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Introduction

An abstract logic, in the sense we use the term here, is a formal language which
describes mathematical structures. Its syntax is formulated by defining which objects are
sentences; a semantics for the sentences is introduced by defining when a sentence is true
in a structure. Often the semantics overrides the syntax: one is more concerned about the
expressive power of a logic than about what objects the sentences really are. However,
when necessary, a metatheory is introduced to make things clear in this respect, too. The
mostly used metatheory is set theory: sentences and structures are sets, and abstract logics
are defined by set-theoretical predicates.

In the seventies mathematicians realized that, if set theory is used as a metatheory,
set-theoretical methods can be used for deriving model-theoretical results. This approach,
initiated by Barwise in [B2], was an object of lively research for several years. However,
the research done in this area is far from exhaustive, although practically nothing has been
published recently.

The main tools of a set theorist are internal models: various sets or classes which
themselves are models of a set theory. Usually it is necessary that certain set theoretical
predicates are absolute relative to the constructed models, i.e. have the same meaning in
them. To relieve the burden, we have classified predicates by their degree of absoluteness.
The basic idea is to restrict the number of internal models taken in account when inspecting
whether a predicate is absolute relative to them. Thus you can say, broadly, that a predicate
is absolute relative to a theory if it has the same meaning in all models of the theory. Now, if
one keeps to standard set theories (i.e. to first-order set theories in a vocabulary containing
a single predicate symbol € only), there are predicates which are not absolute relative to a
theory, however strong the theory is. For example, the predicate “z is countable” is such
a predicate. The way around this is either to apply other principles to restrict the number
of internal models, such as absoluteness relative to w;-closed forcing, or to strengthen the
language of set theory with new predicates.

A logic is said to be absolute if its syntax is persistent (every object which is a
sentence in a set-theoretical universe is a sentence in extensions of the universe), and
if its semantics is absolute (the truth of a sentence in a structure is independent of the
set-theoretical universe). Absoluteness certainly restricts the expressive power of a logic:
one cannot express anything that is not absolute. For example, no logic absolute relative to
the set theory of Kripke and Platek can express well-foundedness. In a sense, absoluteness
is an abstract notion of “first-order”. The semantics of a sentence in a first-order logic
depends on the elements a structure has, but the semantics of a sentence of higher order
logics depends on the subsets of a structure, as well. Moreover, the borderline between
absolute and non-absolute predicates is largely based on the fact that the elements of a set
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are independent on the set-theoretical universe, but new subsets may be introduced when
the universe is extended.

A key fact behind this approach is that the classical way of constructing formal
languages tends to produce absolute ones. One starts with atomic sentences and produces
new sentences recursively by means of logical operations (conjunction, negation, quantifi-
cation etc.) Now it happens that the constructed logic is absolute as soon as each logical
operation is absolute. This principle will be given an exact formulation in the second part
of this work.

The set-theoretical methods are most useful when applied to absolute logics, espe-
cially to those absolute relative to a standard set theory. Among the first results is a
downwards Léwenheim—Skolem theorem (see [B2]): if a sentence ¢ has a model, it has a
model of cardinality at most |TC(¢)|. This is expectable, since cardinality is not absolute
relative to any standard set theory. Moreover, it turned out that L, has a special position
among absolute logics. Absolute logics have the Karp-property: if two structures satisfy
the same sentences of L., they satisfy the same sentences of every absolute logic. Addi-
tionally, Barwise showed in [B2] that any logic, absolute relative to KP+Inf, is a sublogic
of Lo..,. Of course there are strict extensions of L, such as the game quantifier logics,
which are absolute for instance relative to ZFC. Through the work of Moschovakis it
became known that these logics can be approximated with L,,: each sentence of a game
quantifier logic is equivalent to a disjunction of a strict class of L. -sentences. Burgess
in [Bu] further expanded this result to concern every logic, absolute relative to ZFC.

Apart from pure academic interest in the expressive power of absolute logics, the
set-theoretical methods are used to show that certain strengthenings of logics are not
absolute — and thus, in a sense, hard to define set-theoretically. A general tendency is that
absolute logics have weak interpolation properties: they have a strong implicit expressive
power but their explicit power is weak. For example, L., is absolute relative to KP,
but not even L, has Delta-interpolation in a logic absolute relative to a standard set
theory (see [B2]). Moreover, no logic, absolute relative to ZFC and strong enough to
express well-foundedness, has the weak Beth interpolation property (see [Bu]). By and
large, these results reflect the general difficulty in constructing logics with interpolation
properties, for example A-closures.

There are also many other aspects of abstract model theory in which the set-theoretical
methods have proved fruitful. For a survey of them, see [V2]. In this work we restrict
ourselves to the basic problem of finding bounds for the expressive power of logics
absolute relative to certain set theories. The main contribution of this work is a new proof
method: the applications represent mainly results which have — in one form or another —
already been proved by other methods; in some cases we achieve minor strengthenings.

The first part of the work, Sections 1 —5, is introductory: we present certain concepts,
either rarely used or otherwise non-stabilized ones, in order to fix our terminology and to
lay a firm foundation for our work. In the second part, in Sections 6 — 8, we discuss and
prove the absoluteness of several logics. Its contents fall withing the large category of
results which everyone knows but the proofs of which are hard to find or never published.
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The third part, Sections 9 — 12, presents the new construction method which is applied
in the final part. The construction can be used for translating sentences of an absolute
logic into sentences of L., a game quantifier logic, or into sentences of the infinitely
deep language Moooo. The main principle of the construction is as follows. Consider
a sentence ¢ of an absolute logic. It is true in a structure 91, whenever a certain set-
theoretical internal model exists. We define a game — during which a player, 3, tries to
build up a certain kind of set-theoretical structure — in such a manner that the following
statements hold:

- If 3 wins the game, i.e. if she has a canonical way of building the set-theoretical
structure, the internal model exists which is needed to show that ¢ is true in .

- If ¢ is true in 90, then 3 wins the game.

Then we show that this game can be coded as a game sentence, a sentence of Lo, Or as
a sentence of M ooo-

Applications are introduced in the final part of this work in Sections 13 — 17. We
start with some classical results by showing that finite logics, such that both their syntax
and semantics are absolute relative to KPU (the set theory of Kripke and Platek with
urelements), are sublogics of the first-order logic L., (see [V2]), and reprove Barwise’s
result: every logic, absolute relative to KP+Inf, is a sublogic of L., In Section 15 we
give a new proof for the Burgess’s approximation theorem. Meanwhile we sidestep and
use our method to show the Craig-interpolation theorem for the countable fragments of
Loow- ‘

Since Lo, has a special position among logics, absolute relative to a standard set
theory, and recent works on infinitely deep languages have revealed an analogy between
both Lo, and Mook, and L, and M+, for regular cardinals k, we apply the new
method in order to see whether M., has a similar special position. Now we see that
logics, absolute relative to such models of set theory which preserve countability, are
sublogics of M, ggtw] , a subclass of Mo, . As a sidestep we give an alternative proof for
the separation theorem of Tuuri in [T]: L+ has Craig-interpolation in M+ if A = k<~
and « is a regular cardinal. In the final section we show that the analogy between Lo
and M., fails, if we try to construct an approximation mapping analogous to Burgess’s.

I Preliminaries

Our set-theoretical notations are standard, following [J, Kn]. The words “function” and
“relation” refer to sets; the words “mapping” and “predicate” are the corresponding terms
for classes. Mappings are total, unless otherwise indicated.

If f is a function, dom(f) and ran(f) are the domain and range of f, flz is the
function f restricted to domain dom(f) Nz, and f”x is the range of f[z. The notations
(f(z) : = € y)and (f(z))eey stand for a function z — f(z) the domain of which is y.
If « is an ordinal, we denote by (x;,¥:)i<« a function f the domain of which is 2a and
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for which f(2i) = x; and f(2i + 1) = y; for each i. The notation { z;,y; : i € I} is to
be likewise understood: it is the union of sets { #; : i€ I }and {y; : i € I }.

If & is a cardinal, P, (z) is the set of those subsets of z which are of cardinality less
than . If ) is another cardinal, K< stands for both the set of functions with domain in
A and range a subset of x, and for the cardinality of this set. For an ordinal o, a* is the
least infinite cardinal strictly above a. For the discussion of forcing we use the notation
and terminology of [Kn]. We denote by rank(z) the set-theoretical rank of a set z.

1. Primitive recursive mappings

Though the primitive recursive mappings are a generalization of primitive recursive
functions on natural numbers, their principal relevance is not on effectiveness, but they
serve as a notion of “easily constructible”. This constructibility approach has been present
ever since they were introduced. The canonical source on them is [JK], although some
details can be found in [D].

1.1. Definition. A mapping is primitive recursive (p.r.) if it can be obtained from
the initial mappings
(1) (xo,...,Tpn) — z;, Wwhere 0 < 7 < n,
@) (z,y) = {z, v},
3) (z,y) — z\y,and
@) z—w
by substitution, union, and primitive recursion as follows:

(5) if f and go, ..., gn are p.r., then T — f(go(Z), ..., gn(ZF)), is also p.r.,
(6) if f is p.r., then (Z,y) — U, f(&, z) is also p.r., and
(7) if f is p.r., then the mapping g for which

9(Z,y) = f(Z,y,(9(%,2) : z€y))

is also p.r.

A predicate is primitive recursive if its characteristic mapping is primitive recursive. A
set a is primitive recursive if the constant mapping « +— a is primitive recursive.

1.2. Definition. Let f be a mapping. A mapping is primitive recursive in f if it
can be obtained from the initial mappings above and from f by substitution, union, and
primitive recursion. A mapping is primitive recursive in a predicate if it is primitive
recursive in the characteristic mapping of the predicate. It is similarly defined when a
mapping/predicate/set is primitive recursive in a mapping/predicate/set.

Jensen and Karp in [JK] do not consider the initial mapping x +— w to be primitive
recursive. However, the primitive recursive mappings in our sense are exactly the Prim(w)
functions in their sense. Instead of the recursion schema 1.1(7) Devlin uses a stronger
recursion schema in his work [D]. We present it in the form of the following lemma,
which implies that Devlin’s definition equals ours.
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1.3. Lemma. If g and h are p.r,, and rank(y) < rank(x) for every y € h(z), there
exists a p.r. mapping f such that

f(z) =9(z,(f(y) : y € h(z))).

Proof. Let g and h be primitive recursive and assume that rank(y) < rank(z)
whenever y € h(z). Define a transitive closure along h by induction: let

t(z,0) ={z} and t(z,n+1)=t(z,n)U etL(J )h(y)

for each z and n € w and let TCy(z) = J,,¢,, t(x,n). Now TC,, is primitive recursive,
x € TCp(z), and TCy(z) is h-transitive: h(y) C TCp(x) whenever y € TCp(x).

If X is a set, denote by X, the set of the elements of X having rank less than
a. We define a mapping F' by induction on ordinals in such a way that whenever X is
h-transitive, F'(a, X) will be the mapping f restricted to X,: let

F(0,X) =),

Fla+1,X)=F(a,X)U(g(z, F(a,X)h(x)) : z € X,rank(z) = a), and
F(y,X)= | F(a, X), if v is a limit.

a<y

Since rank is primitive recursive, the mapping F' is primitive recursive. An easy induction
shows that F'(a, X) is a function the domain of which is X, and, moreover, F'(o,, X) C
F(a,Y) whenever X C Y and the set X is h-transitive. Let f(z) = F(rank(z) +
1, TCh(z))(z) for every z. Clearly

f(z) = g(z, F(rank(z), TCy(z)) [h(x)),
and if y € h(z), then rank(y) < rank(z) and TCy(y) € TCx(x), so thus
F(rank(z), TCp(x))(y) = F(rank(y) + 1, TCx(z))(y) = f(y).

This implies that f is the required mapping. m]

In the literature there exist very detailed descriptions and proofs of the kinds of
mappings and predicates that are primitive recursive. The proofs of the following facts
can be found in [D, JK].

- The p.r. mappings are closed under definition by cases; e.g. if R is a p.r. predicate
and f, g are p.r. mappings, the mapping

f(z) if R(x), and
e g(x) otherwise

is p.r.
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- The p.r. predicates are closed under negation, conjunction, disjunction, and bounded
quantification.

- Set-theoretical separation and collection are p.r. operations. In other words, if R is
a p.r. predicate and if f is a p.r. mapping, the mapping

e {f(z,y) : yex AR(z,y)}

is p.rI.

M

- The predicates “x C y”, “x is transitive”, “z is ordinal”, “x is an ordered pair”, “x
k2 13

is a relation”, “z is a function”, and “z is finite” are p.r.

- The mappings z — Uz, (z,y) — 2z Uy, (z,y) — 2Ny, (z,y) — (x,y) (ordered
pair), z — dom(), z + ran(z), (z,y) — = x y, (f,z) — f(z), (f,z) — f'=,
(f,z) — flz,z — TC(z), and x — rank(z) are p.r.

- Ordinal arithmetics (sum, product, etc.) is p.r.

The following two properties will become important later.

1.4. Lemma. (i) If f is p.r, so is the mapping x — Cy(x), where C¢(x) is the
smallest superset of x closed under f.

(ii) If f is a p.r. mapping, there exists a p.r. mapping by, increasing on ordinals, such
that for all sets x, ..., Ty

rank(f(z1,...,zyn)) < by(rank(zy),...,rank(z,)).

Proof. For the claim (i) define g(0, z) = z and

gm+ 1L,z)=g(m,2)U{f(Y1,---s¥n) : Y1s---,Yn € g(m, ) }.

Now C¢(x) = U, ¢, 9(n, 7). The claim (ii) is shown by induction on the definition of the
primitive recursive mappings: it is trivial to find the mappings b for the initial mappings
and the substitution rule. The union rule is set by equation

rank( | f(&,2)) = U rank(f(Z, 2)).

z€y zZ€yY

Finally, the rank of (g(&, z)) . ¢, is the maximum of rank(y)+4-2 and sup{ rank(g (&, z))+3 :
z € y }; thus, if g is defined from f by the primitive recursion scheme 1.1(7), it is enough
that b, satisfies

by(@,B) =bs(a@, B,(B+2)U U (bg(a,y) + 3)).
YEB
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2. Definability in set theory

In this work we make use of various set theories, both conventional theories with only
a single predicate € in their vocabulary and expanded theories with auxiliary predicates
and constants. The Ag-, £;-, and Il;-formulas are defined as usual, even in expanded
vocabularies.

2.1. Definition. Let T be a set theory. A predicate A is Ag-definable in T (Al) if
there is a Ag-formula B such that T - A « B. The I and II7 predicates are defined
likewise. A predicate A is A;-definable in T (AT) if it is both = and IT{ .

A (partial) mapping F is Ag-definable in T if there is a Ap-formula B such that

T+ B(Z,y) «y=F(&) and T Vi3S'yB(F,y).

If, moreover, T' + VZ 3!y B(Z,y), we say that the mapping F' is totally Ay-definable in
T. The definition of a mapping being (totally) ', TTT, or AIT is achieved similarly. Note
that a mapping is totally 7 exactly when it is totally AT,

The weakest conventional set theory we are using is the set theory of Kripke and
Platek; it is denoted by KP and has the axioms of extensionality, foundation, pair, union,
Ap-separation, and Ag-collection.

It has a frequently used expanded variant: KPU, the set theory of Kripke and Platek
with urelements. In addition to the relation symbol €, its vocabulary has an auxiliary
unary predicate symbol U to distinguish urelements from sets. The axioms of KP must
be slightly modified to cover the urelements, for instance the axiom of extensionality is

Ve Vy((~U(z) A-U(y) AVz(z €x = 2 €y)) =z =1Y),

and the axioms of separation and collection must indicate that the new set is not an
urelement. (This implies that an empty set is not an urelement.) Apart from the axioms
of KP, KPU contains a new axiom which states “no urelement contains elements”.

The theories KPU and KP are nicely treated in [B4]. They are nearly the same theory:
KP is equivalent to the theory KPU U {U = 0}. To give reader an idea of the strength of
KPU we list some of its elementary properties. The same properties hold for KP, too.

- KPU implies X;-collection and A;-separation.

CE T

- The predicates “z C y”, “z = {y,z}", “r = (y,2)”, “r is an ordered pair”,

x is a relation”, “z is a function”, and “z is one-to-one function” are

‘&m — y >< Z”’ 3
KPU
AKPY.

- The predicates “z is transitive”, “z is an ordinal”, “z is a limit ordinal”, “z € w”,
and “z = w” are AKPY.

- The mappings dom, ran, (f,z) + f|z,and (f,z) — f"z are totally ZXFU.

- Let R be a predicate which is A;-definable in KPU through a formula or. If
a predicate S is A;-definable in KPUU {R < ¢r}, where R is a new relation
symbol, then S is A;-definable in KPU.
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- Letamapping F be totally X;-definable in KPU through a formula ¢ . If a predicate
(or amapping) is Z;-definable in KPUU{F'(£) = y < ¢p(Z,y)}, itis X;-definable
in KPU.

- KPU allows definition by recursion: if G is a ZXPY mapping, there is a ZXPU mapping
F such that

KPU k- F(Z,y) = G(Z,y, (F(&,2) : z € TC(y))).

If A = (AE,...)and A = (A, E',...) are structures of a vocabulary of an
(expanded) set theory such that 2 is a substructure of 2" and for every a € A

{be A: E(bja)}={be A" : E'(b,a)},

we denote A Cepg A’ and say that the structure 2’ is an end extension of 2 (or that the
structure 2 is an initial substructure of ).

If A4 = (A, E,...) is a structure in a vocabulary of an (expanded) set theory, its
well-founded part Wf(2L) is the largest well-founded initial substructure.

2.2. Proposition (Truncation lemma [B4]). If U is a model of KPU, then Wf(l) is
a model of KPU. The same holds for KP. a

From this the reader should not hasten to conclude that KPU and KP are “equal”
theories in sense that wherever KP occurs it can be replaced with KPU by only remarking
that urelements exist. There are some pitfalls, one of them being the notion of infinity:
the predicate “z is finite” is A;-definable in KP but only X;-definable in KPU. As to the
first claim, finiteness is A;-definable in KP + Inf (KP with the axiom of infinity), since the
mapping « — P, () is totally X;-definable in KP + Inf. (The same argument shows that
finiteness is Aj-definable in KPU + Inf, too.) Since KP + —Inf implies that all sets are
finite, we can conclude that “z is finite” is A]fp. On the other hand, finiteness is trivially
X -definable in KPU. In order to see that it is not I1;-definable, note that by first-order
compactness the theory containing KPU and the axioms

- ais a set of urelements,

- a; €afort € w,

- cis a finite ordinal (i.e. a successor ordinal having no limit ordinals below itself),

and

- f is a one-to-one function from a onto ¢
has a model 2 in which the set a has a nonstandard finite cardinality c. By the truncation
lemma WT(2l) is a model of KPU, obviously containing a, but naturally a cannot be finite
in it.

Among stronger conventional set theories we mention ZFC. Although the theory

becomes much stronger, the number of A;- and Z;-definable predicates does not increase

dramatically. Some examples of AZFC predicates which are not AX? will be presented
when discussing logics.
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To close this section, we present a proposition binding together the notion of primitive
recursiveness and definability. We say that a set A is admissible if it is transitive and (A, €)
is a model of KP. Thus an admissible set containing w is a model of KP + Inf.

2.3. Proposition ([JK]). (i) Primitive recursive mappings are totally X,-definable

in KP + Inf.
(ii) A transitive set A is admissible and w € A if and only if A is closed under primitive
recursive mappings and (A, €) satisfies Xi-collection scheme. m]

3. Expanded set theories

The X;- and A;-definable predicates are our main interest: we want to strengthen
the set theory sufficiently to obtain as many A;-definable predicates as possible. As it is
known, beyond ZFC there is a multitude of first-order extensions by strong axioms, e.g.
the existence of diamonds, boxes, and measurable cardinals. Certain axioms, such as “all
sets are constructible”, produce new Z;-definable predicates (e.g. the well-ordering of the
universe). However, certain predicates, such as “z is countable”, will never become A;-
definable in this way. The way to proceed beyond these limits is to expand the vocabulary
of the set theory with new predicates.

To have an example, we add a new constant symbol x and a binary predicate P.
Consider the theory

ZFC(P,) = ZFC U {k is acardinal } U {P(z,y) < y = Pc(x)}.

Now “|z| < x” and “|z| < K" are even Ag-definable in ZFC(P,). We say that a predicate
R is Z;(P,)-definable if it is Z;-definable in ZFC(P.). We similarly define A;(Py)-
definability. Note that the £; (P, )- and A, (P, )-definable predicates are closed under the
restricted quantifications “Vz € P, (y) ...” and “3z € P.(y) ...”

The problem with this approach is that very little is known about these kinds of
expansions. Fortunately something can be achieved using the same means as in conven-
tional set theory. To illustrate this, we next show a reflection property for Z; (P, )-formulas
analogous to the known Levy reflection property: if A is an uncountable regular cardinal,
#(x) is a X;-formula, and @ € H, is such that ¢(a) holds, then ¢(a) holds in H. See for

example [J] for the proof.

Let P be a predicate, A an extensional set, and let ¢ be the Mostowski collapsing
function of A. If forevery a € A

P(a) < P(a)*,
we say that the set A reflects the predicate P. Moreover, if for every a € A
P(a) <= P(ca),

we say that the reflection is strong. A set A reflects a mapping F' if A is closed under F'
and A reflects the graph of F'. One of the basic results in set theory is that every first-order
definable predicate is reflected by a countable set, although not necessarily strongly.
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3.1.Lemma. Let ¢y, ..., o, be formulas of an expanded vocabulary {€, k}, let k
be a regular infinite cardinal, and let A be a set. There exists B O A such thatk € B, B
strongly reflects Py, B reflects each formula ¢;, and | B| < max{x<",|A|<"}.

Proof. We may assume that the sequence ¢y, . . ., ¢, contains the axiom of exten-
sionality, and formulas “a C y” and

“r=Pi(y) @ Vz(2 €z - z2CyAIf3a < k(f:x — aone-to-one))”.

Moreover, we may assume that the universal quantifier does not occur in the formulas
&0, - . ., On, and that all the subformulas of each formula occur in the sequence. If C is a
class, denote

C ={z € C: Vye C(rank(z) < rank(y)) }.
For every formula ¢; of form 3z ¢;(x1, ..., Zm, z) define mapping
Hi(zy,...,%m) = C, whereC = {z : ¥(zy,...,Tm, ) }.

If ¢; is not of the above form, let H;(z1,...,2m) = 0. If || < &, let F(x) be the set of
one-to-one mappings from z to |z|; otherwise let F'(z) = 0.

Given a set X, let L(X) be the union of X, H;(zi,...,om) for ¢ < n and
T, ., Zm € X, F(z) forx € X, {Px(z) : * € X}, and P.(X). Let C be the
least set containing A and {0, 1,...,x} such that L(C) = C. It could be shown that
the set C strongly reflects the formula “P.(x) = y” and that it reflects the formulas
@0, - - . , Hn, but it is too large for our purposes. We use the axiom of choice to pick a small
subset of it. Let < be a well-ordering of C. Define for 7 < n functions

hi(z Tm) = {ming Hy(x1, ..., %)} if Hi(21,...,20) # 0, and
Rhe 0 otherwise,

and let f(z) similarly pick a finite subset of F'(x). These functions are clearly defined for
arguments in C, and their values are subsets of C. For a subset X of C, let K (.X) be the
union of sets X, h;(Z) fori <nand 7 € X, f(z) forz € X, {Pu(x) : z € X}, and
P (X). Let
B()=AU{O,1,...,KZ}, BQ_HZK(BQ), and B’Y: U B,
a<ly

where ~ denotes a limit ordinal. Clearly AU{0,1,...,k} =By C B C B, C...CC,
and, since « is regular, K (B,) = By. Let B = B..

Claim A: B reflects the formulas ¢y, . . . , On.

Suppose @; is of form 3z (zy,...,Tm, ), and let zy, ..., z,, be elements of B.
Since K(B) = B, hi(z1,...,2m) € B, and thus
Gi(x1y. .., Tm) <= Iz € Hi(T1,. ., Tm) (X1, .., Tm,T)
< Jr e hi(zy, .., Tm)Y(T1, .., Tm, T)

< Jr e BY(z1,...,Tm,T).
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Since the sequence ¢y, . . ., @, is closed under subformulas, an easy induction shows that
all formulas in the sequence are reflected in B.

Especially the above claim implies that B is extensional. Denote the Mostowski
collapsing function of (B, €) by c¢. Now ck = &,

z="P.(y) « Vz(z €x - 2 CyAIf3a < k(f:x — o one-to-one))
is true in B for all elements x,y € B, and whenever a,b € B,
aCb < [aChP < caCocb,

i.e. the relation C is strongly reflected in B.
Claim B: B strongly reflects the relations “|z| < k”and “y € P (x)”.

The reflection of “y € P, (x)” follows immediately from the reflection of “|z| < k7,
so it is enough to show the latter. Suppose a € B. If |ca| < &, then a N B is a subset of
B having cardinality less than k. Since K(B) = B, a N B is in B. By extensionality
an B = a, and thus |a| < k. If |a| < k, then f(a) is nonempty, which makes |a| < & in
B. Finally, if |a| < & in B, then |ca| < &, since the truth of X;-sentences is preserved in
extensions.

Claim C: B reflects “y = P, (x)” strongly.

Suppose a and b are elements of B. If b = Py(a), then [b = P.(a)]? follows
immediately from the claim B. Suppose [b = P.(a)]?. Clearly the claim B implies
¢b C P, (ca). On the other hand, if z is in P, (ca), then x gives rise to a subset y of BNa
such that cy = x and |y| < k. Since P.(B) C K(B) = B, yisanelement of B. Thus the
claim B implies [y € P«(a) = b]Z, and so z = cy € cb. Finally, suppose cb = P (ca).
Now d = P.(a) € K(B) = B, and we have already seen that cd = P(ca). Thus
cb = cd, and by extensionality of B we must have b = d.

Claim D: |B| < max{k<",|A|<"}.
If X is an infinite set, obviously

[K(X)] < |1X| + [Pe(X)| = [ X[+ | X[7 = | X<,

Denote \; = |B;|. Clearly \g = max{, |A|}. By induction one can see that Ao, < Ag"
for each o < k: the limit step is trivial, and for the successor step note that if A > &,
(A<F)<® = A<®, Thus | B| = A < A5". a

3.2. Theorem. If k is a regular cardinal, ¢ is a Zi(P.)-formula, and i > K is a
cardinal such that VA < p(A<" < p), then H, reflects ¢.
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Proof. It is not hard to see that H, reflects P, for every 1 > k. Thus for every
a€ H,

[(a)]He€Per) - g(a).

On the other hand, suppose a € H, is such that ¢(a) is true. Assume ¢(a) = Iztp(a, z),
where ¢ is Ag(P.). Choose b such that ¢(a,b) is true. Let ¥* be the formula
where each occurrence of the symbol P is replaced with a formula defining P,, and let
A = TC({a,k}) U {b}. By Lemma 3.1 there exists B D A such that B strongly reflects
P, [W*(a,b)]P, and |B| < |A|<"® < . Thus cB, the Mostowski collapse of B, is in H,,,
reflects Py, and 3x¢*(a, ) holds in ¢B. This implies that ¢(a) holds in (¢B, €, P, &),
and since ¢ is a X,-formula, ¢(a) holds in (H,,, €, Py, ). a

One could not have a better result, since any H, reflecting all Z; (P,;)-formulas must
satisfy VoJy(y = P.(z)). If X < p, then A is an element of H,; thus P, (A) isin H,, and

ITC(Pc(A)] = [Pc(N)| + A= A"+ X < p.

4. Trees and games

If S is a partial ordering and u € S, denote the set of predecessors of u by predg(u)
(or pred(u) if S is clear from the context). The notation succs(u) stands for the set of
immediate successors of u. A chain of a partial ordering is a linearly ordered subset. Each
subset X of a partial ordering S spans an initial segment initg(X') and an end segment
endgs(X)

inits(X)={ueS:FveXwu<v)}
ends(X)={ueS:FveX(w<u)}

A free is a partial ordering where sets of predecessors are well-ordered. A minimal
element in a tree is a root, a maximal element is a leaf. A tree has unique limits if u = v
whenever pred(u) = pred(v) and the order type of pred(u) is a limit ordinal. Unless
otherwise indicated, trees have a single root. A maximal chain is called a branch. A tree
is a leaftree if each branch has a leaf (or, equivalently, if each chain has an upper bound).
A tree is a s, A-tree if it has a single root, unique limits, each element has less than x
immediate successors, and each branch is of length less than A. When the number of
successors is inessential, we speak about A-trees. A path in a tree is a strictly increasing
sequence (u;);<¢ of elements such that pred(u;) = {u; : j < i} foreachi. If T isa
tree, [T is the set of its branches. If  is an element of T, then T,, = end7({u}) is the
subtree consisting of the element v and its successors. If X is a subset of T', denote

T[X] = inity(X) Uendr(X).

The partial ordering T'[ X | is a tree, which contains the elements in X, their predecessors,
and all their successors. The ordinal type of pred(t) for an element ¢, denoted by hty(t),
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is called the height of t in T'. The height of a tree T', ht(7T") is the supremum of the ordinal
types of its branches.

Trees are usually compared using embeddings: we write S < T if there exists a
function f: S — T which preserves the tree order (f need not be one-to-one).

If T is a tree, 0T is the tree of paths in 7', ordered by end extension. An infimum
S ®@ T of two trees S and T is the tree of pairs (s, t), where the elements s € S andt € T
have the same height. The tree S ® T is ordered by

(5,t) < (s',t') &= s<sAt<t.

A supremum S @© T of single-rooted trees S and T is constructed by identifying the roots
of Sand T, i.e.

SOT = (Sx {0 U (T x{1})/ ~,
where (s,i) ~, (t,7) if and only if either (s,i) = (¢,7) or i # j and both s and ¢ are
roots. For every tree .S and 7', it can be shown that T' < ¢T, 6T £ T, and S @ T and
S @ T are the infimum and supremum of trees .S and 7" relative to <.

The sum S + T of trees S and T is obtained by placing a copy of 7" on top of each
branch of S. In other words,

S+T=S5x{0}U([S]xT)x{1}

so ordered that

(5,0) < (¢,0) <= t < s,
(5,0) < ((b,t),1) <= s€b, and
((a,s),1) < ((b,t),1) <= a=bands < t.

The product S - T" of trees S and T is constructed by replacing each element of T with
a copy of S and by replicating the subtrees when necessary. To be exact, the tree S - T
consists of tuples (g, s,t), where s € S, ¢t € T, and g: predT(t [S]. It is ordered by
setting (g, s,t) < (¢',s',t') if and only if either g = ¢/, t = t/,and s < sort < t/,
g = ¢'lpred(t), and s € ¢'(t).

A tree is well-founded if its every branch is finite. Thus a well-founded tree is a
leaftree. Let T be a well-founded tree. The (unique) function r for which dom(r) = T
and

r(z)=sup{r(y)+ 1 : y € succ(z) } foreveryx € T

is called the rank function of T'. The supremum of its range is called the ordinal of the tree
T. For each ordinal « the tree B,, of strictly decreasing sequences of ordinals less than o
is a well-founded tree having ordinal a.. Moreover |B,| = |a| if « is infinite. In the next
two lemmas we show that the mapping which maps a well-founded tree to its ordinal is
not primitive recursive but, however, effective enough so that admissible sets are closed
under it.

2 20753
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4.1. Lemma. Let f be a mapping such that f(T) is the ordinal of T whenever T is
a well-founded tree. Then f is not p.r.

Proof. Assume for the purpose of contradiction that there is a p.r. mapping f which
maps every well-founded tree to its ordinal. Let g be an increasing p.r. mapping such that

for every set
rank(f(z)) < g(rank(z)).

Lety = g(w+w)+1. Since g is £;-definable, v must be countable. Choose a well-founded
tree T = (w, <7) such that its ordinal is y. Now rank(7") < w + w, but rank(f(T")) = 7,
which is a contradiction. a

4.2.Lemma. Let A be an admissible set. If T € A is a well-founded tree (in the
true universe), the rank function of T and the ordinal of T' are elements of A.

Proof. We show by induction on 7' that for every x € T there isr, € A which is a
rank function of T,. Note that “r is a rank function of 7,,” is a A'fP -formula (free variables
r,z,T). Let p be the rank function of T'.

If p(z) = O, then clearly r, = {(x,0)} € A. Suppose p(z) = a and r, € M for
every y for which p(y) < . Thus

Vy € succ(x) Ir € A (r is a rank function of T).

Since X;-collection and A;-separation schemes hold in an admissible set, the set R, =
{ry : y € succ(x) } is in A. Since p(y) = ry(y) for each y, this implies that o and
7. = [JR: U {(z,a)} are elements of A. The rank function of T' is 7, where z is the
root of T', and the ordinal of T is | ran(r). 0O

Intuitively, a game for two persons is based on rules which determine the acceptable
moves and the winner. Here we name the players V and 3, and follow the convention
that V is male and 3 female. In the following formal definition the rules determining the
acceptable moves are presented as a tree of acceptable game positions. The root of the tree
is the initial position, and the successors of each position are those positions into which
one comes with an acceptable move. A play terminates when a final position, a leaf of the
position tree, is reached. The opponent of the mover in the final position wins the play
(i.e. the first player unable to move loses).

4.3. Definition. (i) A game is a pair (R, m), where R is a leaftree having a single
root and unique limits and m: R — {V, 3} maps positions to movers. The branches
of the position tree are called plays. A player wins a play if his/her opponent is the
mover in the final position of the play.

(i) An initial segment T C R is a V-strategy (3-strategy) if it is a leaftree and
succp(u) = succr(u) for every u € T such that m(u) = 3 (m(u) = V). De-
note by straty(G) (stratz(G)) the set of V-strategies (3-strategies) of the game G.
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(iii) A V-strategy (3-strategy) T is complete if its every leaf is a leaf of R.
(iv) A complete V-strategy (3-strategy) T is a winning strategy of ¥ (3) if V (3) wins
every play in [T]. We say that V (3) wins the game G if ¥ (3) has a winning strategy.

This definition, though rigorous, is technical, so in practice one usually defines games
by means of verbal description. To have an example, consider a so-called Ehrenfeucht-
Fraissé game. Let 2l and B be structures having the same vocabulary, and let T" be a tree.
The game EF7 (2, B) is played as follows: for as many ordinals ¢ as possible

- V chooses an element ¢; € T such that the sequence (t;);<; is strictly increasing.

- V chooses a model (2 or B) and an element u; from the model.

- 3 chooses an element v; from the other model. If u; was chosen in 2 and v; in ‘B,
denote a; = u; and b; = v;; otherwise denote b; = u; and a; = v;. Player 3 must
choose v; such that the function { (a;,b;) : j < 4} is a partial isomorphism from
2 to B.

This continues as long as either player is unable to move: the player who is finally unable
to move, is the loser.

This description can be turned into a rigorous definition of a game for example in the
following way: the position tree of the game EGr (2, B) consists of sequences (7;)i<e,
where

- r3; is an element of the tree T such that the sequence (r3;)3;<¢ is strictly increasing.

- T3;41 is a pair (z;, u;) where z; is either 2 or B and u; is an element of the model
ZX;.

- T3i42 is a pair (y;, v;) where y; is the model other than z; and v; is an element of
the model y;. Moreover, the partial isomorphism condition must be satisfied.

The mover in position (r;);<¢ is 3 if £ = 3¢ + 2 for some ¢, and V otherwise.

A dual of a game G is the game ~G, where the roles of the players are switched. In
other words, if G = (R, m), then ~G = (R, m’), where m’(u) = 3 <= m(u) =V for
every position u. Clearly 3 wins G if and only if V¥ wins ~G. A game is determined if
either player has a winning strategy.

A strategy is described as a tree rather than as a function, as what is sometimes called
a quasi-strategy. A usual way to present a winning strategy for a player, say 3, is to
describe how 3 must make her choices in order to win a play. Consider for example the
Ehrenfeucht-Fraissé game presented above. We assume that a certain number, say &, of
moves have already been made, i.e. elements ¢;, a;, and b; for ¢ < & have been picked
from 7', 2, and B, respectively. We suppose that V picks t¢ and, say, a¢ in 2. Then we
describe which kind of element 3 must pick in 8. This results in a strategy: the strategy
consists of those positions (r;);<¢ Where the elements 73, satisfy the requirements laid
down for the elements picked by 3.

However, this simple construction is not always enough: in some cases 3 needs to
maintain an auxiliary construction during the play. The next lemma firmly states that
certain auxiliary constructions can be used when describing a strategy.
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4.4. Lemma. Let G = (R, m) be a game. Suppose there is a set A and a tree S of
sequences (u;, a;)i<¢, where u; € R and a; € A such that the following hold.
(i) If (ui,a;)ice isin S, then (u;);<¢ is a path in R.
(ii) If (u;, a;)i<e isin S andm(ug) =V (m(ug) = 3), thenfor every ug 1 € succp(ue)
there is ag+1 € A such that (u;, a;)i<e4+1 € S.
(iii) If (ui,ai)ice is in S, m(ug) = 3 (m(ug) = V), and succr(ug) # 0, there is
ugt1 € succp(ug) and agy1 € A such that (u;, a;)i<e41 € S.
(iv) If € is limit, (u;, a;)ice isin S, and ug = sup{w; : © < £}, there is ag € A such
that (ui, ai)ig € s.
(v) If (u, a;)i<e is maximal in S, then m(ug) =V (m(ue) = 3).
Then 3 (V) wins G.

Proof. Let < be a well-ordering of A. Let S* be the set of those (u;, a;)i<¢ € S for
which
a; = mqm{ a; € A : (uj,a;)j<; € S} forevery i < &.

Now, if (u;)i<¢ is a pathin R, there is at most one sequence (a;);<¢ such that (u;, a;)i<¢ €
S*. Moreover, (i)—(v) hold for S*, and thus

T = {ueg € R : 3ui)ice Haiice (uis ai)ice € 5™}
is a winning strategy of 3 (V) in G. ]

To illustrate this, let us briefly discuss a case in which forcing has no effect on a
game. Let \ be an ordinal. A game G = (R, m) is A\-open (A-closed) if there exists a set
A C R of positions such that the height of each position in A is less than A and 3 (V) wins
a play p € [R)] exactly when p N A # (). Note that once this kind of set A exists, there is
a canonical way of picking one: the set of such minimal positions v € R that 3 (V) wins
each play containing the position u. Moreover, note that if the position tree is a A-tree,
the game is both A-open and A-closed.

Let P be a notion of forcing and let G = (R, m) be a game. The first problem we
encounter is that G might not be a game in the extended universe: the position tree may
Have new branches with no final positions. We solve the problem by adding the missing
positions. If the game is open or closed and all the new positions are high enough, there is
a natural way of attaching a mover to these new positions. Define first a canonical P-name
for the extended position tree: let R contain the pairs (v, p) where either p = 1p and v is
a canonical name for an element of R, or p forces v to be a branch of R having no upper
limit. Note that R is a set, since we may assume that the P-names for the branches of R
are subsets of P x R.

Suppose then that G is open: let A C R be the canonical set witnessing it. Define
7, to be a canonical P-name for a function from R to players, which maps each position
in R in the same way as m and each new position to either V or 3 depending on whether
the new position is above a position in A or not. To be exact, let 71, be such that



Absolute logics 21

- 1p Ik my(a) = m(a) if uisin R,
- p Ik mo(b) = V if p forces b to be a branch of R without an upper limit and
bNA#0,and
-p H—vﬁzo(b) = 3 if p forces b to be a branch of R without an upper limit and
bNA=0.
Let G, be a P-name for the pair (R, 7,). Define P-name G. for a closed game G in a
similar way.

4.5. Lemma. Let G = (R, m) be a game and let P be a \-closed forcing.

(i) If G is X-open, P forces G, to be a \-open game. Moreover, ¥ wins G if and only if
P forces ¥ to win G.,.

(ii) If G is A-closed, P forces G to be a \-closed game. Moreover, 3 wins G if and
only if P forces 3 to win G..

Proof. 1t is enough to show (ii), since (i) is similar. Let A C R be the canonical
set witnessing a game G = (R, m) closed. Clearly P forces R to be a leaftree, and it is
not hard to see that P forces dom(7n2.) = R; thus P forces G to be a game. Since P is
A-closed, the height of every new position in G. is at least A. Thus a condition p forces ¥
to win a play b in G, if and only if the set of those conditions ¢ < p which force bN A #0
is dense.

Suppose that P forces 3 to win G.. Informally, 3 wins G as follows. First choose
po € P and a P-name S such that py forces S to be a winning strategy of 3 in G..
One immediately sees, that py forces S N A = 0. Let uy € R be the root of R: now
po IF Uy € S. Then suppose p; IF U; € S and m(u;) = V. If u; is a leaf, 3 has won,
otherwise suppose that V moves into position u;4; € succ(u;). Since p; forces S to be
a winning strategy and m.(%;) =V, p; IF %;4; € S. Choose p;+; = p;. On the other
hand, if p; IF @; € S and m(u;) = 3, u; cannot be a leaf, since p; forces .S to be a
winning strategy and 71.(%;) = 3. Thus there exists p;+; < p; and u;4+; > u; such that
piy1 IF ;41 € S. Atlimit k let ux be the limit position of u; (¢ < k) and, if &k < A, let
pr. be a lower bound for p; (i < k). In this way we can play up to height ) in the position
tree, thus reaching a position uy. But now u; ¢ A for each i < A, which implies that 3
must finally win the play, independently of how she continues above height \.

Using Lemma 4.4 this strategy is formally described as follows. Choose py € IP and
S as above. Let T be the tree of sequences (u;, p;)i<k such that (u;);<x is a path in R,
(Di)i<min{k,\} 18 an increasing sequence in P, and p; forces #; € S foreachi < min{k, A}.
Then T satisfies the conditions of Lemma 4.4, which was shown by the informal proof.

To see the converse, suppose that .S is a winning strategy of 3 in GG. Define a P-name
S for a strategy of 3 in G..: let S contain pairs (, 1p) for u € S and pairs (b, p) whenever
p forces b to be a branch of S without a maximal element. It is not hard to see that P
forces S to be a complete I-strategy in G.. Moreover, since G . contains no new positions
of height less than A, P forces SnA=5nA =0, which immediately implies that S is
a winning strategy of 3 in G.. O
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A frequently occurring auxiliary construction is a phantom game. In a phantom game
construction 3 wins a game G by playing another game G’ in the background: whenever
player V makes a move in G, she maps this move to certain move or moves of V in the
game G, uses the winning strategy of 3 there, and again maps moves in the game G’ to
her moves in G. This will be carefully formulated below.

4.6. Definition. Let G = (R, m) and G’ = (R, m’) be games. The game G’ is an
3-phantom of G (or G is a V-phantom of G") if there exist functions

fy: R — straty(G’) and f3: R’ — stratz(G)

such that the following conditions hold:

(i) u <v= fv(u) C fy(v) forevery u,v € R, and similarly for f5.
(i) If v is maximal in fy(u) and v is maximal in f3(v), both u and v are final positions.

(iii) If w is a final position of R and v € R’ is such that v € fy(u) A u € f3(v), then
fv(u) is a complete V-strategy in the game G’ restricted to R'[{v}] (i.e. in the game
G restricted to positions compatible with v); and similarly for f5.

(iv) If u € R and v € R’ are final positions such that u € f3(v), v € fy(u), and
m'(v) =V, then m(u) = V.

The functions fv and f3 are called reduction functions.

The moves are mapped between the games G and G’ with the functions fy and f3.
For example, the function fy maps a position u in the game G to a V-strategy in G': the
strategy tells us which moves of V in G’ correspond to the moves in u. The condition (ii)
prohibits a deadlock: a situation where neither f3(v) tells 3 how to continue in position
w in the game G nor fy(u) tells V how to continue in G’. The condition (iii) ensures that
a phantom game provides one with enough information for playing the game through.
Finally, the condition (iv) states that if a play in G and a play in G’ are coupled by the
reduction functions, the winners are related.

4.7. Lemma. Let G and G' be games. If G' is an 3-phantom of G, then

Jwins G = Iwins G and VY wins G = V wins G'.

Proof. We use Lemma 4.4. It is enough to show the first implication, since the other
case is similar. Suppose 7T is a winning strategy of 3 in G'. Let .S be the tree of sequences
(u;, vi)ice, where (u;)i<e is a path of R, (v;)i<¢ is an increasing sequence of positions in
T,and u; € f3(v;) Av; € fy(u,) forevery i < £. We need to show that the requirements
of Lemma 4.4 hold.

4.4(1): Trivial.

4.4(ii): Let (u;, v;)i<e € S, m(ug) =V and ugyy € succr(ug). Since f3 is an 3-strategy
and (i) holds, one can choose ve 1| = vg.
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4.4(iii): Let (u;,v;)i<e € S, m(ug) = 3 and succr(ug) # 0. Let vy be a maximal
element of fy(ug)NT above every v; fori < €. Now (ii) implies f3(ve+1)Nsuccr(ug) #
@, and it is enough to choose w¢ | from this set.

4.4(iv): Let ¢ be a limit and suppose (u;, v;)i<¢ is in S such that ug = sup; . u; exists in
R. Since v¢ = sup; ., v; exists in T', the assumption (i) implies that (u;, v;)i<¢ isin S.
4.4(v): Let (u;, v;)i<¢ be maximal in S. The claims 4.4 (ii)—(iv) shown above imply that
€ is a successor, say £ = i + 1, and w; is a final position in R. By (iii) there is a final
position v above v; in fy(u;) N7T. Now m’(v) must be V, since T is a winning strategy
of 3, and u; € f3(v) by (i), so (iv) implies m(u;) = V. a

Though precise, the lemma above is technical and in practice often inconvenient.
This is why an informal presentation is usually preferable. Consider games G and G'. For
simplicity, assume that in the games the players pick elements alternatively from some
sets. Suppose V starts the game G by picking an element ag. We then informally describe
which kind of element ¥ must pick in the phantom game G’, i.e. we describe the first
move of V in the strategy fv(ao). This element may depend on ay; let it be by. Suppose 3
answers b;. Then we, similarly, describe the strategy fa(bo, b1) by indicating which kind
of element 3 must pick in G. This element a; may depend on both ag and by, b;. This
game-playing can be presented in the form of a diagram, see Diagram 1.

G G’

Viao
tho = f(ao)
El:b1

3 :ar = g(bo, b1)

V:;lw
V:b, = f(ag,...,a)
aibw+1

Diagram 1: Phantom game diagram

On the left side of the diagram there are the moves in the game G, on the right side
the moves in G’. A notation like a; = g(bo, b;) indicates that the element a; may depend
on by and b;. Note that the moves of V in the game G and the moves of 3 in G’ must be
freely chosen. This gives rise to the reducing functions: for example, given a position
v = (b;)i<e in the game G, every such position u = (a;)i<¢ in the game G which is not
too long and which satisfies the described dependencies belongs to the strategy f3(v).

The requirements (i)—(iii) of Lemma 4.7 are usually trivial to check, so one only
needs to ensure only that the requirement (iv) holds, namely, that if p and q are plays on
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the left and right side of the diagram, respectively, then 3 wins p whenever 3 wins q.

The phantom game construction was presented above assuming there is only one
phantom game. Actually there can be number of phantom games (games on the right side
of the diagram). For example, a game G gets three phantom games G, G5, and G5 as
follows. We define three reduction functions fy 1, fv 2, and fv,3 which reduce the moves
of V in G to moves of V in the phantom games. On the other hand, the reduction function
f3 has three arguments: a position in each game G, G5, and G3.

5. Logics

Our logical setting is according to [E], and we use set theory as a metatheory.
Vocabularies are single-sorted, and metatheoretically they are sets of symbols. Each
symbol contains information of its kind (relation, function, constant), arity, and name. We
use no separate variable symbols. In some cases we join vocabularies to two-sorted ones:
if o and 7 are vocabularies, (o; 7) is a two-sorted vocabulary, where the symbols of o are
of sort 0, the symbols of 7 are of sort 1, and the sorts are separated (i.e. terms of different
sort do not occur in the same atomic formulas).

Structures are pairs (M, F'), where M is a nonempty set and F' is a function which
maps a vocabulary to interpretations. If 90t = (M, F') is a model, Voc(9) = dom(F) is
the vocabulary of 9. If 7 is a vocabulary, Str(7) is the class of those structures which have
the vocabulary 7. By (901, R) we denote the structure 90t expanded with a new relation R
(or any other interpretation of a symbol) and by (2; ®B) the obvious two-sorted structure
in vocabulary (Voc(21); Voc(B)) which one gets by putting together the structures 2 and
B.

An abstract logic is a pair (£, =), where L is a binary predicate between vocabular-
ies and sentences, usually denoted by “¢ € £(7)”, and |= is a ternary predicate between
models, vocabularies, and sentences, usually denoted by “9 |=,(,y ¢”. It is customary
to speak about “the logic £ and to shorten the predicates “¢ € £” and “9 |= ¢” if there
is no risk of ambiquity. An abstract logic is assumed to have the following properties:

- Syntactic expansion property: if ¢ € £(7) and 7 C o, then ¢ € L(0).
- Isomorphism property: if 9t = 9t and 9 = ¢, then N & 4.
- Reduction property: if ¢ € £(7) and 7 C Voc(90), then

ME¢ < M7 o

A logic £ has the substitution property if for every n-ary relation symbol R and for
every sentence ¢ € L(T7 U{R}) and ¢ € L(7 U {z),...,x,}) there exists a sentence
¢* € L(7) such that for every structure 9t € Str(7)

ME ¢ = (MY™) E 4,

where Y™ = {(ay,...,a,) € M™ : (M, ay,...,a,) = ¢}, and if similar conditions
hold for the other kinds of symbols. In this case we denote ¢* = ¢[R — ¢ (z1,...,2,)],
leaving out the constant symbols if there is no ambiquity.
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The most trivial logic we use is Lp,s;c containing only atomic and negated atomic
sentences. The logic L, extends Lqs,c by conjunction, disjunction, negation, and
universal and existential quantification. For an infinite cardinal x, the logic L., extends
L., by conjunction and disjunction of less than s sentences, and L., by arbitrary
conjunctions and disjunctions. The logic L, extends L., by existential and universal
quantification over less than « variables. L. allows quantification over any number of
variables. All the above logics can be extended using Lindstrém quantifiers.

The game logic L is the logic L., extended by conjunctive and disjunctive game
sentences of form

(Vz; Fyi)icw A i(zoyo...ziy:) and (32 Vyi)icw V di(zoyo. .- ziys)-
<w <w
The Vaught game logics V.. extend the logics L. by conjunctive and disjunctive
Vaught sentences

(in /\ Jy; \/ )i<,g /\ ¢a0b0---aibi(~r0y0'Hxiyi) and
a;€A b;€A <K

(31131' V Vyi /\ )i<n \/ ¢aobn---aibi(:r0y0---xiyi)'
a; €A b;€EA i<k

The sentences of the logic M, are pairs (T, L), where T is a k, A-leaftree and L is a
labelling function the domain of which is 7" and the values of which satisfy the following
conditions:

- If u € T is aleaf, L(u) is a sentence in the basic logic Lpgsic.

- Ifu € T is not a leaf, L(u) is A, \/, or a quantification symbol Yz or 3z, where
is a constant symbol.

- If L(u) is Vz or 3z, then u has exactly one successor and there is no v € pred(u)
such that L(v) is Yz or Jx.

The vocabulary of a M, »-sentence ¢ = (T, L) is defined as follows. For each u € T let
c(u) be the set of those constant symbols which occur in L(v) for v < u. Each branch
p € [T] has a maximal element u,, and, as mentioned above, L(u,) is a sentence of L pqsic.
The vocabulary of the sentence ¢ is

Voc(@) = U Voe(L(up)) \ c(u).

p€(T]

If u is a node in the syntax tree T of a M, sentence ¢, the sentence ¢, = (Ty,, LT,)
is a subsentence of ¢.

The semantics of the logic M, is defined by a game. Let ¢ = (T, L) be a sentence
of M, and let 9 be a structure such that Voc(¢) C Voc(9). Informally the semantic
game S(9N, ¢) is played as follows: during the game we traverse the syntax tree 7' from
root to leaf. Player V makes a move when we are in a node labelled Vz or A: if the node
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is labelled Vz, he picks an element from the model, and in any case he picks a subformula
(i.e. a successor in the syntax tree). Player 3 moves similarly in nodes labelled 3z or /.
Finally, when a leaf is reached, 3 wins if the basic sentence, which is the label of the leaf,
is true.

Formally the positions of the semantic game are tuples (u, f), where v € T and f
maps the constants of set c¢(u) to elements of 1. The tree Tyy is ordered by

(u, f) < (v,9) <= u<vAfCy.

The mover in a non-final position (u, f) is V if L(u) is A or Yz for some constant z,
and 3 otherwise. Each play p in the semantic game has a final position (up, f,), where
u, is a leaf of T and f, interprets the constants in c¢(up). Player 3 wins the play p if
M(f,) | L(up), where M( f,) stands for the model 9 expanded by interpretations fp.

Let it be noted here that the semantic game of a M...-sentence is not always
determined. The restriction of M., to those sentences the semantic game of which is
always determined is denoted by M3,

If ¢ = (T, L) € Moooo, the quantifier rank of ¢ is the tree
qr(¢) = {u € T : L(u) is a quantification }.

If T is a tree, M =T is the class of those ¢ € Moo for which gr(¢) < T.

The expressive power of a logic can be approached from two angles. The first
approach is to look at single sentences only. Each sentence ¢ of an abstract logic determines
a class Mod(¢) of structures in which the sentence ¢ is true. For logics £ and c'
we write £ < L' if for each sentence ¢ € L there is a sentence ¢’ € L' such that
Mod(¢) = Mod(¢'). Moreover, a mapping t: £ — L' such that for every structure 2

iUt':cdﬁ < gﬁ"—'cz t(¢>)
is called a translation. The following chains give trivial examples of translations:
Lbasic S wa S Lw;w __<_ Loow S Loowl and Loow S LooG S Voow S Voowl-

On the other hand, it is known that L..g does not translate into Loooo: it is not hard to
write a sentence of L. stating “(M, <) is a well-ordering of type v + +”, but this is not
expressible in Lo (se€ [M]).

If A is a class, a mapping a: A x £ — L’ is called a disjunctive approximation if for
every sentence ¢ of £ and for every structure 9

MEr ¢ < MEL a(x, o) forsomex € A.

A conjunctive approximation is defined similarly. If the class A is ordered, we usually
try to build the disjunctive approximation in such a way that a(z, ¢) = a(y, ¢) whenever
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y < x. Sometimes the approximation has even the following restriction property: for
every set X of structures there is x € A such that, whenever 9 € X,

MEr ¢ <= ME=p alz, 9).

The idea of approximations originates from classical descriptive set theory in the middle
of 1960’s. Through the works of Moschovakis the ideas spread to game quantification,
and Vaught finally introduced the approximations of V.., and Lo.g into L., ([Va]).

Another way to compare the strength of various logics is to look at their ability of
distinguishing models. For structures 2 and B denote 2 = B(L), if the structures satisfy
the same sentences of logic £. It is clear that if there is a translation from £ to £’, there
is an approximation, too. Moreover, if there is an approximation from £ to £’, then

A=B(L') = A=B(L)

for every two structures 2 and B having the same vocabulary. We will see later that the
converse of the latter implication does not always hold.

The problem of, whether two models can be distinguished with some logic can
sometimes be solved using a game of two players. Typically, each logic has its own game,
the Ehrenfeucht-Fraissé game presented in the previous section is a suitable game for the
M-languages. Without proof we state the following proposition:

5.1. Proposition ([Kt]).  Let T be a tree. Player 3 wins EFr(2,B) if and only if
A=B(MT). a

The main bulk of this work is a study of translations and approximations between
various kinds of logics. We close the preliminary section with an easy case.

The essential difference between M., and L., is syntactical. A sentence of M.,
is set theoretically flat: the tree rank of its well-founded syntax tree is not related to
the set-theoretical rank of the sentence. On the other hand the set-theoretical rank of a
sentence of L., always exceeds the tree rank of its syntax tree. We saw earlier that the
mapping which gives a tree rank for a well-founded tree is not primitive recursive. Next
we show that the same holds for the translation mappings from M., to Lo, there exists
no primitive recursive one, but the canonical one is effective enough so that admissible
sets are closed under it.

5.2. Lemma. There exists no p.r. translation from M, into Le.,.
Proof. Note first that for every ordinal o
3 wins EFp_ (Y, B) <= A =B(MSP) = A=B(L,),

where B, is the canonical well-founded tree having ordinal a and L, , is the logic Lo,
restricted to formulas of quantifier rank less than or equal to . The first equivalence
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above is Proposition 5.1, the latter is a known fact due to Karp [Kp]. From the above it is
clear that (o, €) = (8, €) (Leow) if and only if a = .
Let us say that ordinals o and (3 are y-equivalent, o ~., [3, if there exist ordinals (,
¢, and 7 such that
a=w'-(+n and B=w" L+,

where either ( = £ = 0 or (,{ > 0 (ordinal arithmetics). If @ > 3, denote the (unique)
ordinal « for which 8 + v = a by a = §.

Claim A: If a and (3 are y-equivalent, § < v, and o’ < a, there exists 3’ < (3 such that

o ~sfB and a-ad ~sB8=p.

Note first that ) + w® = w® whenever n < w®. This implies that a ~s o ~ o/, if
a =o' > wb. Suppose then that a = w? - ( + nand B = w? - £ + 0, where ¢ and ¢ are
nonzero (the other case is trivial). If o/ = w? - { + 1’ forsome 7', let 3 = W - £+ 7.
Obviously o’ ~, ' anda~a' = n-+n' = = ', which implies the claim. On the other
hand, if o/ < w7 - ¢, let ¢’ and ' < w® be such that o’ = w® - ¢’ + 75’. Choose ¢’ = 0 if
¢’ =0, and ¢ = 1 otherwise. Let 8/ = w? - ¢’ + . Clearly o/ and 3’ are §-equivalent.
Since

o+ =w ((+1)<w-(<aq,

the ordinals « =~ o’ and « are §-equivalent. Moreover,
B+’ =0 +1)<u® 2<07 <,

and thus 8 =~ 3’ ~s 3, which completes the proof of the claim A.
Claim B: If ordinals « and (3 are y-equivalent, then (o, €) = (3, €) (LL,,)-

By the equivalence stated in the beginning of the proof it is enough to show that
3 wins EFp_((a, €), (8, €)). Suppose we are in the middle of a play, the players have
chosen n elements from each model, and V has chosen a descending chain of ordinals
¥ > > ...> Yn—1. The chosen elements divide a and [ into segments:

a=qay+ -+ an, ﬁ=ﬁ0++ﬁn

Assume 3 has managed to make such choices that o; and j3; are v,,_;-equivalent for each
1 (here y_; = 7). Suppose V picks v, < 7n—1 and, say, an element in . This element
belongs to one of the segments «; and splits it into two parts a; = o + . Since the
segments were originally -,_;-equivalent, by the claim A 3 manages to pick such an
element in (3 that splits the corresponding segment [; into two parts 3; = 3} + 3/ and,
moreover, o} ~., (; and o ~, 3. In this way 3 wins the game.

Claim C: There is no p.r. translation from M., t0 Loo.
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For contradiction, suppose that ¢ is a p.r. translation from M, into L. Let g be
a p.r. mapping, increasing on ordinals, such that rank(¢(z)) < g(rank(z)) for every set x.
Lety = g(w + w) + 1, and let ¢~ be a sentence in M, which is true in w?” and false in
w7 - 2. Since 7 is obviously countable, we may assume that the set theoretical rank of ¢,
is less than w + w. Now, by the claim B above, the quantifier rank of ¢(¢,) — and thus
its set-theoretical rank — must exceed -y, which is a contradiction. O

5.3. Lemma. There is a translation t: M., — Lo, primitive recursive in a
mapping which maps every well-founded tree to its ordinal.

Proof. Let ¢ = (T, L), where T is the syntax tree and L is the labelling. Clearly the
syntax operations of L, are p.r.; denote them by O P, OP,, etc. Thus we are able to
define a p.r. mapping s: Ord X T' — L, by induction as follows:

- Ifwis aleafin T, define s(0,w) = L(w).
- If s(a, w) is defined, define s(3, w) = s(a, w) for each 8 > a.

- If s(a, u) is defined for every successor u of w, define
s(a+ 1,w) = OPp){ s(a,u) : u € succ(w) }.

- Those values s(a, w) that are not defined by the above rules are left undefined.

It is not hard to see that s(«, w) is a sentence equivalent to the subsentence ¢,, whenever
« is at least the tree rank of w in 7. Now we can choose t(¢) = s(y,r00t(T)), where
is the ordinal of T'. a

5.4. Lemma. Suppose A is admissible and ¢ € Mo, N A. Thereis * € Lo, NA
suchthat M = ¢ < M = ¢* for every model M.

Proof. Admissible sets are closed under the primitive recursive mapping s defined in
the proof of the previous lemma (the initial mapping « — w is not needed for constructing
s). Since admissible sets are closed under the mapping which maps well-founded trees to
their ordinals, the result follows immediately from the previous lemma. O

5.5. Lemma. There exists a p.r. translation t: M, — L.

Proof. Let ¢ € M,,,,. The rank of the syntax tree of ¢ is now finite. Thus, if s is the
p.r. map of the proof of 5.3, we can choose t(¢) = s(w, @). a
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I1 Absoluteness

As it is generally known, we have set-theoretical structures abundantly at hand in the
set-theoretical universe. One of the standard tools in set theory has always been playing
with these “internal models” for showing certain interesting facts about the set-theoretical
universe. When constructing an internal model, we usually want it to share some set-
theoretical properties of the real world. This is where the concept of absoluteness comes
in.

Basically, absoluteness is a property of a definable predicate relative to a pair of
structures: a predicate is absolute relative to the structures if it expresses the same thing
in both of them. In the general case it is of course hard to specify what “the same thing”
denotes. Thus we only consider pairs (2, B) where 2 is a substructure of ‘B, and define
that a predicate P is absolute relative to (2, B) if and only if, for every element a of 2,
the predicate P(a) is true in 2 exactly when it is true in *B.

If then A C B are models of a set theory 7', is there any general way of indicating,
which definable predicates are absolute? If one considers such arbitrary models, a result
of first-order model theory states that only those definable predicates are absolute which
are provably equivalent to an existential formula and to an universal formula. Since this
leaves out a large number of interesting predicates, it is a tradition to deal with only
those pairs of structures (2, °B) where B is an end-extension of 2. Thus we define that a
predicate is absolute relative to a set theory T if it is absolute relative to (2, ®B) for any pair
of models of T such that 2 C.nq 8. These predicates can be syntactically characterized:
an application of interpolation by Feferman and Kreisel [FK, F] indicates that a predicate
is absolute relative to a theory 7 if and only if it is A;-definable in 7.

For some predicates it is hard to find the theories relative to which they are absolute,
but there are other means of restricting the pairs of structures to be taken in account.
Since the notion of forcing can be defined even in models of a weak set theory (e.g. KP),
it is natural to define a predicate as absolute relative to forcing if it is absolute relative
to (2, 2A*), where 2 is a model of a set theory and 1" its generic extension. Of course
we may additionally demand that such forcing has certain special properties, such as
wi-closedness.

Persistence is defined similarly as absoluteness: a predicate P is upwards persistent
relative to (2, 9B8) if P(a) holds in B whenever it holds in 2l. Persistence downwards and
persistence relative to a theory is defined analogously.

6. Absolute logics

6.1. Definition. Let T be a set theory. An abstract logic L is absolute relative to
T if there is a X7 -predicate P and a A -predicate @ such that the following claims are
provable from T

(i) If 7 is a vocabulary, then
¢ € L(T) < P(r,9).
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(ii) If 7 is a vocabulary, ¢ € L(7), and if 9 € Str(7), then

MErqr) ¢ = QN T,9).

If the predicates P and @ are AT -definable, we say that the logic L is first-order relative
toT.

Similarly, for a pair A C.,q 2B of models of set theory, a logic £ is absolute relative
to (AU, B) if the predicate “¢ € L£(7)” is upwards persistent and the predicate M =, () ¢
is absolute relative to (2, 8). Moreover, if the syntax predicate is absolute, we say that £
is first-order relative to (2, B).

The concept of an absolute logic was first presented by Barwise in [B4]. He chose
the syntax of an absolute logic to be X; instead of A;, since he did not want to rule out
certain logics like L,,,.,. In order to have a name for the absolute logics with an absolute
syntax I call them first-order logics following Burgess in [Bu]. In many contexts there is
no practical difference, and one can turn an absolute logic into a first-order logic simply
by changing the syntax.

The latter formation, the absoluteness of a logic relative to a pair of structures, is
useful when there exists no nice theory relative to which a logic could be absolute. Thus,
when we say that a logic is absolute relative to, say, w;-closed forcing, we mean that it is
absolute relative to (2, A*) for every model 2 of ZFC and its generic extension * in an
wy-closed forcing.

Since we are dealing with various different set theories, a natural question is, does
absoluteness relative to some theory 7" imply absoluteness relative to some other theory
T'. If the theory T’ is a consistent extension of 7', the answer is clearly yes, no matter
whether T’ has more predicate or constant symbols. Thus the fragments of ZFC (e.g. KP)
or extensions of ZFC (e.g. ZFC(P,,,)) do not propose any problems.

A more problematic case is the theory KPU. The difficulties arise from the fact that
the concept of a structure is different in KPU from the other theories: we demand that the
universe of a structure must consist of urelements only. Thus, when giving a set-theoretical
definition for a logic, say L, in KPU and in ZFC, it is not immediately clear that the
definitions really define the same logic.

The “sameness” problem of the logics can be solved by reducing them to the metathe-
ory. Consider first a logic £ in a set theoretical universe V. The logic £ is actually a
pair of formulas in a metalanguage, and V' is an element of a metauniverse. Suppose that
the metauniverse is set-theoretical. Each vocabulary 7 in V' gives rise to a vocabulary
7V in the metauniverse, and similarly each structure 90t in V' gives rise to a structure
MY in the metauniverse. Moreover, a sentence ¢ € V can be turned into a structure
¢V = (TC({#}),€) in the metauniverse. We may call these objects 7V, 9", and
¢V metaforms of the set-theoretical objects 7, 9 and ¢. The set-theoretical predicates
“¢ € £ and “O = ¢” thus naturally turn into predicates between metaforms. Thus, if
we have a definition of a logic £ for example in both KP and KPU, we may compare the
definitions by examining the predicates between metaforms. To illustrate the method, we
will next show that absoluteness relative to KPU implies absoluteness relative to KP.
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6.2. Lemma. If a logic L is absolute (first order) relative to KPU, it is absolute
(first-order) relative to KP.

Proof. 1t is enough to show the result for an absolute logic, since the first-order logics
are treated similarly. Let P and @ be the Z;- and A, -predicates, respectively, which define
a logic £ in KPU. We need to find a X;-predicate P* and a A;-predicate Q* which define
the same logic in KP. The basic idea is to define in KP an internal model (V*, €*,U*) of
KPU, and mappings 9 — 9* and x — z* which transfer structures of V' into structures
in V* and sets (vocabularies, sentences) into pure sets of V'*.

Let the class of urelements U* be the class of pairs (z,0) forxz € V. Let V* be the
class of pairs (, o), where eithera = Oorz C V*anda = sup{ §# : 3y (y,8) € x } +1.
Let (y, 3) €* (x, ) if and only if (y, 8) € z and & > 0. The predicate V* is clearly AXF,
and the predicates €* and U™ are Ap-definable.

The class (V*, €*, U*) is now a model of KPU: for example, to see the Ag-collection
schema, suppose that

Yy, 8) € (z,@)3(z,7) [¢((z, ), (3, 8), (]

holds with ¢ being a Ag-formula. Now [¢(...)]V" is AKP, so by the A;-collection schema
there exists a € V' such that

Y(y, B) € (z,0)3(z,7) € a[s((z,a), (y, 8), (z,))]"".

By A,-separation a* = aNV * exists in V, and the required collection (a*, supran(a*)+1)
exists in V*.
Define embeddings

wV —U* z+— (x,0) and
j:V—=V*x— {jly) : y €z}, rank(z) + 1).

Clearly u is totally Ap-definable and j is totally A;-definable in KP. The embedding j
makes the pure part of V* isomorphic with V, and it is used to map vocabularies and
sentences. Thus we are able to define the syntax:

€ L(r) = [P(j(7),i(e))V Y.

It is not hard to see that this relation is Z{F.

To embed structures, suppose 9 = (M, F) € Str(7). We let 90t* be a pair (M*, F™*)
in V*, where M* is the set of u(x) for x € M in V* and F™* is defined in the obvious
way in order to make 90T* a j(7)-structure. Let

M) & == QN j(1),5(e)))V €Y7

This relation is AXP, and we have no problems in seeing that these relations define a logic
L* in KPU, which is the same logic as L. O
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In the other direction we slightfully strengthen the theory KPU. Recall from Section
2 that the predicate “z is finite” is absolute relative to KP, but not absolute relative to
KPU. Moreover, we shall later see that the logic L, (Qo) is first-order relative to KP,
but not first-order relative to KPU. The problem in reversing the implication lies in that
in KP one cannot have a large set without large ordinals, but in KPU this is possible. Let
the high rank axiom, HR, state that for every set x of urelements there exists a one-to-one
mapping from z to pure sets. This axiom is not provable from KPU: let U be an infinite
set of urelements. Then V,,(U), the collection of sets of finite rank built from urelements
in U, is a model of KPU and contains infinite sets of urelements, but every pure set in it
is finite.

6.3. Lemma. Logic L is absolute (first-order) relative to KP if and only if it is
absolute (first-order) relative to KPU + HR.

Proof. We have already seen “<=". The proof of “=>"is similar to what was done
above. The internal model V* of KP is the class of pure sets. It is not hard to see that V*
is Aj-definable in KPU. Define logic £* using the equivalencies

$eL(r) = [P(r,¢)]"Y and
M l=r-(r) ¢ < 3f (f: M — V* isbijective A [Q(f'I,7,¢)]"")
& Vf(f: M — V*isbijective — [Q(f"IM,T,4)]"").

In order to see the last equivalence we need the high rank axiom. O

7. Absoluteness of L-languages

The sentences of L-languages are inductively built from atomic formulas using logical
operations. Since inductive construction is absolute (relative to KPU), the L-languages
will be absolute as long as the operations used for building them are absolute. For L-
languages it is most natural to define three predicates: unary predicate “¢ € £ to indicate
which objects are sentences, a function Voc which maps a sentence to its vocabulary, and
the truth predicate.

For example, the first-order logic L, is built from atomic sentences by negation,
conjunction, disjunction, and quantification. Thus its syntax is generated by a set of rules
such as

- atomic sentences are sentences of L,
- if ¢ and v are sentences of L., then ¢ A 1 is a sentence of L,

and so on. A semantics is defined recursively: for example, the truth of ¢ A1) in a structure
9t depends on the truth of ¢ in 9T and the truth of ¢ in 9. The next definition gives an
abstract formulation of this kind of language definition.

7.1. Definition. (1) A syntax rule is a pair of mappings ( f, v) such that the following
conditions hold:

3 20753



34 Jyrki Akkanen

(i) f is a partial binary one-to-one mapping.
(i) If f(z,y) = z, thenz C TC(2).
(iii) v is a binary mapping and ran(v) is a class of vocabularies.
(2) A syntax rule (f,v) spans a language L by recursion

peL — IXTFy(XCLAS=f(X,y)).

The vocabularies of these sentences are given by mapping Voc, which is defined by
recursion: if ¢ = f(X,y) isin £, then

Voc(¢) = v(Voc[ X, y).

(3) A semantics rule attached to a syntax rule (f,v) is a pair (¢,Q), where ¢ is a
mapping and @ is a relation such that the following conditions hold:
(i) If the vocabulary of a structure 91 contains the vocabulary of ¢ = f(X,y),
then (M, ¢) is a set of pairs (91, ¢), where ¥ € X and Voc(¢)) C Voc(9M).
(i) If 9t = MV, then for every ¢ € L there exists a bijection f:g(IM,d) —
q(9', $) such that if (W, ¢") = f(N, ), then 9 = ¥ and N = N'. More-
over, if t: ¢(9M, ¢) — 2, then

Q(M, p,t) <> QM  ¢,to f71).

(4) A semantics rule defines a semantics for the language £ by recursion: if ¢ = f(X,y)
and Voc(97t) D Voc(o), then M =, ¢ if and only if

Q(M, ¢, t), where t: (M, ) — 2, (M, ¥) — {(1) iiz in zl; and

(5) A syntax rule and a semantics rule together form a language rule.

The mapping f of a syntax rule maps a set = of already existing sentences and an
auxiliary set-theoretical object y to a new sentence f(x,y). Since (ii) in the definition of
the syntax rule implies that

f(X,y) = ¢ = rank(v)) < rank(¢) forevery ¢ € X,

the recursive definition of the language £ in (2) is valid, and the definition gives rise to
a natural well-founded order on £: “1 is an immediate subsentence of ¢” if there exist
X and y such that v € X and ¢ = f(X,y). The vocabulary mapping Voc is defined
recursively along this subsentence relation.

The semantics is defined in a similar way recursively along the subsentence relation:
the truth of a sentence ¢ in a structure 901 is determined, once we know the truth of
certain immediate subsentences of ¢ in certain other structures. The mapping g gives the
subsentence-structure pairs, and the predicate () indicates how their semantics influences
the semantics of ¢. Finally, the condition (ii) in the semantic rule ensures that the language
rule really spans a logic: it implies that the logic is closed under isomorphism of structures.
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7.2. Example. Letus see how first-order logic fits in this frame. We start by defining
language rules for single logical operations. Atomic sentences are produced with a rule
satisfying

f(B,¢) = ¢ when ¢ is atomic, v(0, ®) = the vocabulary of @,
q(M, ¢) =0, Q(IM, ¢,t) < ¢istrue in M.

The other logical operations are not much harder: for example, negation is defined by a
rule satisfying

f({o},~) =9, v(p— T, ) =T,
Q(ms _‘(b) = {(mv ¢)}’ Q(mv _'(bat) — t(mv ¢) =0,

and existential quantification by a rule satisfying

f({¢},3z) = 3z¢, v(¢ > 7,3x) = 7\ {z},
q(M, 3zd) = { (M, a),¢) : ae M}, Q(IM,3xp,t) < 1€ ran(t).

These pieces of language rules can easily be combined into a single rule.

7.3. Definition. Let T be a set theory. A language rule is absolute relative to T
if the mappings f and v of the syntax rule, and the mapping ¢ of the semantic rule are
¥,-definable in T, the relation @ of the semantic rule is A;-definable in 7', and if

T (f,v) is a syntax rule and (g, Q) is a semantic rule .

Moreover, if the syntactical mappings f and v, and the predicates “(z, y) € dom(f)” and
“¢ € ran(f)” are A;-definable in T, we say that the language rule is first-order relative
toT.

7.4.Lemma. LetT D KP (orT D KPU). Ifalogic L is spanned by a rule which is
absolute relative to T (first-order relative to T'), then L is absolute relative to T (first-order
relative to T).

Proof. Syntax: Consider first the case of an absolute language rule. To see that the
predicate “¢ € L is Z,-definable in T', note that ¢ € L if and only if there is a set S
consisting of pairs (¢, y) such that

(i) (¢,y) isin S for some y, and
(ii) if (¢,y) isin S, there exists X such that

Y= f(X,y) and Vne X3z(n,z)€S.

Similarly, Voc(¢) = 7 if and only if there is a function u such that
(i) u(¢) = 7, and
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(i) for each % in dom(u) there exists X and y such that
f(X,y) =14, X Cdom(u), and u(y)=ov(ulX,y).
Thus Voc is X;-definable in 7. Now
p€L(r) < ¢ LANVoc(p) CT.

In the case of a first-order syntax rule, the predicate ¢ € £ is AT, since it is defined
by A;-recursion:

p€L < ¢eran(f) AVzVy(f(z,y) =¢ =z C L)
< ¢ €ran(f) Az Iy(f(z,y)=¢ Az CL).

In this case the mapping Voc is totally Z,-definable, and thus ¢ € L(7) becomes a
AT -predicate.
Semantics: Denote P(9M, ¢, t) if and only if ¢ is a mapping from pairs (9, ¢) to {0, 1}
such that the following conditions hold:
(i) (9M, ¢) is in the domain of ¢.

(ii) If (M, ) is in the domain of ¢, then ¢(D, 1) is a subset of the domain of ¢.

(iii) ¢(91,4) = 1 if and only if Q(M, ¥, t[q(IM, ¥)).
By recursion on the structure of the sentences in £ one can easily define a mapping
(¢,9M) — tyom such that P(9M, ¢, t, on) whenever ¢ € L and M € Str(Voc(¢)).
Suppose, namely, that ¢ = f(X,y), and suppose t,, o is defined for every ¢ € X and
N e Str(Voc(v)). Let

t¢,9ﬂ = {((m’ ¢)’Z)} U U{tw,‘ﬁ : (mﬂb) € Q(mv ¢) }a

where i € {0, 1} is picked with @ in the obvious way. Now an easy induction on the
structure of ¢ shows that if Voc(¢) C Voc() and P(IN, ¢, t), then M = ¢ if and only
if t(9, ¢) = 1. Thus we conclude: if ¢ € £ and Voc(¢) C Voc(91), then

ME ¢ < 3t (P(OM, ¢, t) AN, 0) =1)
= Vt(P(M,¢,t) — t(M,¢) = 1).

Everything stated above is provable from 7', and the predicate P is clearly =T a

This theorem can be applied for showing some logics as well as certain closure
operations to be absolute. As Example 7.2 suggests, it is convenient first to define rules
for single logical operations, and then to combine these rules into rules of languages.
We say that language rules (f,v,q, Q) and (f',v',q’, Q") are compatible if f U f' is a
one-to-one mapping, and whenever ¢ = f(X,y) = f'(X,y), then v(t,y) = v'(t,y),
Q(ma ¢) = ql(m, ¢)’ and Q(mtv ¢’ t) — Q/(ma ¢7 t)
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7.5. Lemma. Suppose R = (f,v,q,Q) and R' = (f',v',q',Q’) are compatible
language rules. There exists a language rule R* = (f*,...) such that f* = f U f', and
logics £ and L' defined by R and R’, respectively, are sublogics of L*, the logic defined
by R*. Moreover, if R and R' are absolute (first-order), then so is R*.

Proof. Define the rule R* as follows: let f* = f U f’, and

v(u,y) if (dom(u), y) € dom(f),
v*(u,y) = { v'(u,y)  if (dom(u),y) € dom(f’), and
undefined otherwise.

Define ¢* and @Q* in a similar way. a

Next discuss some rules. Usually there are no problems in defining the individual
rules to be pairwise compatible. However, we concentrate here on the logical contents
of the rules without stressing compatibility. Though we occasionally define incompatible
rules, even they can be made compatible by minor changes. So there is no objection to
assuming that all rules used for constructing a logic are compatible.

7.6. Example. Let £ be a logic. The trivial language rule defined by

f0.6)=0 <= oL, v(0,¢)=Voc(9),
Q(m’y) = 0» Q(m» ¢’t) — M t:C ¢’

is absolute relative to T (first-order relative to T') if and only if £ is absolute relative to T'
(first-order relative to 7T').

7.7. Example. The following rules are first-order relative to KPU: atomic sentences,
negation, conjunction (of two sentences), infinite conjunction (of arbitrary size), and
existential quantification. (We have already presented some of these in Example 7.2.)
Thus the logics L, and L, are first-order relative to KPU.

7.8. Example. Countable conjunction is absolute relative to KPU, since it can be
defined by the following rule:

f(X,0) = A\ X when X is countable,

v({Typ)wex,0) = Uypex Tv
g AX)={(M,¥) : pe X},
QM A\ X,t) < t(M,) = 1forevery v € X.

Thus the logic L, is absolute relative to KPU.

7.9. Lemma. LetT D KPorT D KPU. A Lindstrom quantifier Q rule is first-order
relative to T if and only if the class defining Q is Ai-definable in T
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Proof. To simplify notations, consider a quantifier @ of type (1, 1), i.e. a quantifier
binding two sentences and one constant in each sentence. (The general case is similar.)
As we know, the semantics of a sentence Qzy¢(z)(y) is defined by the equation

M Quyd(x)p(y) = (M, 9™, y™) € Kq,
where o™ = {a € M : (M, a) = ¢}, and ™" is similar. Let now

f(X’y) =z &= X= {d)aw}’ Yy = <(¢,C), (¢,d)>, and z = Qcdey),
v(t,y) = () \ {c}) U (¢(¥) \ {d}) when y = ((¢, c), (¥, d)),

q(m, Qcdep) = { (M, a), ¢), ((M,a),v) : a €M }, and

Q(M, Qedgp,t) = (M, ™", ™) € Kq,

where ¢t = {a € M : t((M,a),¢) = 1} and ™ is similar. The mappings f, v,
and q are clearly AX?. To see that Q is AT, note that

(M, ™, 4" € Kg
— 3R3IS(R=¢""'AS=9p""A(M,R,S) € Kg)
> VRVS (R=¢""'AS=9""— (M,R,S) € Kq).

7.10. Example. First consider the well-foundedness quantifier
WF = { (4, <) : <iswell-founded }.
It is known that

(A, <) is well-founded <= 3f: A — Ordinals order-preserving
<= VX C A(X contains a minimal element).

Moreover, this can be shown in KP + X;-sep. Thus the quantifier WF and the logics
Lo, (WF) and Lo, (WF) are first-order relative to KP + X;-sep.

Then consider the quantifiers Q,x . .. “there exists at least X, elements x such that
...”. The quantifier Q) is first-order relative to KP, since (M, A) € Qo if and only if A is
not finite. Similarly, the quantifier Q is first-order relative to KP(Cbl) = KPU {C(z) <
« is countable}. Thus the logic L. (Qo) is first-order relative to KP, and the logics
Lo (Q1) and Lo, (Q1) are first-order relative to KP(Cbl).

7.11. Example. Let x be an uncountable cardinal. The quantifier 3(z;)ier, where
|I| < k, is first-order relative to

KP(P,) = KPU {k is a cardinal } U {P(z,y) < y = P(z)} U {VzIyP(z,y)}.
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Let the language rule for this quantifier be

f(X,y) =2 < X ={¢}, y C Constants, |y| < &, and z = Jyg,
u(t,y) =t(e) \ v,

g, Heiticrd) = { (M, a3)ier, @) : Vi€ I(a; € M)},

Q(M, IHcitierd,t) <= 1 € ran(?).

Since |y| < kK <= y € P«(y), the mapping f is Ap-definable in KP(P,). The mapping
v is clearly AXP. The mapping ¢ can be defined with p.r. functions and P, from which it
follows that both g and Q are A;-definable in KP(P,;). Thus the logic L is first-order
relative to KP(Py).

7.12. Example. The game quantifiers

(VZn3yn), ., A ¢n and (Yoo A 3yn V ) A Givjorini
n<w in €1 Jn€l n<w

are first-order relative to KP + X;-sep + DC, where Z;-sep stands for the Z;-separation
axiom and DC for the axiom of dependent choices.

It is enough to consider the Vaught game quantification, since the other one is similar.
The functions are easy to define: let f(X,y) = zifandonly if X = {¢s : s € I<¥ },
y maps [<% to pairs (cs, ¢s), where c, is the sequence of constants which the game
quantifier binds in ¢, and z is the game sentence. If t: ¢, — 7, and y is as above, let
v(t,y) be the union of vocabularies 7, \ ran(c,) for s € I<“. Finally, if z is the game
sentence, let ¢(901, 2) be the set of pairs ((9M, ao, bo, - - ., n, by), ¥s), Where s € I<,
n = len(s), and ay, . . ., by, are elements of 9.

If A C q(9M, 2) and ¢: q(9M, z) — {0, 1}, let A, be the following tree of positions
in the semantic game of the game sentences: let a position u be in A; if and only if there
isv = (ak, Tk, bk,jk>k<n D wu such that t((i)ﬁ, ag, bo, . . ., ak, bk), ¢'i0>j0,~~-,ik;jk) =1 for
every k < n. Now

Q(M, 2,t) < JA C ¢(M, z) (A, is a winning strategy of 3)
<= —3B C q(M, z) (B is a winning strategy of V).

This equivalence is provable in KP + X;-sep + DC. We give more details later, when a
more general game quantifier is discussed.

Of course one can add Lindstrom quantifiers to the game quantifier logics as well, pro-
ducing such logics as for example Voo, (Q1), which is first-order relative to e.g. ZFC(P,,, ).
An interesting question is, what happens if we introduce a generalized quantifier to the
game prefix. For simplicity, consider quantifiers of type (1) only. (These bind a single
constant in a single sentence.) A quantifier Q is monotone if (M, R) is in Q whenever
(M, R') is in Q for some subset R’ of R. The dual Q of a quantifier Q is defined by

(M,R)eQ <= (M,M\R)¢Q,
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and clearly the dual of a monotone quantifier is monotone. It is not hard to see that a
quantification with a monotone quantifier Q) is equivalent to a second-order quantification
as follows:

M= Qro(x) <= FJRC MVa € R(M,a) E ¢.

Using this characterization we are able to define a game quantifier

(V.’En /\ Qu, Ay, V Qvn)n<w /\ ¢10_70 njn

in €l

with the following semantics: the sentence is true in 9t if 3 wins the game, where for
n<w
- Vpicksz, € M and i, € I,
- 3picks R, € Q,
V picks u, € Ry,
3 picks y, € M, j, € I,and S,, € Q, and
V picks v, € Sy,

and where 3 wins a play if each sentence ¢;,._;, is true in (90, zo, . . .).

7.13. Lemma. The game quantifier defined above and its dual are first-order relative
to theory T D KP + X;-sep + AC whenever the quantifier Q) is A;-definable and provably
monotone in T.

Proof. The syntax rule for the game quantifier is defined similarly to the previous
example, and there is no problem in defining the semantic mapping g either. The predicate
@ can be based on the fact that the game sentence

(VCCn A Qu, 3y, V Qvn)n<w /<\ Digo..injn

in€l Jjn€l

has a negation

(axn v Qunvyn /\ Qvn)n<w \</ _'¢i0j0..injn~

in €1 Jn€l

To be more exact, we can base the predicate @) on the following equivalence:
m |: (Vxn /\ Quy, Iyn V Qvn)n<w /\ ¢10]o njn
in€l
<= there exists a tree S of sequences such that for every w € .S
len(w) = 6n = {z, €M : wNz,) €S} =M,
len(w)=6n+1 = {i, €l :w'(i,)eS}=1,
len(w)=6n+2 = {u, € M : wMNu,) €S} eQ,
(w

len(w)=6n+3 = {y, € M : w™(y,) € S} #0,
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len(w)=6n+4 = {j, €I :w"{j,) €S} #0,
len(w) =6n+5 = {v, € M : wv,) €S} €Q, and
len(w) =6n+6 = &, j,(zo...vy,) is true in M

<= there exists no well-founded tree T of sequences such that for every w € T

len(w) =0 = w is not leaf,

len(w) = 6n and wis notaleaf = {z, € M : w™{(z,) € T} # 0,
len(w) = 6n + 1 = {in €l :w'(i,) €T} #0,
len(w) = 6n + 5 = {v, €M : w™v,) €T} €Q, and

len(w) =6n+6and wisleaf = ¢, ;. (zo...v,) is false in M

= ME (Fzn V QuaVyn A Qua), 0 V “Gigjo..inin
in€1 Jn€l n<w

The first equivalence is easy. The tree S, if it exists, is nearly a winning strategy of 3 in
the semantic game of the game quantifier: when playing the quantifier Qu,,, 3 picks the
set {u € M : w™(u) € S}. On the other hand, a winning strategy of 3 gives rise to
a tree S; however, one needs the axiom of choice to pick succ(w) for a sequence w of
length 6n 4 2 or 6n + 5.

The last equivalence is not much harder: similarly the tree 7', if it exists, gives rise to
an 3J-strategy in the semantic game of the dual game quantifier. Any complete extension
of this strategy is a winning strategy of 3. On the other hand, a winning strategy of 3 gives
rise to a tree 1" satisfying the requirements; however, one needs the axiom of dependent
choices to show that T is well-founded. Thus we need to show the middle equivalence.

Suppose first, for contradiction, that both of the trees S and T" exist. Now SN T isa
well-founded tree and thus contains a maximal element w. Since A N A’ # () whenever
(M, A) € Q and (M, A’) € Q, the length of w is 6n + 6 for some n and w is maximal in
T. Thus w provides a sentence ¢ and a sequence (xy, . .., v,) such that ¢, is both true
and false in (901, zo, . . .), and so both trees cannot exist.

The fact that either of the trees .S and 7" must exist is shown similarly as the deter-
minacy of open games. For a sequence w let P(w) be a predicate indicating that there
exists such a well-founded tree of sequences extending w that satisfies the conditions
similar to the latter equivalent above. Suppose the tree 7" does not exist. Let .S be the
tree of those sequences w which, and the initial segments of which, do not satisfy P.
One can inductively see on the length of w that .S satisfies the requirements of the former
equivalent.

Finally, the above equivalences are provable in the theory T'. O

The lemma implies, for example, that the logic Vi, [@4], the logic Lo, augmented
with the above game quantifier for generalized quantifier @, is first-order relative to
ZFC(Py,)-
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7.14. Example. Let x be an uncountable regular cardinal. The long game quantifiers

(V‘T’n /\ yn V )n<n /\ ¢io]'o..-injn and (EI” v VYn /\ )n</~: V ¢injuminjn
in€l Jn€l n<K in€l Jn€l n<k

together with the first-order operations make up the logic Voo The semantical games
attached to these sentences are not necessarily determined, and thus the same approach as
in the case of game sentences of length w is not available. However, their syntax is clearly
A;-definable in ZFC(P,.), and since their semantical game is either x-open or x-closed,
the semantics is absolute relative to k-closed forcing. Thus we may conclude: Vo, is
first-order relative to x-closed forcing.

7.15. Example. Consider “almost all” quantifier (aa), the semantics of which is so
defined that M = (aa)S¢(S) if and only if the set { S € P, (M) : (9, S) F ¢}
contains a closed unbounded set.

This quantifier is first-order relative to w;-closed forcing: its syntax is clearly ab-
solute, as is the semantical mapping ¢, which maps (9, (aa)Sé(s)) to the set of pairs
(9, S), ¢) for S € P, (M). The obvious predicate

Q(9M, (aa)S¢(s),t) <> {S € P, (M) : t(9M,S) =1} contains a cub

is clearly absolute relative to proper forcing (i.e. relative to forcing which preserves the
stationary subsets of P, (A) for each cardinal )), and thus relative to wi-closed forcing.
We conclude that the logics L., (aa) and L., (aa) are first-order relative to w;-closed
forcing.

In fact we could show that L, (aa) and Lo, (aa) were first-order relative to proper
forcing. However, since P, is not necessarily preserved in proper forcing, the semantic
mapping ¢ fails to be upwards persistent. Thus a somewhat more refined argument is
needed than is presented in the proof of 7.4.

The logic L., (aa) has a fragment L5, where the (aa)-quantifier is only allowed
to quantify over those predicate symbols which occur positively in ¢. We will next see
that it is first-order relative to ZFC(P,, ). Define the syntax mapping f in such a way that
the syntax of each sentence consists of a triple (¢, p,n), where ¢ is the sentence itself and
p and n are the sets of unary relation symbols occurring positively and negatively in it,
respectively. Then it is not hard to see that the syntax is A;-definable. For the semantics
note that if S occurs positively in ¢,

M (aa)Se(S) <= IS € Py, (M) M E &(S).

Thus the semantics is A;-definable in ZFC(P,,, ).

Collect finally all the absoluteness results presented in this section under a single
heading:

7.16. Theorem. (1) The logics L., and Lo, are first-order relative to KPU.
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(2) The logic L., is absolute relative to KPU.

(3) The logic L. (Qo) is first-order relative to KP.

(4) The logics Loog and Vo, are first-order relative to KP + X;-sep + DC.

(5) The logics L. (Q1) and Lo, (Q1) are first-order relative to KP(Cbl).

(6) The logics Voow|Q1], Lpos, and Lo, are first-order relative to ZFC(P.,,).

(7) The logic Loy is first-order relative to KP(Py).

(8) The logic Voo, [Qo] is first-order relative to ZFC(Py,,).

(9) The logics L. (aa), Loow(aa), and V., are first-order relative to w-closed
forcing. O

8. Absoluteness of M-languages

Let x be a regular cardinal in this section. Since the sentences of M-languages are
not inductively constructed, we cannot investigate their absoluteness by methods given in
the previous chapter. As such they mostly resemble the game quantifiers. Next we show
that the logic M. is first-order relative to x-closed forcing. Recall that syntactically the
sentences of M., are pairs (T, L), where T is a x-leaftree and L is a labelling.

8.1. Lemma. IfT is a k-tree and P is a k-closed forcing, then P forces T to be a
K-tree.

Proof. Let T be a tree and suppose p € P is such a condition that forces T not to be
a k-tree. Thus there is a P-name b and py > p, which forces b to be a path of length « in
T. Using k-closedness at limits, one is able inductively to construct t, € T and p, for
a < k in a such way that

pa IF b(B) = 15 for every B8 < a.

Now (to)a<x is a pathin T', and thus T is not a k-tree. O

8.2. Theorem. M, is first-order relative to k-closed forcing.

Proof. Syntax: By the above lemma the predicate “T is a r-tree” is absolute relative
to k-closed forcing. Since x-closed forcing introduces no new sets of cardinality less
than k, the predicate “T is a x-leaftree” is absolute relative to x-closed forcing. The
absoluteness of the labelling properties is trivial.

Semantics: Recall first that 90t = ¢ if and only if 3 has a winning strategy in the semantic
game S(9M, ¢). Since the syntax tree of ¢ is a r-leafiree, the semantic game is both -
closed and k-open, and, moreover, if we denote G = S(901, ¢), a k-closed forcing forces
both the canonical closed game G.. and the canonical open game G, to equal S(90, ).
Thus the absoluteness of semantics follows from Lemma 4.5. a

In the above result we use the k-closedness of forcing for showing the absoluteness
of both syntax and semantics. In fact, the syntax of M., is not £;-definable in ZFC(P.,, )
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and it is not even upwards persistent relative to w-distributed forcing (such a forcing that
an intersection of countably many dense initial segments of [P is dense). To see it, take
a bistationary set A C wj, and let T" be the tree of closed subsets of A, ordered by end
extension. Since A contains no closed unbounded set, T' is a x-leaftree. Label T trivially:
let L(u) = \/ if u is not a leaf, and a true atomic sentence otherwise. This makes (7, L) a
sentence of M3t . However, we are able to force a closed unbounded subset into A with
an w-distributed forcing (see [BHK]), and thus (T', L) is no longer a sentence in M, in
the generic extension of the universe.

A similar counterexample can be provided for the semantics: for a set A C wy,

denote by ®(A) the linear order

Zna, Whel‘enaz{l"'(@ lfaeA’and

Q otherwise.
alw]

By works of Convay it is known that ®(A) & ®(B) exactly when AAB is non-stationary.
Moreover,

®(A) = Vg Iz Yoy 3z ... 3z, (2, = sup{zo, z1,...})

if and only if A contains a closed unbounded subset, and if A is non-stationary, we know
that V wins the semantic game. However, if A is bistationary, we are able both to force it
to be non-stationary and to force it to contain a closed unbounded set. Thus the semantics
of this sentence of M, is not absolute relative to w-distributed forcing nor ZFEC(P.,, ).

On the other hand, the following lemma shows that the semantics of determined
M. .-sentences is absolute relative to ZFC(P,;).

8.3. Lemma. Let A C B be transitive models of a set theory such that Py, is absolute
relative to (A, B). Suppose ¢ € A is such that [p € M3 |A. Then for each structure
Me A

(M E ¢l = M g)P.

Proof. Since the position tree of the semantic game S(901, @) is a k-tree, the expression
“G = S(IM, ¢)” is absolute relative to (A, B). Thus, if S € A is a winning strategy of 3
in the semantic game S(91, @) in A, it is a winning strategy of 3 in B as well. The result
follows from the determinacy of ¢ in A. O

We shall see later that there is no logic, absolute relative to ZFC(P, ), which would
have the same expressive power as M3 .
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III Model extending

Usually the absoluteness of a logic £ is used in the following way. Suppose ¢ is a sentence
in alogic £, absolute relative to a true set theory T'. Let 90T be a structure. The absoluteness
of £ implies that 90 |=(,) ¢ if and only if

there is a well-founded and extensional model 24 = (A, E,...) of theory T
and elements ¢, p, m in A such that the formula m = £(t) P is true in 2, ¢
collapses into 7, p collapses into ¢, and m collapses into a model which is
isomorphic to 9.

Thus, in a suitable language L', we are able to write a sentence 14 such that M =, ¢
turns into an RPC(L') expression “(90%;A) |= 14 for some 2A”. Then we hope that by
examining this RPC-expression we will be able to derive some properties of the logic L.

For example, consider the proof of the downward Lowenheim—Skolem theorem (see
[B2]): if L is absolute relative to a true set theory in standard vocabulary and if a sentence
¢ € L has amodel, it has a model of cardinality less than |TC(¢)|*. To prove the theorem,
take first a model 9 for ¢. Let then A be a transitive set such that 97t and ¢ are elements
of A and 9 =, ¢ is true in A. If B is a small elementary submodel of A such that
TC({¢}) C B and 9 € B, the restriction M [(M N B) is a small model of ¢. In this case
the sentence v, expressed very little about the set theoretical part 2 and nothing about
the model 91, but enough to derive the result.

In addition to the RPC-expression a A-expression is possible: starting from the
I1;-form of the truth predicate =/ in the same way as above one gets

M, ¢ = (MM;A) = Yy for some A

Moreover, if the logic £’ allows A-interpolation, we may be able to translate the sentences
in £ into sentences in £’. An example of this approach is provided by Barwise in [B2]:
if a logic £ is absolute relative to KP, then £ < Lo,,. The first thing to note is that
one needs to show the result in a countable admissible fragment; thus the interpolation
is available. Barwise first turns the expression M =, ¢ into a A(Ls, )-expression.
Because the models of KP satisfy the Truncation lemma 2.2, he does not need to express
“ is well-founded”. Then he uses interpolation to remove the extra sort.

Interpolation is not the only known way of removing the set-theoretical extra sort.
In some cases one can reduce the question of the existence of a set-theoretical expansion
to the question of the existence of an ordinal, thus getting approximation results:

MEr ¢ < M= ¢, for some ordinal a.

An example of this approach is given by Burgess in [Bu], where he shows that every logic,
absolute relative to ZFC, can be approximated with L.

This part deals with a new method of removing the set-theoretical sort. The main
idea is based on games and Kueker approximations.
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9. Kueker approximations

Let S be a set. The S-approximation of a set x is
S ={y’ 1 yeaxnS}
The S-approximation of an urelement a is a® = a.
Consider then a structure 9 € Str(7). It is a pair (M, F') where M is a set and F’

maps the symbols of the vocabulary 7 to their interpretations. Let N C M be nonempty
and let S be a set. The (IV, S)-approximation of the model 90 is

thS' — (N, FNS),

where FNS = { (S, F(r)[N) : 7 € 7N S }. In other words, F'5 maps the symbols in
75 to the corresponding interpretations restricted to V.

The key idea in the S-approximations is that they are similar to the original sets but
smaller: if S is countable, each S-approximation is countable. The same holds for the
(N, S)-approximations of a model 9 € Str(7): almost every time 9MNS is a submodel
of 91 having a restricted vocabulary 75.

To get a better idea of what the notion “almost every time” in this context means, we
briefly consider the case where the set S is countable. Let P be an n-ary predicate of set
theory and let xy, ..., x, be sets. We say P(z7,..., x3) holds almost everywhere (a.e.)
if for any transitive set A containing xy, . .., Z, the set

{SeP,(A): Paf,....23)}

contains a closed unbounded set. (This definition is independent of the choice of the
set A.) Moreover, if P is a ZXP-predicate and P(x) holds, then P(x°) holds almost
everywhere. Finally, using the game formulation of the countable closed unbounded filter
one can see that for every predicate P and set x

P(z%) a.e. <= Vso € TC(z)3s; € TC(x) Vs, € TC(z) ... P(gisosid),

For more details.about the S-approximations see [K1, K2, B3].

The above results give rise to the following construction. Let £ be absolute relative
to some true set theory T O KP, ¢ € L(7), and 9t € Str(7). Consider the following
game, later to be called expansion game. At each of his moves, player V picks an element
x; from the model and an element s; € TC(7, ¢). Similarly, at her moves player 3 picks
elements y; and t; from the model and TC(, ¢), respectively, and an element a; from a
given fixed set. The sets X = {0, %o, ...} and S = {s0, to, - . .} constructed during the
game define Kueker approximations 9%, 79, and ¢* for the model, vocabulary, and the
formula. The purpose of player 3 is to play in such a manner that finally

mXS e ste(r%), ¢° € L(r°) and omXS Frers) ¢°.
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The extra moves ag, ay, . . . of 3 are used to construct evidence of this fact. The basic idea
(though the details vary) is that whenever 3 wins a play, the sequence ag, a1, . . . defines
a set-theoretical structure (A4, E,m, t,p) in which p € L(t), m € Str(t), and m =, p
hold, the elements ¢ and p collapse into 7° and ¢, respectively, and m collapses into an
isomorphic copy of 9X . Now, the above propositions give us a good reason to believe
(what is more or less true depending on the logic) that 9t =, () ¢ holds exactly when
player 3 has a winning strategy in this game. This game playing can be turned into a game
sentence in such a way that 3 wins the game exactly when the game sentence is true in
the model 91.

10. Expanders

In the end of the previous section we sketched a game during which a player makes
a sequence of choices determining a structure. This will be achieved with choices deter-
mining a theory in a certain expansion language and the theory describing the structure.
In this section we define “generic” theories (i.e. theories depending on parameters) which
are used for describing expansions. These “theories” are called expanders.

Suppose T is any vocabulary (for the base structure) and let o be a finite vocabulary
without any function symbols (for the expanding part). Let A be an infinite cardinal (the
cardinality of the expanding part), and foreacha < Alet7, = 7U{x; : i < a} and
0o =0 U{ec; i< a}, where zg,xy,...and co,cy, ... are new constant symbols. The
expansion language L .., (T, 0, &) in the two-sorted vocabulary (7,; 0, ) consists of initial
sentences in Ly,s.(Tq) and 'LW(JQ), these being of a different sort, and is closed under
propositional operations (negation, finite conjunction, finite disjunction).

10.1. Definition. Let 7, o, and X be as above. A A-expander F is a function such
that dom(F) = I<* for some set I and F(w) is a sentence in L., (7, o, len(w)) for each
w € dom(F).

Call a sequence a: A — I an F-branch. It defines a theory Thr(a) = U, F(ali).
If 9 € Str(7), an F-expansion of M over a is a model (M, xo, . ..; A, ¢y, ...) of Thr(a)
such that every element of 2 is an interpretation of a constant symbol.

The branching cardinal kr of an expander F is the maximum of || and ).

Recall again the sketch in the previous section: during a game, given a structure
M, we construct an expansion (9, xg, ...; 2, ...) with certain properties. We intend to
define an expander F such that every F-expansion of 901 is one and to play the expansion
game broadly as follows. For even ordinals ¢ < A player V picks z; in 9% and a; in I,
and 3 acts similarly for odd ordinals. Thus we get a structure 9%, = (9, z¢,...) and a
theory Thx(a), and are able to ask whether 901, can be expanded into an F-expansion
over a. We now distinguish two games: an expansion game, where the purpose of 3 is
to play in such a way that the F-expansion exists, and a co-expansion game, where this
role is reserved for V. Before exactly defining the games (making them slightly more
complicated) we take an example.
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10.2. Example. As our sketch reveals, we are mainly interested in set-theoretical
expansions (9M,...; A, E,t,p,m,...) of a structure M, especially in those where the
constants ¢, p, and m collapse into 7°, ¢°, and 9MX S, where 7 is the vocabulary of 90,
¢ is a sentence, and the sets X and S are picked during the game. Now we construct an
expander which gives such expansions.

Let 7 be a vocabulary, let ¢ be a set (e.g. a sentence in a logic), let A be an infinite
cardinal, and leto = {€, t, p, m}, where t, p, m are constant symbols. Define an expander
F = F(7, ¢, ) as follows. Recall that by o\ we denote the vocabulary o expanded with
A constant symbols ¢y, ¢y, . ... Now give alias names to the constants with odd indices:
let a; = c4;41 and b; = ca;43 for i < A. Give other alias names to all the constants (i.e.
terms) in oy: letty = ¢, t; = p, t, = m, and t34,; = ¢; for each 1.

Choose I = TC(7, ¢) x 2 x 2. Define F in such a way that if a = ((2s, as, £;)) i<
is an F-branch, Thx(a) contains the following sentences:

(1) € is extensional.
(2) tis avocabulary.
a; € a; if z; € Zj
3) % ¢ a; %le- ¢ z;
a; =a; if z; = z;
a; 76 a; ifZi ;é 25
a; €t ifz; €T
a; ¢t ifz ¢
a; €p ifz €09
a; ¢p ifz ¢¢
i i i ETAL; if agsey = .o
(6) iiicfll]z:f ¢tAti¢p ;fa;-:=(1) }foreveryz,je)\.
(7) m € Str(t).
(8) b; € dom(m) forevery i € A.
9) b; =b; <> x; = x; forevery i,j € A.
t; € dom(m) if ﬁ2i+1 =0
ti = baiy1 if Brip1 =1
(1) a;™(bj,,...,bj,) & R(zxj,,...,x;,) whenever z; is a k-ary relation symbol R € 7,
i,71,--+,Jk € A, and similarly for the other symbols in 7. Here a;™ stands for the
interpretation of a symbol a; in structure m.

forevery i,j < A.

4) } forevery i < A.

5 } for every i < A.

(10) } forevery i € A.

Note that intentionally the theory depends on «; and 3; only for odd ordinals 1.

This expander F (7, ¢, A) is intended to be used in an expansion game where 3 tries
to build up the expansion. It has a counterpart '(7, ¢, A) intended to be used in a co-
expansion game. It is similar to F, except that a; and b; refer to constants c4; and c4;42
instead of c4;41 and c4;43, respectively, and the sentences (6) and (10) depend on az; and
B,; instead of a; and (2,41, respectively.
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Before we can look at the F (7, ¢, A)-expansions, we need a couple of set-theoretical
concepts. As we know, the well-founded part Wf( A, E) of an extensional structure (A, F)
can collapse with a Mostowski collapsing function, and partial collapses are possible for
elements in the non-well-founded part. For example, if @ is an element of A, it gives rise
to an unique subset {b € A : bEa } of A, the set interpretation of a. Suppose then that
a € Ais astructure in A, i.e. a is an ordered pair (m, f), where f maps some symbols to
interpretations. Moreover, suppose that dom( f) is in the well-founded part of (A, E) and
collapses into a vocabulary 7. Then a gives rise to an unique structural interpretation:
a structure in Str(7), the universe of which is the set interpretation of m and where the
interpretations of symbols are defined by f.

10.3. Lemma. Let T be a vocabulary, M € Str(7), and let ¢ be a set. Sup-
pose (M, xo,...; A, co,...) is an F(T, ¢, A)-expansion over ((z;, i, 3;))icr. Let X =
{zo,z1,...} and S = {20, 21,...}. Then t* and p* are in the well-founded part of %,
and they collapse into 7° and ¢°, respectively. Moreover, the structural interpretation of
m in 2 is isomorphic to MXS. The same holds for F'(t, $, \)-expansions.

Proof. Since the only difference between an F (7, ¢, A)-and an F'(, ¢, \)-expansion
is in certain constant names, we only need to show the result for an F (7, ¢, A)-expansion.
Recall first that the elements of A have names ¢; for i < A. Since (A, E) is extensional
by (1), its well-founded part Wf(A, E) collapses. The sentences (3)—(6) imply that
ag,af,...,t%, and p¥ are in Wf(4, E), and they collapse into 25, 27, ..., 77, and ¢°,
respectively. Thus, since (2) is a Ag-expression, Sisa vocabulary. The sentences (7)-
(10) imply that m is a structure in (A, E') with vocabulary ¢ and universe {by, by, . ..}.
Finally, the sentence (11) implies that the structural interpretation of m in 2 is isomorphic
to MXS, i

Let F be a \-expander for vocabulary (7; ). Now fix an enumeration @z = {¢;); <
of all the sentences in L., (c'x) such that each sentence ¢; is in L, (c;). Since o is finite,
this enumeration exists, and we may assume F — @ to be primitive recursive. (The
latter statement holds, since we may assume o to be hereditarily finite and thus a p.r.
constant.)

10.4. Definition. Let 7 be a A-expander for vocabulary (7;0) and let 901 be a
T-structure. An expansion game EG(9, F) is played as follows: fori < A

- V¥ chooses x,; € M, and ay; € I, and

- Jchooses z2;4+1 € M, az;41 € I, and ¢; € {®£ (i), " Px(i)}.
Player 3 wins if there exists an F-expansion (9, zo,...;%,...) over (a;);<\ which
satisfies ¢; for ¢ < A and sentences Juy)(u) — 1 (cy;) whenever 1) and ¢ < A are such
that ®x(i) = Juy(u).

A co-expansion game EG* (90, F) is played similarly, except that the players switch
roles, i.e. V chooses the sentences ;, the witnessing constant for @ (i) is c;;4; instead
of ¢y;, and V wins the play if an F-expansion exists.

4 20753
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Now we can clarify the principal construction method used in this work: having
a sentence ¢ in an absolute logic, we build expanders F and F’ such that if 9T = &,
then 3 wins EG(90, F), and otherwise V wins EG* (9, 7). Then we either transfer the
expansion games to game sentences or combine the games and produce a sentence in
Mooo-

We continue by presenting the tools with which we can show that a player in an
expansion game has a winning strategy. Recall that a game is A-closed if, whenever V
wins a play, he knows it before A moves have been played.

10.5. Lemma. Let F be a A-expander and suppose 9N is a structure. The game
EG(M, F) is A-closed and EG* (9, F) is A-open.

Proof. A play of EG(90, F) gives rise to a sequence g, T1, . .. of elements of 90
and to theories Thr(a) and

W={vy i< AU {Fup(u) - Y(cxu) : i < Aand ®x(i) = Juy(u) }.

Moreover, 3 wins the play if and only if the theory Thr(a) U ¥ has a model of form
(M, z, . . . ; A), where each element of 2 is an interpretation of a constant. But since ‘¥,
when consistent, is a complete Henkin theory, it has a term model 2. Thus V wins the
play if and only if either ¥ is inconsistent or (9, 2o, Yo, - - - ; Ay) is not a model of some
F(ali). Since F(w) is obtained from sentences in Lqsic(TUran(z)) and L, (o Uran(c))
with propositional operations, in order to decide whether (92, . . . ; ) is a model of F'(w)
we need to know only a finite fragment of ¥ and a finite number of constants xo, Z1, . . ..
So, if V wins the play, we know it before playing all the A steps. Thus EG(9M, F) is
A-closed.

Similarly we see that EG* (90, F) is A-open. O

As we stated in Lemma 4.5, A-open and A-closed games are immune to A-closed
forcing in a sense. This is also true for the expansion games.

10.6. Lemma. Let F be a \-expander and let P be a notion of \-closed forcing.
Suppose 9 € Str(T).

(i) IfP forces 3 to win EG(9M, F), then 3 wins EG(IM, F).
(ii) If P forces Y to win EG* (9, F), then ¥ wins EG* (901, F).

Proof. It is enough to show (i), since (ii) is similar. Note that since P’ adds no new
sequences of length less than A, F is an expander in the generic extension and thus we can
construct expansion games there. The result immediately follows by Lemma 4.5, since,
if G = EG(9M, F), P forces EG(9M, F) = G.. a

The usual way of showing that 3 wins an expansion game EG(90, F) is to take a
suitable expansion (901; ) and during the expansion game pick such elements from % that
the theory constructed in the game will be true in (901; ). The following validity game
indicates, which kinds of expansions are suitable for this purpose.
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10.7. Definition. Let F be a A-expander in vocabulary (7;0), 9 € Str(7), and
A € Str(o). A validity game VG(9M, A, F) is played as follows: for i < A

- V chooses x3; € M, cy; € A, and ay; € I, and

- J chooses T2i41 € M, C2it1 € A, and a2i41 € I.
Denoting a = (a;);<», player 3 wins the play if (90, zo,...;%, co,...) is a model of
Thr(a). If 3 wins the game VG(IM, A, F), we say that F is valid in (9T; ).

One defines a co-validity game VG™ (90,2, F) in a same way as the validity game
VG(90, 2, F), except that V wins a play in VG* (9, A, F) if (I, zo,...; ™A, co,...) is 2
model of Thr(a). The expander F is co-valid in (90; ) if V wins VG* (901, 2, F).

10.8. Lemma. Let F be a A-expander and let 9N be a structure. If F is valid in
(901, A) for some U, then 3 wins EG(I, F). Similarly, if F is co-valid in (9, A) for some
A, then Y wins EG* (I, F).

Proof. We show only the expansion game case, since co-expansions are dealt with
similarly. Suppose 3 wins VG(90, 2, F). She wins EG(9M, F) by playing VG(901, 2, F)
in the background as follows: at his i move, V picks zy; € M and ay; € I. First player 3
chooses such an element cy; € A that A = Jup(u) — ¥(cx) if (i) = Jup(u). Then
she lets V move z5;, ¢2;, (rp; in the validity game, and gets an anSWer To;41, C2i41, X2i41-
In the expansion game she moves z2;41 € M and ay;41 € I, and chooses ¥; in such a
way that it is true in 2.

Playing in this way she finally has sequences (z;);<x and (c;);<x of elements of
9 and 2, respectively, and an F-branch a = (a;)i<x. Moreover, (9,...;%,...) isa
model of Th(a), of each ¢; (i < A), and of the Henkin sentences. Let (B, co, .. .) be
the structure (2, co, .. .) restricted to those elements which are interpretations of some
constant. Since the Henkin sentences 3¢(u) — 1(cz;) hold in 2, 9B is an elementary
submodel of 2, and thus (90;B8) is an elementary submodel of (901;%) (relative to
language L.y (7,0, A)), which implies the claim. O

As an application we show that the basic expanders of Example 10.2 are valid in very
many structures.

10.9. Lemma. Let T be a vocabulary, MM € Str(7) and let ¢ be a set. If A is an
end extension of (TC({9M, 7, 8}), €, 7, ¢, M), then F(1,¢, ) is valid in (9M;A), and
F'(1, ¢, A) is co-valid in (9T, 2A).

Proof. We may assume TC(9,7,¢) C 2. Player 3 wins the validity game
VG(97, 2, F) by obeying the following rules.
- If ty is an element of MM, pick Bor+1 = | and x4 = t. Otherwise let Boxy1 = 0
and Tok+1 = -
- If t; is an element of TC(7, ¢), pick ask+1 = 1 and 2px41 = tx. Otherwise let
Aoft+1 — 0 and 2k+1 = 20-
- Choose Cak+) — Ak = 2k and Cak+3 = bk = Tkg.
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Player V wins the co-validity game VG* (901, 2, F') by obeying the following rules:

- If t;, is an element of 9, pick B = | and xp, = ti. Otherwise let 35, = 0 and
Tk = xg, Where z is any element of 91.

- If t;, is an element of TC(7, @), pick ax = 1 and 2 = t;. Otherwise let ay, = 0
and 2y, = 0.

- Choose Cak = Q) = Zg and Cak+2 = bk = Tk.

11. More expanders

The basic expanders F (T, ¢, A) and F'(7, ¢, A) of example 10.2 as such are not
very useful: the last two lemmas in the end of the previous section show that 3 wins
EG(9M, F(7, ¢, A)) for every structure 901. However, they become useful if we add more
features to them. This is done with regulators.

Recall from the previous section that a A-expander describes an expansion through
a theory in the expansion language L., (7,0, ). A regulator extends this theory by
sentences in the language L, (o).

11.1. Definition. Let o be a vocabulary and suppose A is a cardinal as in the previous
section. A A-regulator R is a function such that dom(R) = I <X for some set I and R (w)
is a sentence in L, (Tlen(w)) for each w.

Call a sequence a: A — I a R-branch. It defines a theory Thr (a) = U, G(al7).
A structure 2 € Str(oy) is R-regular over a if A |= Thr(a) and every element of 2 is
an interpretation of a constant symbol.

The branching cardinal ki of a regulator R is the maximum of |I|* and .

We shall see later that if F is a A-expander and R is a A-regulator, we can construct
such an expander F(R) that every F(R)-expansion is a R-regular F-expansion.

11.2. Definition. Let R be a A-regulator, and suppose 2 € Str(c). The validity
game VG(2, R) is played as follows: forz < A

- V chooses cy; € A, and ap; € I, and
- Jdchooses ¢pi41 € A, and a4 € 1.

Denoting a = {a;);<x, player 3 wins the play if (2, co, ...) is a model of Thr (a). If 3
wins the game VG(2, R), we say that R is valid in 2.
The co-validity game VG™ (2, R) is defined similarly.

11.3. Example. As shown in the previous section, each (7, o, A)-expansion was
set-theoretical and had certain properties. Next I present a regulator, by which we can
make the expansions well-founded.

Let v be an ordinal, o = {€,¢,p, m}, and let A be an infinite cardinal. Similarly to
Example 10.2, rename all the constants in oy: lettg = ¢, ¢y = p,t = m,and t34; = ¢;
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for each 7. Construct R: 7<* — L, (o) in such a way that for a R-branch a = (7;);<
Thr(a) = {t; ¢ t; : 4,5 < Xand v2541 < V2i41 }-

This regulator, which we denote by R (), is valid in every A C V,,: the winning strategy
of 3 is to choose ;4 = rank(¢;). Moreover, every R(7y)-regular structure 2 is well-
founded: for each 7 the set-theoretical rank of t?‘ in A is less than or equal to ;1.

The obvious counterpart of the above regulator, R’(7y), is co-valid in every A C V,,
and every R’ (y)-regular structure is well-founded.

If ap: A — I, for k = 0,...,n are functions, denote by ag - a; - - - a,, the function
A= I() X Il X .. .In, 1= (ao(i),al(i), .. ,an(z))
11.4. Lemma. Suppose F isa A-expanderand Ry, ..., R, are A-regulators. There

exists a A-expander F* = F (R, ..., R,) such that the following hold.

(i) Ifdom(F) = I<* and dom(Ry) = IS for each k, then dom(F*) = I*<*, where
I*=1Ix1Ii x---x1I,.
(ii) If F is valid in (9, A) and each Ry, is valid in 2, then F* is valid in (9N, 2A).

(iii) Let (M, xo,...;U, co,...) be an F*-expansion over ag - ay---a,. There exist
permutations (c%)icx, - .-, (¢PYicx of (¢i)ic such that (M, zo,...; A, 3, cd,...)
is an F-expansion over ag and (2, cf, c¥,...) is Ry-regular over ay for every
k=1,...,n

(iv) RF* = max{n]:, KRy KR, }

(v) The mapping (F,R1,...,Ry,) — F*isp.r.

Proof. We show the case n = 2 only, the general case being similar. For nota-
tional convenience suppose the expander F produces sentences in vocabulary (7y; o) =
(1 U {Z0, 90, - --};0 U {co, do, .. .}) and the regulators F’ and F'" produce sentences in
vocabularies oy = o U {c}, dp, ...} and o} = o U {cg, } respectively. Let the
vocabulary of the expansion language of F* be (7»;0%), where oy =ocu{c,d;,...}

Let functions ¢, ¢/, and " rename constants in such a way that for each ¢

C(ezi) = ¢cf, Cl(clsi+1) =d3iy1; C/(C;i+2) = d3; 4y, C,(df) = dj;,
Cli(%) = ¢, CI/(CIs/iH) = d3; 1o, €I(C;Ii+2) = d;, §,(d,§) =d3i41
(") =iy (i) = di;, ("(iga) = diiyr, ((dY) = d3iyps.

These are the permutations mentioned in (iii).
Suppose the domains of F, F’, and F" are I<*, I’ <X and I"<*, respectively, and

let I* = I x I' x I". For an element w* = ((aj,a],a ))J<1 of I*<’\ let w = (a;)j<i
and define similarly w’ and w”. Let
F(wj)[¢] if len(w*) = 3,
F*(w*) =< F'(v j I)[¢]  iflen(w*) =35+ 1,
F"(w"15)[¢"] iflen(w*) = 3j + 2.
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This makes F* an expander. The claims (i), (iv), and (v) are trivial. For (iii) note that if
a* is an JF*-branch, then

Thr- (a*) = Th;:(a)[{] U Thz (a')[{’] U Th}"/l(a”)[fu].

Thus an F*-expansion is a model of e.g. Thr(a)[¢], and hence (iii) holds. So we need to
show (Ii).

Claim: If 3 wins the games VG(I, A, F), VG(A, F'), and VG(, F"), she wins also
VG(IM, A, F*).

Player 3 wins VG(90, 2, F*) by playing the other three games in the background. In
the validity game VG(90, 2, F*) elements are picked from 97, 2, and the parameter set
I*. Elements from 9 are picked only in the games VG(9, A, F*) and VG(IM, 2, F),
so their reduction is trivial, as is the reduction of the parameters. Thus the whole problem
lies in reducing the elements picked from 2. The following strategy is applied.

First V picks c¢§ € A in VG(IM, A, F*). Player 3 lets V pick cj in every phantom
game (i.e. co = ch = cj = c), and gets three elements dy, dy, dy in return, each from a
different phantom game. She reserves her next three moves in VG(9t, 2, 7*) for these
elements and continues likewise. This sets the reducing function f3. Meanwhile she
continues the phantom games as follows. The first move of V in VG(9M, 2, F) was cg,
and then 3 answered do. She lets V pick dj and dj at his next two moves, then c}, and
so on. The other phantom games are played in a similar manner. See Diagram 2 for the
whole construction.

Suppose that 3 wins each play on the right. Now, if a* = ((a;, ai, af’), (bs, b}, b))i<a
and a, a’, and a”’ are as above, then for example

(9, 20, Yo, - - -3 A, 5, do, dg, dg » - - -) is a model of Thr(a),
which by our variable renamings implies
(M, 20, Y0, - - -3 A, ¢, do, ¢, dg, &5, dg, - . .) is a model of Th(a)[(].
Thus 3 wins the play on the left. a

As an application of the lemma consider the expander 7 = F (7, ¢) of Example 10.2
and the regulator R = R(7) of Example 11.3. Now F(R) is an expander. Moreover, if
9 is a structure in vocabulary 7, and 7 is so large that 90, 7, and ¢ are elements of V., then
F(R) is valid in (9; V;, €, 7,6, M). On the other hand, if (M,...;AE t,p,m,...)
is a F(R)-expansion, then (A, E) is well-founded and ¢*, p*, and m? collapse into 7°,
#5, and into a model isomorphic with 9% % for certain sets X and S.

12. Expanders and logics

The final stage in our sketch is to turn an expansion game into a sentence of a logic.
That is, having an expander F we construct a sentence ¢ such that 3 wins EG(9, ) if
and only if ¢ is true in 9. The expansion game is so designed that the transformation into
a game sentence is particularly easy.
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VG(9M, A, F*) VGO, A, F) VG(A,R;) VG, R,)
Y : o, c5, (a0, ag, ag)
V:zo,c5a0  Vich,ag Vel ay
3 : yo, do, bo E 3:dg, by

[N}

: 90, dos (bo, bp; b )
Yz, cf, (a1, 0], ay)
Vixy,dy,a;  V:dg,a V:do,al
yndibe 3rdb 3db

L
L

. ! / i

. yl» do, (blvblﬁb[)
. ! "

v L X2, CE, (a'27;a2> az)

V:zy,dy,ay YV :idy,a) V:dy,ay

3iyndayby  3:dy by,  3:dl b
3y, df, (b2, b5, b5)
V3, ¢, (a3, ab,a5)
V:xsy,cf,az Vil ah V:ct,af
3:ys,ds, b3 3:dj, b 3:dy,0%

3y, dy, (b3, b5,05)
Vx4, cy, (as, afp af{)

Diagram 2: The phantoms of VG(9t, A, F*).

12.1. Lemma. Suppose F is a A-expander. There exist game sentences

d)}- = (vxZZ /\ 3x2i+1 V )i<>\ /\)\ wa()...G.z,;_'_l and
1<

ay €A az+1€A
¢} = (31‘21; V V$2i+1 /\ )i<)\ /\ w:()...a2i+1
a) €A azi+1€EA <A

in V., where each 1, and ¥, are in L, (7»), and the following claims hold.
(i) 3 wins EG(OM, F) if and only if M = ¢ .
(ii) V¥ wins EG* (9N, F) if and only if M = ¢
(iii) Kk = KF.
(iv) The mappings F — ¢ and F — ¢ are p.r.
Proof. The game sentence ¢ directly codes the expansion game of the expander F.

The problem of the construction lies in eliminating the extra expanding sort from the
sentences given by the expander: if the expansion language had no sentences of the
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expanding sort, one could directly set 9, as F(w). Now recall that during the expansion
game a complete theory about the expanding sort is constructed using the enumeration @ =
of the language L, (o). This complete theory can be used to eliminate the extra sort.
The elimination rule is simple: replace each initial sentence of the expansion language
occurring in the complete theory with “z¢ = xy”.

To start with the technical details, suppose that the domain of Fis I<*. Let A = I x2.
Forw = {(aj,7;))j<i € A< let F(w) be the sentence F({c;);<:), and let

Jup(u) — Y(cr) iflen(w) = 4k and @£ (k) = Jurp(u),
Glw) = (k) iflen(w) = 4k + 2 and 241 = 0,
T D (k) if len(w) = 4k + 2 and Y2k = 1, and

To = T otherwise.

Thus F' gives the same sentences as F, and G enumerates the complete theory on the
expanding sort. For w € AS* denote the cumulated theory by F(w) = { F(w[i) : i <
len(w) and 7 < )}, and let G(w) be obtained similarly from G.

The sentences of the expansion language were obtained from initial sentences in
Liasic(y) and L, (o) by propositional connectives. Let H (v, w) be obtained from the
sentence F'(v) by

- replacing each initial subsentence of F'(v) which exists in G (w) with 2y = ¢, and

- replacing each initial subsentence of F(v) the negation of which exists in G(w)
with xy # xg.

However, if F'(v) has initial subsentences which, or the negations of which, do not exist
in G(w), let H(v, w) be undefined. This function H does the sort elimination, but we
cannot simply choose ¢, as H(w, w), since the initial subsentences of sort 1 occurring
in F'(w) might not yet be present in G(w). Moreover, we must set 1/, identically false if
it turns out that G(w) is inconsistent.

Define a function f: A<* — Ord in such a manner that for each w and i < f(w) the
sentence H (w7, w) is defined: let f(()) =0,

A [ flw)+ 1 if Hw|f(w),w"(a)) is defined,
fw™a)) = {f(Z) otherwise,

and let f(w) = SUP; (jen(a) f (wT4) if len(w) is a limit. Define

F*(w) = H(w[f(w),w) if defined, and
T @ =0 otherwise,

and let F* be obtained from F* in the same way as F' is obtained from F. Now the
definitions imply: if a: A — A, then F*(a) = { H(ali,a) : ¢ < A}. Finally let for
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w € A<? of even successor length

F*(wlk) iflen(w) = 4k + 2,

xo # xo iflen(w) = 4k + 4 and there exists a sentence 7 € G(w)
such that -n € G(w), and

g = x9 otherwise.

Yy =

This ends the construction of the game sentence ¢». The other game sentence ¢’ is
constructed likewise. The claims (i) and (ii) are shown similarly, and claim (iii) is trivial,
so we only show (i) and (iv).

Claim A: 3 wins EG(9, F) if and only if MM |= ¢ =.

“=—" Suppose 3 wins EG(90t, ). Player 3 wins the semantic game of I = ¢~
by playing EG(90t, ) in the background as follows. Suppose V moves x,; € 9t and
(a2, 72:) € A. Player 3 lets V move z;, a; in the expansion game and gets an answer
T2it1, @2i41, ;. Let her move xo;41 € M and (a2i4+1,72i+1) € B in the semantic game
where 72,41 = 0, if ¢); = ®£(7), and 2,41 = 1, otherwise.

Suppose then that 3 wins the play in the expansion game. Then we have a sequence
a = {(ai,7i))i<x and elements xg, z1, . . . such that for some structure

(M, 2o, 21, .. .;2A) = F(a) UG(a).

Clearly (9, zo,...) = H(alt,a) for every « < A (H replaces true subformulas with true
subformulas and false ones with false ones); thus each 1, is satisfied in (9, o, . . .), and
3 has won the semantic game.

“«=" Suppose 3 wins the semantic game of 9 = ¢r. Player 3 wins EG(90, F) by
playing S(90, ¢ +) in the background, mapping the moves similarly to the previous case.
Suppose 3 to have won the play in the semantic game. Denote a = ((a, 7i))i<x. Now

(9M, xo, . ..) = Yaq: for every even successor ordinal ¢ < A.

This implies that G(a) does not contain any sentence with its negation, and is thus a
consistent and complete Henkin theory. Let 2 be the term model of G(a). Effecting the
replacement F(w) — H(w,a) backwards we see that (9, ...;2l) is a model of F(a).
Thus 3 wins the expansion game.

Claim B: The mapping F — ¢ isp.r.

Mapping F — F is trivially p.r. Since the enumeration @ is p.r. relative to A, the
mappings F — G, F + F,and F — G are p.r. Thus F — H is p.r,, and since f was
defined by primitive recursion, F — F* is p.r. Thus (F, w) + 1, is p.r., which implies
that 7 +— ¢r isp.r. O

Recall again our principal construction method: given a sentence, say ¢, in a logic we
try to construct a pair of A-expanders (F, F') such that if ¢ is true in a structure, say 9,
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then 3 wins EG(90, F), and otherwise ¥ wins EG* (91, ). Plays of the expansion games
give rise to set-theoretical expansions of the structure 9, which corroborate certain facts
concerning Kueker-approximations 90X ¥ and ¢° of the structure 90 and the sentence ¢;
these approximations are determined by the moves made during the plays. For example,
an F-expansion may verify that ¢ is true in 915, Suppose then that we are able to
play both the expansion game and the co-expansion game simultaneously, and that at the
end two plays define the same Kueker-approximations. Now, in favourable conditions,
the expansions corroborate controversial facts: in our canonical example the F-expansion
indicates that ¢° is true in 9X°, and F’-expansion indicates it to be false. This implies
that if we play the games simultaneously, either 3 loses the play in the expansion game
or V loses the play in the co-expansion game. Since the former game is closed and the
latter is open, the player who will lose (his/her) game will know it before the end of the
game. This fact can be used to truncate the game and to transfer the pair of games into a
sentence in M.

What was required from the pair of expanders above was that one could play them
simultaneously tying certain moves together, and that this kind of simultaneous playing
resulted in either 3 losing the expansion game or V losing the co-expansion game. Next
we define a couple of concepts to express these requirements: the former is expressed by
saying that the F-branch and the F’-branch meet on a common ground, and the latter by
saying that the expanders are disjoint.

12.2. Definition. Let H be a set. A-expanders F and ' with domains 7<* and
I'<* respectively, lie on a common ground H if I = H x---and I' = H x - - -. Moreover,
if a = ((a;,...))i<x is an F-branch and o’ = ((aj,...))i< is an F'-branch such that
a; = a, for each i, we say that the branches a and a’ meet on H.

Expanders F and 7' are disjoint if for every F-branch a and for every 7'-branch
o' either the branches do not meet on a common ground, or there exists no structure
(901, 2; B) such that (M; A) |= Thr(a) and (IM; B) = Thr (a').

12.3. Example. The basic expanders F(7,$, ) and F'(7,¢,)) lie on a com-
mon ground TC(7, #). Moreover, if (9, xo,...;A) is an F-expansion over a and
(9M, zo, . ..; ') is an F'-expansion over a’ such that a and a’ meet on TC(7, ¢), the
structural interpretations of m in 2 and " are isomorphic, and ¢ in 2 collapses into the
same set as t in 2, as does p in A and A'.

12.4. Lemma. If F and F' are disjoint \-expanders and 9 is a structure, either 3
does not win EG(OM, F) or ¥ does not win EG* (9, F').

Proof. Let dom(F) = (H x I)<* and dom(F") = (H x I')<*, i.e. suppose that H
is a common ground for F and F’. Suppose, for contradiction, that 3 wins EG(9)1, F)
and V wins EG* (9, F'). Play the two games simultanously as follows: for ¢ < A

- pick zo; € M, ay € H, by, € I' and 4} by the winning strategy of ¥ in EG(9, '),
and let V play x;, (@i, by;) in EG(90, F), where by; is arbitrary, and
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- pick Z2i4+1 € M, azi+1 € H, by € I, and 1); by the winning strategy of 3
in EG(9M, F), and let 3 play x2i41, (a2i41,b%;,) in EG*(9M, F') with an arbi-
trary by; ;.

Let a = ((ai, b;))i<cr and @’ = ((ai, b}))i<r. The structure (91, xo, ...) has both an
F-expansion over a and an F’-expansion over a’, and the F-branch a and the F’-branch
o' meet, which contradicts the disjointness of the expanders. O

12.5. Lemma. Suppose F and F' are disjoint \-expanders. There exists a M,
sentence ¢ such that the following conditions hold.

(i) If 3 wins EG(9M, F), then M |= ¢.
(ii) IfVY wins EG*(9M, F), then I |~ ¢.
(iii) k = max{KkzF, Kr }.
(iv) The mapping (F,F') — ¢ isp.r.

Proof. Let

¢]: = (vxl /\ ay'L v )’L<X /\ waobo...aibi and
a;€EA b;€A i<

¢;:/ = (Hmz V Vyz /\ )i<)\ /\ w;()bo..‘aibi
aiEA’ bieAl <A

be the game sentences given by Lemma 12.1 such that

3 wins EG(9M, F) if and only if M = ¢+, and
V wins EG* (9, F) if and only if 9 = ¢7%.

For notational convenience assume that A = H x [ and A’ = H x I’, with H the common
ground of F and F’ where the games are disjoint.

First consider sequences @ = (u;); such that, for each 7, uy; is the variable symbol z;,
Usiy1 = (8iy a4, al)isin H x I X I', ug; 4, is the variable symbol y;, and usi 13 = (¢, bs, bl)
isin H x I x I'. Given such @, let wg = ((8i, i), (ti, bs))4i+3<len(a) and denote

Wi = { 9w : w=wg|iforsomei}.

Similarly, denote w}, = ((s;,al), (ti, b;))ai+3<ien(a)> and likewise obtain W5 from ¢%..
Let the syntax tree T of ¢ consist of those sequences @ of the above form for which the
theory Wap; U W}; is consistent for every i < len(4).

u

Claim A: T is \-leaftree.

Clearly T is a A + l-tree. Suppose, for contradiction, that % is a leaf of 7" having
height \. By first-order compactness ¥z U '¥; is consistent. Now the length of both wg
and w, is A, and they give rise to an F-branch a and an F'-branch a’ which meet. Let
(9M, 20, . . .) be a model for ¥z U ;. As shown in the proof of Lemma 12.1, there exist
structures 2 and 2 such that (90, ...;2l) is a model of Thyr(a) and (9,...;A) is a
model of Thr(a’). This contradicts the disjointness of F and F.



60 Jyrki Akkanen

Now, if @ is a leaf of T', then len(@) = 4(¢+ 1) for some 7, and the theory W UY}; is
inconsistent. Define labelling L as follows: let L(a) = A W; if @ is a leaf, and otherwise,
when len(a) = 44, let

L(@) = VY, L(a" () = A,
L(a"(z;,a;)) = 3x;, and L(a™(x;, a5, y:)) = V.

This makes up a sentence ¢ = (7, L) in My, where k need not be larger than the
maximum of |H x I x I'|* and A.

Claim B: If 3 wins EG(90, F), then I |= ¢.

Suppose 3 wins EG(90t, 7). Then M = ¢x. Player 3 wins S(9M, ¢) by playing
S(9M, ¢ ) in the background as follows: when V picks x; € M and (s;, a;,a;) € HxIxI'
in S(M, ¢), 3 lets V pick z; and (s;,a;) € A in S(IM, ¢+), and gets an answer y; € M,
(t;,b;) € A. She moves y; and (t;,b;, b;) for an arbitrary b in S(9, ¢). When the
semantic game S(9, ) ends, she continues S(9M, ¢r) in an arbitrary way. If 3 wins the
play of S(9M, ¢+), then trivially 3 wins the corresponding play of S(901, ¢).

Claim C: IfV wins EG™ (901, F), then 9 = ¢.

Suppose V wins EG* (901, 7). Then 9 |= ¢%,. Player V wins S(90, ¢) by playing
S(901, ¢%) in the background in a similar way to the claim B. Suppose then that we have
played up to a leaf @ in S(9M, @), V playing in S(91, ¢%,) with a winning strategy. Now
we know that (901, . ..) = ¥/, and since W UV} is inconsistent, (91, . . .) is not a model
of W3. Thus V won the play of S(91, ¢).

Claim D: The mapping (F,F’) — ¢ is p.r.

Lemma 12.1 implies that the mappings (F, @) — ¥ and (F', @) — ¥ are p.r. The
testing of whether ¥z U W’ is consistent is p.r., since the theories are quantifier-free (see
the proof of 12.1). Thus (F, F’) +— T is p.r. The labelling is trivially p.r. a

IV Logics absolute relative to various set theories

In this final part of this work we show certain characterizations and limits for the expressive
power of logics absolute relative to various set theories. We start from weak set theories
and proceed towards stronger ones. In the three first sections we present new proofs
for certain known facts; for example, we will see that L, is a maximal logic absolute
relative to KP + Inf, and that every logic, absolute relative to ZFC, can be approximated
with L..,,. In the two last sections we investigate to what extent this special position of
L., among logics applies to M -languages.
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13. Logics absolute relative to KPU

We begin applying the concepts introduced in the previous part by presenting a result
of Viindnen in [V2]: if the syntax of a logic, first-order relative to KPU, is finite, then
the logic is a sublogic of L. Since we are dealing with a logic, first-order relative to
a set theory with urelements, we assume here that the set-theoretical universe contains
urelements, that vocabularies and sentences are pure sets, and that the elements of the
structures are urelements.

13.1. Lemma. Let L be first-order relative to KPU, let T be a hereditarily finite
vocabulary, and let ¢ be a hereditarily finite sentence in L(7). There exists a pair of
disjoint w-expanders F, F' such that the following conditions hold.

(i) If M =1 ¢, then 3 wins EG(IN, F).

(ii) If M V-, &, then Y wins EG* (9N, F').
(iii) The branching cardinal of F and F' is w.
(iv) The mapping (7, ¢) — ®% is p.r.

Proof. Leto = (€,U,t,p,m, sg) rer, Where € is a binary relation, U is an unary re-
lation, and all the other symbols are constants. We construct the expander F by modifying
the basic expander of Example 10.2 as follows. Let 7, and o, be the vocabularies 7 and
o, augmented with w new constant symbols xg, x1, . . . and ao, by, ay, b; . . ., respectively.
For each hereditarily finite set x let p,(v) be a first-order sentence such that whenever
(A, E) E pzlal, then a is in the well-founded part of (A, E) and collapses into . Let the
domain of F be I<%, where I = {0, 1}. Let to, ¢}, ... enumerate all the constants in o.,,.
Define F in such a way that for any F-branch a = (a;);<,, the theory Thz(a) contains
the following sentences.

(1) Finite subset of KPU.

@) 15(p) A 1 (8) A A per 1r(5R).

(3) me Str(t) Ap € L(t) Am L) -

(4) dom(m) C U.

(5) b; € dom(m) for every i € w.

(6) b =bj < x; = x; forevery ¢,j € w.

(7) t; Q dom(m) if Q41 =

ti = bait if aziqpy =

8) sp™(bj,,...,b;,) <= R(zj,...,x;, ) for every ji,...,jn € w and for any
n-ary relation symbol R € 7, and similarly for the other symbols in 7.

0 } ,
forevery i € w.

Let F' be defined similarly, except that constants a; are used instead of b;, and in the
sentences (7) ap; is used instead of ap; 4.

The claims (iii) and (iv) hold trivially, and the expanders clearly lie on a common
ground (). The claims (i) and (ii) are shown similarly; we show only (i) and that the
expanders are disjoint.
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Suppose M =, () ¢. Let A be a transitive model of KPU such that 9, ¢, 7 € A
and the sentences (1)—(4) hold in % = (A, €, AU, 7,6,9M,...). By Lemma 10.8 we
need to show that F is valid in (901; ). Player 3 wins the validity game VG(9, A, F) as
follows. Suppose ¥ moves z; € M, and a; € A. We may assume about the enumeration
t; (i < w) that ¢; has already been chosen during the play. Let 3 pick x2;41 = ¢; and
a; = 0ift; € M, and z2;41 = xo and o;; = 1 otherwise; and let her pick b; = ;. Clearly
now (1)-(9) hold in (9t; ). Thus (i) holds.

Consider first an F-expansion (9, z,...; 4, E, U, t,p,m,...) over (a;)i<.. De-
note A = (A4,E,U) and X = {zo,21,...}. Since 2 is a model of (1), the rela-
tion E is extensional. Because 2 satisfies (4)—(6), there exists a collapsing function
c: WE(2) — (V, €,U) such that ¢(b;) = z;. The sentence (2) indicates that each sp like
¢ and p are in WE(2), c(sg) = R, c(t) = 7, and ¢(p) = ¢. Sentences (4)—(7) imply that
the universe of m collapses into X, the universe of 901X . Now the vocabulary of c¢(m)
is ¢(t) = 7, and thus (7)—(9) imply ¢(m) = M[X. Since both A and its well-founded
part Wf(2A) are models of (a sufficiently large part of) KPU, Wf(%) models (3) by the
absoluteness of £. Using the absoluteness of £ between ¢ Wf(2l) and the real universe
we finally see that M X =, ¢.

Similarly, if an F'-expansion (9, zo,...; A’,...) exists, then M X £, ¢. Thus
the F'-expansion cannot exist together with an F-expansion (M, xo,...;A,...),and we
have seen that the expanders are disjoint. a

13.2. Theorem. Let L be first-order relative to KPU. There exists a primitive recur-
sive translation t: (L x Voc)[HF — L., such that

ME ¢ <= M)

Proof. If 7 and ¢ € L(7) are hereditarily finite, the previous lemma gives us a
disjoint pair (F, F') of expanders on a common ground. With Lemma 12.5 this pair turns
into a sentence in M,,,,, and the final turn into a sentence of L, is made with Lemma
5.5. a

Since L., is first-order relative to KPU (Theorem 7.16), we have the following
result, which appears already in [V2] Corollary 3.1.5:

13.3. Corollary ([V2]). L., is the strongest finite logic which is first-order relative
to KPU. a

There is not much room for extending this result. As shown in Theorem 7.16, the
logic L., (Qo) is first-order relative to KP and relative to KPU+Inf, but as it is well
known, the quantifier Q is not definable in L. We cannot even extend the result to
logics which are absolute relative to KPU: consider the following (somewhat artificial)
logic L, for which

¢ € L(T) & ¢ € L,w(Qo)(7) and the axiom of infinity is true, and
ML) ¢ = MELL(Q)E ¢
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This logic is absolute relative to KPU and semantically equivalent to L., (Qp).

14. Logics absolute relative to KP+Inf

The logic L, has a remarkable position among absolute logics. Barwise has
namely shown that L., is the maximal logic, absolute relative to KP + Inf (see [B2]).
We begin this section by showing this result in its full power: each logic, absolute relative
to KP + Inf, has such a translation into L, that admissible sets containing w are closed
under it.

14.1. Definition. If £ is alogic and A is a transitive set, the logic £ 4 is defined by

GELA(T) <= T,0€A and [¢p € L(1)]"
MEr, ¢ = MEL o

We denote L4 = (Loow) 4. If £ is absolute relative to KP+Inf, for every vocabulary
7 and for every sentence ¢ there exists an admissible set A (e.g. H,, for k = |TC(7, ¢)|™")
such that ¢ € £ 4(7). Moreover, if £ is first-order relative to KP, then L4 = £ N A for
admissible sets A. Otherwise the inclusion £L4 C £ N A may be strict.

14.2. Lemma. If L is absolute relative to KP+Inf, then for each ordinal ~, for each
vocabulary T, and for each sentence ¢ € L(T) there exists a disjoint pair (F.,, F.) of
w-expanders so that the following conditions hold.

(i) Suppose A is admissible and ¢ € L 4. There exists v € A such that

M = ¢ = I wins EG(IM, F,), and
M fer ¢ = V¥ wins EG™(IM, F).

(ii) kr = kp = max{|TC(r, ¢)|T,v*}.

(iii) The mapping (1, ¢,7) = (F,, F,) is p.r.
Moreover, if the logic L is first-order relative to KP+Inf, we may assume F., = Fo and
F! = Fyforevery 7.

Proof. Let 0 = (€,t,p,m) and let 7, = F(1,¢,w) be the basic expander of
Example 10.2. Let 7, and o, be 7 and o, augmented with constants xg, x;,... and
co,Cy, ..., and let tg,t1,... enumerate the constants of o,,. Denote a = c;, g = c3,
n, = c¢s, and n; = ce42:+1 for i < w. Define a regulator R as follows: let its domain
be 1<%, where I = w x (v + 1), and let its values be such that for b = ((a;,7:))i<w the
theory Thg (b) contains the following sentences:

(1) A finite subset of KP + Inf.
(2) 6(t,p,a), where 6 is the Ag-sentence for which

KP + Inf - 3z6(t,p,z) < p € L(t).
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3) me Str(t) Am 'zﬁ(t) p.
4) pi(n;) An; € n, foreveryi < w.

&)

(6) g is a one-to-one function from dom(m) to n,,.

M t; #t; if v41 = 7, fori < 3.

(8) t; ¢ tj if v # 2541 < 72141, forevery i, j < w.
Let 7., = Fu(R). Construct 7/ similarly by starting from the basic expander 7'(, ¢, ),
and adding a regulator R!, similar to R.,, except that the constant names a, g, and n; for

i < w refer to constants c¢; with even indices, ay; is used instead of a4 in (5), 72; is
used instead of y2;11 in (7) and (8), and (3) is replaced by

(3') m e Str(t) Am Wy p-

The claims (ii) and (iii) are trivial, so we need to show (i) and that (F, F’) is a disjoint
pair of expanders.

To see (i), suppose ¢ € L4(t) and M =, (- ¢. Choose such r € A that 6(7, ¢, 7)
holds in (A, €). Let v = max{rank(7), rank(¢), rank(r)} + 1 € A. Let P be a forcing
which forces the model 91 to be countable. Because of Corollary 10.6 it is enough to show
that 3 wins EG(90, F) in the generic extension of the universe relative to P. Thus, let us
next work in the generic extension. Let B be an admissible set such that A C B, 9 € B,
and the generic enumeration f: M — wisin B. Let B = (B, €, 7, ¢, M). The expander
Fy is valid in (90; B), since TC(7, ¢, M) C B. We need to show that R, is valid in *B:
Lemma 11.4 implies that then ., is valid in (9t; B), so thus 3 wins EG(901, F,,).

Player 3 wins VG(B, R,) by playing as follows. Suppose V picks c;; € B. We
may assume about the enumeration ¢; (¢ < w) that an interpretation of ¢; has already been
chosen. Let 3 choose ap; 41 = t; + 1 if ¢; is an element of w, and a;4; = 0 otherwise,
and let her choose 72,41 = rank(t;) if rank(¢;) < 7, and v otherwise. Let her picka = 7,
g=f,n,=w,andng =k fork < w.

ti €n, ifagq =0,

ti=n; ifoge =1+7, } forevery i € w.

The expanders F (7, ¢, w) and F'(7, ¢, w) have a common ground TC(, ¢), and so
the expanders ¥, and /, have a common ground TC(7, ¢). We need to show that they are
disjoint. Suppose (9, xo, . ..; A, E,t,p, m,...) is an F,-expansion over an ., -branch b.
Then the structure (9N, ...; A, E,t,p,m,...)is an Fy-expansionand 2 = (A4, E,t,p, m)
is R.,-regular. By Lemma 10.3 we know that ¢ and p are in Wf(A, E), and they collapse
into 7° and ¢°, respectively, where S is determined by b. Moreover, the structural
interpretation 0 of m in (A, E) is isomorphic to MX S, where X = {zo,yo, .. .}.

Since 2 = (1), both (A, E) and Wf(A, E) are models of (a finite fragment of) KP.
The sentences (4)—(5) imply that n; is in Wf(A, E) and collapses into ¢ for 7 < w. Thus
both (A, E) and Wf(A, E) are models of the axiom of infinity. The sentences (7)—(8)
imply: t, € Wf(A, E) whenever v2;41 < 7, so (7) indicates a € Wf(A, E). Thus the
Ao-sentence (2) is true in Wf(A, E). The sentence (16) indicates that g: dom(m) — n,
is a one-to-one mapping in (A4, E). Thus g:dom(m) — ran(g) is a bijection, there is
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m' € Wf(A, E) for which g:m = m/, and m’ collapses into a structure isomorphic to
XS, Since L is absolute relative to KP+Inf and Wf(A, E) = (2), we have m’ € Str(t),
p € L(t),and m’ |= pin Wf(A, E). This implies:

MY € Ste(r%), ¢° € £(r%), and M*S f=p (s 7.

Similarly one sees that if (90, zo, . . .; ®B) is an F. -expansion over an ! -branch &',
then
XS € str(r¥), ¢% € L(r¥), and MXT P, o) 6
But if the branches b and b’ meet on their common ground TC(7, ¢), the sets S and S’ are
the same set. Thus F, and F, are disjoint.

Finally consider a logic £ which is first-order relative to KP+Inf. Leave out the
parameter v from the regulator R,: let I = w, remove the sentences (7)—(8) from the
theories, and replace (2) with

(2") p e L(t).
The proof of the (i) is similar to above. In the proof of the disjointness of the expanders
the implication

(A,E)l=pe L(t) = Wi(A,E)Epe L)

is now easy, since as a AX* "™ _sentence p € L(t) is absolute relative to these two models
of KP+Inf. |

14.3. Theorem ([B2]). (i) Let L be absolute relative to KP+Inf. Then L4 < L
for any admissible set A 3 w.

(ii) Let L be first-order relative to KP+Inf. There exists a translation t: L — Lo,
primitive recursive in a mapping which maps a well-founded tree to its ordinal.

Proof. (i) Let ¢ € L4. By Lemma 14.2 there exists a pair of disjoint expanders
(F,F') in A such that if 9 | ¢, then 3 wins EG(9, F), and otherwise V wins
EG* (91, 7). By Lemma 12.5 this turns into a M -sentence in A and finally, by
Lemma 5.3, into a sentence of L 4.

(ii) is shown similarly. a

The original proof of Barwise is based on three ideas: first, by an easy Lowenheim—
Skolem argument, one obviously needs to show only the result for countable admissible
sets. Secondly, the expression “9 =, ¢” is translated into a A(L o, )-expression by
introducing a new set-theoretical sort. Finally, this new sort is eliminated by interpolation
in a countable admissible fragment.

In the above approach, we could as well have used the same Lowenheim—Skolem
argument to avoid forcing when showing the claim (i) in the proof of 14.2. However, the
chosen approach produced slightly more refined result: in the case of logics which are

5 20753
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first-order relative to KP+Inf, we have an estimate for the complexity of the transformation
into Lo,,. The Lowenheim-Skolem-argument would have given the estimate only for
countable admissible fragments.

In the above result we have replaced the use of interpolation of L., on countable
admissible fragments with a new construction. A natural question is, whether we can
show the interpolation result with this new method. The answer is affirmative, and the
construction is sketched below. Instead of just giving the A-interpolation result, we show
a stronger separation result, the original result appearing in [L] and [B1]. The result is
given in a single-sorted form; the many-sorted form can be proven in a similar way with
obvious modifications.

Let £ and L' be logics. We say that L' allows separation for L if the following
condition is satisfied. For every pairwise disjoint vocabulary 7, p, and p’ and for every
sentence ¢ € L(7 U p) and ¢’ € L(7 U p’) such that ¢ A ¢’ has no model, there exists a
sentence ¥ € L'(7) satisfying

(MR E¢ = ME and
(M, R) o = My

14.4. Theorem. Let L be absolute relative to KP + Inf and let A be a countable
admissible set containing w. Then L 4 allows separation for L 4.

Proof. We modify the proof of 14.2. For simplicity, assume that £ is first-order rela-
tive to KP + Inf: to obtain the result for the absolute case one needs a similar modification
to the translation result above. The first task is to construct w-expanders F and F’ such
that

3R (M, R) = ¢ = 3 wins EG(M, F), and
AR (M, R') = ¢/ = ¥ wins EG*(9, F).

Moreover, if (9, zo,...; B, E,...) is an F-expansion over g, then ¢° should hold in
some expansion of XS, where X = {xo,...} and S is given by the F-branch ¢; and
similar should hold for the expander F'. These expanders can be constructed similarly to
the expanders in the proof of 14.2. The problem in the construction is that the expanders F
and F' are not disjoint on their common ground Z = TC(7, p, p', ¢, ¢’). This is because,
even if the sentence ¢ A ¢’ had no models, its approximation may have them.

We solve the problem as follows. Recall that Z is an element of A, a countable
admissible fragment. Let h:w — Z enumerate Z. It is not hard to modify F' in such a
way that if (901, R') = ¢/ for some R, then ¥V wins EG* (9, F') by a strategy where his
every second move on the common ground Z is picked with the enumeration h. (This
requires some rearrangements among the constant names.) Let us combine the expanders
F and F' (or actually the game sentences given by Lemma 12.1) just as presented in
Lemma 12.5, except that we make V, in the semantic game of the M -sentence, to pick his
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every second choice in Z with the enumeration h. The result is a sentence 6 in M, : if
the resulting sentence had a long branch, it would give rise to a structure 9t and expansions
which would indicate (9X°,...) | ¢ and (MXS,...) = ¢'S. This is a contradiction:
now S = Z, ¢° = ¢, and ¢'S = ¢/, since h enumerates the common ground Z.
However, the sentence 6 above does not necessarily exist in A, since it is constructed
using the enumeration h. Let B D A be the least admissible set containing h. The sets
A and B have the same ordinals, and so the ordinal « of the syntax tree of # exists in
A. Construct a sentence ¥ € M, [A by restricting the game sentence attached to F
by Lemma 12.1 with the tree B,: add conjunctions of form /\Oli+l <o, 1O its game prefix
and cut the branch when o, = 0. Now it is clear that 9t = ¢ if (9, A) = ¢ for some
2. On the other hand, if (9, 2’) = ¢’ for some A, then V wins EG*(9M, F') with
a strategy using the enumeration h. Thus he wins the semantic game S(90t,6). When
playing the semantic game S(91, ), player V can choose the a;’s by operating S(9, 6)
in the background and thus win it, too. m]

15. Logics absolute relative to a standard set theory

In the previous two sections we saw that there exist maximal logics first-order relative
to KPU and absolute relative to KP + Inf. Now, if we strengthen the theory beyond
KP + X,-sep, these kinds of maximal logics no longer exist. The following diagonal
argument is a standard way of proving this result. We call set theory a standard theory if
its vocabulary is {€}.

15.1. Theorem. Let T be a standard set theory containing KP + Z;-sep. There
exists no maximal logic L, absolute relative to T

Proof. Let L be absolute relative to 7'. It is enough to define a model class K
which is A;-definable in 7" but not definable in £: we may then add this model class as a
single sentence to £ producing a strictly stronger logic, absolute relative to 7. The model
class K consists of those structures (A, F, p, a) where p codes a sentence of £, false in
(A, E,p,a).

To be exact, let P be a Ap-predicate such that

TkF¢eL(r) — JzP(r,¢,x).

Let 7 = {€, ¢, d} be a hereditarily finite vocabulary. Let K be the class of those structures
(A, E,p,a) € Str(r) where (A, E) is extensional and well-founded, and there exists a
Mostowski collapsing function c of (A, E) such that P(,cp, ca) and (A, E, p,a) Fr ()
cp. It is clear that K is Aj-definable in T: the existential quantification over Mostowski
collapsing functions can be changed to universal. To see that K is not definable in £,
suppose for contradiction that ¢ € £(7) defines K. Choose such z that P(r, ¢, z) and let
A be a transitive set containing both z and ¢. Now

(A,€,0,2) Fr ¢ <= (A €,0,x) eK <= (A, €,¢,2) L ¢,
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which is a contradiction. O

We next give a new proof for the result of Burgess in [Bu]: if £ is absolute relative to
a standard set theory (e.g. ZFC or some of its extensions), there exists a p.r. approximation
mapping £ X Ord — L.

15.2. Lemma. For each vocabulary 7, for each formula ¢ € L(7), and for each
ordinal ~y there exists an expander F., such that the following conditions hold.
(i) MELd < Iwins EG(ON, F,) for some v
<= IwinsEG(IM, F,) for some~y < max{|M|, |TC(r,¢)|}*.
(ii) If 3 wins EG(9M, F.,), she wins EG(M, Fs) for every 6 > .
(iii) The branching cardinal of F., is max{|TC(7, ¢)|*, |v|*}.
(iv) The mapping (1, ¢,7) — F, isp.r.

Proof. Let F, = F(7, ¢, w) be the basic expander of Example 10.2. Let R, be the
regulator of Example 11.3. Let R be a trivial regulator, where dom(R) = {0} <“ and, for
an R-branch g, the theory Thg (¢) contains a single sentence,

(1) me St(t)Ape L(t) Am =Ly P
Let 7, = F»(R,R). The claims (ii)~(iv) are easy, so it is enough to show @).

Claim A: If M € Str(7), ¢ € L, and M =, () ¢, there exists y less
than max{|TC(r, ¢)|*, |9|*} such that 3 wins the expansion game.

Let £ = max{|TC(r, ¢)|*,|M|*}. We may assume I € H,. Since X;-formulas
reflect onto H,., the sentence (1) is true in H,, and in fact (1) is true in some V., where
v < k. But now Fy is valid in (9, V,, €, 7, ¢, M), and both R, and R are valid in
(V,, €,7,6,9). Thus F, is valid in an expansion of 90, and 3 wins EG(9, 7).

Claim B: 1If (M, xo,...; A, E,t,p,m,...)is an F, -expansion over g, then
mXS e str(r), ¢° € £(r%), and omxS FEres) ¢,

where X = {zg, 21, 27,...} and S is determined by g.

Since an F.-expansion is a R.,-regular F,-expansion, the structure (A, E) is well-
founded and the elements ¢, p, and m collapse into 75, ¢°, and 9MX5, respectively. The
claim holds, since (A, F) is R-regular and the sentence (1) is a ;-sentence.

Claim C: M=y ¢ = 3IwinsEG(M, F,) for some y < max{|M|, |TC(7, ¢)[}+
= 3 wins EG(9M, F,) for some ¢
= M i‘—‘g 0.

The first implication is the claim A, the second one is trivial, so we need to show the third
one. Suppose M [~ ¢. Construct expanders F/, from the basic expander F'(7, ¢, w),
from the regulators R’ and from a regulator similar to R, except that instead of (1) we
have
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(1') m € Str(t) Ap € L(t) Am ey p.
As above, we can show that the claims A and B hold for these expanders, too. The claim
B implies that the expanders ., and .7-'; are disjoint for each v. By the claim A and (ii)
there is -y such that ¥ wins EG™ (¥, 0t) whenever § > ~. Thus 3 cannot win EG(F5, 90)
for any 6. m)

By Lemma 12.1 this lemma directly implies the following approximation result.

15.3. Corollary. Let L be absolute relative to a standard set theory. There exists a
primitive recursive mapping a: Voc X L x Ord — V., such that the following conditions
hold.

(i) If p € L(1) and M € Str(T), then

MELqr) ¢ <= MEa(r,¢,7) for some v
<= M = a(r, @, 7) for some v < max{|9M|, |TC(r, )|} .

(ii) If v < 6, then a(T, ¢,v) = a(T, ¢,0).
(iit) a(7,¢,7) € Viw, where & = max{|TC(r, ¢)|*,7*}.

The proof of the following proposition is given for example in [Bul].

15.4. Proposition. There exists a primitive recursive mapping b: Voc x Vi, X
Ord — L., such that the following conditions hold.

(i) If € Voo (7) and M € Str(7), then

ME ¢ < Mg b(r,9,7) for some
<= M = b(7, @, 7) for some v < max{|9M|, |TC(r, )|} .

(it) If v < 6, then b(T, ¢,7v) = b(T, 9, 6).
(iii) b(T,¢,7) € Ly, where k = max{|TC(, ¢)|*,v+}.
Od

15.5. Corollary ([Bu]). Let L be absolute relative to a standard set theory. There
exists a primitive recursive mapping A: Voc x L x Ord — L, such that the following
conditions hold.

(i) If ¢ € L(7) and M € Str(7), then

M) ¢ <= ME A(r, ¢,7) for some v
< M E A(T, ¢,7) for some v < max{|9|, |TC(7, ¢)|} .

(ii) If v < 6, then A(T, d,7v) = A(T, ,0).
(iii) A(T,¢,7) € Lyw, where k = max{|TC(7, ¢)|*, vt}

6 20753
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Proof. If a and b are the approximation mappings of the previous corollary and
proposition, choose

A(r,0,7v) = V b(r,a(7,8,6),7).

o<y
O

This result is actually somewhat stronger than the original result of Burgess. His
argument is valid only when the vocabulary is finite and when the logic is absolute relative
to a forcing which forces a set to be countable. Our argument works for all vocabularies
and for all logics absolute relative to a set theory in a standard vocabulary.

Burgess’s argument is as follows: suppose first that the model 9 is countable and
the sentence ¢ € L£(7) is hereditarily countable. Now an element m in a certain metric
space w*” X ...X 2¢" x...Xw X...depending on the vocabulary 7 codes the model 91,
and an element p C w? codes the formula ¢ through isomorphism (TC({¢}, €) = (w, p).
Such a Z!-relation R is known to exist that

mt}:£¢ — R(m,p).

Using certain normal forms and absoluteness results in descriptive set theory we are able
to write

R(m,p) < Ja < w3z € Lo(m,p)(F(m,p, z) is a well-ordering of length < a)
— 3o <w 3z Cw((w,2) 2 (a,€) AP(m,p, z)),
where F is a recursive functional, P a Z}-set, and Ly(m, p) the ath level of the sets
constructible from m and p.
Given a model 9t and a sentence ¢, let P be a forcing which forces 90T and ¢ to be

countable. Now there are canonical P-names m and p for the codes of 91 and ¢ in the
extended universe. Using the absoluteness of the logic we obtain

MEr ¢ < PIFIME
< PIF R(m,p)
— Pl Ja<wdz C wz((w,z)  (a,€) A P(m,p, z))

Let then Q. be a forcing which makes an ordinal  countable. Denote by a a canonical
Q. -name for a set z such that (a, €) = (w, 2) in the extended universe. We proceed by
showing

Pl 3a < w;dz C wz((w,z) ~ (a,€) A P(m,p, z)) < Ja P xQ, IF P(m,p,a).

The final step in the construction is to turn the expression P x Q, I+ P(m,p, a) into a
game formula 1), in such a way that

MEL ¢ < oM E Yo
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What do the approximating game formulas then express? First, since the truth
definition of the logic is equivalent to a X;-expression, 9 =, ¢ if and only if there exists
a witness, an element which binds the model and sentence together. Now, in Corollary
15.3 the formula a(7, ¢, ) indicates “there is a witness in V,, to X% =, ¢ for almost
every countable X and S”. Instead the approximating formula 1), of Burgess indicates:
“there is a witness to 9t =, ¢ which is potentially constructible from 9t and ¢ at level
a”, where the expression “potentially constructible” means that the witness in question is
constructible in a certain generic extension of the universe.

16. Logics absolute relative to ZFC(P,)

The results in the last three sections show that the restrictive nature of absoluteness
relative to standard set theories is quite well understood. In particular we have seen that the
logic L., has a special position in this respect: every logic, absolute relative to KP+Inf,
is a sublogic of L., and every logic, absolute relative to a standard theory, can be
approximated with L..,,. However, as regards uncountability, it turns out that L, lacks
expressive power. For example, a sentence of L., cannot express that an equivalence
relation has an uncountable number of equivalence classes, except by introducing new
symbols in the vocabulary. Similarly, the standard set theories are not at their best for
dealing with uncountable cardinals: uncountability is not absolute relative to them.

New and improved logics have been introduced for describing uncountability: among
these are for example L., (Q1), Loow(Q1), Loow,, and the M-languages. The logics
L (Q1) and Lo, (Q1) are interesting; for example, they have a complete proof system
but not very strong expressive power. The logic Lo, does not inherit the favorable
position of L., and thus much research has been done lately on M -languages. It has
turned out that many properties of Lo, and L, are shared by Moo and by M, .+, for
regular cardinals k. However, the properties are usually not preserved as such: where
L., is nice and straight, M, + . is complicated and full of dependencies on strong set-
theoretical axioms.

The set theory ZFC(P,,, ) makes absolute many predicates which distinguish between
countability and uncountability. In fact, if (4, E, P, k) Cenga(A’, E', P, k') are two models
of ZFC(P,, ), they have exactly the same countable sets (of elements of A, naturally).
Moreover, for example the logics L, (Q1), Voow [Q1], Lpos, and Lo, are first-order
relative to ZFC(P,,,). Thus is natural to investigate which kinds of logics are absolute
relative to ZFC(P,,, ) or ZFC(P,;) for a regular cardinal x. It turns out that every such
logic can be translated into MY, where A = k<",

co?

16.1. Lemma. Let k be an uncountable cardinal, and let X\ = k<". Let a logic L
be absolute relative to T D ZFC(P,). For every vocabulary T and for every sentence
¢ € L(7) there exists a pair (F,F') of disjoint \-expanders such that the following
conditions hold.

(i) If M € Str(7) and M =1 ¢, then I wins EG(IM, F).
(ii) If I € Str(7) and M W ¢, then Y wins EG* (M, F').
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(iii) kr = kr = max{|TC(7, ¢)|T, AT}
(iv) The mapping (1,¢) — (F,F') is p.r. in 7., a surjective function A — \<*.

Proof. We need some coding mappings. Note first that A<* = A. Let m.: A — A<®
be surjective (here A<* is the set of functions), and let 7: A X A — ) be the canonical p.r.
bijection. Let

A = Pe(A), m(i) = ran(7 (1)),

iAo AL m(i)(n) = {;nin{m(i)(n),i} Lftl?erewciiser.n(m(i)), and

Both these mappings are onto, p.r. relative to 7, and ran(m,(z)) C (i + 1) for every .

Let F, = F(7, ¢, A) be the A-expander of Example 10.2. We may assume that the ex-
panding vocabulary o = (€, P,ny,t,p, m), where P is a binary predicate and n is a con-
stant. We next define a A\-regulator R such thatif astructure A = (A, E, P,ny,t,p,m,...)
is R-regular, it is well-founded and extensional, n collapses into A, P is the relation
“P.(z) = y”, and m =, p. Recall that the vocabulary oy is o augmented with A
constant symbols co, ¢y, . . .. Give alias names to constants c; with odd indices as follows:
fori, 7 < Alet

N; = Cl2i4+1, € = C12443,  Pi = C12i45,
@ = C13i47,  [i = Cr2i49, Tij = Clan(ij)+11s

and let tg, t1, . . . enumerate all the constants of o). Given a constant symbol z in o, let
27 € ) be such that z is the same constant as tr,~. Let the domain of R be I<*, where
I=(A+1)x(k+1) X w, and define R in such a way that if a = ((a;, 5;,7:))i<x is an
R-branch, Thy (a) contains the following sentences.
(1) A finite subset of 7.
(2) The Z,-form of m € Str(t) Ap € L(t).
(3) The X;-form of m =, () p.
n; €n; ift <y
S n, ¢n; ifi>j
(5) t; ¢ n; ifa2i+1 =0
ti = nj ifO(zH_] =1 +j
(6) p; C ny forevery s < A.
) n; € p; ifj € 7T1(i)
n; ¢ pi ifj ¢ mi(i)
(8) P(t;,tj;) — t; = e; foreveryi,j < A.
(9) P(ti,e;) forevery i < A
(10) Yu € e;(u C t;) forevery i < A.
(11) t; € g; forevery j <1 < A.

} forevery 7,7 < A

}foreveryi <A <A

} forevery 4,7 < A.
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(12) fi:q; — n,; one-to-one for every i < A.

(13) Vu(u C gj AuCt; —» u €e;)forevery i, j < A.
ti Cq; if Brip1 <kandj="r;
ti ¢ e; if Brip1 =k

(15) ¢; ¢ tj Vit = t; if?z = Wz(k)('hk.g.l + 1) and j = Wz(k)(72k+1) for some k£ < A.

g
(14) Britt }foreveryi,j <\

Claim A: Suppose (A, E, P,ny,t,p, m) is R-regular. Then (4, E) is well-founded and
extensional, cny = A, P(z) = y iff Pc(cx) = cy, cm € Str(ct), cp € L(ct), and
em =g (ct) cp, where ¢ is the Mostowski collapsing function of (A, E).

The sentences (15) imply that (A, E) is well-founded: let ¢;, for k& < w be arbitrary.
Choose i < A such that m,(¢)(k) = ix for every k < w. Letting k = m(4)(v2:41) We
have —(t;, Et;, ) or t;, ., = t;,. The sentence (1) makes (A, E') extensional. Thus the
Mostowski collapsing function c exists. Now (4)—(5) imply c¢n; = i fori < X, and (6)—(7)
imply cp; = m(3), so we have Po(A) = {ep; 1 i < A}

Moreover, the sentences (10)—(14) imply ce; = Py (ct;) for every i < A: suppose
first z € ce;, i.e. x = cty and (A, E) =ty € e;. By (10) and (14), (A, E) E tx C t;
and (A, E) = tx C g; for some j < A. Using (12) and some axioms of ZF we get a
one-to-one function g € A from ¢) to n;. Since cn; = j, x = cty € Pk(t;). On the
other hand, suppose = € P, (ct;). By Konig’s lemma the cofinality of ) is at least &, so
x C {cty : k< j}forsomej < A Thusz C cg; by (11). The sentence (12) indicates
that cf;:cq; — j is one-to-one. Now {cf;(y) : y € x} = m(k) € Px(\) for some
k < A. Using some axioms of ZF we get u € A such that (A, E) = f/u = p;. Now
cu = z, and (13) implies « € ce;.

Since (A, E, P) satisfies the sentences (8)—(9), this implies

(A, E,P) E P(z,y) <= cz = Pg(cy)
for every z,y € A. Since (2) and (3) are X;-sentences, we finally have cm € Str(ct),
cp € L(ct),and cm =z (cr) cp.

Let 7 = F»(R). Since an F-expansion is a R-regular Fj-expansion, the claim A
immediately implies that if (9, xo, ...; A, E, P,ny, t,p, m,...) is an F-expansion over
q - 7, then

¢° € L(r%), MXS eSu(r%), and M¥S k=,(s) 67,
where X = {z¢ : £ < A} and S is determined by the Fy-branch gq.
Claim B: If 9 € Str(7), ¢ € L(7), and M =1 (;) ¢, then I wins EG(IM, F).

Let 42 > X be such that 9, 7, and ¢ are elements of H,, Vv < p (v<* < p), and that
H, is amodel of (1). Let P(x,y) <= y = P(x). Now Extended Levy theorem 3.2
implies that (2) and (3) holdin A = (H,,, €, P, A, 7, ¢, M). Since F} is valid in (9T, 2A), it
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is enough to see that R is valid in 2: then F is valid in (9)t; ) and 3 wins the expansion
game.

Suppose V picks an element c;; € H,. The enumeration ¢; (¢ < A) shows that
to, . . . , t; have already been chosen. Let 3 move as follows:

- agipr = 1+t ift; € {0,..., A}, and az;41 = O otherwise.

- Baiy1 = min{[t;], k}.

- 72i41 is the least n € w such that either tp,(n41) & th(n) OF ta(ny1) = th(n), Where
h=m(i)w— 1.

- ¢yi41 is such that for every i: n; =1, ¢; = Pu(t:), pi = m1(i), ¢s = {t; : j < i},
fi(t;) = j for each j < 4, and r; ; for j < |t;| enumerates ¢; if [t;| < k, and
otherwise 7 ; = 0.

These make the sentences (1)—(15) true. For example, to see (14) suppose ¢, < A. If
Brir1 = K, we have |t;| > k,s0t; ¢ Pi(t;) = e;. On the other hand, suppose Bi+1 < K.
Now [t;| = Baiy1 < k,andif j = "r; 6, ", then

ti-‘—‘{ri,k : k<621'+1}§{tk:k<j}:qj,

since the mapping k — "r; i is strictly increasing. Thus 3 wins the game.

Construct F' similarly to F: start from the basic expander F'(7, ¢, A) and add a
regulator R’ similar to R, except that in the sentences (1)—(15) the constants n;, e;, ...
are the constants ¢; with even indices, parameters ay;, . . . are used instead of aiy1, .. -
and the sentence (3) is replaced with

(3') The Z;-form of m [ p.
Similary to the claim B one sees that V wins EG* (90, ') if 90t € Str(7) and I () ¢
Thus (i) and (ii) hold. The claims (iii) and (iv) are easy, so we need to show that F
and F' are disjoint on the common basis TC(7, ¢) of F(r,¢,A) and F'(7, 4, ). But,
as above, one can see that if (90, zo,...;B,...) is an F’-expansion over ¢’ - 7', then
mxs’ Fo(rs'y #5', where X = {x0,v0, ...} and S’ is determined by ¢'. Moreover, if
an F-branch ¢ - 7 and an F’-branch ¢’ - ' meet, then ¢ and ¢’ also meet, which implies
S = S’. Thus the expanders are disjoint. a

16.2. Theorem. Suppose k > w and A\ = k<". If L is absolute relative to T 2
ZFC(Py), there exists a translation t: Voc x L — M ggt,\ primitive recursive in T, such

that t(1, ¢) € M\ when p > max{|TC(r, ¢)|T, A\*}.

Proof. The disjoint pair (¥, F') of expanders given by the previous lemma can be
turned into a sentence in M5 by Lemma 12.5. O

This result is analogous to Theorem 14.3, which states the existence of a translation
L — Lo, for every logic, absolute relative to KP + Inf. Since the former translation is
primitive recursive relative to 7, admissible fragments containing 7 are closed under it.
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For other results in this area, see [V1], [V2] Corollary 3.4.5, and [O], which show
that a class of structures is A;-definable in ZFC(P,,, ) with parameters from H (w,) exactly
when it is definable in Arpc(Lw,., ). Heikkiléd further extends this result by applying the
separation theorem to the Agpc(L.,., )-definition and getting a class, definable in M., .;
see [He] Theorem 9.9.

Note that the construction in Lemma 16.1 can be used almost as such to show that
every class of structures, A; -definable in some theory containing ZFC(P, ) with parameters
from H (A1), is definable in M, where A = k<. Suppose the class in question is
Ko, where a is the parameter. We essentially need an expander 7 (and the respective
co-expander) such that

- if M € Kq, then 3 wins EG(M, F), and

- if (M,...; A, E,z,...) is an F-expansion, then x collapses into the parameter a
and 9MX° is in KCq.

This is achieved by adding a constant for each element of TC(a) in the expansion language,
an by enumerating those sentences in the expander which imply that z collapses into a.

In Section 14 we showed a separation theorem (Theorem 14.4), which implies that
L 4 allows separation for itself when A 3 w is countable and admissible. What can we
say about the analogous results in this case? Tuuri has shown various separation theorems
in [T], proving for example that M+ allows separation for L+, when A = k<" and K
is regular. In [He] Theorem 8.9 Heikkil refines this result and shows that the separation
holds in admissible sets A which are A-closed (i.e. A € A and for every x € A the set
Pa(z) is in A) and locally A-enumerable (i.e. for every x € A of cardinality less than or
equal to X there exists a surjective enumeration A — z in A). We next sketch a new proof
of this fact.

16.3. Theorem. Let k be an uncountable cardinal, A\ = k<", and suppose A is a
k-closed, locally \-enumerable admissible set. Let L be absolute relative to a theory
containing ZFC(P,,). Then M+, N A allows separation for L+ N A.

Proof. Let 7, p, p’ be pairwise disjoint vocabularies, and suppose ¢ € L(7 U p) and
¢ € L(7 U p') such that ¢ A ¢’ has no model. Suppose, moreover, that the vocabularies
and the sentences are elements of a k-closed, locally A-enumerable admissible set A, and
that they are of hereditarily cardinality less than or equal to A. Let Z = TC(r, p, ¢, ¢, ¢').
Since |Z| < A and A<" = A, the set A contains functions h: A — Z and 7,: A — A<,

First construct A-expanders F and F' such that for every structure 9t € Str(7)

(M, R) = ¢ forsome R~ = 3 wins EG(, F), and
(M, R) |= ¢/ for some R =V wins EG*(9, 7).

Moreover, construct the expanders in such a way that, if (9%, zo, . . . ; ) is an F-expansion,
(MX,R) = ¢ for some R, where X = {zo,...}, and similarly for 7'. There is
nothing difficult in this; the expanders of Lemma 16.1 serve their purpose well after some
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modifications: we use the function & to enumerate those sentences which imply that the
constant p collapses into ¢ (or ¢). Since the construction of the expanders is p.r. relative
to h and 7, the expanders are in the admissible set A. Moreover, they are disjoint, and
thus, by Lemma 12.5, the required sentence 1 in M+ exists and is an element of A. O

16.4. Corollary ([T],[Hel). Let k > w, A = k<%, and suppose A is a k-closed,
locally \-enumerable admissible set. Then M+, N A allows separation for L+, NA. O

We could now question whether the translation 16.2 is the best possible: for example,
is there a strict subclass of M3, which serves as a destination of the translation? Note
first that it is consistent to assume k<% = k (i.e. A = k). Next we show that — under this

assumption — a large part of M9 is already covered.

16.5. Lemma. Suppose k<" = k. Logic L is absolute relative to T O ZFC(P,.) if
and only if there exists K C M3%_ such that K is £,-definable in T, T + K C M%, and
L=M*TK.

Proof. “<=" We need to show that the semantics of M3 [ K is absolute relative to
T. But since every ¢ € K is a determined M, .-sentence in every model of T', Lemma
8.3 implies the absoluteness of L.
“=" Let £ be absolute relative 7. Let t: L — M3 be the translation given by Theorem
16.2. Since t is p.r. relative to ., it is defined by a X;-formula P such that for every ¢
and v

Ho) =¢ < P(mx,0,¢).
Let
Y € K <= 3Irdg(p € L ATk — k<" is bijective A P(7, ¢,v)).
O

We have already seen in Section 8 that M3 is not absolute relative to ZFC(P,),
since its syntax is not upwards persistent. The reason is trivial: the predicate “T is a
k-leaftree” is not absolute relative to ZFC(P, ). Now we can show a stronger result: by a
construction similar to 15.1 we see that there exists no maximal logic absolute relative to
atheory T' O ZFC(P,;). Thus Translation theorem 16.2 implies:

16.6. Corollary. Suppose k = k<%. There exists no logic, absolute relative to an
extension of ZFC(P,.), with the same expressive power as M3 . O
The following questions are still left open.

16.7. Open Questions. (1) If ¢ € M3t | is there a Z;(P,)-definable subclass K
such that ¢ € K?
(2) Since Lo, is absolute relative to ZFC(P, ), we know: if k = k<%,

A=B(ME) = A =B(L) for every L, absolute relative to ZFC(P,)
= A= DB(Look)-
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Which of the converse implications hold?

17. Logics absolute relative to w;-closed forcing

In the previous section we saw that the logics absolute relative to ZFC(P,) and
M3 for A = k<~ are related in the same way as are the logics absolute relative to
KP + Inf and L. The results in Section 15 illustrate the special position of L.,
among logics absolute relative to ZFC as well. In this last section we investigate whether
the M-languages have analogous properties in relation to those logics which are absolute
relative to k-closed forcing. We shall see that the analogy partly holds, partly fails.

17.1. Lemma (Shelah). Let k be a regular cardinal. Player 3 wins EF, (2, B) if
and only if there is a k-closed notion of forcing which makes 2 and B isomorphic.

Proof.”=>" Let S be a winning strategy of 3 in EF.(2,). Each non-maximal
position u € S is a sequence (u;);<¢ Where { < k. Moreover, if we denote

a; = U341 and bi = U3;42 if U3i+1 isin 2 and U342 isin %, and
a; = us;42 and b; = uz;4 otherwise,

the partial isomorphism p(u) : a; — b; is of cardinality < k. Let
P = {p(u) : u € S is not maximal }.

Now P forces U = B, and P is x-closed, since & is regular.

”<=" Since P forces the models to be isomorphic, there exists a P-name f and a condition
po € P which forces f to be an isomorphism from 2 to 8. Player 3 wins EF, (2, B) by
playing as follows. Suppose we have played £ turns, i.e. elements a; € A and b; € B for
¢ < £ have been so picked that a; +— b; is a partial isomorphism. Suppose, moreover, that
pe forces f(a;) = b; for every i < £. Let V move, say, ag € A. Let 3 choose b € B
and a condition pg1; < pe such that pe ) forces f(ag) = be. Since pey forces f to be
an isomorphism, a; — b; (i < £) is a partial isomorphism. Finally, if £ is a limit and, for
each i < &, p; forces f(a;) = b; (j < i), let pe be alowerbound for {p; : i <&}, O

17.2. Proposition ([Kt]). A =B (V) <= 3 wins EF (%, B). 0

17.3. Proposition ([Hy]). There exists an approximation mapping from V., to
Moom a

17.4. Corollary. Let k be regular. The following claims are equivalent:
(i) A=B(Msrk).
(ii) 3 wins EF. (%, B).
(iii) There is a k-closed forcing P which makes 2 and B isomorphic.

Proof. The equivalence (ii) <= (iii) is Lemma 17.1. Proposition 17.3 implies
A = B(Meoor) iff A = B(Voor), so the equivalence (i) <= (ii) follows from 17.2. O
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17.5. Corollary. Let x be regular, and suppose logic L is absolute relative to k-
closed forcing. Then
A=V (Mo,) = A=B (L).

O

In this respect absoluteness relative to x-closed forcing and the logic M. behave
similarly to absoluteness and the logic L., : as showne.g. in [B2], every logic £, absolute
relative to a standard set theory, has so called Karp-property

A= B (Loow) = A=B (L)

Proposition 17.3 is analogous to the existence of an approximation from Veow 10 Loow
(Proposition 15.4). Thus it is natural to ask: do we have an approximation mapping
analogous to Burgess’s approximation 15.5; i.e. if £ is absolute relative to k-closed
forcing, is there an approximation mapping from £ to Mu..? Next we show that the
analogy fails when £ = wy, the main reason being that M, , unlike L., does not have
Scott sentences, i.e. there are structures 2 such that no sentence ¢ of M, satisfies

BEo = A= B(Meow,)

for every structure ‘8.

Given a tree T, let R(T') be the tree of finite sequences (so, . . ., $») of elements of
T ordered by the relation

(50y+ -3 8m) < (to,. .. tm) <= M <NAVI<m(si =1)ASm ST tm.

For s = (s;)i<m € R(T), denote by Is(s) = s, the last element in s and by ph(s) = m
the phase of s.

Let Tp be the many-rooted tree of sequences t: a« — wy, where 0 < a < wj, ordered
by end extension.

17.6. Lemma. For every w;-tree T # ) there is a many-rooted w,-tree Ty such that
3 wins EFp(R(Tp), R(T1)) and R(To) # R(Th)(Mocw, )-
Proof. ([HT]) We may assume T’ is a leaftree. Let

T2=( ©® (a+1))T and T =T, ® Tp.

a<w]

The tree 7> has a single root, while the other trees To, T, R(Tp), and R(T}) have R, roots.
All limits in every tree are unique, and the trees 77 and 73 are leaftrees.

Claim A: R(Tp) 2 R(T))(Moow,)-

The tree R(Tp) clearly has branches of length wy, since the tree Ty has. However,
since T} has no branches of length w; and w; is regular, R(Ty) is aw;-tree. Thus there is
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no w;-closed forcing which forces the models isomorphic (see Lemma 8.1), and the claim
follows from Corollary 17.4.

Denote by EF* an EF-game between trees where V is not allowed to choose a node
if its all predecessors have not yet been chosen.

Claim B: If 3 wins EF7, (R(Ty), R(T1)), then 3 wins EFr (R(To), R(T1)).

Player 3 wins the game EFr(R(T), R(T1)) by playing EFy, (R(Ty), R(T1)) in the
background as follows. Suppose we have already played ¢ moves, and suppose V picks
t; € T and, say, a; € R(Tp) (the other case being similar). Let «; be the height of a;
in R(Tp), and suppose (a?) B<a, is the path in R(Tp) for which a;* = a;. The nodes of
T, are (essentially) tuples (g, (3, a), s), where 8 < o, s € T', and g: pred(s) — k. Let
gi:tj — aj for j < i,and let tf = (i, (B, as),t;) for each 8 < «;. Player 3 plays a; + 1
moves in the background game EFF, (R(Ty), R(T1))): she lets V move tiﬁ € T, and af
for B < oy, and gets the elements b° € R(T}) (8 < ay) in return. Let her finally move
b; = b in EFr(R(Tp), R(T1)).

If 3 wins the resulting play of EFy, (R(To), R(T1))), the mapping a} + b is a
partial isomorphism. Thus its restriction a; +— b; is a partial isomorphism, and 3 wins the
corresponding play of EFr(R(Ty), R(T1)).

Claim C: 3 wins EFy, (R(To), R(Ty)).

Let fo: T) = T ®To — T be the canonical projection, and f = fyols: R(T}) — Tx.
On each turn 7 of the EF*-game V picks an element ¢; of 713, and the players pick elements
a; € R(Tp) and b; € R(T;). Since V is allowed to pick an element only after all its
predecessors have already been picked, 3 wins a play, if for each ¢ one of the following
conditions holds:

- Both a; and b; are roots.

- There exists j < ¢ such that a; = a; and b; = b;.

- Neither a; nor b; has been chosen before the turn ¢, and there exists 7 < ¢ such that
a; € succ(a;) and b; € succ(b;).
There exists ¢; (j < w) such that a; is the limit of a;; (j < w) and b; is the limit of
bi, (j <w).
Player 3 wins the game by always so picking her element that

(*)  ph(a;) < ph(b;) < ph(a;) + 1, and ph(b;) = ph(a;) +1 = f(b;) <.

We need to show that 3 can follow this strategy.

Suppose V chooses t, € T» and ax € R(Tp). If ar = a; for some ¢ < k, let 3 choose
br, = b;. Thus we may assume ay # a; (i < k) and need to find an element b, € R(T})
such that both the winning conditions and (x) are satisfied. There are several cases:

1° ay is aroot of R(Ty). The tree T} has X, roots: the nodes (¢, s) where ¢ is the root
of T and s: {0} — wj is a root of Tp. Since only countably many elements have
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been chosen, 3 is able to choose a root by, of R(7}) such that
Vi < k(b; #br), f(bx)<tgistherootof T, and ph(ax) = ph(by)=0.

2° ay € succ(a;).

(a) ph(ar) = ph(a;) and ph(b;) = ph(a;) + 1. Now f(b;) < t; < ty, ie.
Is(b;) = (t,s), where t < t; and s € Tp. The node ¢ has a successor t’ < g,
and the node s has ®; successors s”(a) (o < wy). Thus b; has X; successors
b such that

ph(b) = ph(b;) and f(b) =1t < ty.
Let by be one of those which have not yet been chosen.

(b) Otherwise. Every element b;" ((t, 5)), where ¢ is the root of T and s is a root
of Ty, is in succ(b;). Let by be one of those which have not yet been chosen.
Now ph(bx) = ph(b;) + 1 and f(bi) = t < t, so in any case (x) is satisfied.

3° ay is alimitnode in R(Tp). Let X = {i <k : a; < ax },

p=sup{ph(a;) : 1€ X}, and ¢ =sup{ph(b;):ie X}

Since all the predecessors of a; have been chosen and the phase of the nodes of
R(Tp) does not change on limits, ph(ax) = p. Now (x) impliesp < ¢ < p+ 1. Let

Y ={i<k : ph(a;) =p, ph(bi) = ¢, a; < ax }.

The set { f(b;) : @ € Y } is a chain in 7,. Since all the branches of T, are of
successor length, there is a unique

(s, t) =sup{ls(b;) : i €Y},

and thus the chain {b; : i < k A a; < aj } has a unique supremum by, for which
ph(br) = ¢. This by has not yet been chosen: if b; = by for some j < k, by
uniqueness of the limits of R(7Tp) it would be ax < aj, which contradicts the
requirement that a V is not allowed to pick elements before all its predecessors
have been picked. Finally, if ¢ = p + 1, f(b;) < t; < tx wheni € Y. Thus
flbe) =t < tg.

Assume then that V picks by € R(T3). If by = b; for some ¢ < k, we again let 3
choose ar = a;. Suppose by # b; (i < k) and consider the following cases:
1° by is a root. Since the tree R(7}) has R; roots, 3 is able to choose a root a; which
has not yet been chosen. Now ph(bx) = ph(ai) = 0.
2° by € succ(b;).

(@) ph(a;) < ph(b;) < ph(bk). Now f(by) is the root of T below i, and since
a; has R successors of phase ph(a;) + 1, 3 is able to choose ax € succ(a;)

having the same phase as b;.
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(b) Otherwise 3 is able to choose aj, such that ph(ax) = ph(bg).
3° by isalimit node. Let X = {¢ < k : b; < b, }, and denote
q = ph(bx) = sup{ph(b;) : i€ X} and p=sup{ph(a;):i€ X}.

As in the previous case, p < g < p+ 1. Let 3 choose ar, = sup{a; : i € X }oIf
q=p+1, f(b;) < t; <t wheneveri < k, b; < b, ph(b;) = ¢, and ph(a;) = p.
Thus f(bk) < tg.

O

17.7. Lemma. For a regular cardinal k, the predicate A = B (M) is absolute
relative to k-closed forcing.

Proof. By Lemma 17.4
A =B (Mwx) < I wins EF, (2, B).

The game EF, (2, B) is x-closed, and if G = EF,(%,B), a k-closed forcing forces
G. = EF.(2,B). Thus by Lemma 4.5 the equivalence is absolute relative to x-closed
forcing. a

17.8. Theorem. There exists a logic L, absolute relative to w;-closed forcing, but
having no conjunctive nor disjunctive approximation to M, .

Proof. Take a logic £ with a sentence ¢ such that
A= ¢ = A= R(TH) (Moow,),

and close £ under negation. The structure R(Tp) is absolute relative to w;-closed forcing,
since such a forcing preserves countable sequences. By Lemma 17.7 the logic £ is
absolute relative to w;-closed forcing.

Claim A: There is no class X C M, such that

AL ¢ <= WeXR™AEY).

For contradiction, suppose X is such a class. Since R(Tp) | ¢, there is yp € X
such that R(Tp) = 9. By 5.1 and 17.6 there exists a tree 7} such that R(T}) = ¢ but
R(Ty) W~ ¢, which is a contradiction. Similarly we show:

Claim B: There is no class X C My, such that

Ak ¢ = Ve X (AED).
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O

One could now ask whether the above counterexample only shows that absoluteness
relative to w;-closed forcing is not the “right” degree of absoluteness for an approximation
to Moow,. However, the counterexample is stronger than it seems. Namely, the structure
R(Tp) is actually absolute relative to ZFC(P,,). Moreover, if £ is a “strong” logic
absolute relative to the “right degree”, £ should be an extension of Mo, . This in turn
implies that £ is capable of distinguishing whether a structure is equivalent with R(Th)
relative to Moo.,. The above counterexample shows, that there is no logic which can
make this distinction with a single sentence and has an approximation to Mo, -
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