argument would have given the estimate only for
countable admissible fragments.

In the above result we have replaced the use of interpolation of L-. on countable
admissible fragments with a new construction. A natural question is, whether we can

show the interpolation result with this new method. The answer is affrrmative, and the

construction is sketched below. Instead of just giving the A-interpolation result, we show

a stronger separation result, the original result appearing in [L] and [B1]. The result is
given in a single-sorted form; the many-sorted form can be proven in a similar way with
obvious modifications.

l-et L and, f,' be logics. We say that Lt allows separation for L if the following
condition is satisfied. For every pairwise disjoint vocabulary r, p, and p' and for every

sentence S e L(rU p) and $' e L(rU p/) such that / n @/ has no model, there exists a

sentence t! e L'(r) satisfying

$Jt,E)lö + »tt=rl, and

(Jfi, rt') | Qt + ,n* 4,.

14.4. Theorem. Let L be absolute relative to KP *Inf and let A be a countable

admissible set containing u. Then Ln allows separationfor La.

Proof. We modify the proof of 14.2. For simplicity, assume that L is first-order rela-

tive to KP * Inf: to obtain the result for the absolute case one needs a similar modification

to the translation result above. The first task is to construct c,.r-expanders F and f' such

that

1rt. $fi, Rl 
= 

O + I wins EG(IJy, f), and

1E' (YJ1,E') F Qt a v wins EG.('x,f')'

Moreover, if (ylt,fiot...)8,8,...) it anF-expansionoverq,then/sshouldholdin
some expansion of rJllxs, where X : {ro,. . .} and ,5 is given by the f-branch $ and

similar should hold for the expander f/. These expanders can be constructed similarly to

the expanders in the proof of 14.2. Theproblem in the construction is that the expanders f
and f' are not disjoint on their common ground Z -- TC(r, P, P' , Ö, @'). This is because,

even if the sentence ö A ö' had no models, its approximation may have them.

We solve the problem as follows. Recall that Z is an element of A, a countable

admissible fragment. Let h: a ---+ Z enumerate Z. It is not hard to modify f in such a

way that if (rlt, E') 
= 

@' for some -ä', th"n V wins EG. (rm, F') by a strategy where his

every second move on the common ground Z is picked with the enumeration ä. (This

requires some rearrangements among the constant names.) Let us combine the expanders

f and ft (or actually the game sentences given by Lemma 12.1) just as presented in

Lemma 12.5, exceptthat we make V, in the semantic game of the M-sentence, to pick his
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every second choice in Z with the enumeration h. The result is a sentence 0 in M*.: if
the resulting sentence had a long branch, it would give rise to a structure gJt and expansions
which would indicate (rtlxs ,. . .) F ds and (r[xs ,. . .) F d's. This is a contradiction:
now ,S - Z, ös - ö, aurrd ö's : ö' , since ä enumerates the common ground, Z.

However, the sentence 0 above does not necessarily exist in,4., since it is constructed
using the enumeration h. Let B ) A be the least admissible set containing ä. The sets
A and B have the same ordinals, and so the ordinal o of the syntax tree of 0 exists in
A. Construct a sentence th e M*.lA by restricting the game sentence attached to .F
by Lemma 12.1 with the tree Bo: add conjunctions of form A*u_.,4o, to its game prefix
and cut the branch when o7" : 0. Now it is clear that llt ? ,b it (»Jl,%) I / for some
il. On the other hand, if (ylt,il') 

= 
$t for some 2[', then V wins EG*(IJI,F|) with

a strategy using the enumeration h. Thus he wins the semantic game S(IJI,0). When
playing the semantic game S(lJt, t/), player V can choose the a;'s by operating S(rrt, d)
in the background and thus win it, too.

15. Logics absolute relative to a standard set theory

In the previous two sections we saw that there exist maximal logics first-order relative
to KPU and absolute relative to KP * Inf. Now, if we strengthen the theory beyond
KP * I1-sep, these kinds of maximal logics no longer exist. The following diagonal
argument is a standard way.of proving this result. We call set theory a standard theory if
its vocabulary is {e i.

15.1. Theorem. Let T be a standard set theory containing KP * I1-sep. There
exists no maximal logic L, absolute relative toT.

Proof. Let L be absolute relative to 7. It is enough to deflne a model class K
which is A1-definable in 7 but not definable in 4: we may then add this model class as a

single sentence to 4 producing a strictly stronger logic, absolute relative to 7. The model
class K consists of those structures (A, E,p, a) where p codes a sentence of 4, false in
(A,E,P,a)'

To be exact, let P be a fu-predicate such that

T I ö e L(r) *- 1r P(r,$,r).

l-etr: {e,c,d}beahereditarilyfinitevocabulary. Letrcbetheclassofthosestructures
(A,E,p,a) e Str(z) where (A,E) is extensional and well-founded, and there exists a

Mostowski collapsing function c of (A, E) such that P(r, cp, ca) and (A, E,p, a) Fr1,1
cp. It is clear that K is Ar-definable in 7: the existential quantification over Mostowski
collapsing functions can be changed to universal. To see that K is not definable in L,
suppose for contradiction that ö e L(r) deflnes K. Choose such r that P(r, /, r) and let
Abe atransitive set containing both r and @. Now

tr

(A,e,ö,r)?r0 <+ (A,e,ö,r) € K <==+ (A,e,ö,r)*rö,
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which is a contradiction. tr

We next give a new proof for the result of Burgess in [Bu]: if ,C is absolute relative to
a standard set theory @.g.ZFC or some of its extensions), there exists ap.r. approximation
mapping,C x Ord * L*..

L5.2. Lemma. For each vocabulary r, for each formula $ e L(r), and for each

ordinal l there exists an expander F., such that the following conditions hold.

(i) mlr ö <=+ lwins EG(rm, Fr)forsome'l
<=+ lwinsBG(llt, F.,)for someT < max{lllll,lTC(r,d)l}+.

(ii) If 1 wins EG(!JI, Fr), she wins EG(lll, F6) for every 6 > 1.

(iii) The branching cardinal of f., is max{lTC(r, d)l+, hl+}.
(iv) The mapping (r,ö,1) +, ft is P.r

Proof. Let Fa : f (r,S,w)be the basic expander of Example 10.2- Let?-"rbethe
regulator of Example 11.3. LetRbe atrivial regulator, where dom(7?) : {0}<' and, for
an 7l-branch g, the theory ThR (s) contains a single sentence,

(I) m e Str(t) np e L(t) Amtr1) p.

Let ?., : ?6(R1,7{). The claims (ii)-(iv) are easy, so it is enough to show (i).

Claim A: lf lJt € Str(r), Ö e L, and lll I r(") Ö, there exists 7 less

than max{lTc(r,ö)l+,lrml*} such that I wins the expansion game.

Let n : max{lTC(r, d)l+, lrnl+}. we may assume llt e H*. since E1-formulas

reflect onto fI^, the sentence (1) is true in Ho, and in fact (1) is true in some V, where

^t < K. But now fa is valid in (![t;V.r,e,r,ö,rlt), and both R., and77- ate valid in
(V.,t,€,r,ö,»N). Thus f, is valid in an expansion of tJll,and I wins EG(»t,f.,t).

Claim B: If (rYt ) ro) . . . ) A, E,t)p)m) .) ir an F.r-expansion over q, then

trfix s € str(rs ), ös e L?t ), and tJfix s 
? r("s ) ös ,

where X : {ro, rt, r2,. . .} and ,S is determined by q.

Since an fr-expansion is a Rr-regular f6-expqrsiol, the structure (A, E) is well-
founded and the elements t, p, andm collapse into rS, ÖS , *dtJJlxS , respectively. The

claim holds, since (-4, E) isR-regular and the sentence (1) is a El-sentence.

Ctaim C: m lt ö + I wins EG(rn, f",)for someT < max{llJIl, ITC(r, /)l}+
+ f wins EG(rn, ?.r) for some 7
+ frtlc ö.

The flrst iinplication is the claim A, the second one is trivial, so we need to show the third

one. Suppo se ltt f r. /. Construct expanders Ft, from the basic expander f ' (r, $, u) ,

from the regulators R!.r, and from a regulator similar to R, except that instead of (1) we

have
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(r') * € Str(r) np e L(t) AmFqD p.

As above, we can show that the claims A and B hold for these expanders, too. The claim
B implies that the expanders ?", and f'", are disjoint for each ?. By the claim A and (ii)
there is 7 such that v wins EG. (FI,!JI) whenever 6 ) l.Thus I cannot win EG(f6, !Jt)
for any 6. tr

By Lemma 12.1 this lemma directly implies the following approximation result.

15.3. Corollary. Let L be absolute relative to a standard set theory. There exists a
prirnitive recursive mapping o: Voc x 4 x Ord -- V*, such that the following conditions
hold.

(» If ö e L(r) andllt e Str(r), then

lll ? r("1 g e lJl I a(r , ö, t) for some l
e ffil o(r,ö,1)for sorne "y < max{l9Jtl,ITC(r, d)l}+.

(ii) If I 16, thena(r,ö,1) + a(r,$,6).
(iii) a(r,ö,1) e Vn., where rc : max{lTC(r,ö)l+,1+}.

tr
The proof of the following proposition is given for example in [Bu].

15.4. Proposition. There exists a primitive recursive mapping b: Voc x V*, x
Ord -* L*, such that the following conditions hold.

O If ö e V*.(r) and llt e Sff(r), then

»tttsö=T,lil::,1:,',1!*',',::::<max{rrrrr,rrc(r,d)r}+

(ii) If t <6, thenb(r,ö,1) + b(r,$,6).
(iii) b(r,ö,1) e L*., where rc : max{lTC(r,ö)l+,1+}.

tr

15.5. Corollary ([Bu]). Let L be absolute relative to a standard set theory. There
exists a primitive recursive mapping A: Voc x L x Ord -- L*. such that the following
conditions hold.

O If ö e L(r) andllt e Str(r), then

lltlcO) g e llll A(r,ö,t)for some j
e sJll I A(r,ö,t)for some 1 < max{l9Jtl, ITC(r, d)l}+.

(ii) If t < 6, then A(r,ö,1) + A(r,$,6).
(iii) A(r, ö,1) e Lo., where rc : max{lTC(", d)l+, f+}.

6 20753
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Proof. If o and Ö are the approximation mappings of the previous corollary and

proposition, choose
A(r,ö,?) : V b(r,a(r,ö,6),1).

61t 
tr

This result is actually somewhat stronger than the original result of Burgess. His

argument is valid only when the vocabulary is finite and when the logic is absolute relative

to a forcing which forces a set to be countable. Our argument works for all vocabularies

and for all logics absolute relative to a set theory in a standard vocabulary.

Burgess's argument is as follows: suppose first that the model lJI is countable and

the sentence Q e L(r) is hereditarily countable. Now an element m in a certain metric

spacec,.r," x...x 2'* x... xux...dependingonthevocabularyrcodesthemodellJl,
and an elementp § r,,,2 codes the formula @ through isomorphism (TC(id), e ) = (r,,',p)'

Such a Xl-relation -R is known to exist that

ffi?, $ e R(*,p).

Using certain normal forms and absoluteness results in descriptive set theory we are able

to write

R(*,p) e fo :-u112 e L.(m,p)(F(*,p,2)isawell-orderingoflength < o)

<+ la --u112 e ,'((r,z)= (a,e) nP(m,P,z)),

where F is a recursive functional, P a !l-set, and Lo(m,p) the atä level of the sets

constructible from m andp.
Given a model lJt and a sentence {, let )P be a forcing which forces lJI and / to be

countable. Now there are canonical lP-names m and p for the codes of lll and @ in the

extended universe. Using the absoluteness of the logic we obtain

ffi?rö e Ptt§itr?ö
<+ lP ll R(m,p)

<+ IP lF la < ur)z e ,'((r,z) = (a,e) n P(m,p,z)).

Let then Q. be a forcing which makes an ordinal a countable. Denote by a a canonical

Qo-name for a set z such that (o, €) = (ar, z) in the extended universe. We proceed by

showing

FlFSo 1u13ze ,'((r,z)=(a,e)nP(m,p,z)) + lalPx Q.ll P(m,p,a).

The flnal step in the construction is to turn the expression IP x Q. ll- P(rn,p,a) into a

game formulat!. in such a waY that

ffi1, ö <+ )allt* rho.
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What do the approximating game formulas then express? First, since the truth
deflnition of the logic is equivalent to a tl-expression, ffi l, / if and only if there exists

a witness, an element which binds the model and sentence together. Now, in Corollary
15.3 the formula a(r, ö,a) indicates "there is a witness in Vo to ffi*t l, Qs for almost
every countable X and ,S". Instead the approximating formula tfto of Burgess indicates:
"there is a witness to llt la / which is potentially constructible from !ft and / at level
o", where the expression "potentially constructible" means that the witness in question is

constructible in a certain generic extension of the universe.

16. Logics absolute relative toZFC(P")

The results in the last three sections show that the restrictive nature of absoluteness

relative to standard set theories is quite well understood. In particular we have seen that the

logic .Loo. has a special position in this respect: every logic, absolute relative to KP+Inf,
is a sublogic of L*., and every logic, absolute relative to a standard theory can be

approximated with I-.. However, as regards uncountability, it turns out that -Loo, lacks

expressive power. For example, a sentence of L*. cannot express that an equivalence

relation has an uncountable number of equivalence classes, except by introducing new

symbols in the vocabulary. Similarly, the standard set theories are not at their best for
dealing with uncountable cardinals: uncountability is not absolute relative to them.

New and improved logics have been introduced for describing uncountability: among

these are for example L,.(Qr), L*.(Qt), L*.,, and the MJanguages. The logics
L..(Q r) and L*.(Qr ) are interesting; for example, they have a complete proof system

but not very strong expressive power. The logic .L-., does not inherit the favorable

position of L*-, and thus much research has been done lately on M-languages. It has

turned out that many properties of Loo. and L.,, ate shared by M** and by M *+ o for
regular cardinals rc. However, the properties are usually not preserved as such: where

L.r. is nice and straight, M o+ o is complicated and full of dependencies on strong set-

theoretical axioms.
The settheoryZFC(P,r) makes absolutemanypredicates whichdistinguishbetween

countability and uncountability. In fact, if (A, E, P, k)e""a(A' , E' , P' , k') are two models

of ZFC(P.), they have exactly the same countable sets (of elements of A, naturally).
Moreover, for example the logics Lr.(Qr),V*rlQrl, Lro", and L*., are first-order
relative to ZFC(Pr,). Thus is natural to investigate which kinds of logics are absolute

relative to ZFC(P.,) or ZFC(P*) for a regular cardinal n. It turns out that every such

logic can be translated into M§t^, where Å : K1o.

16.1. Lemma. Let n be an uncountable cardinal, and let Å : K1*. Let a logic L
be absolute relative toT ) ZFC(P*). For every vocabulary r andfor every sentence

$ e L(r) there exists a pair (f ,3') of disjoint \-expanders such that the following
conditions hold.

(i) If rJIl € Str(r) andlJl lr Ö, thenl winsEG(llt, f).
(ii) If yJt € Str(r) andlltFr Ö, thenV winsEG*(glt,f').
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(iii) nr : KF, : max{lTC(r, d)l+, Å+}.
(iv) The rnapping (r, ö) - (f , F') is p.r in r^, a surjective function.\ ---+ Ä<^

Proof. We need some coding mappings. Note first that .\<" : Å. Let zro: ) --+ Å<'
be surjective (here ,\<' is the set of functions), and let zr: .\ x ,\ ---* .\ be the canonical p.r.

bijection. Let

7r1:) -Po(Å) , Tli)-

T2: Ä + )'^, ) \rz(i)(")

Both these mappings are onto, p.r. relative to zro, and runQr2(i,)) q (i + 1) for every i.
Let f u : 7 (r, /, ) ) be the,\-expander of Example LO.Z. We may assume that the ex-

panding vocabulary o : (e , P, Tt^,t, p, m),where P is a binary predicate and n1 is a con-
stant. We next defi ne a Ä-regulator 7l such that if a structure 2[ : (A, E, P, n s, t, p, m, . . .)
is R-regular, it is well-founded and extensional, n1 collapses into Ä, P is the relation
"Pn(*) : !", and m lt p. Recall that the vocabulary o1 is o augmented with ,\
constant symbols cot crt .. .. Give alias names to constants c6 with odd indices as follows:
fori,j(Ålet

ni : Clzi+l s €i : Clzi+3t Pi : C12i+5,

Q.;: cti;+l , ft: ctzt+g, T;,i : ctzn(i,i)*llr

and let to,tt, .. . enumerate all the constants of o1. Given a constant symbol r in ar, let
r11 e ) be such that r is the same constant as t.,.. Let the domain of 7? be 1<1, where
I : () + 1) x (rc + 1) x u.r, and define 7l in such a way that if a : ((ar, ft , 76));q1 is an

7l-branch, Th1j(a) contains the following sentences.

(1)

(2)

(3)

(4)

(s)

(6)

(7)

(8)

(e)

( 10)

(11)

^,jsÅ.

ran (n o(i) ),

L i otherwise.

A flnite subset of 7.
TheEl-formof m € Str(t) np e L(t).
The l1-form of m I r@ p.

rL; € ni iti<i I
TL; # ni ;i; )'i j for every i' i s )'

t,;-ni tfa2;a1 -1+j )

nif po iti#lrli) lrv^YVv^
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(13) Vu(u g qj A u e t,; + It e et) for every

(15) t,; # ti v tt - t1 if i - lt2(k)(trk+r + 1) j : rz(k)(lyc+r) for some k < Å.
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L, J

,)

and

ClaimA.' Suppose (A, E, P,D^,t,p,m) is ?-regular. Then (4, E) is well-founded and
extensional, cn^ - Ä, P(r) : y iff P*(cr) : cU, crn € Str(ct), cp e L(ct), and
cm lq.D cp, where c is the Mostowski collapsing function of (A, E).

The sentences (15) imply that (A, E) is well-founded: let t;o for k < u be arbitrary.
Choose i < 

^ 
suchthat r2(i,)(k): i*for every,k ( q.,. Lettingk: r2(i)(12;a1)we

have -(frr+ ,Eho) or t;u*, : ttu. The sentence (1) makes (A, E) extensional. Thus the
Mostowski collapsing function c exists. Now (4)-(5) imply cni : i, for i, ( ), and (6)-(7)
imply cp;: rt(i), so we have P"(^) : {cru : i < ) }.

Moreover, the sentences (10)-(14) imply ce6 : P*(ct;) for every i < ),: suppose
flrstr e ce;,i.e.r: ctpand(A,E) F t* e ea.By (10)and (14),(A,E)=h gU
and (4, E) F tr e Oi for some j < ). Using (12) and some axioms of ZF we get a
one-to-onefunction S e A fromt;. torrj. Since cnj - j,r - ctpe P*(t;). Onthe
other hand, suppose r e P"(ct6). By König's lemma the coflnality of ,\ is at least rc, so
r C {ctp : k < j } for some j < .\. Thus r e cqi by (11). The sentence (12) indicates
thatcfi:cqj - j isone-to-one. Now {"fi(y) i A e r}: a-r(k) eP*(\) forsome
k < l. Using some axioms of ZF we get u e A such that (4, O) I fj'" - p7,. Now
c'u,: tr, and (13) implies r e ce;.

Since (,4,,8, P) satisfles the sentences (8)-(9), this implies

(A, E, P) 
= 

P(*, y) <+ cn : P"("y)

for every r,U e A. Since (2) and (3) are tl-sentences, we finally have cm € Str(cl),
cp e L(ct), and cm lq.ty cn.

Let ? : ?a(R). Since an f-expansion is a R-regular ?6-exparrsion, the claim A
immediately implies that if (ffi,r0,...; A, E,P,nyt,p,ffi,. . .) i. an f-expansion over
q .r, then

Ss e r.Qs1, tJ\txs e str(rs), and ltt*t lro"y ös,

where X : {re : € < .\ } and ,S is determined by the f6-branch g.

Claim B: If lll € Str(r), $ e L(r), andllt lc(,) ö, then I wins EG(fi, f).
Let p, ) Å be such that llt, r, and{ are elements of f/r, Y u I p, (r. ^ < p), and that

H, is a model of (1). Let P(x,U) # A : P*(r). Now Extended Levy theorem 3.2
implies that (2) and (3) hold in 2l : (H p, e , P, 

^,r, 
ö,yN).Since .F6 is valid in (sJJl;2L),it
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is enough to see that R is valid in 2I: then f is valid in (llt;2l) and f wins the expansion
game.

SupposeVpicksanelement c2; e Hr. Theenumerationti (i < )) showsthat
to,. . . ,t6 have already been chosen. Let I move its follows:

- azi+r: 1. * t.iif t.i € {0,..',}}, andc.2,;11:0otherwise.

- 1u+r: min{ltrl, rc}'

- "yzt+r is the least n e u such that either t7619 e th@) or f 11r-.1; : th(n), where

h : rz(i.): a ---+ i.
- czi+ris such that forevery i: Tti :'i,, ei : Po(ti,),m : rt(i), qt : {ti : j < i},

f"(ti) - j for each j < i, and r;,i for i < lttl enumerates ti it ltil ( rc, and

otherwise ri,i : A.

These make the sentences (1)-(15) true. For example, to see (14) suppose i,i < 
^.gzt+t: rc,wehave ltnl> *,soti (.P"(ti): ej. Ontheotherhand,suppose ?x+r 1

Now lt;l : gzt+t ( rc, and if j - rri,Bru+,r, then

tt : {r,;,1* ; k t ht+r} g {tr i lc < i} : qj,

since the mapping le ,-. tri,k- is strictly increasing. Thus I wins the game'

Construct f/ similarly to f: start from the basic expander F'(r, /, )) and add a

regulator 7?/ similar to ?, except that in the sentences (t)-(t5) the constants ni)ei)...
are the constants q with even indices, parameters dzit... are used instead of a2611,...,

and the sentence (3) is replaced with

(3/) The 11-form of m ft2p1p.
SimilarytotheclaimBoneseesthatVwinsEG.(rm, ft)ltyll e Str(r) andlll*r<"1ö.
Thus (i) and (ii) hold. The claims (iii) and (iv) are easy, so we need to show that f
and ?' are disjoint on the common basis TC(r, $) of f (r, @, )) and f'(r, Ö, Å). But,

as above, one can see that if (y|t,fr1,...;8,...) is an f/-expansion over g''rl, then
yltxs' f ,6r,1/s', where X : {r0,g0,...} and,S' is determined by q'. Moreover, if
an f-branch q . r and an f'-branch q' ' ,' meet, then q and q' also meet, which implies

.9 - S' . Thus the expanders are disjoint.

16.2.Theorem. Suppose K> u and\: n<". If LisabsoluterelativetoT )
Z\C(P*), there exists a translation f : Voc x L --. M§r^, primitive recursive in r*, such

that t(r, g) e M p» when pr, 2 max{ lTC(r, d) l+, }+ }.

Proof. The disjoint pur (f , ?') of expanders given by the previous lemma can be

turned into a sentence in M§t^ by Lemma 12.5. tr

This result is analogous to Theorem 14.3, which states the existence of a translation

L - L*. for every logic, absolute relative to KP * Inf. Since the former translation is

primitive recursive relative to n,., admissible fragments containingrK are closed under it.

If
K.

tr
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For other results in this area, see [V1], [V2] Corollary 3.4.5, and [O], which show
that a class of structures is Ar -definable inZFC(P., ) with parameters from H (rz) exactly
when it is definable in App6(,L,r.,). Heikkilä further extends this result by applying the

separation theorem to the App6(Lrr.,)-definition and getting a class, deflnable in Mrr.;
see [He] Theorem 9.9.

Note that the construction in Lemma 16.1 can be used almost as such to show that

every class of structures, Ar-definable in sometheory containin9ZFC(P") withparameters

from f/(Å+), is definable in Mf9rl1, where \ : n<* . Suppose the class in question is

K,, where o is the parameter. We essentially need an expander ? (and the respective

co-expander) such that

- ittJJl' € Ko, then I wins EG(rf, F), and

- if (tJll,...;A,8,r,...) is an f-expansion, then r collapses into the parameter o

andlJlxs is in Ko.

This is achievedby adding a constant for each element of TC(a) in the expansion language,

an by enumerating those sentences in the expander which imply that r collapses into a.

In Section 14 we showed a separation theorem (Theorem 14.4), which implies that

-La allows separation for itself when A ) a.r is countable and admissible. What can we

say about the analogous results in this case? Tuuri has shown various separation theorems

in [T], proving for example that M1+1 allows separation fot Lo+n when ) : n1* and rc

is regular. In [He] Theorem 8.9 Heikkilä reflnes this result and shows that the separation

holdsinadmissiblesetsAwhich are\-closed (i.e. ) e Aandforevery r e A theset
P»(r) is in A) and locally \-enumerable (i.e. for every r e A of cardinality less than or
equal to ) there exists a surjective enumeration ), -, r in A). We next sketch a new proof
of this fact.

16.3.Theorem. Let nbe anuncountable cardinal, ),: K1*, andsuppose Ais a
n-closed, locally \-enumerable admissible set. Let L be absolute relative to a theory
containingzFc(P").Then Ms+sl Aallows separationfor Ly+ i A.

Proof. I-et r, p,p/ be pairwise disjoint vocabularies, and suppose $ e L(r U p) and

ö' e L(r U p/) such that d A /' has no model. Suppose, moreover, that the vocabularies

and the sentences are elements of a rc-closed, locally )-enumerable admissible set A, and

that they are of hereditarily cardinality less than or equal to ). Let Z : TC(r, P, P' , Ö, ö').
Since lZl S Å and 

^<K 
- .\, the set A contains functions h: ), -. Z and zr*: Å ---+ .\<'.

First construct .\-expanders f and .F' such that for every structurellt e Str(r)

Qtt,h 
= 

ö for some R
(YJt, R'1 ? ö' for som e R'

==+ I wins Ec(rtt, f), and

=+ v wins EG* (yJt, f').

Moreover, construct the expanders in such a way th at,if (llt, frot . . .;il) is at F-expansion,

(YfF,rt) F d for.o-" fr, where X : {r0,...},-d similarly for F'. There is

nothing difficult in this; the expanders of Lemma 16.1 serve theirpurpose well after some
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modifications: we use the function h to enumerate those sentences which imply that the
constant p collapses into / (or /'). Since the construction of the expanders is p.r. relative
to h and rn,the expanders are in the admissible set A. Moreover, they are disjoint, and
thus, by Lemma 12.5 , the required sentence tlt in M 7+ s exists and is an element of A. tr

16.4. Corollary ([T],[He]). Let rc > u, ) : K<o, and suppose A is a n-closed,
locally ),-enumerable admissible set. Then M»*»flAallows separationfor Ls+nnA. A

We could now question whether the translation 16.2 is the best possible: for example,
is there a strict subclass of M§t^, which serves as a destination of the translation? Note
first that it is consistent to assume K1o : rc (i.e. Å : ,{). Next we show that - under this
assumption - a large part of M§t" is already covered.

16.5. Lemma. Suppose K1o : n. Logic L is absolute relative to T ) ZFC(P") if
and only if there exists K e M*t* such that K isZ1-definable inT, T I K C M§t*, and
L: M*t^lK.

Proof. "-" We need to show that the semantics of M§t^fK is absolute relative to
7. But since every ö e K is a determined M-,-sentence in every model of ?, Lemma
8.3 implies the absoluteness of f,.
"+" Let Lbe absolute relative T. Lett: L --+ M§t*be the translation given by Theorem
16.2. Since t is p.r. relative to zr-o, it is defined by a E1-formula P such that for every $
and tlt

t(Ö) : tlt e P(n*,Ö,',2).

Let
ge I( s )fi$(öe LAn:n-*K<o isbijective AP(tr,ö,1l)).

D

We have already seen in Section S that M*t, is not absolute relative to ZFC(P*),
since its syntax is not upwards persistent. The reason is trivial: the predicate "7 is a
rc-leaftree" is not absolute relative toZFC(P"). Now we can show a stronger result: by a
construction similar to 15.1 we see that there exists no maximal logic absolute relative to
a theory T ) ZFC(P,). Thus Translation theorem 16.2 implies:

16.6. Corollary. Suppose K : rc<*. There exists no logic, absolute relative to an
extension of ZFC(P"), with the same expressive power as M§tn. !

The following questions are still left open.

16.7.OpenQuestions. (1) If d e M*'*, is there a\(P*)-definable subclass 1(
suchthatöc-K?

(2) Since .L-o is absolute relative toZFC(P"), we know: if K : K1n,

Q! - ts(M*t-) + QI - ts(L) for every L, absolute relative to ZFC(P")

=+ g - B(L*").
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Which of the converse implications hold?

77

17. Logics absolute relative to ar1-closed forcing

In the previous section we saw that the logics absolute relative to ZFC(P") and
M§t^ for Ä : K1n are related in the same way as are the logics absolute relative to
KP + Inf and L*.. The results in Section 15 illustrate the special position of L*.
among logics absolute relative toZFC as well. In this last section we investigate whether
the M-languages have analogous properties in relation to those logics which are absolute
relative to rc-closed forcing. We shall see that the analogy partly holds, partly fails.

17.1. Lemma (Shelah). Let rc be a regular cardinal. Player ) wins E,F"(2!L,A) if
and only if there is a n-closed notion of forcing which makes il and I isomorphic.

Proof."+" Let ,S be a winning strategy of I in EF^(2[, !B). Each non-maximal
position u e S is a sequence (ut);<e where ( < rc. Moreover, if we denote

! oo : u3i4 and bt : u3;+z if u3;a1is in 2I and, u3iq2 is in !8, and

[ ,n : u3iq2 andbi : u3i+\ otherwise,

the partial isomorphism p(u) : a; r--+ b; is of cardinality < rc. I-et

P : {p(u) : u e 
^9 

is not maximal }.

Now IP forces 2l = B, and ts is rc-closed, since rc is regular.

" t-" Since lP forces the models to be isomorphic, there exists a lP-name / and a condition
po € IP which forces / to be an isomorphism from 2l.to E. Player f wins EF,(2[, A) by
playing as follows. Suppose we have played ( turns, i.e. elements at € A andh e B for
i < ( have been so picked that a; r-+ ä; is a partial isomorphism. Suppose, moreover, that

P6 forces f(ot): Ö6 forevery i < q. LetVmove,sä],04 € A. I-etlchoose \ e B
and a condition pqar ( p6 such that p6ar forces /(a6) : b€. since ?€+r forces / to be
an isomorphism, a4 +. b; (i < 6) is a partial isomorphism. Finally, if ( is a limit and, for
eachi <-t,p; forces f (oi):bi U <i),letpq bealowerboundfor{p6 : i < €}. D

17.2.Proposition([Kt]). U: E (7.",') <+ I wins6F*(%,8). tr

17.3. Proposition ([Hy]). There exists an approximation mapping from Voo^ to
M*n. tl

17.4. Corollary. Let n be regular. The following claims are equivalent:

(i) 2l: E(M.",).
(ii) lwins EF^(2I, E).
(iii) There is a n-closed forcing P which makes 2I and B isomorphic.

Proof. The equivalence (ii) <+ (iii) is lrmma 17.1. Proposition 17.3 implies
2l: E(M*,") iff 2L = I8(V-,), so the equivalence (i) <a (ii) follows from17.2. tr
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17.5. Corollary. Let n be regula4 and suppose logic L is absolute relative to n-
closedforcing. Then

21.:B(M*") + %:A@).
!

In this respect absoluteness relative to rc-closed forcing and the logic M*n behave

similarly to absoluteness and the lo gic L*.: as shown e.g. in [B2], every logic f,, absolute

relative to a standard set theory, has so called Karp-property

Ql:B(L*.) + %:ts(L).

Proposition 17.3 is analogous to the existence of an approximation from V*. to L*.
(Proposition 15.4). Thus it is natural to ask: do we have an approximation mapping

analogous to Burgess's approximation 15.5; i.e. if L is absolute relative to rc-closed

forcing, is there an approximation mapping from L to Moon? Next we show that the

analogy fails when K : u)r, the main reason being that M*rt, unlike troor, does not have

Scott sentences, i.e. there are structures 2[ such that no sentence $ of M*., satisfies

A l, $ I 2l: E(M*^)

for every structure !8.

Given a tree T,let R(7) be the tree of finite sequences (se, . . . , §r) of elements of
7 ordered by the relation

(r0,...,s-) S (f0,...,t*) e mlnAVi < m(s6:t1)As^1rt,n.

For s : \tn)f* e R(f),denote by ls(s) : snl the last element in s and by ph(s) : 2
the phase of s.

LetTobe the many-rooted tree of sequences t: a ---+ u)1, where 0 < o ( r",r, ordered

by end extension.

17.6. Lemma. For every urtree f + A there is a many-rooted u1-tree Tr such that

l wins EFr(R(7b), R("r)) and R(Ts) * R(T1)(M*.,).

Proof. (lHTl) We may assume 7 is a leaftree. Let

7, : (,p.,(o + l)) '7 and Tt:Tz&To.

The tree T2 hasa single root, while the other trees 70, A, R(To), and rR("1 ) have N 1 roots'

All limits in every tree afe unique, and the trees fi andTz are leaftrees.

Claim A: R(Ts) * R(rt)(M*.).
The tree R("0) clearly has branches of length ol, since the tree 7e has. However,

since fi has no branches of length ar1 and c,r1 is regular, RQt) is a ar1-tree. Thus there is



Absolute logics 79

no ol-closed forcing which forces the models isomorphic (see Lemma 8.1), and the claim
follows from Corollary 17.4.

Denote by EF* an EF-game between trees where V is not allowed to choose a node
if its all predecessors have not yet been chosen.

ClaimB; If I wins EFI(.R(70), rB(71)), then ] wins EF7(rR(70), A(71)).

Player I wins the game EF"(n(7b), n(71)) by playing EFä(A("0), R(fi)) in the
background as follows. Suppose we have already played i moves, and suppose V picks
t;. e T and, say, at. e R(To) (the other case being similar). Let ai be the height of o6

in .R(?s), and suppose @f ) B<*, is the path in n("6) for which a7' : ai. The nodes of
T2 arc (essentially) tuples (9, (0,a),s), where 0 I a, s e T, and g:predr(s) ---+ n. l-et
§,i:ti r--+ ai for j < i, and lettf : (gn,(0,oq),ti) foreach g 1 at Player 3 plays at* |
moves in the background game EFä(A(7b), E(4))): she lets V move tf e T2 and af
for B < d,,i,ondgetstheelements bf e RQ) @ < o) inreturn. Letherfinallymove
b,i: b7o in EF7(.R(?s),,R(fi)).

If f wins the resulting play of EFä(E("o),,B(fi))), the mapping of - bf is a
partial isomorphism. Thus its restriction ai r-+ bi is a partial isomorphism, and I wins the

corresponding play of EF7(,R(?s), R(7,)).

Claim C; I wins EFä(A(7b), R(71)).

Let fn:Tr : TzSTo '--+ T2be the canonical projection, and / : fsols: R(Tr) -- Tz.

On each turn z of the EF*-game V picks an element ti of 72, and the players pick elements

ai e R(Ts) and är € R(fr). Since V is allowed to pick an element only after all its
predecessors have already been picked, I wins a play, if for each i one of the following
conditions holds:

- Both a; and bi are roots.

- There exists j ( i such that a6 : aj utdbt : b j.
- Neither a; fiot ä; has been chosen before the turn i, and there exists j ( 'i such that

a; € succ(ai) and ö; e succ(bi).

- There exists i7 U < ,) such that ai is the limit of a1, (i < ,) and bl is the limit of
b;, (j < r).

Player f wins the game by always so picking her element that

(*) ph(o;) < ph(br) < ph( ai) + 1, and ph(b,;) -ph(aa) +1+ f(b;)<to.

We need to show that I can follow this strategy.

SupposeVchooses tx e Tzandap € E("0). lf ap: a; forsome i < k,letf choose

bx : bt. Thus we may assume a* * q (i < k) and need to find an element bp e R(Ty)
such that both the winning conditions and (+) are satisfled. There are several cases:

1" a1 is a root of ft(70). The tree fi has Nl roots: the nodes (t, s) where t is the root
of T2 and s: {O} -* ctrl is a root of ?s. Since only countably many elements have
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been chosen, f is able to choose a root öp of A("1) such that

Vi < k (b; * bx), /(br) S tr is the root of 72, and ph(ax) : ph(bp) : O.

2" ak e succ(a6).

(a) ph(ap) : ph(aa) and ph(ba) : ph(aa) )- l. Now /(b;) I t,i I tt, i.e.
ls(b1) : (t,s), where t I t; ands € 70. The node t has a successor tt I tp,
and the node s has N1 successors s^(a) (o a or). Thus b1 has Nr successors
b such that

ph(b): ph(br,) and f (b) : t' 1tx.
Let bx be one of those which have not yet been chosen.

(b) Otherwise. Every element b;n((t,s)), where t is the root of ?2 and s is a root
of ?s, is in succ(b; ). Let b x be one of those which have not yet been chosen.

Nowpä(be) : ph(ba) * I and f (bx) : t l tp,so in any case (*) is satisfied.

3" a*isalimitnodeinrB(70). I-etX: {i <k : ai< or),

p: sup{ph(a1) : i e x}, and q : sup{ph(bl) : i€ x}.

Since all the predecessors of a7, have been chosen and the phase of the nodes of
A(To) does not change on limits, ph(o,.) : p. Now (*) impliesp I q I p-l I. l-et

Y : {i < k : ph(at) : p, ph(bt) : e, ai < o*}.

The set {f (tn) : i e Y } is a chain in Tz. Since all the branches of T2 arc of
successor length, there is a unique

(s,t): suP{ls(b6) : i' eY),

and thus the chain {bi : i < k A ai I a6} has aunique supremum b* for which
ph(bx) : q. This b7" has not yet been chosen: if bi : b* for some j ( k, by
uniqueness of the limits of ,R("0) it would be a6 ( ay, which contradicts the

requirement that a V is not allowed to pick elements before all its predecessors

havebeenpicked. Finally, rf q: p+1, /(b;) S t,i. ltx whenz € Y. Thus

f(bx):t1t*'
Assume then that V picks b* e R(Tr). If br : bl for some i ( k, we again let 3

choose ak : ai. Suppose bx * bn (i < k) and consider the following cases:

1o ör is a root. Since the tree ,R(76) has Nr roots, 3 is able to choose a root a7, which
has not yet been chosen. Now ph(b;.) : ph(ap) : 0.

2" bp e succ(bi).

(a) ph(a6) < ph(bt) < ph(bn).Now /(b7.) is the root of 72 below t7., and since

o; has N1 succossors of phase ph(at) + 1, I is able to choose orc € succ(ai)
having the same phase as b;.
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(b) Otherwise f is able to choose a;. such that ph(ap) : ph(bx).

3o brisalimitnode. Let X: {i<k: b,i1bx},rnddenote

q:ph(bu): sup{ph(b;) : i, e X} and p: sup{ph(a6) : ie X}.

Asinthepreviouscase,p 3q<p+1. Letf choosaak,- sup{a; : ie X}.If
q: p + I, f (b;) <. ti z-t6 whenever i < k,b.;1b6,ph(bt) - {, and ph(a): p.
Thus /(b;,) < t6.

tr

l7.1.Lemtna. For a regular cardinal n, the predicate il : I (M**) is absolute
re lativ e to n- c lo s e d forcin g.

Proof. By Lemma 17.4

2L: E (M**) <+ I wins EF"(2I, ,5).

The game E_F"(2I, !8) is rc-closed, and if G : EF*(2I, E), a rc-closed forcing forces
G" : EFo(il, E). Thus by Lemma 4.5 the equivalence is absolute relative to rc-closed
forcing. tr

L7.8. Theorem. There exists a logic L, absolute relative to u1-closedforcing, but
having no conjunctive nor disjunctive approximation to M*.r.

Proof. Take a logic L with a sentence @ such that

%1, g e il: R(Ts) (M*.,),

and close 4 under negation. The structure R(70) is absolute relative to o.r1-closed forcing,
since such a forcing preserves countable sequences. By Lemma I7.7 the logic ,C is
absolute relative to ar1-closed forcing.

Claim A: There is no class X e M*., such that

2Llcö s tu!€x(21=1t).

For contradiction, suppose X is such a class. Since R(76) I /, there is t! e X
such that R(70) F ,ry'. BV 5.1 and 17.6 there exists a tree 7r such that R@r) I ,r/ but
/?(?1) ft $,whichis a contradiction. Similarly we show:

Claim B: There is no class X e M*., such that

\lr-S e Vt/te X(2!,t,,h).
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tr

One could now ask whether the above counterexample only shows that absoluteness

relative to ar1-closed forcing is not the "right" degree of absoluteness for an approximation

to Moorr. However, the counterexample is stronger than it seems. Namely, the structure

R(70) is actually absolute relative to ZFC(P,r). Moreover, if ,C is a "strong" logic

absolute relative to the "right degree", ,C should be an extension of M*rr. This in turn

implies that L is capable of distinguishing whether a structure is equivalent with E(76)

relative to Moo.r. The above counterexample shows, that there is no logic which can

make this distinction with a single sentence and has an approximation to Moo.,.
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