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Introduction

According to a result of Eckart and Young [7] any complex matrix A can always
be factorized into the form A = UD V" with (in the case of a usual “definite” scalar
product) unitary matrices U and V and a diagonal matrix D with nonnegative entries,
known as the singular value decomposition (s.v.d.) of the matrix A. (See also Eckart —
Young [6].) This decomposition can even be found in papers of authors like I.J. Sylvester
as early as the end of the 19th century, A generalization of it to infinite-dimensional
spaces can be found for example in the book of Gohberg and Krein [8] (p. 28 for the
Schmidt expansion of compact operators and Chapter I for many important properties
of the related s-numbers).

Our aim is to present this factorization for matrices, when the usual under-
lying scalar products are replaced by indefinite ones. It is well-known that turning to
indefinite scalar products brings substantial changes to the geometry and the spectral
properties of the usual operator classes on these spaces. A significant difference
will also be encounted when presenting a singular value decomposition with respect to
indefinite scalar products. It is no longer possible to present a s.v.d. for every matrix.
The existence of this representation will be shown to depend heavily on the spectral
structure of a related matrix A['JA. Simultaneously, for example, all the singular
subspace pairs are forced to be nondegenerate with respect to the underlying scalar
products.

Some basic results on finite-dimensional linear spaces with an indefinite scalar
product that are relevant to our work are presented in Section 1.

In Section 2 a singular value decomposition (s.v.d.) is defined for spaces with
an indefinite scalar product, and a necessary and sufficient condition for the existence
of this representation is given. In Sections 3 and 4 two classes of matrices having a
singular value decomposition with respect to indefinite scalar products are constructed.
The first one is the class of sub-Pesonen matrices. The second one is based on semi-
bounded scalar products. In Section 5 a connection of our approach to the so-called gen-
eralized singular value decomposition (g.s.v.d.) is illustrated.

Section 6 is devoted to the study of the stability of indefinite singular value
decompositions of Section 2. Namely, the nonexistence of an H-s.v.d. for every matrix
leads us to ask what happens to the H-s.v.d. if the elements of the matrix are per-
turbed. In general the answer to this question is found to be negative in the sense that
the matrix under study can totally loose this decomposition property under arbitrary
small perturbations. Section 6.1 identifies the class of all matrices behaving well in this
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respect, more formally, having a stable H-s.v.d. In Section 6.2 the behaviour of the
H-singular values under analytic perturbations of the matrix elements will be considered.

In Section 7 the existence of H-s.v.d. for different kinds of plus matrices is
investigated. Special attention is paid to conditions under which a specified plus matrix
has a stable H-s.v.d. To illustrate the power of the class of sub-Pesonen matrices we
shall prove in the end of this section approximation results which show how it is pos-
sible to approximate plus matrices with (stable) sub-Pesonen matrices. Finally, in Sec-
tion 8 a connection between the singular values and the eigenvalues is generalized to
the indefinite scalar product case.

Some of the results of the work have close connections to the recent inves-
tigation of Gohberg, Lancaster and Rodman (cf. e.g. [9]) on H-self-adjoint matrices.

1. Preliminaries

In this section we recall some basic tools and terminology in indefinite scalar
product spaces needed later on. For the general treatments of indefinite scalar product
spaces the reader is referred to Bogndr [4] and Gohberg, Lancaster and Rodman [9]
and to the recent work of Azizov and Iokhvidov [2].

Denote by [.,.] an indefinite scalar product on C”, the vector space of or-
dered systems of n complex numbers. By definition, [.,.] is a Hermitean sesquilinear form
satisfying the following condition: the identity [x, y] =0 for every y € C" implies x =
0. Hence we are dealing with nondegenerate scalar product spaces, or finite-dimen-
sional Krein spaces. The only exceptions appearing in sequel are the semidefinite scalar
products (thus automatically degenerate) related here with the study of the generalized
singular value decomposition. (See also Lemma 4.1.)

For every vector x € (C",[.,.]) the inner square [x, x] of x is a real number. As usual
a vector x € (C"[...]) is called positive, negative, neutral, nonnegative or nonposi-
tive with respect to [.,.] if, respectively, [x,x] > 0, [x,x] <0, [x,x] =0, [x,x] 20
or [x, x] £0 holds.

A linear subspace M (C"|[.,.]) is said to be positive (negative) if [x,x] >0
(respectively [x, x] <0) for every x € M, x # (. We refer to positive and negative linear
subspaces with the common name of definite linear subspaces.

Similarly, the linear subspace M is called neutral, nonnegative or nonpositive
if, respectively, [x,x]=0, [x,x]20 or [x,x]<0 for every xe M These linear
subspaces are referred to by the common term of semidefinite linear subspaces. The
following lemma reflects a special nature of indefinite scalar product spaces.

1.1. Lemma. Every linear subspace containing positive and negative vectors,
contains nonzero neutral vectors, 10o.

(For this cf. e.g. Azizov — lokhvidov [2], Proposition 1.1.9.) Let [.,.] be an indefi-
nite scalar product on C". Then the orthogonal companion M of a subset & — C"
with respect to [.,.] is defined by

MY = (xe C"[x,y]=0forallye #M}.
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Clearly %™ is a linear subspace, but in general, it need not be a direct complement
to M, ie., one can have ¢™1N ar= {0). However, for any given linear subspace M
in a nondegenerate scalar product space (C",[.,.]) the identity

(1.1 dim & +dim MM =p

is satisfied.

The linear subspace M°=M N M ™ is called the isotropic part of the linear
subspace M. A vector x € M° x#0, is said to be an isotropic vector for the lin-
ear subspace M.

A linear subspace M is nondegenerate, if the condition xe M, [x,y] =0 for
every y € M implies x =0. Obviously, M is nondegenerate if and only if M is a
direct complement to M, ie., M°= M Nar=(0). It follows, that for nondegen-
erate linear subspaces M and only for them one can construct an [.,.]-orthonormal basis,
i.e. a basis x;,..., X, § = dim M, of M satisfying

+1 if i=j,
(1.2) [xi,xj] =
0 otherwise.

Furthermore, there exists a well-defined [.,.]-orthogonal projection P, onto a linear
subspace L satisfying TL=‘PL2, RP,)=L and [P, x,x] =[x, P,x] for all xe C", if
and only if £ is nondegenerate. The following lemma is obvious.

1.2. Lemma. The orthogonal direct sum of finitely many nondegenerate, posi-
tive, nonnegative, negative, nonpositive or neutral (respectively) linear subspaces is
nondegenerate, positive, nonnegative, negative, nonpositive or neutral linear subspace.

The correspondence [.,.] = (H.,.) for an nxn invertible Hermitean matrix H
is repeatedly used with a possible subscript. Here (.,.) denotes the standard inner prod-
uct of complex vectors

n
(.I, }‘) = Ig‘l xj)_)i‘s (x, x) = I!x“z-

The inertia of any Hermitean matrix K is defined by In K = (pg, gy, ng), where
Pk» dx and ny, respectively, are the numbers of the positive, negative and zero eigen-
values of K, taking multiplicities into account.

For [.,..] =(H.,.), we call the number x=min{py, g} the rank of the indefi-
niteness of the space (C",[...]).

1.3. Lemma. For a Hermitean and invertible n x n matrix H the greatest pos-
sible dimension of a positive (of a nonnegative) linear subspace Lc (C"(H.,.))
is equal to py and the greatest possible dimension of a negative (of a nonpositive)
linear subspace M c (C"(H.,.)) is equal to qy. Furthermore, for a neutral linear
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subspace Nc (C"(H.,.)) the greatest possible dimension is equal to the rank of
indefiniteness K.

A neutral linear subspace M is called maximal neutral if for any neutral lin-
ear subspace M’ DM we have M’ =M Maximal positive, maximal nonnegative,
maximal negative and maximal nonpositive linear subspaces are defined similarly.

Next we recall some definitions and results concerning linear operatrors acting
between indefinite scalar product spaces. We shall frequently identify operators with
matrices in the usual way.

Let H,, respectively st be a Hermitean invertible m x m, respectively n xn,
matrix. The H,H,-adjoint A”) of an m x n matrix A is defined by the identity

(1.3) [Ax, y], = [x, A"ly],

for all x e C" and ye C”, where [..];=(H,,.), j=1,2. This gives APl = H,IA™H,,
where A” denotes the usual con_;ugate Iranspase of A. A square matrix A is called
H,H,-self-adjoint if A = AU'). Similarly other classes of matrices (e.g. H,H,-unitary) are
dcﬁned. When H, = H, = H, term H-self-adjoint (instead of HH-self-adjoint) is used.

A linear subspace £ is called invariant under A (A e C™"), shortly A-invari-
ant, if A maps the vectors in Linto £, i.e. if A(L) < L.

The rank, the null-space and the range of A are denoted by r(A), N(A) and
R (A), respectively. For these the following connections are still valid

RAMH = A,  a@H =g @AM,

For a square matrix A the specirum of A (i.e. the set of eigenvalues of A) is
denoted by o(A). The principal subspace of A belonging to the eigenvalue A€ o(A) is
defined by

Sy(A) = :—Gz A((A - AD).

An eigenvalue A of A is called semisimple if S,(1) = A(A — A1), otherwise A
is said to be a nonsemisimple eigenvalue of A.

1.4. Lemma. Let A be an H-self-adjoint square matrix. If A is an eigenvalue of A,
then Ais also an eigenvalue of A. Moreover, if 4, i€ o(A) such that A # L1, then S,(A)
is H-orthogonal to S,(1). Especially if A€ o(A) and Im A # 0 then S,(4) is H-neutral.

A similar result, the symmetry of the spectrum o(A) relative to the real axis R
replaced by the symmetry relative to the unit circle, holds for H-unitary matrices as well.

_1.5. Lemma. Let U be an H-unitary matrix. If A is an eigenvalue of U, then A’
=1/A is also an eigenvalue of U. Moreover, if A, je o(U) such that A+ y’, then
Sy(A) is H-orthogonal to S,(1). Especially if Ae o(A) and | #1 then S,(A)is
H-neutral.
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(For the proofs of the two above lemmas cf. e.g. Bogndr [4], pp. 32-35.) If
a complex matrix A is self-adjoint with respect to some indefinite scalar product then by
Lemma 1.4 the spectrum o(A) of A lies symmetrically relative to the real axis in the
complex plane. A more detailed way of describing the structure of an H-self-adjoint ma-
trix A can be obtained through a canonical form of the pair (A, H). See e.g. Uhlig [24].

A pair (A}, H)) of matrices is said to be unitary similar to a pair (A,, H,) if
there exists a nonsingular n X n matrix T such that

-1 o~
A, =T7A,Tand H, = T'H,T.

This means that A, and A, are similar, H, and H, are congruent, and that
these transformations can be obtained by a common matrix 7.

Let now A be a square (nxn) H-self-adjoint matrix. We denote for the real
eigenvalues 4; of A the usual Jordan blocks by J(4)). Further, for nonreal eigenvalues
M, we define

_ ) 0
C) = Ju) ®J(L) = iy |
0 JGz)

if J(u,) and J(i1,) are Jordan blocks of the same size for the eigenvalues 4, and [z,

1.6. Lemma. A square n X n matrix A is H-self-adjoint if and only if the pair
(A, H) is unitary similar to a pair (J, P, ;) where

J=JA4)®..0JA)DCA,,)D..0CA,,.)

/30

is a Jordan normal form of A and

P,;=¢,P,®.®¢P,OP

BB

Here 0spsn and 0<q < (n-p)/2. Further, the vector e =(e,,....e,) consists of an
ordered set of signs +1 and —1 corresponding to the real Jordan blocks J ()‘f) of J, and
the matrices

P, = N i=1,.,p+q,
5 0
are standard involutory permutation matrices of sizes equal to those of the blocks J (Aj)
of J (for j = 1,..., p) and the blocks C(4,) of I (for k = p+1,..., p+q).
For a proof of Lemma 1.6 we refer to Gohberg—Lancaster—Rodman [9], pp. 37-43.

We shall deal especially with matrices of the form A"JA. These are automati-
cally square and H,-self-adjoint (cf. paragraph following (1.3)).
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There is a natural limitation for matrices of this kind, which was obtained by
Bogndr and Krdmli [5] in a more general context for self-adjoint operators on J-spaces
(Krein spaces) of infinite dimensions. Namely, a continuous self-adjoint operator A
on a J-space # is of the form A = CI"IC for some continuous linear operator C if and
only if for the intrinsic dimensions k™ and k&~ of a fundamental decomposition of H
and for the A-intrinsic dimensions & and k, of an A-fundamental decomposition of
H the inequalities

(@ k; < k* and (b) Kk £k~

are satisfied (cf. Bogndr — Kramli [5], Theorem 1 and Theorems 2—4).

In our case conditions (a) and (b) can be equivalently stated for Hermitean
matrices in terms of the inertia of matrices, i.e. the ordered triple of the numbers of
the positive, the negative and the zero eigenvalues, respectively, as follows: Let
(P1,9;5y) and (p,,q,.n,) denote the inertias of the Hermitean matrices H and HA, re-
spectively. A factorization A = CI'IC is possible with some matrix C if and only if we
have p, <p, and ¢, <gq;.

2. A singular value decomposition with respect to indefinite scalar products

This section gives the definition of the singular value decomposition (s.v.d.) in
the case that the underlying spaces are equipped with indefinite scalar products. The
main result states a necessary and sufficient condition for the existence of such a
s.v.d. in terms of the related matrix AI"’A and the linear subspace ® (A) determined by
A.

Let [.,.]; =(H,.,.) and [.,.],=(H,.,.) be two indefinite scalar products on C”
and C", respectively.

2.1. Definition. Any factorization for an m xn matrix A€ C™" of the form
=UDV,

where D is a real and diagonal m x n matrix with nonnegative entries and the column
VECIOTS Uyy...,,, and vy,...,v, of U € C™™ and V € C™" satisfy

[w;, uj]l =+ 51-}- and [v,vl],=% 5

respectively, is called a s.v.d. of A with respect to |[.,.]; and [...],, or, in short, an
H\Hy-s5.v.d. of the matrix A.

The diagonal elements d; of the matrix D are referred to as the singular val-
ues of A with respect to [.,.]; and [.,.],, the corresponding column vectors u; in U
(respectively v; in V) are the left (respectively right) singular vectors of A with respect
to [.,.]; and [.,.],. Using matrix notations we have
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(2.1) U'AV=D,U'H,U=S, and V'H,V =5,

where §; is a diagonal square matrix with diagonal entries +1, these appearing accord-
ing to the inertia of the matrix H;, i =1, 2. Note that the orthogonality conditions in
Definition 2.1 guarantee the nonsingularity of U and V. Thus, we are looking for a
simple canonical form for three matrices simultaneously by using two transformations.

2.2. Remark. It is not possible to generalize the factorization of Definition 2.1
by allowing the diagonal entries d, in D to be any complex numbers. This is seen by
multiplying in such a factorization the possibly complex matrix D (and then also e.g. U)
by another diagonal complex matrix having all the diagonal entries of unit moduli.

A complex square matrix A will be called r-diagonable if it is similar to a real
diagonal matrix, i.e., if all the eigenvalues of A are real (6{A) c R) and semisimple
(Sy(A4) =N(A—AD), A€ o(A)). Now, if A is also H-self-adjoint it follows from
Lemmas 1.6 and 1.4 that all the eigenspaces of A are nondegenerate (cf. (1.2)) and that
the eigenspaces corresponding to the different eigenvalues of A are H-orthogonal to each
other. The result of the next lemma is well-known. We shall later prove a more general
result as Lemma 6.13.

2.3. Lemma. The range R (A) of A is H,-nondegenerate if and only if A (A4)
= N(A) or equivalently r(A"H,A) = r(A).

2.4. Theorem. An m X n matrix A (m 2 n) has a s.v.d. with respect to [.,.]; and
[.,.],, if and only if the matrix AUIA is r-diagonable and R(A) is a nondegenerate
linear subspace of (C"[...],).

Proof. Suppose that A satisfies the conditions of the theorem and write, by
the observations just made above, AlA =V AV with A = diag(4,,...,4,), 4, real, and
V'H,V =S, where S, = diag(s{?,..., s#), s® = +1 or 1.

Choose r columns of V (with r=rank A) corresponding to A;#0, say v ,...,v,,
such that the vectors

2.2) U, =Av, fori=1l,.r

become linearly independent. This is possible by the nondegeneracy of R (A). For i, j=
1,...,; we have

u'Hu, =vAHAv,
B ]
v HATAV;
ljvi Hy;
{i/‘Lj ifi=j
0 ifi#j

I

Define u;, = u A2 fori = 1,...,r. By the nondegeneracy of R (4) and hence of R (4)1*),

extend with u,,,...,u,, the set {u,,...,u} to an H,-orthonormal basis of C” (see (1.1)
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and (1.2)). By relation (2.2) the identity
(2:3) Av;=ulAf'? =T

holds. Next, note that by Lemma 2.3 AMlAx =0 implies Ax =0, since ®(A) is non-
degenerate, so that the identity (2.3) holds in fact for every index i = 1,...,n. Using matri-
ces this gives A=UD V™, where D is mx n and contains D, =diag(!)~||m,---, 14]12)
in the upper part and zeros elsewhere.

Conversely, if A=UD V! is a sv.d. of A with respect to [...]; and. [.,.]5,
then

vl v=s,D"s, D,

where S, and S, are as in (2.1). Thus, the matrix AMA is r- diagonable. The represen-
tation A UD V‘1 readily shows, that ®(A) has an H,-orthonormal basis and hence
is nondegenerate. This completes the proof.

There are many direct consequences of Theorem 2.4, analogous to the ordinary
singular value decomposition, holding for the /,H,-s.v.d. of Definition 2.1. For example,
the rank of A, r(A), equals the number of the nonzero singular values in any s.v.d. of
the matrix A.

The next example however shows, that in general not all matrices admit an
H\ H,-s.vd., if the underlying scalar products are indefinite.

2.5. Example, Let A =J(a) be a Jordan block with eigenvalue ae C. Define
H,=H, =P, where P is a permutation matrix of the same size as A, as described in
Lemrna 1.6. Now one has A["A = P/"PJ=17J and thus

710...0|[a10...0] [lo# 2Rec 10 ... 0
alo . al0 . lof? 2Recx 10 .

AllA= iy = = Ib
- ' ZReg

RI—S
R—O

| 0 L 0 | 0

This matrix is not r-diagonable, unless it is a scalar or of the order 2 x 2 with iae R.

The matrix A["JA can be r-diagonable, i.e. o(A"A) € Rand 5+, (1) = AL(AA - A1)
for all ;e o(Al")4), but A need not have an H,H,-s.v.d.

2.6. Example. Let A be a matrix, the columns of which span a neutral subspace
of (C™[.,.]). Then A"JA = 0 and, thus, it is trivially r-diagonable. However, the
column space R.(A) of A is degenerate as a neutral subspace. So A does not have a s.v.d.
with respect to [.,.], [.,.]; for any [.,.],.

Obviously, all the linear subspaces spanned by the left (respectively right)
singular vectors corresponding to a fixed singular value of A, called singular (vector)
subspaces later on, are nondegenerate subspaces of (C™,[.,.],) (respectively of (C",[.,.],))
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(cf. (1.2)). The following proposition is also noted and easily established.

2.7. Proposition. The singular values and the related singular subspaces of A
with respect 1o [.,.], and [.,.], are uniquely determined by A, [....], and [...],.

From Theorem 2.4 we get further

2.8. Corollary. If there exists a s.v.d. with respect to [.,.); and [.,.], for A,
then the same is true for A"). Especially, in this case both of the matrices A"A and
AAM gre r-diagonable and the subspaces R (A), N(A), ’J{(A[*') and N(A[‘]) are simul-
taneously nondegenerate.

Proof. The first assertion follows by noting that, if A=UD V™' then we have
A=V, DU, where U,=US, and V,=VS, and §,, S, are as in (2.1). The latter
part of the corollary is then a direct consequence of these representations.

2.9. Corollary. If the scalar product [...], is definite, then every matrix A € C™,
which satisfies one of the conditions

(1) AAY isr-diagonable,

(2)  R(A) isnondegenerate,

(3)  AN(A"Y is nondegenerate
with respect to the other scalar product [...],, has a s.v.d. with respect 1o these scalar
products. If on the other hand [.,.], is the definite scalar product the conditions should
be correspondingly modified.

Proof. Accordingly, suppose that [.,.], is definite. Then automatically R (A"
and A((A) are nondegenerate as definite linear subspaces. Furthermore, A''IA is r-diag-
onable as an H,-self-adjoint matrix, when H, is positive or negative definite (cf. e.g.
Lemma 6.8 in Section 6).

Now, any of the conditions (1)—(3) implies the existence of s.v.d. for A or
A"l by Theorem 2.4 and so for A by Corollary 2.8.

2.10. Corollary. If both of the scalar products |.,.); and |...], are definite, then
every marrix in C™" has a singular value decomposition with respect to [...}, and [.,.],.

2.11. Remark. As can be seen from the proof of Corollary 2.8 (see also the
proof of Theorem 2.4) if A has a s.v.d. with respect to [.,.]; and [...], the squares of
the singular values d; of A, equivalently of A", satisfy d*=|4), where A e o(Al"A),
equivalently 4, € o{A A")). Furthermore, for the sign of 4,#0, 4, € O'(A["]A) <R, (or
of ,#0, A, € o(AA")cR) we have the identity sgn A, = [u, w],[v, v)),, where
(respectively v,) is the left (respectively the right) singular vector of A corresponding to
the singular value d, d*=|4), of A. The singular vectors u,.....«, and Vi,..., v, are
the eigenvectors of A A['f and A"IA, respectively.

2.12. Remark. In the statistical literature factorizations called weighted singular
value decompositions (cf. e.g. Rao — Mitra [23], p. 7) are not equivalent to those of Corol-
lary 2.10. In fact, they do not share in any direct way the common properties of the
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canonical singular value decomposition, which in turn are readily available for the defi-
nite singular value decompositions of Corollary 2.10, since these are directly based on
the scalar products of the underlying spaces. Many properties, analogous to those known
for the canonical s.v.d., the canonical singular values and the related singular vectors,
for any other definite s.v.d. of matrices, for their singular values and vectors can still
be derived. The author has presented these results in the unpublished thesis in his Statis-
tics studies “Properties and statistical applications of a general singular value decompo-
sition of matrices” (in Finnish).

3. A class of matrices admitting an H-singular value decomposition

For simplicity let [.,.] = (H.,.) define an indefinite scalar product on C". Our
aim is to introduce a class of such square matrices for which a singular value decompo-
sition with respect to [...] always exists.

One defines a matrix B to be a Pesonen matrix, if it is H-self-adjoint and the
relations

[x,x]=0 and [Bx,x]=0

do not hold simultaneously for any x # 0, x € C". Pesonen matrices were first investi-
gated by Pesonen [22]. (See also Kiihne [18], Bogndr [4].)

A matrix A e C™ will be called a sub-Pesonen matrix, if ®(A) is nondegen-
erate, and the matrix B = A"A is a Pesonen matrix. Define

oy=[(Ae C™™ A or Al'lig sub-Pesonen .
The scalar

C(A, B) = inf [(xX"Ax)* + (x"Bx)?]
Jlxll=1
is sometimes called the Crawford number of the symmetric pencil A — AB. So especially,
if C(H,HB)>0forB=A"Aand R (4) is nondegenerate then we have A € @,

3.1. Lemma. Every A-invariant subspace X of a Pesonen matrix A is non-
degenerate,

Proof. Denote by %°=% N %! the isotropic part of the linear subspace
X. For xe X° one has [x,x] =0 and [Ax, x] =0, since X is A-invariant. This im-
plies x =0. Thus, X°= {0} and X is nondegenerate.

3.2. Proposition. If Ae g, then A has a singular value decomposition with
respect to (H.,.).

Proof. By Theorem 2.4 and Corollary 2.8 it is enough to verify that the eigen-
values of A"A are real and semisimple if A, for example, is sub-Pesonen.

Since principal subspaces of A" are invariant and those of them correspond-
ing to a nonreal eigenvalue of Al'A are neutral (cf. Lemma 1.4), the spectrum oAl"1A)
of A"1A must be real by Lemma 3.1.
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Suppose then that A € G(A[']A) is real but nonsemisimple. Then, for some vector
x # 0 and some integer r 2 1 we have

x,=@A"4-A0x#0 and AMA-AD*x=0.
This implies for x,
[x,, x;,] = (A4 - AD%x, x] = 0.

Thus, x, is a nonzero neutral eigenvector of A["'A. This contradicts Lemma 3.1. Hence
A e o(A"A) must be semisimple. The claim is proved.

It should be noted that the nondegenerateness condition included in the definition
of g2, is essential for Proposition 3.2 in the sense that AI")A can be a Pesonen matrix
even in the case of a matrix A with a degenerate ® (A) (and thus A without any H-s.v.d.).

From the proof of Proposition 3.2 one can see that the stronger claim of A
itself to be a Pesonen matrix always guarantees the existence of an H-s.v.d. for A. How-
ever, all Pesonen matrices are not contained into the class £, introduced above.

4. Another class of matrices with an H-singular value decomposition

Another class of matrices in C™ having a s.v.d. with respect to two indefinite
scalar products, one of which is supposed to be “properly” indefinite (i.e. with rank of
indefiniteness x > 0), will be given.

Let [.,.] and [.,.]" be two scalar products on C". Assume that [.,.] is properly
indefinite. Then the following fundamental lemma holds for the semiboundedness of
the scalar product [.,.]" with respect to [.,.].

4.1. Lemma. If [x, x] =0 implies [x, x] = 0, then there exists a real scalar yte R
such that

[x,x]" 2 ulx, x]

holds for every x € C". The scalar L is given by

u= inf [y
[y, yl=1

(For this compare Azizov = Iokhvidov [2], Corollary 1.1.36, Bogndr [4], Theorem
11.6.2 or Iokhvidov — Krein — Langer [12], Lemma I1.6.1.)

Denote by A% (respectively by (%) the set of all neutral vectors of (C"[.,.],)
(respectively of (C™,[.,.];). Let T € C™" be such that

4.1) Tx e N° forevery xe NS,

that is [x, x], = 0 implies [Tx, Tx], = 0.
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4.2. Proposition. Suppose [...], is properly indefinite. If T satisfies (4.1) and
R(T)z N, then T has a s.v.d. with respect to [.,.], and [.,.],.

Proof. Applying Lemma 4.1 to scalar products [x,y], and [x, yl,"=[Tx, Ty],
and to [x, y], and — [x, y]," yields

b xl, 2 @ [xxl, and —[x,x]," 2 4 [x, x],
with some 1, " € R and for every x € C". Thus,

02 (' + ), xl,y

holds for all x. The indefiniteness of [.,.], implies i + p” = 0. Hence we have

[x,x1," = (' [x, x],

for every x and, further, by the polarization formula (cf. e.g. Bogndr [4], p. 4), one
has in fact

(42) [sz Ty}l = ‘U., [I! y]z

for every x,y € C". Assumption ®(T) @ A%, implies u'# 0. Thus, the identity (4.2)
shows that T satisfies the conditions of Theorem 2.4, i.e., T has a singular value de-
composition with respect to [.,.], and [.,.],.

The s.v.d. of T in Proposition 4.2 can be explicitly calculated. For example,
all the nonzero H,H,-singular values of T are equal.

5. Connection with generalized singular value decomposition

Next we briefly consider the so-called generalized singular value decomposi-
tion (g.s.v.d.). This canonical form of a matrix pair (A, B) is due to Van Loan (cf. Van
Loan [25]). The connection of the H,H,-s.v.d. in Theorem 2.4 to g.s.v.d. is illustrated.
In this section degenerate scalar product spaces will also be accepted as indicated later
on. We state below without proof the g.s.v.d.-theorem (cf. e.g. Golub — Van Loan [11],
Theorem 8.6.4).

5.1. Theorem. Let Ae C™" and Be CP". If m=n then there exist unitary
matrices U € C™™ and V € CP® and an invertible matrix X € C™" such that

U*AX=DA =diag(a,,a,,.-.,8,), a. =20,

and
VBX=Dy= diag(b;,by,....,), g =min{p,n},

where 6,26,2 ... 6,>6,,=..=6b,=0,r =rank B.
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We note that here the condition m2n is essential in the sense that in the
opposite case m<n simple examples can be derived such that the factorization of
Theorem 5.1 is not available (cf. Van Loan [25] or Paige — Saunders [21].) The relations
in Theorem 5.1 can be expressed analogously in the form

U'AY =D = diag(d,,....d,), d;20 and
B:1) I 0

V'BY = [0 0], r =rank B,
where Y=X1Y,;7', D=D,Y;™ and Yy=D, @I, , Dy, being the rxr left-hand
upper corner of Dj.

However, identities in (5.1) can be interpreted as a “singular value decompo-
sition” for A with respectto H, =/, and H, = B’B satisfying
I 0

= -1 G r
(5.2) A=UDY™, Y'HY [0 il

Conversely, suppose that for a given matrix A there exists a s.v.d. of the form
(5.3) A=UDY?, YHY=D,

where D, =diag(jy,...,j,) with j;=1 or =0. In fact, this can always be achieved
with the aid of Corollary 2.10, for example, by occasionally extending H,=B B to a
positive definite matrix in a suitable way.

Using the relations in (5.3) one can easily prove the g.s.v.d.-theorem, stated
above.

If m=n then (and only then), by permuting the columns of Y and the first n
columns of U, (5.3) can be expressed in the form (5.2). Let us define V =[BY; V,],
where Y, contains the first r columns of ¥ and V, is any p X (p—r) submatrix with or-
thonormal columns and in addition satisfies B'V2 =0. Then V'V = Ip, and (5.2) yields

4 0
UAY = D=D,, VBY = [0* 0] =Dy,
i.e., a g.s.v.d. of the pair (4, B).

Note that, contrary to g.s.v.d., there are no restrictions for the numbers m, n

or p in the s.v.d. of (5.3).

5.2. Remark. Van Loan introduced in his doctoral thesis (1973) the numbers
a/b, 6;#0, i=1,.,r, and these are usually called the generalized singular values of
the pair (A, B) (cf. Golub — Van Loan [11], p. 319). As seen above, these numbers are
just the singular values of A with respect to /,, and BB. Thus, the previous discussion
gives an equivalent description of g.s.v.d. as a s.v.d. with respect to one semidefinite
(degenerate) scalar product. (For an efficient algorithm and applications of g.s.v.d. to
constrained least squares, for example, the reader is referred to the book of Golub and
Van Loan [11].)
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6. Perturbations of singular value decompositions in a space with an indefinite metric

In this section we take [.,.] = (H.,.) and study the perturbations of square matri-
ces. In particular, the effect of perturbations to the stability of singular value decom-
position in an indefinite scalar product space is considered. Some of the results in this
section have connections with the stability results known for H-self-adjoint matrices (cf.
e.g. Gohberg — Lancaster — Rodman [9]).

6.1. Stability of the H-s.v.d. under general perturbations

An H-s.v.d. is called stable if under small perturbations of the elements of a
matrix A having a singular value decomposition with respect to [.,.] = (H.,.) the per-
turbed matrix C also has this representation with respect to [.,.]. More formally, this
situation is expressed by saying that A has an H-stable H-s.v.d. If also H is allowed to
vary and in the perturbed pair (C, K) the matrix C has a K-s.v.d. for every pair (C, K), K
Hermitean and nonsingular, sufficiently close to the pair (4, /), the matrix A is simply
said to have a stable H-s.v.d.

Note that, if the scalar product [.,.] under consideration is definite, the per-
turbation problem just posed is of no interest, since in that case every matrix trivially
has an H-stable H-s.v.d. and also a stable H-s.v.d. (cf. Corollary 2.10).

We shall show that not all matrices having a singular value decomposition with
respect to [.,.] have a stable s.v.d. in the sense indicated above.

The aim of this section is to derive the class of all matrices having a stable
(respectively H-stable) H-s.v.d. The answer to this question is roughly found to be the
following one: a matrix A € C™" has a stable (H-stable) H-s.v.d. exactly if A or its
H-adjoint A"} as a linear mapping locally looks like a linear transformation defined on
an ordinary inner product space, i.e., on a vector space equipped with a definite scalar
product. This localization can be achieved with the aid of spectral subspaces.

In particular, we shall confine our attention to the behaviour of H-singular
values and the corresponding singular subspaces under perturbations of the fixed unper-
turbed matrix A. For any set 2c C and any A € C™" define

SA(-{E) =  Span \SA(A)
AN a(A)

Let us introduce the following definition.

6.1. Definition. Ler SR be an open set of the real line R in the complex
plane C. A matrix A € C™" is said to have an H-s.v.d. with respect to 3, shortly an
G-s.v.d., if the preimage 3 in R of the set 3 under f: R — R, x = |\, contains
only semisimple eigenvalues of A™A and for the restriction A | s LYy the
image R (A l _gA[.]A(f‘-I(S}))) is a nondegenerate linear subspace with respect to (H...).

Accordingly, A is said to have an S-stable (3;-stable) H-s.v.d., if matrices C,
close enough to A, have a K-s.v.d. with respect to J, for every Hermitean and nonsin-
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gular K sufficiently close to H (respectively have an H-s.v.d. with respect to J) and
the number of the K-singular values (respectively the number of the H-singular values)
in 3, taking multiplicities into account, is constant.

The topology we shall use in the spaces of matrices is the norm topology defined
by any of the equivalent norms on C™*.

The following result is an immediate consequence of the definitions introduced
above.

6.2. Corollary. The set of all matrices having a stable (respectively an H-
stable) H-s.v.d. is open in the topological space of all n X n matrices.

Before going into some further details in the study of the perturbation prob-
lem suggested above, we shall consider the Gram operator of a subspace. Sup-
pose L is an arbitrary linear subspace of the space (C"[.,.]). Obviously, by re-
stricting the indefinite scalar product [.,.] to £x L we get a new scalar product space
z,[.,] | cx ). By Riesz’s lemma, there exists a unique linear operator G, : L— L
such that [x, y] = (G, x, ¥) holds for every x,y € L. The operator G,: L — L is called
the Gram operator of the linear subspace L.

If we denote by P, the orthogonal projection (in the usual sense) onto L., it
is obvious that we have G =P _H|,=P_HP_ |, ie, G
pression of H to the linear subspace L.

Operator G, is Hermitean. Let G, = ¥, ./,
fine =P, L, L' =P/Land £°=P?’L, where

, 1s obtained by a com-

AP; be the spectral resolution of G . De-

- + —J_p—_p+
P;= %{)P» P! = a);ﬁpj and P¢=I-P;—P}.

Here I denotes the identity operator on £. The following lemma is well-known (cf. e.g.
Azizov — Iokhvidov [2], Theorem 1.6.4) and shows how G, describes the structure of
the subspace L.

6.3. Lemma. /n the orthogonal direct sum L= L"®L®L° L' is H-positive, L is
H-negative and L° is the isotropic part of L. These subspaces are H-orthogonal as well.

Lemma 6.3 is characteristic, since it can be verified that in any decomposition of
the linear subspace L= L)[+]L [+]L, into an H-orthogonal direct sum of an H-posi-
tive £, an H-negative £ and an H-neutral linear subspace Lg, the dimensions of
these subspaces coincide with the dimensions of the subspaces L', £~ and £°, respective-
ly, appearing in Lemma 6.3. These dimensions are then given by the inertia of the cor-
responding Gram operator G,. The ordered triple In £ = (dim £*, dim L7, dim £°) is
called the inertia index of the linear subspace L. The number x, = min{dim ", dim L7}
is said to be the rank of indefiniteness of the linear subspace L.

6.4. Remark. It is easily checked that InL=InG , equals to the difference
In(A"HA) - (0,0,codim £) where A is any square matrix satisfying ® (A) = L.
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6.5. Lemma. Suppose L, M c (C",[.,.]) are linear subspaces such that £ N M= {0}
and L[L] M.Thenwe haveIn(L® M) =In L+In M andIn G 5, =In G, +InG,,.

Proof. Since L [1] M the first statement In(£ ® M) =In £+ In M follows direct-
ly from Lemma 1.2 by the condition £ N M = {0}. For the second statement In G 4,
=In G, +1In G, we use the identity In G, =1In X.

Lemma 6.5 can be extended in a straightforward manner into the direct H-or-
thogonal sum of finitely many linear subspaces.

We shall next consider the stability of nondegenerateness of the range space
R (A) of a matrix A under perturbations of A and H, respectively. Note that, if H is
nonsingular then also matrices close enough to H are nonsingular. This can be seen,
for example, by the continuity of the ordinary singular values with respect to the ma-
trix elements.

6.6. Theorem. Let the range R(A) be a nondegenerate subspace of (C",(H.,.)).
Then under sufficiently small perturbations of A and H, respectively, the range R (B) of
B, the perturbed A, remains nondegenerate with respect to (K.,.), the perturbed (H.,.),
K Hermitean and nonsingular, if and only if the orthogonal companion R (A of
R.(A) is a definite linear subspace with respect to (H.,.). The same condition is neces-
sary and sufficient for R(B), B close enough to A, to be nondegenerate in the case
where [.,.] is not allowed to be perturbed at all.

Proof. If ®R(A)™! were not a definite linear subspace of (C"(H..)) then we
could find a nonzero neutral vector z,€ R(A)Y (cf. Lemma 1.1) and a nonzero
vector y, € A(A). Define

A(‘:) =A+ 6393’;,

&€ C. Then we have r(A(£)) =r(A) + 1 for any £ 0 and A(§) — A as £ — 0. Howev-
er, A(E)"HA(E) = AHA and thus, R (A(£)) is a degenerate subspace of (C”,(H.,.)) for
every £# 0. This shows, in both cases, the necessity of the condition ® (A)* to be
definite with respect to (H.,.).

Suppose conversely, that R (A)"! is a definite linear subspace with respect to
(H.,.). Let us write B=A + E. We understand E to be a perturbation of A. Denote by
P ,. the orthogonal projection (in the usual sense) onto R (A") and write

A+E=A+EP,)+E(I-P,)=A"+FE.

Then R(A"™) L R(E”™) and hence, by writing full rank decompositions (say singular
value decompositions) for A” and E’, for example, one sees that r(A” + E") = r[A”; E"].

One must show R(B)=RX[A; E'] to be nondegenerate with respect to (K.,.)
for every matrix B=A + E and K, K Hermitean and nonsingular, sufficiently close
to A and H, respectively. For this, it is enough to prove that ®(A") is nondegen-
erate and its K-orthogonal companion R (A")!) is a definite subspace with respect to
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(K...), whenever Be U, and K € U,, K Hermitean and nonsingular, for some neigh-
bourhoods U, and U, of A and H, respectively. Indeed, denote by #, the K-orthogonal
projection onto K (A”). (Such a P exists, if R(A") is K-nondegenerate). By writing
E'= PE" + (I - P E’, we find out that R(B) equals to the direct K-orthogonal sum
of R(A") and a subspace belonging to R (AN, But, if %A is definite, then
any Mc R(A)™ is definite and hence nondegenerate, too. Thus, it only remains to
refer to Lemma 1.2 to establish the nondegenerateness of the range space R (B) of B.
We are now going to prove that & (A") is nondegenerate and its K-orthogonal compan-
ion ® (A")™ is definite with respect to (K.,.).
By representation A"=A + E P, one has r(A”) £ r(A) so that

(6.1) HATKA) S r(A) <r(A) =r(A'HA),

since R (A) is nondegenerate. Let U, and U, be so small neighbourhoods of A and H,
respectively, so that the numbers of the positive and the numbers of the negative eigen-
values of the matrix K € 1, and the matrix A"KA,Be U,, are at least the same as
are the corresponding numbers for H and A"H A, respectively. Such neighbourhoods U,
and U, exist by the continuity of the eigenvalues with respect to the matrix elements.
(Wehave A’ 5 AasE —0.)

By (6.1) this implies that ®(A’) is nondegenerate with respect to (K.,.). In
fact, we have verified that In(A”K A") =In(A"HA) and In K = In H for every B e U,
and K € U, K Hermitean and nonsingular,

To prove the definiteness of ®(A")™, first note that, as ®(A") is nondegen-
erate, the identity

(6.2) In®AY+In RAY =In (R(A) D RA) N =InK

holds by Lemma 6.5. In (6.2) the first and the last terms are constant in the neighbour-
hoods U, of A and U, of H, since In(A”K A”) and dim R (A’) are constant there (cf,
Remark 6.4). Hence, the same is true for the second term on the left of (6.2). Thus,
the subspace :K(A')“’] is definite with respect to (K.,.) for every B e U, and K € Uy,
K Hermitean and nonsingular. This completes the proof of the theorem.

6.7. Corollary. If r(A) < k, where x=rank of indefiniteness of the whole space
(C"[.,.]), then the H-s.v.d. of A, if exists, is neither stable nor H-stable.

We are now going into some further details in the study of the stability of
H-s,v.d. under perturbations.

We give the next result, Lemma 6.8, in the case of an infinite-dimensional
Pontryagin space I, i.e. in a Krein space of finite rank £ of positivity. It gives bounds
for the numbers of the different kinds of eigenvalues of symmetric operators acting on
a Pontryagin space I7,. (See also the proof of Corollary 2.9.)

6.8. Lemma. For any Il-symmetric operator A on a Pontryagin space I1, the
Jfollowing statements hold:
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(a) A has at most k eigenvalues in the half-plane Im z >0 and at most k eigen-
values in the half-plane Im z < 0 (taking multiplicities into account).
(b) The number of the nonsemisimple eigenvalues of A will not exceed k.

(For this compare e.g. Bogndr [4], Theorem IX.4.6 and Theorem [X.4.8.) Obyi-
ously, in our case we take IT, = (C",(H.,.)) with k = min{p, g} denoting the index, ind H,
of the matrix H, i.e., the minimum of the numbers p of the positive and g of the nega-
tive eigenvalues of H (taking multiplicities into account). In this case we could prove
Lemma 6.8 with the aid of the canonical form of Lemma 1.6 by using Lemma 1.3.

For a fixed H-self-adjoint matrix A the sums of the multiplicities of the real
and the semisimple eigenvalues of H-self-adjoint matrices B from some neighbourhood
U, of A can vary quite freely, in the limits of Lemma 6.8. However, for fixed # and A
(A an H-self-adjoint matrix) the difference of the sums of the multiplicities of the posi-
tive and the negative eigenvalues of K-self-adjoint matrices B, where K (Hermitean and
non-singular) is taken from some neighbourhood U, of H and B from some neighbour-
hood U, of A, obeys more “regular” rules.

Recall that the signature, sig H, of a Hermitean matrix H denotes the differ-
ence of the sums of the multiplicities of the positive and the negative eigenvalues of H.

Let Lc(C"(H.,.)) be a linear subspace. Suppose L = L[+]L7[+]L° is an H-or-
thogonal direct sum of an H-positive subspace L, an H-negative subspace £ and an
H-neutral subspace £°. (Such an H-orthogonal decompaosition of £ exists by Lemma 6.3.)

6.9. Definition. We call the difference sig L = dim L™ — dim L~ the signature of
the linear subspace L.

By the discussion following Lemma 6.3, Definition 6.9 is adequately formulated
and, clearly, if G, is the Gram operator of L then sig L = sig G, Furthermore, by
Remark 6.4 we have

(6.3) sig £ = sig(A"H A) for any matrix A € C™” such that R (4) = L.

Let 5,(4) and G,(4), respectively, be the principal subspace and the corre-
sponding Gram operator of the subspace 5,(4) belonging to the eigenvalue Aof A € C™.
We call a linear subspace M a spectral subspace of A if M can be obtained as a linear
span of a collection of the principal subspaces 5,(4) of A. Especially, for any set
2 C the Gram operator of 5,(£2) = span{5,(4)| A€ £ N o(A)} is denoted by G,(£2).

6.10. Lemma. Let A € C™" be H-self-adjoint. For any open interval (i, i) € R
such that i, i, € O(A) we have

(6.4) Sig Syl )= Sig Gy, i) = 5 [SigUH — HA) — sig(u, H ~ HA)].

Proof. By Lemma 1.4 the principal subspaces S,(4), 4, € (i, l4,), satisfy the
conditions of Lemma 6.5. Thus,
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sig G (s Jby) = sig S,(Uy, M) = D, sigS,(A).
g6,y 1y g Sallys 1y 11-6(;11#2)”0’(% a(4)
Since the right-hand side of (6.4) is clearly additive on acceptable subdivisions of the
interval (g, /), we can suppose that (4, i,) N o(A) = {4;}. We make use of the ca-
nonical form of Lemma 1.6. By (6.3) we have

(6.5) sig 5,(4,) =sig (P(A)), A€ oA),

where e P(4) refers to the block of H corresponding to the Jordan block J(4)) of A4 in
the canonical form of the pair (A, H).

Next note that, for any 2_,- e R, Zj #0, we have sig(P(Zj)J(%}) = sgn 1_,- - sig F'(Rj).
Hence, with (4;, &,) N o(A) = {4;} the last term of (6.4) becomes

sig(,H — HA) — sig(u,H — HA) = sig(i,P — PJ) — sig(ut,P — PJ)
= sig(e,P(A)J (i, — A) — sigle,PA)T (1, — A))
= 2sig(e,P(A)).

Combining this identity with (6.5) proves the lemma.

The two matrices on the right-hand side of (6.4) are Hermitean and invertible
and thus the inertias and signatures of them are not changed under small perturbations
of A and H, respectively. These observations lead us to the following lemma.

6.11. Lemma. Let A € C™" be H-self-adjoint and let ® <R be an open set of
the real line R in the complex plane C such that the boundary @ of @ relative to R
does not intersect o(A).

(i) Then for every K € Uy, K Hermitean and nonsingular, and for every K-self-
adjoint B € U,, the identity

sig Sp(P) =sig S, (D), equivalenily  sig Gz(P) = sig G, (D),

holds for sufficiently small neighbourhoods Uy, of H and U, of A, respectively.

(i) For Ke Uy (K Hermitean and nonsingular) and Be U, (B K-self-
adjoint), with U, and Uy small enough, the number p4(B) of the eigenvalues of B in
@ (taking multiplicities into account) satisfies the inequality

> i = si .
PolB) _kgm sig S, (A ; %M@g G, (A

=]

(iii) the number 1M4(B) of the nonsemisimple eigenvalues of B in @ satisfies
the inequality

N4(B) < 3(ngd) - 2 Isig (M) = 3(ngd) — 2 Isig G,
ie &N a(A) Ae ®N o(A)

where ng(A) denotes the number of all the eigenvalues (raking multiplicities into ac-
count) of the matrix A in &.
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Proof. For the first part of the lemma suppose @; are the connected compo-
nents of the open set &. Since there is only a finite number of connected components
containing eigenvalues of the matrix B, we can apply Lemma 6.10 to each @, and thus
find neighbourhoods U, of A and U, of H such that sig GB(CPJ.) = sig GA(tbj) is simulta-
neously satisfied for all @, The equality sig Sp(®P) = sig S,(P) (equivalently sig G4(P)
= sig G ,(@)) then follows from Lemma 6.5.

To prove (ii) and (iii), we first apply part (i) to small separate intervals
I,, A€ I, of every distinct A € @ N o(A) to get the identity

(6.6) 2 lSigsM = X IsigS,Al
Le @ N o(B) Ae N old)

for any acceptable K and B close enough to H and A, respectively. Then for (iii) part
(b) of Lemma 6.8 is applied to the restricted B|5 A in the space (S;(/;), (Gﬂ”;) D)
with every A € @ N o(A) again. It is then enough to takf: into account that the estima-
tion p4(B) < ng(A) holds for every B sufficiently close to A by the assumption made on
&. Similarly, part (ii) can be proved with the aid of Lemma 6.8 (a) but, in fact, it
follows directly from (6.6).

6.12. Corollary. For any open set @ C R such that d® N olA) = () the signa-
ture sig L of any spectral subspace L = S,(®), related to an arbitrary H-self-adjoint
martrix A, is invariant under small perturbations of A and H.

However, the dimension of such a spectral subspace S,(@) (equivalently the
rank of the Gram operator G,(®) of 5,(®)) need not, in general, be constant in any
neighbourhood of (A, H).

6.13. Lemma. Let A€ C™" and let X be an A"'A-invariant [..,.]1,-nondegenerate
linear subspace. Then the image A(K) € R(A) of K under A is nondegenerate with re-
spect to [.,.], if and only if the inclusion N(A"A) N K c A((A) holds.

Proof. If the relation N(AA) N & © AC(A) is not valid, there exists a vector
ye N(A{'JA) N K such that y ¢ A (A). But, then z = Ay # 0 and [z, Ax], = [A"]A_\', x|,
= () for every x€ K and z is isotropic for A(X). Thus, if A(X) is nondegenerate then
we have A(A"1A) N K< AL(A).

Suppose conversely that z#0, z=Ay, ye X, is isotropic for A(X). Since X
is Al"lA-invariant, A"Ay e X and for all xe K we have [A["Ay, x], = [Ay, Ax], = 0,
as z=Ay is isotropic for A(%X). Thus, AllAy is H,-orthogonal to %. But, X was
nondegenerate and hence AlAy = 0 showing that y € N(A[ AN K although y ¢ A\ (A).
This gives the converse statement that the inclusion A (AIMA) N & < A’(A) implies the
nondegenerateness of A(X). The lemma is proved.

Note that the Al"A-invariance and nondegenerateness of X were used only to
prove the sufficiency part of the lemma.

We are ready to give a complete characterization of the classes of matrices
having a stable or H-stable H-s.v.d., or more generally, having an J-stable or an J-
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stable H-s.v.d., respectively.

6.14. Theorem. Let A € C™". Further let 3 c R be an open set of the real line R
in the complex plane C such that A has an H-s.v.d. with respect to 3 and that the boundary
93 of 3 relative to R contains no H-singular values of A so that f (d3) N o(A"A) = 0,
The H-s.v.d. of A with respect to 3 is S-stable if and only if either the left or the right
singular subspace corresponding to each nonzero H-singular value d; of A in 3 is defi-
nite with respect to (H.,.) and both are definite for the zero H-singular value of A, if
0 e 3. This same condition is necessary and sufficient for the 3-sv.d. of A to be
3,,-stable, as well.

Proof. We first prove the sufficiency part of the theorem. Let Ke Uy, K
Hermitean and invertible, and C € U,, and let U, and Uy, be such small neighbourhoods
of A and H that the conclusions of Lemma 6.11 are valid for K, CU'IC and &, where @
= £71(9) denotes the preimage of J under f as in Definition 6.1, containing the num-
bers A, =d? and A,=—d? corresponding to the H-singular values d;e S of A. Such
an 1, and U, exist, since Cl"C is K-self-adjoint and C'IC —» AAas € - Aand K — H.

By Remark 2.11 the sign of any nonzero eigenvalue A, € o{A'4) is equal to

6.7) sgn A, = (Hu, u) (Hv,, v),

where u; and v, are the left and the right singular vectors of A corresponding to d;. Hence,
the definiteness assumptions on the H-singular values d;€ J imply that the linear
subspaces S,e1,(4), 4] = dl-z, are definite and, thus the equality

| sig Symu(4) | = dim Sym,(4)
holds for every eigenvalue 4, € oA"A) N @, (For A;=0, if 0 3, this follows from

A (AMA) = AATTA) N S0, (F1(T) € A(A); see Lemma 6.13.) Hence, parts (ii)
and (iii) of Lemma 6.11 give us the inequalities

6.8 ctlc) 2 dim S,m,(4) =

(6.8) poCI0) 2 X dim Syun (R) = k,

and

6.9) Ne(CUI0) < 3 (oA A) = X dim S0, (D)

Aedn o(AA)
= 3 (noa"'4) ~ k)

for every Ce U, and K € U, K Hermitean and invertible. But ngy(A"l4) =k, and
thus (6.9) implies 174(C"IC) = 0, i.e., all the eigenvalues of CIC in @ are semisimple.

On the other hand, the continuity of the eigenvalues A, and the assumptions
on J guarantee that there exist some neighbourhoods of A and H such that the
the number of the eigenvalues of CI'IC in @ is at most k,. So making ¥, and U,
smaller, if necessary, we can find neighbourhoods ¥ of A and ¥}, of H, respectively,
such that the equality holds in (6.8), i.e., the number of the eigenvalues of C MIC in @
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is the same forevery C € 7, and K € 1},

It remains to consider the nondegeneracy of the space ® 4(C) := R(C | ¢ - (/D))
Suppose C € ¥, and K € %, with K Hermitean and nonsingular. If 0 ¢ 3 then we have
%(C[']C) N Scirie “1(3)) = {0} and hence % +(C) is nondegenerate by Lemma 6.13. If
0e 3, then ALCIIC) N Sc(F (I = ?{(C[aC). Hence, for the proof of the statement
that ® 5(C) is K-nondegenerate for any C € ¥, and K € 1), we need, again by Lemma
6.13, only to verify A(C"IC) c A((C), i.e., that the whole range ® (C) of C is K-non-
degenerate. But this can be achieved by Theorem 6.6, as the left singular subspace,
i.e. the linear subspace A (A")) = % (A)H), was assumed to be definite. Indeed, by
making 7/, and ¥}, smaller, if necessary, we can find neighbourhoods W/, of A and W},
of H, respectively, such that for every C € W, and K € W}, K Hermitean and nonsin-
gular, ® (C) and, thus ® 4(C) also, is K-nondegenerate.

We have shown that for K € W), K Hermitean and nonsingular, and for C € W,,
C has a K-s.v.d. with respect to J and the number of the K-singular values of C in
@ is constant. In the terminology introduced above, A has an J-stable and, thus, also
an Jy-stable H-s.v.d.

To prove the converse statement, suppose first that A has an H-s.v.d. with
respect to J but that for some nonzero H-singular value d; of A contained in J nei-
ther the left nor the right singular subspace is definite. By restricting A to the linear
subspace .SA[-]A(f"(S)), we essentially can assume that A has an H-s.v.d. A=UDV ™.

It is easily seen that (after a permutation) there is a 2x2 block D;=d,I, in
D such that for the corresponding left and right singular vectors, without loosing gen-
erality, the related block in S, =U'HU is ;' =diag(+1,-1) and the block in §,=
V'HV is §,' =+ diag(+1,~1). Denote

d' * *
D) = { i l =dl,+E(ee, —ee), EeC,
-£ 4,
and let D({) = diag(d; ,..., D{($),....d, ). Then we have D(§) — D and C(§) = UDEVTI A
as £ 0. *
We have C(OMC(E) =VS,D*(ES, DE V. Here S,D(ES,D(E), similar to
C(EIC(E), is block diagonal and contains the block

d?*—|&*  2dRe &
-2dRe ¢ dP-|&?

Hence, E is a sum of the matrix i(d,-2 - ié}z)lz and of a skew-adjoint matrix. Thus,
whenever £ satisfies Re & # 0, the eigenvalues of E are not real. So the number of the
H-singular values of C in J is not constant. This shows that the H-s.v.d. of the matrix
A is not stable with respect to J, if the definiteness condition on d, e 3, d.#0, is
not satisfied.

Suppose then 0 € 3 and that the J-s.v.d. of A is J,-stable. Then in some neigh-
bourhood 1, of A the linear subspace R (C | s cl'lc(flim)) is H-nondegenerate for C € U,.
It follows from Lemma 6.13 that the whole range K (C) of every C € U, must be H-
nondegenerate, too. By Theorem 6.6 R (A)™ = AC(Al")), equivalently the left singular

E=S,D"(®S,/D(® =+




Singular value decomposition with an indefinite metric 27

subspace of A corresponding to d; =0, must be H-definite. It remains to prove that the
right singular subspace of A corresponding to d. = 0, i.e. the space AL(4) = R (AUHH, is
H-definite. If A((A) is not H-definite, then as in the proof of Theorem 6.6 we can find in
every neighbourhood of A a matrix C such that A (C) = N (CI"C) is H-degenerate. (Define
C(&) = A+ &Ey,l.,z,], where 0# z,€ N (A) is H-neutral and 0 # y, & R_(A)“-' s H-posi-
tive or H-negative.) For such a C, the number 4 =0 is not a semisimple eigenvalue of
CMC. This contradicts the J-stability of A and completes the proof of the theorem.

For sub-Pesonen matrices, introduced in Section 3, we have the following result.

6.15. Proposition. A sub-Pesonen matrix A € 2, has a stable H-s.v.d. and an
H-stable H-s.v.d. simultaneously, and these exist if and only if the subspace N (A" is
definite.

Proof. We first show that the left or the right singular subspace of Ae @,
for any nonzero H-singular value d, is definite. For this it is enough to verify that
the eigenspaces N(A[‘]A-A!-I), A€ o(A"14), of AA are definite (cf. identity
(6.7) above).

But, by Lemma 3.1 AJA cannot have any nonzero neutral eigenvectors,
which readily implies the definiteness of every eigenspace A((AIA — A1) = 5,0, (1),
A€ o(Al"14), of A"A. (If 0 e 6(A"A), the statement holds also for this eigenvalue).

Hence, A fulfills the requirements of Theorem 6.14 exactly if the linear sub-
space A (A" is definite, since A (A) = AC(A"1A).

6.2. Analytic perturbations and H-singular values

Let A() =% 5, £ A, be some analytic n X n mairix-valued function defined in some
neighbourhood of 1 = 0. Suppose that A(0) = A is the unperturbed matrix under investi-
gation. It can be asked whether under such “regular” perturbations as above, the H-singu-
lar values d(r) of A(r), if they exist, behave in some regular way, too. More precisely:
can they always be chosen to be analytic functions in ¢ ? To make use of the results
known for analytic matrix functions and especially for their eigenvalues we shall
restrict our interest to a real parameter te R. (Note that d(r)e R™ by definition.
Further, if A(z) is both Hermitean and analytic matrix function of a complex argu-
ment z then it follows from Cauchy—Riemann equations that A(z) must be constant.)

6.16. Theorem. Let A be nonsingular and let A(r), A(0)=A, be any analytic
n % n matrix-valued function on a real interval U around t =0. Suppose that A has an
H-svd. with respect to [.,.] = (H.,.). Then there exists a real interval 1V around t =10
such that A(t) has an H-s.v.d. and the H-singular values of A(t) can be taken to be
analytic functions on V if and only if for every H-singular value d, of A the left or
the right singular subspace is definite, i.e., if and only if the H-s.v.d. of A is H-stable.

Proof. First suppose that A =A(0) has an H-stable H-s.v.d. By Theorem 6.14
there exists a neighbourhood I, of =0 such that every matrix A(r), t€ U, has an
H-s.v.d. Since A is nonsingular, also A(r) is nonsingular in some neighbourhood % of
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1 =0. Define ¥= uN U,N %}, and

te V.

0 A1)
AOT o0 |

A= [

Then A(?) is analytic on ¥ and (H @ H)-self-adjoint. It can be easily verified that the
positive eigenvalues A(f) € o(A,(r)) of A,() for any r€ ¥ are equal to the H-singular
values d(r) of A(r) originating from the positive eigenvalues afl-(t)2 of A(NMA®). Note
that, by the continuity of eigenvalues and the nonsingularity of A(r) and hence of
A,(r) on ¥ the signs of the branches of the real eigenvalues A(r) € o(A,(r)) cannot
change on 7, since we have o(A,(1)) cRUIiR for every & % by the H-stability of
the H-s.v.d. of A. One must show that the branches 4, =d, with A(t) =d(t) >0 are
analytic functions on V.

From the theory of algebraic functions it is known that for any polynomial
P(z, A) = Zf:u b_,-(z))c", having as its coefficients analytic functions b; (b,(z) = 1) defined
in some neighbourhood |z—z,| < € of z, the zeros A(z) of P(z, A) can be represented
as functions of z in the form of Puiseux series, 4,(z)= X 25, aklf(zvzo)”g]". where g > |
is an integer less than or equal to the multiplicity of A(z,) as a root of P(z, A) = 0,
¢ denotes a gth root of the unit and (z—z,)'® is a fixed branch of (z—z,)"®. (For
detailed information see Baumgirtel [3], especially pp. 370-371.) In particular,
this result is applicable to the eigenvalues of an analytic matrix function C(z), as the
coefficients of det(C(z) — Al) are then analytic functions in z.

It follows that for an eigenvalue d(z) of A (1), te v, where d(1) = d(0)>0
as ¢ — 0, we can write a fractional power series expansion in 7', say

1l

(6.10) d) = dO) + I dylr")

d(0) + k; 1d(k,(lrl”g)*[cos(k(arg 1)/g) + i sin(k(arg 1)/g)],

where g is a positive integer, less than or equal to the algebraic multiplicity of d(0) as
an eigenvalue of A,(0), ie., g <dim _S‘,‘l(a‘(()))‘ Since d(r) is real on ¥, a limit argu-
ment for 1> 0, te ¥, shows that the coefficients d,, in the expansion (6.10) are real
numbers. On the other hand for 1<0, 1€ 7, the imaginary parts d(k}(lzl”g)"-sin(kﬂg)
of d{k)[r”g]k must all vanish. That is, in (6.10) d,, =0 unless k is of the form
k=pg,pe N,ie.,d()is analytic on 7.

To prove that the H-singular values d(f) — d(0) obtained from the negative
eigenvalues of A(r)[*]A(r) are analytic on 7, we make use of the matrix function

0 i A(f)
iAm"] o IF
The function A,(?) is self-adjoint with respect to H @ (—H) and the positive eigenvalues

(1) of Ay(r) are just the H-singular values dr) of A(1) obtained from the negative
eigenvalues of A(D"A(r). A similar argument as above shows that also these H-singular

A1) = [ te v
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values define analytic functions on ¥.

The converse statement is obvious. The latter part of the proof of Theorem
6.14 gives an analytic matrix function which has no H-s.v.d. for any te R\ {0}. (See
also Example 6.19 below.)

6.17. Remark. The result of Theorem 6.16 is applicable also for the case where
the matrix H has been replaced by an analytic matrix function H(r), te R, H()
Hermitean and nonsingular. The same proof will apply with some obvious changes.

6.18. Remark. We can leave out the nonsingularity assumption made on A in
Theorem 6.16, if we allow such H-singular values for which d(r) — 0 as ¢t — 0 to attain
also negative values. To verify this, we first recall that for (1) € o AMA®)), |7l
= dl-(r)z, the identity sgn y(t) = [u(t), u(®)] [v(e), v,(t)] holds, where u(r) and vi(1)
are the left and the right singular vectors of A(¢) (r€ ¥) corresponding to d(z) (cf. Re-
mark 2.11). Then by the H-stability of the H-s.v.d. of A = A(0), the linear subspaces
A (AO)TA0)) and N (A0)A)™) are definite, and furthermore, taking the invariance
of the signature stated in Corollary 6.12 into account, it is possible to find a neigh-
bourhood %" < ¥ of t=0 such that [u(1), (0], [v(r), v(r)] and, thus also sgn 140
is constant for t € 9. Moreover, this sign, sgn ¥(?), is the same for every AORVAG!
—d(t)2 having the property %() = 0 as 1 — 0. It follows that we can still use A,(z)
(if sgn %(r) >0) or A,(r) (if sgn y() <0) to prove that also the signed H- smgular
values di(f) € R of A(z), with d(t) = 0 for t — 0, define analytic functions 4; on 7",

If A does not have a stable or an H-stable H-s.v.d. a more detailed result is
valid. If the definiteness condition on the singular subspace pairs is violated the ana-
lytic nature of the H-singular values d(f) can be lost totally. In the next example an
analytic matrix function is given for which even a squared H-singular value d()* need
not be analytic on any real neighbourhood of the origin.

6.19. Example. Without loss of generality it is enough to consider the 2 x 2
case using H = diag(1,-1). Define

‘“e’=[ e et BEH

where d # 0 refers to a singular value having both singular subspaces nondefinite. Then
A(g) is analytic and A(€) — diag(d, d) as € = 0. However, for

F2d(e+EN4E  2d(E-¢)
2d(e-¢) dR2d(e+E)+4€

the eigenvalues and also the squares of H-singular values (for € 2 0) are nonanalytic
at £=0. Indeed, one has

AE)A) = {

A@©Ae) = (@* 4, +2d [“Hz 82*8]

&2 e
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This gives the eigenvalues A,=d*+4€ +2d(4€)'" which are not analytic in any
real neighbourhood of £=0.

7. The H-s.v.d. of plus matrices

Let (C",[.,.]) be a properly indefinite scalar product space (ie. x>0). We de-
note by B;, (respectively B)) the set of all nonnegative (respectively nonpositive) vectors
in (C",[.,.]). In this section we will study the H-s.v.d. of matrices in some important sub-
classes of matrices operating in (C”,[.,.]). The first step in this direction was taken up
already in Section 4.

7.1. Definition. A marrix A€ C™" is said to be H-noncontractive if [Ax, Ax]
2 [x,x] for all xe C". Ae C™" is said to be a plus matrix if AB, C B!, i.e. if A
carries nonnegative vectors onto nonnegative vectors.

Clearly, every scalar multiple of an H-noncontractive matrix is a plus matrix. More-
over, any matrix A satisfying ® (A) < B] is a plus matrix too. The following lemma
is fundamental (cf, e.g. Krein — Shmul’yan [15]) and gives a converse statement.

7.2. Lemma. Let A be a plus matrix. Then there exists a scalar 1 =0 such that
[Ax, Ax] 2 u [x, x],
holds for every x e C".

Proof. The assertion follows by applying Lemma 4.1 to scalar products [x, x]
and [Ax, Ax] to get the desired estimation with

W =p(A) = inf [Ax, Ax]>0.

[xx]=1
This proves the assertion.

By Lemma 7.2 for any plus matrix A the matrix Al"'A — W, (A) is H-nonnegative,
AA — 1 (A) 2, 0, by which we understand that A"H A — u, (A)H = 0.

If for a plus matrix A the scalar u,(A) >0 then A is called a strict plus ma-
trix. In case (. (A)=0 A is said to be a nonstrict plus matrix. Thus, a strict plus
matrix is collinear with an H-noncontractive matrix and for a nonstrict plus matrix A
we have R (A) C B;,.

Before we turn to analyse the H-s.v.d. of plus matrices we prove the following
lemma for H-nonnegative matrices A 2 0.

7.3. Lemma. For A 2,0 all the nonzero eigenvalues A, of A are real and semi-
simple. The Jordan blocks corresponding to the eigenvalue A, = 0 have a maximum size of
2x2. If A,€ o(A) and A, >0 then the eigenspace N(A — A1) is positive. If A, € o(A)
and A, < 0 then the eigenspace N.(A — 4[) is negative.

Proof. First note that [Ax, x] = 0 implies Ax =0, since A is H-nonnegative. It
follows that for pe N* the identity A’x=0 implies A%x=0. For A; € ofA) and
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xe N(A-AJ) we have Alx,x]=[Ax,x]20. Thus ofd)cR, and further 4,>0
implies [x,x]>0 and A,<0 implies [x,x] <0, since from [x,x]=0 it follows
[Ax, x] =0 and hence 0=Ax=Ax. The definiteness of A(A—AJ) for A #0 shows
also that A, # 0 is semisimple. The proof is completed.

7.4. Corollary. Let Ae C™ be H-nonnegative. Then A has an H-sv.d. if and
only If the subspace N(A) is nondegenerate. The H-s.v.d. of A is stable (or H-stable)
if and only if N(A) is definite and o(A) does not contain poinis lying symmeitric
relative to the origin.

Proof. By Lemma 7.3 AU'A = A? is r-diagonable (cf. p. 11). The first assertion
follows then from Theorem 2.4 by noting that A/(A) = R (A).

By Remark 2.11 and Lemma 7.3 again the singular subspaces corresponding to the
singular values d; # 0 of A are definite if and only if o{A) does not contain points with
opposite signs. It remains to refer to Theorem 6.14 to complete the proof of the corollary.

Note that if A2,0 and IR is an open set for which 0 ¢ 3N o(A) then A
has an J-s.v.d. If further 5 does not contain points |4], A, € o(A), the F-s.v.d. for
such an A and S is J-stable (3H~stablc) if again there are no points 4, € o(A) lying
symmetric relative to the origin with |[1] e J.

7.5. Theorem. Ler A e C*™ be a nonstrict plus matrix. Then A has an H-s.v.d.
if and only if R(A) is positive and N(A) is nondegenerate. The H-s.v.d. of such an A
is stable (or H-stable) if and only if N.(A) is positive and K. (A) is a maximal positive
linear subspace of (C",[...]).

Proof. Since A is nonstrict plus, ®(A) as a nonnegative linear subspace is
nondegenerate if and only if it is positive. By Lemma 7.2 we have Al"lA 2, 0 and hence
by Lemma 7.3 A'1A is r-diagonable exactly if the eigenvalue A;=0 of AlIA is semi-
simple. This last condition is equivalent to the nondegenerateness of the subspace
%(A[‘]A). But for A with a nondegenerate ® (A) we have N (A) = N(AFIA) (cf. Lemma
2.3). This proves the first part of the theorem.

To establish the latter part, note that all the left singular subspaces corre-
sponding to the nonzero singular values of A are positive as linear subspaces of ® (A).
Next, it is easily verified that the definiteness of ®(A)! is equivalent to the claim
for the subspace ® (A) to be a maximal positive linear subspace. By Theorem 6.14 it re-
mains to consider the definiteness of A/(A). Since A is nonstrict plus, A(A) contains
a positive vector x # (. (This is easily seen with the aid of the H-s.v.d. of A.) Hence,
for a stable (or H-stable) H-s.v.d. of A the space A(A) must be positive.

7.6. Corollary. Let (H.,.) be an indefinite scalar product on C" and let In H =
(p,q,0) be the inertia of H with k= (p,q} >0. A necessary condition for any nonstrict
plus matrix A operating on (C",(H.,.)) to have a stable (or H-stable) H-s.v.d. is that the
inequality p = q is satisfied.
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7.7. Remark. If A is some nonstrict plus matrix having an H-s.v.d. then also
AU has an H-s.v.d. However, A"! need not be a plus matrix as simple examples show.
In fact, if a nonstrict plus matrix A has a stable (or an H-stable) H-s.v.d. then Al
cannot be a plus matrix, Note also that if 3R is an open subset such that 0g J
then every nonstrict plus matrix A, with H-singular values not lying on the boundary

@3, has an J-stable (and J;-stable) H-s.v.d.

The following result, concemning the H-s.v.d. of strict plus matrices, is also
easily established with the aid of Lemma 7.3 by considering the matrix Al'lA — 1, (A)
2,0, 1, (A)>0, and by noting that the linear subspace ®(A)"! for such an A is
negative.

7.8. Theorem. Let A € C™" be a strict plus matrix. Then A has an H-s.v.d. if and
only if the linear subspace N.(AI"'A — u (A)]) is nondegenerate. Further, for A to have
a stable (or H-stable) H-s.v.d. it is necessary and sufficient that N(A")A — u (A)) is
definite.

If Ae C™ is a strict plus matrix and JcR is an open subset such that
1, (A) g Jthen A, with no H-singular values on the boundary 23, has an J-stable (and
3,-stable) H-s.v.d.

Let Ae C™ and suppose that for some g R we have A"MA—pu7>,0 and
further denote

H(A) = sup —[Ax, Ax].
[x, x] =—1

Then f (A) is well-defined and finite (u_(A) < u). Especially, for any plus matrix A
we have u (A) < (A) and it is easily verified that AI"A — />, 0 holds exactly if
ue [p(A), u (A)). By Lemma 7.3 the linear subspace N (AMA — A1) is negative for any
A<, (A) and positive for any A > p_(A). This implies that APIA — 1 s nonsingular
forevery pe (U_(A), p,(A)) (if p(A) < p,(A)).

7.9. Lemma. Let Ae C™ be a plus matrix. Then we have pi_(A), H(A)e
o(AIA). If A is a strict plus matrix then we have o{A""A) c Rt and especially u_(A) = 0.

Proof. If for example A)A -y (A)/>,0 were nonsingular then for any u
sufficiently close to u,(A) the inequality Al'IA —ml 2, 0 would still be valid, a con-
tradiction to the fact that y should lie in [1_(A), 4 (A)]. Thus we have p (A)e
o(A"A). The relation u_(A) € o(Al'1A) is verified analogously.

To prove the second statement suppose that A € otA™4) and A <0. Then for
x#0 with A"MAx = Ax we have [x,x] <0 since A <0</, (4) (cf. Lemma 7.3). Hence
0 < Alx, x] = [Ax, Ax]. On the other hand let  be some maximal positive linear sub-
space of (C%[.,.]) such that x [L] M. (Such an A exists, cf. Lemma 1.3 and Lemma
6.5.) Then AM is also maximal positive, since A is strict plus, and further for every
ye M we have 0 = Alx,y] = [Ax, y] = [A"Ax, y] = [Ax, Ay]. Thus Ax[L] AM and
[Ax, Ax] <0, which gives us a contradiction. Hence, for a strict plus matrix A we must
have o(A('A) c R*.
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We shall next investigate some important subclasses of strict plus matrices
and their H-s.v.d.

A matrix A e C™" is said to be a B-plus matrix if for all x# 0 with [x,x] =0
we have [Ax, Ax] >0. A e C™" is said to be a focusing plus matrix if for some n>(
the inequality [Ax, Ax] 2 1'}|]A.:c|}2 holds for every x with [x, x] = 0. Moreover, we call
a matrix Ve C™” (uniformly) H-expansive if for some 6> 0 the inequality [Vx, Vx] >
[x, x] + 8|lx]f? is satisfied for any x € C". Here ||| stands for some norm on C",

Clearly, H-expansive matrices are H-noncontractive and B-plus matrices and
focusing plus matrices are, indeed, plus matrices.

Next we note that by making use of the H-s.v.d. (provided that it exists) of a
plus matrix A we see that the following characterizations of f,(A) and p _(A) are valid

.(A) =min(A; e o(A™A)| |A] = d? with [v, v]] = +1},
p(A)=max(4 e oAy | |A)=d? with [v,v]=-1).

Here v; denotes a right singular vector corresponding to the H-singular value d, of A.

(7.1)

7.10. Theorem. For a plus matrix A € C™" the following conditions are equiv-
alent:

(i) A s strict plus and has a stable H-s.v.d.,

() 0<u(A)<pA),

(iii) A is nonzero and collinear with an H-expansive matrix V,

(iv) A isa focusing strict plus,

(v) AisB-plus,

(iv) A is strict plus and N(A"A = p (A)]) is (positive) definite.

Moreover, if A satisfies any of these conditions the same is true for A") and
further p(A"Y = p,(A).

Proof. (i) = (ii). Suppose first that (i) holds. By Lemma 7.9 u (A)=0. Fur-
ther ofA"'A) cR* and thus [u, u][v,v,]=+1. It then follows from the identities
(7.1) and the stability of the H-s.v.d. of A that u (A)=# u (A), ie. p (A)<pu(A)
holds.

(ii) = (iii). Suppose (ii) holds, and let 4 € R be such that 4 (A) < u < p (A). Then
APIA — i is invertible and for any x € C”, x # 0, we have

[(ATIA = uhx, x] > 0.
It follows that for any norm ||-]| on C” there exists &) > 0 such that

((A"H A — pH)x, x) = &)\l

is satisfied, i.e. 4 ?A is H-expansive.

(iii) = (iv). Let A = ¢V, ¢ # 0, where V is H-expansive and let ||-|| be some norm
on C”. Denote by ||A|l = sup ||Ax]|/llx]l, x #0, the corresponding norm on C™". Then
for any x € B} we have
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2
[Ax, Ax] 2 |ef([x, x] + 8l 2 lePol® 2 %ﬂ‘i llAx|f?.
Thus A is a focusing and strict plus matrix.

(iv) = (v). Let A be focusing strict plus. To show that A is a B-plus ma-
trix we verify that if [x,x] 20 and [Ax, Ax]=0 then one has x=0. Indeed, for
any x satisfying these two conditions we have 0=[Ax, Ax] = n7||Ax|| with 77>0
and thus x € A((4). Since A(A'NA) > AL(A) is negative for a strict plus matrix A
(cf. Lemma 7.3) it follows that x = 0.

(v) = (). If A is a B-plus matrix then the matrix AJA is a Pesonen matrix
and to show that A has a stable H-s.v.d. it is enough to verify that the linear subspace
R (A)MH is definite (cf. Proposition 6.15). But a B-plus matrix A clearly maps every posi-
tive subspace onto a positive subspace in a one-to-one manner. Hence R (A) contains
a maximal positive subspace and thus the subspace R (A)M is contained in a negative
subspace, i.e. R (AW is definite. That A is strict plus (and not only a plus matrix)
follows then from the existence of an H-s.v.d. for A and the identities (7.1) above.

That (i) & (vi) was stated already in Theorem 7.8. To complete the proof of
the theorem it is enough to use the H-s.v.d. of A and again the characterizations of
the numbers g,(A) given in (7.1).

7.11. Corollary. If A satisfies any of the conditions (i)—(vi) of Theorem 7.10
then A belongs to the class o of sub-Pesonen matrices.

If Ae o and the H-s.v.d. of A is stable (or H-stable) we will shortly call A
a stable sub-Pesonen matrix. By Theorem 7.10 all (uniformly) H-expansive matrices,
focusing strict plus matrices or B-plus matrices are examples of stable sub-Pesonen ma-
trices. In the following theorem we shall establish various approximation properties
of stable sub-Pesonen matrices.

7.12. Theorem. The closure of the set of stable sub-Pesonen matrices in the
norm topology of the linear space C™" contains all strict plus matrices and nonstrict
plus matrices A wuh the property 1_(A) <0 (u (A) = 0) as well as nonstrict plus matri-
ces A such that AU also is a plus matrix.

Proof. To construct the desired approximations using stable sub-Pesonen matrices
we first denote by P* an orthogonal projection onto some maximal positive subspace M
such that P* commutes with H, i.e. P"H=HP*. (Such a P" is found by taking M as
the spectral subspace of H determined by the positive eigenvalues of H.) Then P™| 4
is injective for any nonnegative linear subspace X: if x€ X and P'x =0 then we
have x=(I—PYxe M™ and since M™ is negative it follows that x =0. Denote
P~ =[-P*. Then (P*-P") 2,0 and since (P* - P)? =1 we can define a norm on C”
by |Lr|| =[(P* =P )x, x]. Furthcr we denote [ ,=[+&P"—P7), £€>0. Then the
identity [Ix, Ix]=(1+ A)x, x] + 2¢|x? holds. Thus for a strict plus matrix A we
get an estimation

[ALx, ALzl 2 p, (A1 + E)lx, x] + 2¢ [l
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from which it can immediately be deduced that Al, £> 0, is a B-plus matrix with x (Al
> (1 + &)p,(A) and hence a stable sub-Pesonen matrix t0o. Since Al, > A as £—> 0,
the first assertion is proven. (The matrices I,A would be apphcable here as well.)

Next suppose that A is nonstrict plus with U (A) <0. For any £€>0 we de-
fine A_= (I + &P")A. Then the range R (A,) of A, is positive, in fact

[Ax, Ax] = [Ax, Ax] + (€ + 26)[P*Ax, P*Ax] 2 (€ + 2¢)[P*Ax, P*Ax] >0

for any x with Ax# 0, since if Ax#0 then Ax#0 and thus P*Ax # 0. Especially A,
is a plus matrix. For =y (A)/2 <0 the matrix Al'A - il 2, 0 is invertible and thus
by making &> 0 small enough the same holds for A Hence we have u_(A,) < 1 (A)/2 <0.
Thus, by Lemma 7.3 A(A,[7A)) is positive (and ;4+(A ) =0, see Lemma 7.9). This im-
plies that A, * ]A is a Pesonen matrix, and hence the matrix A, is sub-Pesonen for £ >0
small cnough To find a desired approximation by stable sub- Pcsoncn matrices we make
use of the H-s.v.d. of A, Indeed, if ®(A) is not yet maximal positive (i.c. 9\[(%&

is not negative) then A =A_+ 6[..vlu (6>0), where ue R(A ){” is positive and
ve N(Ay, is again a sub Pesoncn matrix. By repeating this process finitely many times
we can assume that R(A,) is maximal positive, i.e. that A, is a stable sub-Pesonen
matrix (cf. Proposition 6.15).

Suppose then that A is a nonstrict plus matrix such that also A"} is a plus
matrix. Define A = (I + pPHAI + pP*), p>0. As above it is verified that R(A)) is
positive and thus R(AN =44 ») (cf. Lemma 2.3). Since A" and I+ pP*’?
plus matrices, this 1dcnt1ty shiows that also R(A, ') is positive. Thus NA, 14 ) =N(A p)
=R(A p[ 1 is nondegenerate and A, = 0 must bea semisimple eigenvalue of A, o »2y 0.
Hence A - has an H-s.v.d. (cf. Lemma 7.3), and by a similar extension as made above
for A, we can find in every neighbourhood of A a matrix A " such that S{(A ) and
R(A, E“) are in fact maximal positive linear subspaces. Then A '[’]A - _HO and the
lmcar subspaces 9\£(A T ]A ) and M(A “) are negative and thus A is a stable
sub-Pesonen matrix approxlmatm gA. ThlS proves the last part of the thcorcm

A matrix Ae C™ is called a minus matrix if AB, c B, i.e. if A maps non-
positive vectors onto nonpositive vectors. Equivalently, one can interpret a minus ma-
rix as a plus matrix operating on the antispace (C", (-H.,.)) of the space (C", (H.,.)).
It is obvious that results analogous to those proved above for plus matrices can be es-
tablished to minus matrices and to the corresponding subclasses of them as well.

8. On a connection between H-singular values and eigenvalues

It is a known fact that the ordinary (definite) singular values of a normal
matrix coincide with the moduli of the eigenvalues of A, ie. d(A) =|4,A)| if A is
normal. The next theorem gives a generalization of this result into the indefinite scalar
product case. For this, one needs a closer insight into the spectral structure of an H-
normal matrix. As usual, any matrix commuting with its H-adjoint will be called an H-
normal matrix. It is noted, that any complex matrix can be regarded as an H-normal
matrix with respect to some indefinite scalar product. However, the existence of an
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H-s.v.d. for such an A guarantees a somewhat specialized structure for the matrix A.

Let H be a Hermitean and nonsingular matrix. By A(;; we denote the class of
square matrices U for which U U = — 1.

Since any U e N[ is clearly invertible, the class Ay is nonempty only un-
der specific conditions. In particular, one must have In H = In (=H), so that the sums
of the multiplicities of the positive and the negative eigenvalues of H must be equal.

Before proving our next lemma, we recall that two linear subspaces %, and
X, are said to be skewly linked (or to form a dual pair in the sense of Bogndr [4])
if &, N &, = &, N %, = (0).

8.1. Lemma. LetUe N, If visan eigenvalue of U then the number V' =—1/v
is also an eigenvalue of U. All the principal subspaces S, of U are neutral. Moreover,
the principal subspaces S, and S,. are skewly linked and their sum S, + 5. is non-
degenerate.

Proof. Tt is enough to show that for v, u€ o(U) satisfying v# 4" the princi-
pal subspaces S, and S, are H-orthogonal to each other. After this the rest can be
proved as follows. First, since always v# v, all S, are neutral. For ve o(U) the
orthogonal companion of S, contains 5, and also 5, for every f1# V. By equation (1.1)
of Section 1, this gives an estimation

n—dim S, = dim (5*) > n—dim 5,...

Hence we have dimS,.=dimS,, which implies Vv e o). By symmetry, one has
dim §, = dim S .. 2 dim S,.. Thus

sHn s =51 05,=(0),

ie., S, and S,. are skewly linked.

The subspace S, + S5, is nondegenerate, since again by equation (l.1) its
isotropic part must be {0}.

Next we prove thc H-orthogonality of the subspaces S, and S, for every
v, pe o(U) with v#u'. For cvcry pair x€ S, and y€ S, there are s te N such
that (U — vI)’x =0 and (U — uI)'y = 0. We shall prove the orthogonahty of x and y.

Inthe case s=1=1 we get

[x, ¥] == [Ux, Uyl ==V [x, y).

Since v#&,u i.e. —vu # 1, this implies [x, y] =0.

We proceed by induction on s+t Denote x;=(U—vl)xand y, =(U-ul)y.
Then the H-orthogonality condition on all exponents s and ¢ such that s+t <n gives
fors+t=n

Il
Il

[x,y] = —[Ux, Uy] —[x; + vx, y, + 1yl

Il

-vit [x, ).

= [VI, ,Uy]
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Hence again [x, y] = 0 and the lemma is proved.

In fact, the Jordan blocks of U corresponding to the eigenvalues v and V' of
U are of equal size. The converse statement is also true; if the spectrum of the matrix
U satisfies the above symmetry relation and the sizes of the Jordan blocks of v and V"
are identical, then U"U=-1 with respect to some indefinite scalar product. In
other words, if U is similar to —(U")™ this similarity can be achieved with some
Hermitean H.

Let us use for a while some of the terminology of lattices of invariant subspaces.
First recall, that a hyperinvariant subspace of the matrix A is a linear subspace that
is invariant under any matrix B commuting with A. It is well-known and easily verified
that the collection of all hyperinvariant subspaces of the matrix A forms a lattice, the
lattice operations being the sum and the intersection of the subspaces.

The lattice of the hyperinvariant subspaces for A can be explicitly derived. It
contains all the principal subspaces of A, as shown by direct calculation. Accordingly,
all the spectral subspaces (i.e. the sums of the principal subspaces) of A belong to it.

Let A be H-normal and suppose that A has an H-s.v.d. with respect to [.,.]
= (H.,.), H Hermitean and invertible. Then the left and the right singular subspaces cor-
responding to any H-singular value of A coincide. Furthermore, the above discussion
applied to Al'lA tells us that every eigenspace corresponding to a fixed eigenvalue of
A4 is a reducing subspace for A itself (i.e. a linear subspace such that it itself and
some of its direct complements are A-invariant). This means that we can find a ba-
sis in C" with respect to which A has a block diagonal structure, equivalently, A as a
matrix is similar to a block diagonal matrix. Every block, say T, corresponds to a cer-
tain eigenvalue 4; € o(Al")A), hence to some H-singular value d;of A, too. The eigenvalues
of the block T; are below referred to as the eigenvalues of A corresponding to an H-singu-
lar value d; of A. The structure of A is completely characterized by the proof of the
next theorem, which answers to the problem posed at the beginning of this section.

8.2. Theorem. Let H be a Hermitean and nonsingular matrix. Suppose that A,
|A| # 0, is an H-normal matrix and has an H-s.v.d. Let d; be an H-singular value of A.

(i) Then the eigenvalue L, of A corresponding to d, originating from a posi-
tive eigenvalue of AUIA, satisfies |u) = d. if and only if the principal subspace S,(1,)
is nondegenerate. Furthermore, if |l|+#d, then the principal subspace S,([,) is
neutral.

(ii) For any singular value 4, originating from a negative eigenvalue of AllA,
all the principal subspaces S,(1,) for the eigenvalues U; of A corresponding to d, are
neutral. Moreover, the eigenvalues Ji; such that ||| = d; appear in pairs in such a way
that with [, also — 1, is an eigenvalue of A.

Proof. Using the eigenvectors of AI')A as a basis for C”, equivalently after a
similarity transformation, we can assume that the matrices A, APIA and H are of the
following form

A=T\®..0T,, AVA=A=41,0 .04,
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and
H =S = diag(sy,...,5,)

with 5; = +1 or —1, so that A commutes with A. Define sgn A= A D2, where D stands
for the diagonal matrix of the H-singular values of A (cf. Remark 2.11). Then the
identities

A=AVIA=S71A"SA =SASA
givefor K=K, ®..®K, K;=T;A|'% i=1,..p,
SK'SK=sgnA.

Hence, K; is either S.-unitary or belongs to the class A, determined by [.,.] = (S,...)
according to the sign of A,. Here S, denotes the diagonal block of § corresponding to K.
We have shown that each block T; of A is just d; times a matrix that is unitary
with respect 1o an indefinite scalar product, if the corresponding eigenvalue A, € o(A *14)
is positive, and d; times a matrix that belongs to the class A(;, if 4, o(A"4) is
negative. Equivalently, this holds for the restrictions of A to the reducing subspaces
determined by the principal subspaces of A"JA. Part (i) of the theorem follows then
directly from the properties of H-unitary matrices operating on an indefinite scalar
product space (cf. Lemma 1.5). Further, one gets part (ii) from Lemma 8.1 above.

Our proof gives also the following result.

8.3. Corollary. Under the conditions of Theorem 8.2, the sum of the multiplici-
ties of the negative eigenvalues in o(A"A) is even.
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