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Introduction

In this doctoral thesis we study the model theory of the languages .t1*,
Mx* and )rc-Vaught sentences. The languages .Ltr, were first introduced by A.
Tarski and since then they have been studied in [Ka] by C. Karp, in [Ke] by H.
J. Keisler and in [Ba] by K. J. Barwise, among others. t.r1r,;-Vaught sentences
were first introduced by R. L. Vaught in [Va]. Earlier, L. Svenonius had studied
a special case of cr,r1r,;-Vaught sentences in [Sv]. Since then .\rc-Vaught sentences
have been studied in [KM] by M. Karttunen and in [HM] and [Ma2] by V. Harnik
and M. Makkai, e.g. (in [KM] Karttunen actually studies Hintikka-Rantala [HR]
languages N15 with maximal semantics instead of .\rc-Vaught sentences, but these
are essentially the same.) Mr* languages were first defined by M. Karttunen in
[KM] by modifying the definition of N1,-languages (see above).

The need to study infi.nitary languages arose when the expressive power of
finitary languages proved to be rather limited. For exarnple we cannot express
even in L*- that a,n ordering is wellfounded.

For a long time, there have been a lot of results on languages that allow only
relatively little quantifying, like L.. or -Lrr., but very little has been known of
languages that allow a lot of quantifying, like -L,+" , & ) u. In this doctoral thesis
the author has tried to answer the most obvious questions on the expressive power
of the languages L^*, M^* and the Ärc-Vaught sentences. The results are new,
of course, but the main results in Chapter 5 have been known irr the case K : u)

(see [Ma1]). This work continues the work started in [Oi2], [Oi3] and [Oi ]. The
reader can find in [Ke], [Di] and [KM], e.g., what is known about such properties
of the languages L^*, M^* and the )rc-Vaught sentences as compactness and
downward-Löwenheim-Skolem properties.

The name of this doctoral thesis, "Games and infi.nitary languages," refers
to our project in the University of Helsinki logic seminar led by J. Väänänen and
J. Oikkonen. In the project we have tried to use games instead of induction,
e.g., in defining concepts and proving theorems in the model theory of infinitary
languages (see, e.g., Definition 5.7). In [Ac] P. Aczel has shown that for every
inductive definition there is such a game of length o that by using the game we
can define the same concept as by the induction. J. Oikkonen has shown that in
many cases we can let the players play these games more than u; steps and that
in this way we get new natural concepts.

This doctoral thesis is divided into three parts. In the first part, consisting
of Chapters 1 and 2, we prove an approximation theorem for the closed s-games.
This theorem is the heart of the doctoral thesis. In the second part, consisting of
Chapter 4, we take a look at the phenomenon that makes games of length > c..,

a lot harder to handle than games of length o;, namely non-determinacy. In the
Iast part, consisting of Chapters 3 and 5, we study the expressive power of the
languages L^*, M^* and trrc-Vaught sentences. For Chapter 5 one does not have
to read Chapter 4.
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1. Closed s-games

Inthisdoctoralthrlsiswedealwithmanydifferentgames,butthecentral
technical ideas we use are collrmon to all of them. And so we begin by studying

games in general.

We will use the word. "game" in the common sense' All the games in this

paper are played by two plty"'s, which we call A and E' It is practical to assume

;i,iiA i" *ui" 1r,") u"a il i. r"*ut" (she) (this convention is from [Ho])' All the-

moves in these games are made by choosing elements from certain sets' Most of

the games in this paper are what we will call standard games:

L.L Definition. Let a be an ordinal,let I: {!9t 9 :."} and J -= {J.p.:

§ < ,\ be families of 
"uJ ^"i t"t W ! (Tlpa'Jp) x (IIpa' Jfi ' Then the ttiple

G : (I,J,W) is u rtÅå^ra g^m" b-;Åe in short) of length a' It is plaved bv

A and E. In every *""" B io, fii"t 's. 
cåooses an element rp € Ip and then E

cåooses an element yp e ip. we say that E wins tåe game if the pair of sequences

äi: (ruii.l",toilp."l chosen during the same belongs to w '

For any cardinals rc and tr we say that the s-game G: (I'J'W) is a '\'r-
game if it is of Iength rc and for all d < K ll"l'lJ"l < '\' The s-game G is an

oo,rc-gameifforsome.\Gisa),rc-game'Wedefinetr'oo-gamesandoo'oo-
games in a similar waY.

Foreverygu*"*"associatetheconcepts,'astrategyofA.forthegame,,and
, a strategy of E for the game.,, In the case of the s-games we do this as follows:

1.2 Definition. A strategy of A (E) fot the s-game G :-(I'J'W) 
-of 

length

a is aset F : {f p,9 < a} of functions f p:llrapJr'IB (Ip: lL1.<Bt' + rB)'

usually we are not interested in strategies in general but in winning strategies'

1.3 Definition. A strategy of a player for a game is winning if the playet

can always win the game by playing according to tåis strategy. (We yy, e'g', that

E ptuy, iccoding tJ ne' "t'it"ey 
f : {f B : 0 < q} for an s'game if in everv move

B < a she cåooses 
-f 

i@o,...,";i, *heri lo,"', rP are tåe previous choices of A')

ourfirstmajorgoalinthispaperistoproveTheorem2.3,whichisthemain
tool in Chapter S. Iåoes not holil for all s-games, but it does for the closed ones'

I-.4 Definition. An s-game G : (I , J,W) of length a is closed if there are

sucå sets Wp e (t\<PIr) x (IIraB J'r) , § < a, that

((rr)1<o, (yr)r..) e W

(("r)r. B,@)t<e) e wB'
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we conclude this chapter by defining approximations for the s-games.
we say that a well-founded tree T : (?, <) is neat if for any two different

points r and y without immediatepredecessor, thesets {zeT: z < r} and

? a .f | .z < yl are not the same. For any cardinals rc and .\ we say that
T : (T,<) is a .\,rc-tree if it is a neat, well-founded tree and no point in ? has) ,\ immediate successors and there are no branches of rength ) rc in ?. As with
the games, we say that 7 is an oo,rc-tree if it is a .1,rc-tree for some .\. similarly
we defi.ne I,oo-trees and oo,oo-trees.

1.5 Definition. Let G : (I ,J,W) be an s_game of length rc for some
cardinal rc and let T be an oo, rc-tree. The T-approximation Gr of G is the
following game played by A and E. They play Gr as they play G except that
during the game they go up the tree T as cåosen by A. The game is over when
they cannot go up the tree any more. so tåe ru/es are the following: for each move
a, frrst A cåooses elemehts ta e T and ro e Io so that

7. if a is a successot, d. : p + l, then to is an immediate successor of tp i
2. if a is a limit, then to: suppqotp,

After this, the player E cåooses Ao € Jo. The game continues only as long as A
can choose to satisfying 7 and 2. when thegame is ove4 the players have made a
moves for some a 1 rc and they have cåosea seguences x: (rp)pao, A : (Ap)B<o
and (tp)8a.. E has won if ((rp)p..r,(Vp)p..r) €W,, foruti t'? ".

1.6 Definition. A strategy F of A (E) for the game GT is a set F : {f o:
d < rc\ of functions fo tTIpaoJp ---+ T x Io (fo :llp<oT x Ip ---+ Jo).

Let ? ar,d T' be ordered sets. We say that a function g ; T - ?, is order
preservingifforany r,yeT, g(o) <S(y),if r<y.

1.7 Lemma, Let G be an s-galne of length r,.
1. lf E has a winntng strategy for G, then for al| oo, rc-trees T she has a winning

strategy for GT , too.
2. Let T and. T' be *,rc-trees. rf there is an order-preserving function g : T --+

Tt and E has a winning strutegy for Gr' , tåen såe has a winning strategy for
GT , too.

The lemma follows immediately from the definitions.

2. An approximation theorem for closed s_gåmes

we begin this chapter by proving a combinatorial lemma, which is due to D.
Kurepa [KD] (see [To]), as Ä. Levy pointed out to the author.

Let .\ and rc be infinite cardinals and let ? be a ), rc-tree. We put ?, to
be the set of all totally ordered subsets s of ? which are closed downward (i.e.
y € ^9 whenever r € ,s and y < r). we order T' by inclusion. Then we can easily
see that

(-) T'isaÅ,rc-tree.
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On the other hand T' is essentially larger than T :

2,L Lemma. There is no order-preserving function

g iT' +T.

Proof. Assume there is such g i T' -> T. We define for all a I rc

nd - s$y eT tlP < o(y S rd\).

Then (ro)oq. is an increasing sequence of length rc in T . This contradicts our
assumption that ? is a ),rc-tree. o

2.2 Corollary. Let T be a \,oo-tree. We assume that for any )',rc-tree U
tåere is an order-preserving function g t U --+ T . Then there is a btanch of length
x, inT.

Proof. The corollary follows immediately from Lemma 2.1 and (*). o

2.3 The Approximation Theorem. Let \ and rc be infinite catdinals,
let G: (I ,J,W) be a closed ).,n-game and let p, satisfy the condition below. If
for all p,,rc-trees U the player E has a winning strategy for Gu , then såe åas a
winning strategy for G, too.

The condition for p, is the following: If ), is a successor or cf(,\) ) ts then

r:l){{z@'))* , P,1 cardinals and. B < },r <,c}

and otherwise
p : U{(2(r'))*' I cardinal and 1 < rc}.

Proof. We begin this proof by defining a-strategies, which will be the link
between Corollary 2.2 and this theorem.

2.4 Definition. Let a I rc be an ordinal. An a-strategy for G is a winning
strategy of E for the s-game Go : (Io , J" ,Wo) , where

Io:{IBr0<r)
Jo:{Jp,0<o}
Wd : {(@dB.",@dp..) e (llBa.Ip) x (TIBa.Jp) , (@B)p.-r,fuB)B., e
W., for all 1 3 a\.

(Ip,Jp and W,, are as in the definitions of s-game and closedness.)

Let ? be the set of all a-strategies for G, a <-rc, ordered by inclusion'
Then 7 is a p,oo-tree. To prove the theorem it is enough to show that there is

a branch of length rc in T . By Corollary 2.2 it is enough to show that for any
pt,,rc-tree U there is an order-preserving function g t U --'+ ?. To do this we let
U be any p,rc-tree and defi.ne g(u) for all z € tl. Let {uB, § < a} be the set
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{u' eU : ut <u} enumerated in such away that uB I ut it B <l < a. By
assumption, there is awinningstrategy f :{fpr 9 <*) of Efor Gu. We define

9(u) to be the following o-strategy:

s(u):{hB:P<a}

where
h p(..., rt,...) t<g : f B(.., (a",, u1),...) rg.

Clearly this g is order preserving and so there is a branch of length rc in T. o

In Chapter 5 we will prove several consequences of this theorem.

3. The languages -Lrrc and l, rc-Vaught sentences

In this chapter we prepare for the last two chapters by defining the languages

in which we are interested.
Let .\ and rc be cardinals and let p, be a set of relation-, function- and constant

symbols. The set p is called the signature. We recall the definition of the language

Lx*(t) (.Lf in short):

3.I- Definition. If all the rclation and function symbols in p' are of ailty
1 rc then the language L»*(p) is defined and it is the least cJass X such that

7. every atomic formula of the signature p, belongs to X;
2. itö€X then-öeX;
3. if O is a subset of X of cardinality < l and the number of free variables in

[O (andi" VO) is < rc tåen fiQ and \,/O be/ong to X;
4. if ö € X and i, is a set of vadables of cardinality I rc then W$ and 1rS

belong to X.

The semantics of trr, is defined in the usual and obvious way.
The languages M;*(p,) (Ms* in short) were first introduced by M. Kart-

tunen in [KM]. Prior to that, J. Hintikka and V. Rantala had introduced in [HR]
N-languages that were defined by a similar technique. The idea behind these lan-
guages is the following. Let T be a syntax tree of some formula ö e L... Then
? has, among others, the following properties:

1. Every node has ( a.r immediate successors.

2. Every branch has length < ar.

We can generalize Lr. by increasing the number of immediate successors and
the length of branches. The resulting language is Mr,.

3.2 Definition. If all the relation and function symbols in p, are of ailty
1 rc then Mt*(tt) is defr.ned a.nd a formula of Ms*(p) is a pair (T,l) where

1. T isa).,rc-tree;
2. I is a labeling function with the properties:
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a: if t € T does not have any successors tåen l(t) is either an atomic or
negated atomic formula of the signature p;

b: if t € 7 åas exactly one immediate successor then I(r) rs of the form )r
or Vr, r vailable;

c: if t eT has more than one immediate successor tåen l(t) is eitåer ! or

A.
To be able to define a semantics for M1r, we must defi.ne a certain semantic

game. Let A be a model (of the signature p) and Iet {: (?, l) be a sentence of
M»*.

3.3 Definition. The semantic game S(A,ö) is a game of two playerc, A
and E. When the game begins, the players are in the rcot of T and during the
game the players go up the tree T. At each move the players are in some node
t e T and it depends on l(t) how they continue the game:

1. lf l(t): V (A) then E (A) cåooses one immediate successor of t to be the
node where the players go next.

2. lt l(t):3r (Yr) then E (A) chooses an element rA from A to be an inter-
pretation of c. The players go then to the immediate successor of t.

3. It l(t) : ö(e) then the game is over and E has won if

A F ö@)lxA|

Theconceptsastrategyof Afor S(A,ö) andastrategyof Efor S(1,/) are
defined essentially as in the case of s-games.

Let { be a sentence of Mx* and I a model.

3.4 Definition. I ? A if E åas a winning strategy for S(A,$).

We list below a couple of properties of these languages that are apparent but
still worth noting.

1. For all .\ and K L»* is a sublanguage of Mx* (Lxn l Mt*) , i.e. for any
sentence $ of. Ls* there is a sentence t! of. M7* which is equivalent to {.

2. For all ) .L1" : M^u i.e. L». I M». and Mt, ( trr..
3. If rc ) o then there is no obvious reason why M1* would be closed under

negation. One might think that we could get the negation of $ : (",1) by
putting -ö -- ö : (T,l') where l' is such that l'(t) : A if and only if
J(t) : V and so on. But this is not the case because it may happen that for
some model I the semantic game S(A,ö) is non-determined, i.e. neither E
nor A has a winning strategy. In this case I ft $ afi A *- 0. In Chapter
4 we find an example of a non-determined semantic game. The question
whether all the languages My* are closed under negation or not is open to
the author.
In Chapter 5 we will need the next two theorems from [KM].
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3.5 Theorem. Ässume I(*: 
^. 

lf öeMs+*Qt), lpl < Å, åas amodel
then it has a model oi" cardinality I )..

Proof. Simply take some model A of $ and some element a € I and close

{a} under the winning strategy of E for S(A,Ö) and under the functions of tr^t. o

3.6 Theorem. rc is weakly compact if and only if M** has the following
property: If D is a set of sentences of M**, I » lS rc, and every subset of D of
cardinality ( rc has a model, then D has a model.

We omit the proof. Theorems 3.5 and 3.6 are true also for the languages I/1+,
and I/,", which will be defined below (see [KM]).

Let I and rc be infinite cardinals. The .\rc-Vaught sentences are defined as

follows.

3.7 Definition. We assume that all the relation and function symbo/s in
tåe signature LL axe of arity I rc. Then a ).r,-Vaught sentence (of the signature
p,) is a formula of the following form:

6: (yxa A :r. V )".,. 7\ 4i,r"...;.i.
i.€I. j"€J- a<K

where Io and Jo, d1t<,, are sets of cardinality <.\ and Öiaio"'i'i', d.< tt', are
atomic or negated atomic formuJa.s (of the signature p,) with the variables from
tåe set {ro, go, ...,frorAo}.

We will write I/1, for the language of all .Lc-Vaught sentences. Again, in
defining semantics for the language [,", we need a certain semantic game. Let I
be a model and d a }c-Vaught sentence.

3.8 Definition. The semantic game S(A,ö) is a game of two players, A
and E. For each move d. 1 rc, first A chooses aa element r! from A to be an
interpretation for ro and then he cåooses some io € Io. When A has chosen r{
and io E chooses some y! from A to be an interprctation for go and then she

cåooses some jo e Jo. After n moves E wins if

A ? örrio...io i. (*{ ,y{, ..., s,:,yl),

for all ot < rc,.

There is also another way to define S (A, ö), we put

t:{A x Io:a<,c}

I : {A x Jo: a ( rc}

11
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and define W g (f[" <*A x /o) x (f[. <*A x J") to be such that

((("' , i o)) o.', ((åo, å)) ..1rc) e w

if and only if
A | 4;.i."';.i" (oo,bs,...,ao,bo)

forall d.<n. Thenweca,ndefine S(A,ö) tobe (1,J,W). So.9(1,/) isaclosed
s-game of length rc.

3.9 Definition. A I 0 if the player E has a winning strategy for S (A, $) .

We make the following remarks:
1. In the definition 3.7 we could have let öioio"'i"i" be conjunction or disjunction

of < .\ atomic or negated atomic formulas, e.g., and still get the same language
Vx*.

2. In all cases M1, I V7+ 6, and Yr, S Mt** and if I is a successor cardinal
or a regula.r limit cardinal with l<E - I then M7* lVs*.

3. As in the usual proof of the Gale-Stewart Theorem, we can see that if ö e V»"
then .9(1,{) is determined, i.e. either E or A has a winning strategy. If
ö e V»* for some rc ) r.r then S(A,ö) does not have to be determined, as we
will see in Chapter 4.

4. The languages [* are not always closed under negation. For example Vr"tT)
is not closed under negation:

ö - VrsVr1... n{ri * ,; <r)

belongs to V,.(0) and -6 does not because V,. is compact (see the notice
after Theorem 3.6) . In Corollary 5.L2we have another example of a language

[,s that is not closed under negation.
We say that / belongs to V** (M**,r-* ) if it belongs to V7* (Mt*, Lx*)

for some Å. Similarly we define the languages tr/t- (M^*,tr1-) and I/*"o
(M**,2-* )'

We conclude this chapter by giving a characterization for l/-r-elementary
equivalence.

Let I and B be models and a an ordinal.

3.10 Definition. The Ehrenfeucåt-.Fraisse game of length a Fo(A,8) is a
game of two players, A and E. For each move p < a first A cåooses an element
aB € A or bBe B andthenE cåooses anelement bpeB if Aha.s chosen aB e A,
otherwise såe cåooses aB e A. After d. moves E wins if the function that takes
aB to bp for all B < a is a partial isomorpår'sm.

A
ilw

:j
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As with the semantic game for the .\rc-Vaught sentences, we could find such
I,J and W that F.(A,B) is (,[,J,I,I/). So F.(A,B) is an s-game of length a
and it is closed if all the relations and functions are of arity ( cf(a), as one can
immediately see.

Let rc be a cardinal and A a model of cardinality Ä.

3.11 Definition. ö\ is the following sentence of V7+ *:

6fr: (vra A :r" V )..* f\ 6;oi""';"i'(co,ao,...,no,ao)
i.eA i-eA a<K

where 6ioio"';"i-(ro,Ao,...,ra,Uo) is the conjunction of all atomic or negated
atomic formulas rb (ro, y o, ..., a a, y o) that satisfy

A l rb(io, jo,..., i o, j o).

3.12 Lemma. (M. Karttunen) If a// the relations and functions are of arity
< cf(rc) then for ill models B:

1. E has a winning strategy for S (B , ö\) if and only if she has a winning strategy
for F*(A, B) ;

2. A has a winning strategy for S (8,ö\) if ana only if he has a. winning strategy
for F*(A,B).

Proof. The lemma follows immediately from the fact that when the length
of the Ehrenfeucht-Fraisse game F.(A,B) is some limit ordinal, we can require A
and E to choose two elements in every move B < a, one from A and one from B,
and that this requirement does not affect the existence of the winning strategies.

3.13 Corollary. (M. Karttunen) We assume that A and B are models and.

all the relations and functions are of ailty < cf(n) Then A = B(V**) if and only
if E has a winning strategy for F*(A, B) .

Proof. "+" follows immediately from the definitions. "+" follows from
Lemma 3.12. a

4. On determinacy

The languages M1* and IZ1* , K ) u, are very different from the languages
M\, : -L1, and [.. One of the main differences is that the games associated
with these languages (namely S(A,ö) and F,(l,B)) are always determined in
the case rc : o; but might be non-determined when K > Lo .

Our main goal in this chapter is the following. For all reguiar cardinals rc,
t<,1* :rc, we give an example of two rc+-like linear orderings I and I such that
the Ehrenfeucht-Fraisse game F,(A,B) of length o is non-determined for every
a, K*2<-cr (-rc*. We also give an example of a non-determined sentence.
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4.1 Defiuition. A game G is determined if either A or E has a winning
strategy. Otåerwise G is non-determined. A fotmula $ of M*oo or I/-- is
determined if for all models A the game S(A,$) is determined. Otherwise / is
non-determined.

It is easy to see that all s-garnes of finite length and all closed s-games of
length c,.r are determined. (Use the method of the ordinary proof of the Gale-
Stewart Theoreml see, e.g., [Mo].) So the games F.(A,B),5(A,ö) and ^9(l,r/)
are determined for all models I and I and for all sentences ö e. M*'1- 7,*,1
and ry' e V*r.

Our first examples of non-determined games will be straightforward general-

izations of the so-called cub-games studied in [Ku] by D. Kueker.
Throughout this chapter rc will be a regular cardinal and rc(' : rc (we do not

assume that rc is a limit cardinal). Let o ( rc* and AC {r < rc* : cf (z) :6}.

4.2 Definition. G"(A) is a game of length a played by A and E. Dwing
the game A and E construct a sequence by choosing elements from rc* . E aims to
play so that the supremums of cefiain segments of the sequence chosen during the
game are in A. So tåe rules of the game are the following. At every move p < a
first Å cåooses some element rp I n+ Iarger than any element cåosen eailier in
the game and then E chooses some EB < n+ larger than cB. E wins if for every

11cr, cf(1) : rc, the supremum of tåe sequence (yB)Ba1 is in A.

These games are not always non-determined as one can easily see, but for
some ,4. and a they are.

Let C C {, < rc+ : cf(r) :,c}. We say that C is rc-cub if it is unbounded
in rc* and closed under supremurxi of increasing sequences of length rc. In [Ku]
the next theorem has been stated in the case d.: rc.

4.3 Theorem.
If E åas a winning strategy for G *(A) for some

is a rc-cub set C g A.
If A åas a winning strategy for G "(A) for some

isa K-cubset CC {r<"*: cf(r) -rc}\.4..
Proof.
1. If E has a winning strategy for G.(,4) for some a, n I a < rc*, then she

has it for G*(ä), too. Let F: {f.: a < rc} be this winning strategy. Let C be
the set of those c for which cf(c) : rc and {y ( rc* : a < r} is closed under every

fo, d1rc. Then it is easy to see that C is rc-cub.

2. Let ä be the least a ) rc such that A has a winning strategy for G.(,4.).
Let F: {/o: a<A} beawinningstrategyof Afor Ga(A). Weseeimmediately
that d must be a limit ordinal.

Claim: Cf(a) : rc.

7.

c)
2.

d., K< a< K*,thenthere
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Proof of the claim: To obtain a contradiction we assume that cf (A) : I < rc.

Let (a;);a1 be a cofinal increasing sequence in d. It is useful to assume that
do : 0 and that (or)i<r is continuous. For every i < .\ let B; be such that
a;* 9;: od+r. We shall defi.ne strategies G; : {g'xt lc < a;) of E for Go,(-4) so
that

1. G;CG;foralli<X<I.
J

2. If. i ( .\ and E plays according to G; and A according to {.f, :,o < ad}, then
E wins.
The definition goes as follows.

1. If ,=0then G;:0.
2. II i is a limit, then G; :Ut.;Gi.
3. Thenconsiderthecase i:j* 1. Let rr and yk,k< oi,bethechoicesof

A and E in the game Gor(a) when A plays according to {"f* : a < ai} and

E according to G i : {Sto , k < oi} . We define a strategy .F'' of A f.or G Br(A)
by putting F' : {f L: k < 0;), where

fL@o, ..., &nr...)r<k : for+t(90, ..., Amr...rag, ..., ant...)- l ...i tn1k.

Let G' : {SL: k < 0;} b" such a strategy of E that E wins the game
G pr(A) if E plays according to G' and A according to 1". Now we put
G;:{SL:k<a;},where

gL(frot...1fr7vr...) n<k - gl(ro, ...7t771r...) rrrlkt

if &<a; and

SL@o, ...7 fia1...)*<,t : g'n(aoi , ...1xa1 ...) ..r.1m<kt

ifk>aiandar'*n:k.
Because in the game Go(Ä) , o 4 rc+, only the sequences of length rc, not

the sequences of length ( l, decide which one has won, we see that the strategies
G;, i 1 l, satisfy the properties 1 and 2 above. For the same reason E wins if she
plays according to [Jr.^ G; and A according to .F' in the game Ga(A). But this
contradicts the choice of .F'. o claim.

We show next that there is a rc-cub set C § {, < ** : cf(r) :,c} \ A,
which proves the theorem. In principle we do this as in the proof of part 1 of this
theorem.

We let (o;);.r be a cofinal increasing sequence in d. As in the proof of the
claim we can construct for every i < rc and for every a E{ai:i<i} rc+ a strategy
G 

" 
: {SZ r a < o;} for Go, (Ä) with the following properties.

1. If Eplaysaccordingto G", rE{oi'i<;y rc+,andAaccordingto {.fr: a < o;}
then E wins.
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2. If r 6{ai 'i <i} ,c*
r(ai) - ,'("i) tJren

3. For all r €t*" i <ij
) r(or.).
We define

for every a I di, gZ : gZ'

h: {, €{aizi<i} K+ : i < rc} -* rc+

by letting h(r), a 6{ar:r<d} rc+, be the least element that is greater than all
the choices in the game G*-(L) when A plays according to {.fo: a ( o;} and
E according to Gr. We define C to be the set of those c < rc* that satisfy
cf (c) : rc and {y < *+ ; y < ") is closed under ä (which, of course, means that
if rng(c) C {s < ** , y < c} then h(r) < c).

Claim: C is a /c-cub subset of {r < rc+: cf(c) : rc}\Ä.

Proof of the claim: We show only that C C {r < rc+ :cf (c) : lc} \ ,4 and
leave the other part to the reader (recall rc<*: rc).

Let c € C and let (oi)ia' be a cofinal sequence in c. We let A and E play the
game G6(A) so that A plays according to F and E according to U;<* G@,)i.;.
Let y;, i ..-a, be the choices of E in this game. The fact that A uses his winning
strategy and the deflnition of G, implies that supi<Eyd / A. On the other hand,
suPi<agd:stPi<,.ri: c and so c (../,. o claim.

We say that ,4. C {, < rc+ : cf (c) : rc} is rc-stationary if the inters".tio., Jf
Ä and any rc-cub set is non-empty.

4.4 Lemma . There exists L E {" < n+ : cf(a) : rc) satisfying
1. A is rc-stationary
2. {, < rc+ : cf(r) : ,} \ A 'ts rt'stationary.

Proof. By the analogous lemma for stationary sets (see, e.g., [Je] Lemma
7.6) there is such a stationary set ,4' g rc+ that ,* \ A' is also stationary. We

put ,4 : {r € A' : cf (r): rc}. We show that Ä satisfies 1 in the lemma and leave

2 to the reader.
Let C be a rc-cub set. We define C' to be what we get from C by adding to

it all the supremums of less than rc elements of C. Then C' is cub and because ,4

is stationary (it is an intersection of a cub set and a stationary set) the intersection
of C' and ,4. is non-empty. But then the intersection of /. and C must also be
non-empty. o

4.5 Corollary. Let A e {, < rc+ : cf(r) : o} be as in Lemma 4.4. Then
G.(A) is aon-determined for all a, rc ( a ( rc*.

Proof. The corollary follows immediately from Theorem 4.3. o

By using this non-determined cub-game we can get an example of a non-
determined Ehrenfeucht-Fraisse game. In this example we will use linear orderings
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O*(B) defined below. They are introduced by J. Conway in order to characterize
all t11-like dense linear orderings (see [NS]).

Let 4 be a saturated dense linear ordering of cardinality rc without endpoints
(i.e. an 4*-set which exists under the assumptions on rc we have made) . Let 1*rl
be what we get from 4 by adding one element to 4 as the least element of 1 * ?.
For all B g{" < rc*: cf(c) : rc} we define

o," (B) : 
o!. "" 

x {"}

Let A g {* < ** : cf (r) - ,c} be

?? , if a q B. We order O *(B) bV setting

as in Lemma 4.4. We put A - Or(/) and
B : @,(0).

4.6 Theorem. For aJI ordinals a, rc*2 ( a ( rc+ , the Ehrenfeucht-Fraisse
game F,(A,B) is non-determined.

Proof. Let - A: {a < rc* : cf (o) :,ci \,4. By Corollary 4.5 and the fact
that if E has a winning strategy f.or F,(A,B) then she has a winning strategy for
F7(A,B), for all 0 I a, it is enough to show:

1. If rc *2 3 a ( rc* and A has a winning strategy for Fo(/, B) then he has a
winning strategy for Gr(- A)

and
2. If E has a winning strategy f.or F*a2(A,B) then she has a winning strategy

for G'(- n;.
We prove only 1 and leave 2 for the reader, because its proof goes like that

of 1. To show 1we let n*21a < rc* and we assume that A has a winning
strategy for .F'o(l,B). We describe awinning strategy F: {f;: i < o} of A for
G.(- A) by playing both .F.(1,8) and G.(- A) at the same time. We let A and
E play G.(- A) and A'and E'play .t'o(I, B). A' plays according to his winning
strategy, A plays according to the strategy we are describing, E is the opponent
of A and plays arbitrarily and E' plays so that she forces A' to play in such a way
that from his moves A can see how to move. We begin.

1. Move i:0: A' chooses cs from A or B according to his winning strategy.
The first move of A is now given by fo($) : r(rs). Let qo > fo($) be the
choice of E and let ao be the least such c ) ca that a / A. Now E'chooses
fi.rst a partial isomorphism

go : {r e A : r(a) < ao} - {r e B : r(r) < q'},

which exists because both of these sets are saturated linear orderings of car-
dinality rc without endpoints. Then E'moves by choosing yo according to
90, i.e. go:90(no) or 9o - 9;1(ro).
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f ;(oo' "'' oi)
the choice of
chooses such

that gi C gi.
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A' choos€s r; according to his winning strategy. Then A chooses

E and let q be the least such a ) d.i that a # A. Now E'first
a partial isomorphism

Q;: {r € A : r(r) < od} * {, € B : r(r) < "i}
This g; exists because the sets

{r€ A:a1 <t(r) <"d}

{r€B:a1 Sr(") <oh}

are saturated linear orderings of cardinality rc without endpoints (d; 4 A).
Then E'chooses yd according to gi.

3. Move i limit: if supya;a; :suPi<;@ € Ä, then A has won and we are

through. Otherwise we continue as in the successor casel the only difference
is that now gi extends l);<;9i which is possible beiause srryia;a1 I A.
A must win the game Go(- ,4,) because otherwise suPr<päT /. A for all iimit

B < a and so, by using the strategy described above, E' would win the game

F.(ArB) against A' even though Ä' uses a winning strategy' Because E played

arbitrarily, the strategy of A we described above is a winning strategy. o

Because we skipped the proof of 2, the reader might wonder why the least a
for which Theorem 4.6 is true is rc * 2. The reasion is the following: if a; e A and
b; € B, i I n, are the choices A and E have made during the flrst rc moves in the
game and if sup;4ro; exists but sup;46ö; does not, then A can win the game by
two moves but not necessa,rily by one move. Actually it is easy to see that E has

a winning strategy for .F"a1(1,8).
By modifying I and I we can construct an example of a non-determined

Ehrenfeucht-Fraisse game of length o for all rc* 1 ( a < rc*. We modify I and

I by "naming" every increasing sequence that does not have supremum. In doing
this the idea is roughly the following: if. a; e I and b;€ B, f < rc are the choices

A and E have made during the flrst ,c moves in the game and if supi<Eor exists

but sup;arÖ; does not, then A can win the game by one move if he chooses the
'name" of the sequence (ö;);ar.

The modifications are the following. We add to the language unary predicate
symbols M(r) and N(o) and a binary predicate symbol R(r,y). M will be an

ordered set, N the set of "names" and .R will connect the name to the sequence.

We define A' and 8' so that
l. (Mo' ,<o') : o(A), I' as in Lemma 4.4'
2. (MB', <8') : O(0) .

3. For every increasing sequence (c;);<, f.rom MA' (MB') for which sup;460;
does not exist, there is exactly one z € NA' (re NB' ) such that ,R(c,g) if
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and only if E : z; for some r ( rc anrL vice versa, i.e. for every r e NA'
(, e Na' ) there is a sequence (zt);<,. from MA' (MB') such that supi<Eri
does not exist and R(r,A) if and only if y: r; for some i < n,.

4.7 Theorem. Fo(A',Bt) is non-determinedfor all d, &* 1( a ( rc+.

Proof. This can be proved a.s Theorem 4.6. Notice that for every a < rc+

and every partial isomorphism

there is exactly one partial isomorphism g from

{c€MA':r(c) < a}u{c €.NA': sup{"(y) , Rn'(r,y)} < oi

to
{re MB':r(c) < a}u{z€N8': sup {"(y) ' 

Rt'(r,y)} < o}

such that f I S. a

The author considers the next problem the most interesting open one in the
model theory of infinitary languages.

4.8 Question. Are the Ehrenfeuch-Fraisse games of length t+ determined
for all cardinals rc? (A11 the relations and functions are of arity 1 cf (n) .)

We conclude this chapter by giving an exampie of a non-determined sentence.
Let A be as in Theorem 4.6. As in Defi.nition 3.11 we define { € M*++.+ and
$ € V*++ * such that for all models I Ä or E has a winning strategy for F*a2(A, B)
if and only if A or E has a winning strategy for S(8,$) if and only if A or E has
a winning strategy for S (B , tlt) .

4.9 Lemma, ö ^rd $ are non-determined. o

5. Applications of games to the model theory of inffnitary languages

Our first goal in this chapter is an approximation theorem for lrc-Vaught
sentences.

Let
6: (vro A 1yo V ).., f\ 6ai....;.i.

i.el- io€J. a<K

be a Ärc-Vaught sentence, ? a urrc-tree and let €: max{tr,12}. We defi.ne a ?-
approximatiorl öT € Mq* of / by putting ör : (Tt,l), where ?' is the (,rc-tree
and I is the labeling function defined below. The idea here is to make ör b"
somewhat like the following Vaught sentence

(A Yro A lao V )o.' A rhtoioio"'toioio,
treT io€Io ioeJo a<rc
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where ,lrtsioia"'t-i-r' it 4iojo"'d'i' if (t0,...,to) form an increasing sequence in ?
and otherwise it is Ya(r : r).

The set of elements of ?' will be the set of all sequences of the form

(tB,Y,iB,1,jB)Br.o

(tB,Y,iB,1,jB)p." (t")

(tB,Y,iB,1, jB) B.o (t*, V)

(tB,Y,i 8,1, iB) B.o (to,V, fo)

or
(t p,Y, i B,1, i p) p <o ^ (to, V, fo, 3)

where a(rc andforall p <a tB€T,ipeIB arrd jB €Jp. Furthermore, tp+r
is always an immediate successor of. tp ard if B is a limit ordinal then tp is the
supremum of {i, ,l < §}. We order ?' by the initial segment relation.

For all a €T' we define l(c) as follows.
1. If r : .(tB,Y,i6,1,jp)Bao and c does not have any successors then l(r) :

AP.ao $'oto"'"oto '
2. If r: (tp,Y,iB,1,ip)p<" and c has a successor then l(r) : 1.
3. If c : (tB,Y,iB,1, jB)B<o ^ (t") then I(r) = V.
4. lf r: (tp,Y,ip,1, jp)B<o ^ (to,V) then l(r) : [.
5. If z : (tp,Y,ip,1,ip)p<o ^ (to,V,fo) then I(c) :3.
6. If r : (tB,Y,iB,1,ip)p<o ^ (to,V,eo,3) then l(r) : !.

The next lemma follows immediately from the definitions.

5.1 Lemma. For all models A:
1. E has a winning strategy for lS(A,ö)\' if and only if she åas a winning

strategy for S(A,ör) (i.". A I ö');
2. A has a winning strategy for lS (A, $)lr if and only if he has a winning strategy

for S(A,Sr).

Vaught himself has defi.ned approximations /o for all r..r1o-Vaught sentences

{, see [Mal] (or [Va]). One might ask how different the approximations defined
here are from those defined by Vaught. The next lemma answers this. We skip
the easy proof.

5.2 Lemma. Let $ be an w1w-Vaught sentence.
7. For every ordinal a there is an oo,o-tree T such that | öT * öo.
2. For every @,u-tree T there is an ordinal o sucå that | ö - öT .
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We immediately get the next corollary from Lemmas 5.1 and 1.7.

5.3 Coroll,ery. Let ö be an qrc-Vaught sentence and T and Tt oo, rc-trees.
Then

1. ? ö---* ör .

2. If there is an order preserving function g z T --+ Tt then ? ör' - ör .

The next theorem follows immediately from Lemma 5.1 and Theorem 2.3. Tn

the case n: a it is due to R. L. Vaught ([Vr]).

5.4 Approximation Theorem. If $ is a ).rc-Vaught sentence, A is of
cardinality ( l and p satisfies the condition below then

2L

A

The condition for LL is the

tL - Ut (z@" ))*

and otherwise

tL - Ljt(z(r',))* : 1 card.inal and 1 < rc).

5.5 Corollary. For all oorc -Vaught sentences ö,

?ö* A ö,.
T x,rc-ttee

5.6 Corollary. For aII models A and B

A: B(M*") if and only if A: B(V**).

We recall from Chapter 3 that A : B(yö",.) if and only if E has a winning
strategy for F*(A,B).

Our second goal in this chapter is to prove, under certain asumptions on ,c,
that one cannot express irr L*+ * that there is no decreasing sequence of length
rc. This generalizes the undefinability of well-order in Lrr* which is due to M.
Morley and E. Lopez-Escobar ([MM] and [Lo]). To do this, we have to be able to
construct models for sets of sentences of L*+*. For this reason we now present a
technique to construct a model out of constants.

Throughout the rest of this chapter, we assume that rc is a regular cardinal
and rc(" : rc(again we do not assume that rc is a limit cardinal). We also assume
that the signature pa is of cardinality ( rc and that all the relation and function
symbols in p are of arity < rc.

F A ö'<+ö.
T p,*-tree

following: if ,\ is a successor or cf(,\) 2 rc then

: 9,1 cardinals and p < Å,"y < rc)



,,

Let D be aset of sentences of L***(p), I » lS rc, and let C :'[c; : f < rc]

be a set of new constant symbols. We assume that in every sentenct, / € D all
negations are pushed in front of atomic formulas.

Let A(C) f E be afragment of L*+*(puC) of cardinality rc, i'e. Ä(C) is

closed under subformulas, under fi.nite operations, under substituting free variables
by terms, and Ä(C) includes all atomic formulas. This A(C) exists under the
assumptions on ,c we have made. Let 

^(C) 
be the family of all subsets S of

A(C) of cardinality ( rc that have the property that for all atomic formulas { of
L***(FU C) either $ / S or -ö e S.

5.7 Definition. The Hintikka game H*(E,A(C)) is a game of length rc

played by A and E. During the game E interprets symbols of p, to the set C to
make C a model of I. Tåis is done so that at every move d. ( rc first Å asks a

question and then E answers tåe question by choosing some ,So € A(C) , There
are eight different ways to form the question;

I. A cåooses some $€ E; tåen E must choose S" € 
^(C) 

so tåat ö e 5".
2. A chooses a closed term t; then E must cåoose S" € A(C) so that t : t,t :

c € .9o for some c € C.
Å cåooses t:t' €UoarSp, where t and tt are closed termsl then E must
choose S. € 

^(C) 
so that tt : t € Sa.

Å c.hooses 1iö(i) € UB<o Sp; then E must choose ,S. € 
^(C) 

so that
ö(e) e So for some C e C.

5. A cåooses \tä{(e) € Up<o Sp and some sequencei of closed terms; then E
must cåoose ,5. € A(C) so tåat d(i) e S".

6. Å cåooses VO e UB..SB; then E must cåoose ,S, e A(C) so that ö e S.
forsome$eQ

7. A chooses AO e UB..Sp and ö € iD; tiren E must cåoose ,S. e A(C) so

that ö € So.
8. A chooses t : tt and S(t) from l)p.oSB, where t and tt are closed termsl

then E must cåoose ^9" e A(C) so that ö(tt) e Sd.

-E must always choose,go so that l)u.o^9B g S.. A wins if for some a I t+ E
cannot find So satisfying tåe rules. Otherwise E wins.

Again we notice that If*(E,A(C)) is a closed s-game of length rc.

Although the definition of the game above is due to J. Oikkonen, we call this
game the Hintikka game because it is a generalization of the concept Hintikka set:

in the case n -- w E has a winning strategy for If'(X, A(C)) if and only if I can

be extended to a Hintikka set (see [Mat]).

5.8 Lemma. (rc is a regular cardinal and n<* : rc) Let D and A(C) be

a.s above. If E has a winning strategy for ä,(X, A(C)) tåen I åas a canonical
model A, i.e. for every ae A there is ce C with cA : a.

3.

4.
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Proof. We assume that E has a winning strategy for ä*(X,Ä(C)). We let
A and E play the game .ff,(», 

^(C)) 
so that E plays according to her winning

strategy and A as described below. The idea here is to make A ask all the possible
questions he can. For this let g : rc --+ rc x rc be one-one and onto with the property
that if S(r): (y,z) then y < s. In each move a < ,c we let Qo be the set
of all possible questions A can ask in that move. This set depends on how the
players have played earlier. In any case I Qo l( rc because n1*: rc and we can
enumerate it as Qo : {5fr : § < rc}. The question A chooses in move a is qf if
s(c) : h,§).

Let {^9. : o < rc} be the set of answers of E in the game where E played
according to her winning strategy and A according to the strategy described above.
We let S : Uo., So.

In S we have a complete description of l. We get the universe of I from
C as follows. In C we de6.ne an equivalence relation - by c - ct if. c: ct e S.
Because of. 2,3 and 8 in the definition of the Hintikka garne, - is an equivalence
relation. For all c e C wewrite [c] : {c' € C z ct -c} and define the universe of
Itobe{[c] :ceC].

All the symbols of p,UC are interpreted to I in the obvious way. For example
if c € C then ci : [c] and if rB(lc,g) is a binary relation symbol then rBr([c], [c/])
if -R(c, c') e ,S and so on. It follows immediately from the definition of the Hintikka
game that I is well-defined and a model of l. Trivially I is canonical. o

We say that ? is a wide .\,rc-tree if it satisfies what we require from a ),rc-
tree except that instead of neatness it is assumed to satisfy only the condition that
foreveryt€?theset

{t' eT ; {u eT ; u < t'} : {u € T : u < t)}

is of cardinality < ,\. We use this concept in the next theorem instead of the
concept of the },rc-tree to make the construction of ?* easier. Notice that if
for every .\,rc-tree 7 there is an order-preserving function g zT -+ U, then for
every wide I,rc-tree ?' there is an order-preserving function g;Tt --+ I/. This is
because every wide I,rc-tree can be extended to a .\,rc-tree.

5.9 Theorem. (n is a rcgular cardinal and rc1* : &) Let p, be any
signature which includes a unary predicate symbol U and a binary predicate
symbol 1. We assume that $ is a sentence of L*+*(p) and that for every wide
(2^)+, rc-tree T there is a model A of $ and an order-preserving function g :

T - (UA,<A). Then there is a model A of g such that (tln,<n) contains an
increasing sequence of length rc.

Proof. Let D : {do : a I rc} be a set of new constants. To prove the
theorem it is enough to show that the set
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hasamodet. Let C: {co: a < rc} b,:againaset of newconstants andlet
A(C) and A(C) be as in the definition o[ the Hintikka game (now the signature
is p U D). BV Lemma 5.8 it is enough to show that E has a winning strategy for
II*(»,§(C)). BV the Approximation Theorem 2.3 it is enough to show that E
has a winning strategy for [.F/*(D, Å(C))]' for every (2*)+, rc'tree T .

We show this. Let ? be an arbitrary (2*)+,,c-tree. The idea here is the
following. We define a model A of $ so that E can play the game [,4*(r, A(C))]T
by putting to ,5o only "what is true in A)'If she can do this, she must win. The

only problem she must face in doing this is that A can make her interpret a lot
of new constants do to A so that in all cases d,l <n d!, lf. a ( a'. So we must

make ([/1, <') u very rich ordering.
We put

?* : {(t,N,n) : t eT,N E{ueT:u<t} rc,n <-N(r)}.

We define an ordering of ?* by putting (t,N,n) I (t',N',n') if and only if
1. , < t' and N(r) : N'(c) for all r S t

or
2. t:t' and N :N' ar.d n <n'.

Because rc is regular T* is a wide (2')+,rc-tree.
Let A be such a model of / that there is an order-preserving function g :

T" - (UA,<'). Sy using I we can now describe a winning strategy of E for

lr/*(r, a(c))1".
We assume that Ä and E have played a moves. A has chosen the elements

{tBr0 <a} from T andaskedthequestions {op:B <a}.Ehas answeredwith
the sets {Sp r 0 < o}. For some i,i 1*, E has interpreted all "p, A < i, and
d.p, F < j , to A and nothing else. We wite cfl afi dfi for these interpretations.
E has done this so that if some constant c € C or d, € D exists in some sentence

öinUs.o,Sp,then c:cB or d,:d.,f,or some p(i or 1<i, Andeverything
that is ir Ua.o,SB is true in I with given interpretations. E has also chosen

numbers N(ip) for all P < a.
On move o A chooses ta e T and asks a question go. The question qo can

be of one of the eight different types in the definition of the Hintikka game. We

assume that qo is of type 2 and describe how E answers. In all other cases E can
answer similarly by keeping in mind that everything in !r.o Sp is true in I with
the given interpretations.

SoAhaschosenaclosedtermt. Let i'< rc and j'<* besuchthat i'>f,
i'> i andif ce C or de D existsin t then c:cg or d: d.rf.or some B<f'
or 1 < j'. Then E puts N(t,) - 1' and for all p, i < P < i', E interprets
cp arbitrarily and for all .1, j < 1 < j' E interprets d., to g((to,lf',r)), where
1yt q{toz?3a} rc and N'(til : N(rB) for all B < a (recall that 9 is an order-
preserving function g:T* ---* (UA,<A)). By interpreting new constants this way,
E can be sure that if r < B then d4 . dÅ.
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ci, to tA .At this point the interpretation # of t is fixed and E interprets
Then she can answer by choosing ,S* to be

U rru{r:t}u{t:";,).
P<a

By playing as explained above, E wins the game because she puts to ,9o only
what is true in l. o

As a corollary of Theorem 5.9, we can prove a generalization of Vaught's
Covering Theorem. In the case ,c : r,; it is due to R. L. Vaught ([Va]) and the
proof we will give is analogous to that in [Va].

5.10 Theorem. (rc, is a regular cardinal and rc1*: rc) Let Q be a n*rc-
Vaught sentence. lf Q does not have a model, then there is some (2*)+ , rc-tree T
for which O? does not have a modeL

Proof. For a contradiction we assume that

6: (vco A Jyo V ).., f\ 6i"i"...;"i.
i.el. i.eJ- a<E

is a rc*rc-Vaught sentence of the signature p and that for every (2*)+,rc-tree T
there is a model of iD" but there is not a model of iD. The idea in this proof is to
construct a sentence V of Zr+* that contradicts Theorem 5.9.

We take two new unary predicate symbols M(r) and, [/(c) , one new binary
predicate symbol < andfor every a ( rc and (...,ip,jp,...)p.o, ip € Ip, jp € Jp
for all g 1a,we take a new 1* a-ary predicate symbol p(",i0,il,"')e<n.

Let itr be the conjunction of 1 - 6 below.
l. " (U,<) is a partial ordering ard M is closed under the functions of p"
2. A{ VuV{..., x p t g B t...}B.. (a("'i p i p "') p.- (u, ro, ao t...t n g r y B,.. ) B <o +

6Q'ioie"')e'"(ro,go, ...,ag,yp,...)B<) :iB € IB,ip e Jpf.or all B < a,a < rc\

3. Vu € U(Ro(u))
4. A{ Vu,ut e UV{.., rBtaBt..)B..(u 1u,t -

1RG;oio ") o.- (u, *o,ao, ..., Dg,aB, ..) B<o *

p(...i0i0...) o<o (u, , rorAo, ,.., frg t yB, ...) p<.))

: ip e IB,ip e JB for all B < a,a < rc)

5. A{ VuV{..., r B t a B t...}B., (R("'ip i p "') p.. (u, ro, ao,..., o g t a B,..,) B <o *

Yu' e U(u' >'tL +
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Yso A :r. ! {-lvr{".) v (M(y.) n 8(doio"'d'i') (u' ,ro,aot...,Ea,g")))))
do€r. jo€J-

; iB € IB,iO € JB fot all B < a,a < rc)

6. A{ VuV{..., rBtagt...}p..(Ap.o R("'i"Jr"')t<F (u,r,otaot...,n1ta1s...)r<g *

p(...i0i0...)0.-(u,ro,aot...trgtgB,.)g<o: iB e IB,ip € Jp for all B < a,

a is a limit ordinal and < rc)

In short ![r says the following thing. Let A be a model for the signature
pU {U,M,<}. Then

I F j{E(...tpip---)p.. t iB € IB, jB € JB,a < ,c}V

if and only if
"MA ts6(u',<r)".

Because for every (2*)+,rc-tree T, §r has a model, we see that for every
wide (z*)+,rc-tree ?' there are a model A of i9 and an order preserving g :

T' - (UA,<l) . Because O does not have a model, there is no model I where
(Unr<o) contains an increasing ,c-sequence. Because {! e L*+*, the existence of
ilr contradicts Theorem 5.9. o

As a corollary of Theorem 5.10, we will prove a generalization of Theorem
5.9. We could also get this corollary from Theorem 5.9 itself by Skolemization.
This Skolemization would go somewhat like the proof of Theorem 5.10.

5.11 Corollary. (rc is a regular cardinal and rc<* : K) Let p, be any
signature that includes a uilary predicate symbol U and a binary predicate symbol
1. We assume that $ isasentenceof V*+*(p,) andthatforevery (2")+,rc-tree
T there is an order-presärving function g : T -'-+ (UA , <o) . Then there is a model
A of $ such that (UA,<n) consists of an increasing sequence of length rc.

Proof. To obtain a contradiction let $ e V** *Qt) be such that for every
(2")+,rc-tree ? thereisamodel A of $ andanorder-preserving g: T -'- (UA,<A)
but there is no model A of $ such that (U A 

, <A) consist of an increasing sequence

of length rc.

Let{€7"+rbe

41: (1r..)o<, A U@p) n t/(c") n (rB < r.).
9<o<*

Then { n t! ls a rc+rc-Vaught sentence and it does not have a model. On the other
hand, for every (2*)+rc-tree T (ö n,/)t h* a model, because A ? ,!r if and
only if there is an order-preserving function g:T -+ (UA,<n). This contradicts
Theorem 5.10. o
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5.12 Corollary. (rc is regular cardinal and rc<* = rc) Let p, be any signa-
ture wåicå includes a unary predicate symbol U and a binary predi,:ate symbol
<. Tåen V*" *(t ) is not closed under negation.

Proof. Let rlt e V*+*(p,) be as in the proof of Corollary 5.11. Then -ry' /
V***(t) by Corollary 5.11. o

We can also get a sort of separation theorem fot M*+* as a corollary of
Theorem 5.10. (The method in the proof is analogous to that used in [Va].)
For this we need the following theorem. In its most general form it is due to J.
Oikkonen. In the case ,c : r.r it is due to L. Svenonius and R. L. Vaught ([Sv] and

tv"l).
Werecallthat i[ is El over Lx"(p) (over M1*(p)) if it is of theform f,Sry',

where 3 i, r set of relation (and function) symbols arrd' tb e L^*(p u §) (,, e
M»*(p uS)).

5.13 Theorem. (rc is regular ca,rdinal and rc<* : n)
7. For all E! over L*+ * sentences i,St! tåere is a sentence $ of V*+ * sucå that

(i) Fl§,, +ö
(ii) for all models A of cardinality S

2. For all sentences ö of V*+ * there is a

? O ,-t l§th .

We omit the proof of this theorem. In e.g. [Mat] it is proved that if 3Stl is

Xf over -L.r. then there is a sentence $ of, Vrr. such that for all models I of
cardinality 1w A I ö *- fSrr. In that proof { is defined so that it is easy to
see that F 3§-ri - d (E just keeps on embedding C to the model and chooses

0" e L(C) according to the model, see [Mal]; see also the proof of Theorem 5.9
in this doctoral thesis) . Essentially the same proof would yield part 1 in Theorem
5.13. This is done in part in [Oi1] but it is doubtful whether the reader can find
that paper. Part 2 in Theorem 5.13 can be proved by Skolemization.

Notice that if in the part 1 in Theorem 5.13 the negation of l§r/ is also El
over .L*+*, then ! 6 *- =§t! 

(use Downward-Löwenheim-Skolem Theorem).

5.14 Separation Theoremfor M*+*. (rc isarcgularcardinaland rc1*:
rc) Let lE$ and l3tb be Dl over M*+ *. If 1Eö ni,§r1t does not have a model
then there is a sentence 0 e Mp*y * such that

FlEd+0
and

= 
0 + -f§r/.

Proof. We assume that 1EöA lsr, does not
we can assume that 

=EÖ 
and l3rh are Xl over

are sentences o and {, of v*+ * such that

r. A=ö+1§1/. _
»l over L*+ * sentence i.srh sucå that

have a model. By skolemization
L** *. By Theorem 5.13 there
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t. llEö --+ O and l33r/--* ilr
and

2. forallmodels I of cardinality < * AIO--18ö and I FV*13,/.
By the fact that Theorem 3.5 is true also for [+r, as we noticed after The-

orem 3.6, we see that O A ilr does not have a model. By Theorem 5.10 there is a
(2*)+,rc-tree ? such that (ö A V)" does not have a model. But then iD" n iUT
does not have a model. Now

pö7--Vr
and

F -V" --+ -{/
and

F -itr -* -15ry'

and so

F iDt * -15$.

On the other hand,

llE/-o
and

pO-*ö"
and so

ts1-Rö --+ (D?. o

5.15 Interpolation Theorem for L*+*. (rc is a rcgular cardinal and
rc1* : rc) Let ö e L*+*(tt) *d $ e L*+*Qtt). If ö I tp then there is 0 e
Mp*1**Q.rn p,t) such that $ | 0 and 0 l rh. "

With a refinement of the proof of Theorem 5.13, we can show that in Theorem
5.73 ö can be defined to satisfy the statement: Every relation symbol (excluding
identity) which occurs positively (negatively) in { occurs positively (negatively)
in ry', too. But then in Theorems 5.14 and 5.15 0 satisfies the statement: Every
relation symbol (excluding identity) which occurs positively (negativeiy) in d oc-
curs positively (negatively) in /, too. With our method we cannot get any closer
to the Lyndon Interpolation Theorem.

Let
MT*: {ö e Mx*: the negation of { belongs to M»*}.

Werecallthat A(.t1,) (^(Mr,))isthesetof those Dl over L7* (ovet M7*)
formulas ![ for which the negation of V is also D[ over -L1, (over M1,.).
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5.16 Corollary. (rc is a regular cardinal and K<* - rc)

A (,L** ,) (: L (M ** *)) g M(r* 
) + ,. E

5.L7 Beth's Theorem for M*+ *. (rc is regular cardinal
Let ö(P) € M *+ *(p U {P}) and let ö(P') be the sentence formed
everywhere by P' . We ass ume that

ö(P) 
^ 

ö(P') F \ä( P(r) *, P' (z)).

Then there is 0 e Mp*)*r(p) sucå that

29

and rc(* : rc)
by replacing P

ö(P) 
= 

w(P(u) -* d(E)).

Proof. Let E be new constants. Then

(d(P) 
^ 

P(z))^ (ö(P') n -P'(c))

does not have a model and d(r) will satisfy what we required if d(e) is the sepa-
rating sentence of these sentences. o

5.18 Separation Theorexnfor M**. Let rc beweakly compact. LetlE$
and 15{ be D! over M**. If 

=86 
n3sr1, does not have a model, then therc is a

sentence 0 e M** such that
|)E$ "+ 0

and

? 0 - -]Srh.
Proof. Because rc is weakly compact M** : Ur., M^*^ (this fact is noticed

in [KM]). So lEd arrd l^9rl are El over M1+1 for some ] < rc. Again because rc

is weakly compact we can choose ) to be regular and I<) : l. And so Theorem
5.18 follows from Theorem 5.14. o

We could also have got this theorem directly from Theorem 8.13, i.e. to prove
Theorem 5.18 we do not need the machinery we have developed in this doctoral
thesis; but we do need it for Theorem 5.14. so in the situation of Theorem 5.14,
we need more machinery to prove less. It would be interesting to know if we can
find 0 from Mr+, in Theorem 5.14.

Theorem 5.18 has the following three corollaries.

5.19 Corollary. Let rc be weakly compact. Then

A(tr'*) (: Ä(M"*)) : Mt*.

Proof. " C" follows from Theorem 5.18.
")" follows from part 2 in Theorem S.13 and the fact that if rc is weakly

compact then Mr, : Ur<* M1+1. o
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5.2O Beth's Theorem for M**. Let r, be weakly compact. Let $(P) e
M**(p U {P}) and let $(P') be the sentence formed by replacing P everywhere
by P' . We assume that

ö(P) 
^ 

ö(P') F \ä(P(7) <+ P' (z)).

Then tåere is 0 e M **(p) sucå that

d(P) F \tr(P(E) {+ d(E)).

Proof. Let Z be new constants. Then

(d(P) 
^ 

P(z)) 
^ 

(ö(P') n -P'(z))

does not have a model and d(U) will satisfy what we required if A(e) is the separant
of these sentences. o

We say that theory T in the language
property: it Ö e Mx* and for some model
mucimal consistent theory in My*.

S.2L Robinson Consistency Theorem for M**. Let rc be weakly com-
pact, Iet p' and pr,t' betwosignatures andlet p' be p,'np,". Suppose T isacomplete
theory in M**(1r) and. T1 ) T , Tz ) T are consistent theoiles in M**(p,') and
M**(t"), rcspectively. Furtåermore suppose T1 and T2 are of cardinality 1 n.
Then T1U ?z is consistent.

Proof. By Theorem 3.6 it is enough to show that for every { € ?1 and
,h e Tz the set {ö,rlr} is consistent. If it is not, then 

=Eön ^9,p do"t not have a
model, E is the set.of those relation and function symbols in / that are not in p
and B is the set of those relation and function symbols in ry' that are not in p.
If d is the separant of these sentences, it belongs to ? and thus to ?2, also. But
this is impossible because {0,rb) is not consistent. o

Mx* is complete if it has the following
A of ? A?O then öeT,i,.e. T isa
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