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1. Introduction

Consider a mapping u = u1 + iu2 ∈ W 1,2
loc (C,C). Its Jacobian is the determinant

of the differential matrix,

Ju = det

[
∂xu1 ∂yu1

∂xu2 ∂yu2

]
= ∂xu1∂yu2 − ∂yu1∂xu2.

This dissertation deals with the Jacobian equation
Ju = h,

where the data h is given and we look for a solution u. Modern study of the existence
and regularity of solutions to the Jacobian equation was initiated by J. Moser in
[Mos65]. Later contributions can be found, for instance, in [Rei72], [Dac81], [DM90],
[Ye94], [RY96], [BK02], [McM98], [CDK09] and the references contained therein.

In incompressible nonlinear elasticity the equation Ju = 1 is used to express the
incompressibility of a material (see e.g. [Bal77], [Cia98], [Le Dre85] and [LO81]).
The Jacobian equation also arises as a special case of the pullback equation (see
[CDK12]).

In this dissertation the data h belongs to the Hardy space in the plane, H1(C),
and we seek a solution u in the homogeneous Sobolev space

Ẇ 1,2(C,C) := {u ∈ L1
loc(C,C) : Du ∈ L2(C,R2×2)}.

R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes proved in the seminal paper
[CLMS93] the following result (in Rn for a general n ≥ 2):

Theorem 1.1. Let u = u1 + iu2 ∈ Ẇ 1,2(C,C). Then the Jacobian Ju belongs to
H1(C) and satisfies the estimate ‖Ju‖H1 . ‖∇u1‖L2‖∇u2‖L2.

The authors showed that no proper closed subspace of H1(C) contains the Jaco-
bians of all the mappings ofW 1,2(C,C). They proceeded to pose the famous problem
whether every function in H1(C) is the Jacobian of some mapping inW 1,2(C,C). We
consider the question in the following form where the inhomogeneous Sobolev space
W 1,2(C,C) is replaced by the homogeneous one.

Question 1.2. Does the Jacobian operator J map Ẇ 1,2(C,C) onto H1(C)?

Question 1.2 is the theme of this dissertation. We are not able to solve the Jacobian
equation in full generality, but we reduce solving it to a finite-dimensional problem
which is likely to be significantly easier to approach than Question 1.2. Indeed, if
Question 1.24 has a positive answer, then the Jacobian operator maps Ẇ 1,2(C,C)
onto H1(C)! In the main result of the dissertation, Theorem 1.27, we present results
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that make a positive answer to Question 1.24 appear plausible. In Theorem 1.26 we
tie together some of the key elements of the dissertation and put Theorem 1.27 into
context.

Let us recall some of the notions relevant to the study of the Jacobian equation.
When u ∈ Ẇ 1,2(C,C), the Wirtinger derivatives of u are defined by

uz :=
1

2
(∂x − i∂y)(u1 + iu2) and uz̄ :=

1

2
(∂x + i∂y)(u1 + iu2).

The Beurling transform S : L2(C,C)→ L2(C,C) (see §2.6) is used to write uz = Suz̄,
and since S is an isometry in L2(C,C), it follows that∫

C
|uz|2 =

∫
C
|Suz̄|2 =

∫
C
|uz̄|2.

By combining this with the identity |Du|2 = 2(|uz|2 + |uz̄|2) (where |Du| is the
Hilbert-Schmidt norm) we obtain ‖Du‖L2 = 2‖uz̄‖L2 .

We endow Ẇ 1,2(C,C) with the seminorm given by

‖u‖Ẇ 1,2 := ‖uz̄‖L2

in order to make the linear operator u 7→ uz̄ : Ẇ 1,2(C,C) → L2(C,C) an isometry.
Denoting f := uz̄ ∈ L2(C,C) we use the Beurling transform to write

Ju = |uz|2 − |uz̄|2 = |Sf |2 − |f |2.

This allows us to use the special properties of the Beurling transform in the study
of Jacobians and effortlessly transfer arguments from L2(C,C) to Ẇ 1,2(C,C) and
reversely.

In §3 the Jacobian equation is studied in the model case of compactly supported,
radially symmetric data. A measurable function h : C → R is said to be radial if it
is of the form h(z) = h(|z|). Likewise, a measurable mapping u : C → C is called a
radial stretching if it is of the form

u(z) := ρ(|z|) z
|z|
,

where ρ(r) ∈ R for every r ∈ [0,∞). It is natural to ask whether for a radial data h
there always exists a solution u that is a radial stretching. As one of the two main
theorems of §3 we prove the following result.

Theorem 1.3. Suppose h ∈ H1(C) is compactly supported, Lipschitz continuous and
radial. Then the following conditions are equivalent.

(i) There exists a radial stretching u ∈ Ẇ 1,2(C,C) that satisfies the Jacobian equa-
tion Ju = h.

(ii)
∫
B(0,r)

h ≥ 0 for every r > 0.

In Theorem 3.5 we show that Theorem 1.3 is optimal in the scale of Cα spaces:
Lipschitz continuity cannot be replaced by Cα continuity for any 0 < α < 1.

In order to allow the integrals
∫
B(0,r)

Ju to change sign we generalize radial stretch-
ings by assuming that u is of the form

(1.1) u(z) := ρ(|z|) γ(z)

|γ(z)|
,
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where γ(z) 6= 0 a.e. Note that radial stretchings are a special case where γ(z) = z.
In §3.2 the following analogue of Theorem 1.3 is proved.

Theorem 1.4. Suppose h ∈ H1(C) is compactly supported, Lipschitz continuous and
radial. Then the following conditions are equivalent.

(i) There exists a mapping u ∈ Ẇ 1,2(C,C) of the form (1.1) that satisfies
the Jacobian equation Ju = h.
(ii) If r > 0 and

∫
B(0,r)

h(z) dz = 0, then h(r) = 0.

Theorems 1.3 and 1.4 give limitations to solutions of the Jacobian equation with
radial symmetry properties. If it turns out that the Jacobian operator does not
map Ẇ 1,2(C,C) onto H1(C), it is hoped that Theorems 1.3 and 1.4 are of help in
producing a counterexample. However, the majority of the results in this dissertation
are formulated in an effort to provide a positive answer to Question 1.2. We next
start describing the general strategy used in this dissertation.

We briefly discuss the work of G. Cupini, B. Dacorogna and O. Kneuss on the
Jacobian equation and its relation to Question 1.2. Whereas in the earlier papers
on the Jacobian equation mentioned above the data was assumed to be positive, the
crucial novelty in [CDK09] is that the data is allowed to change sign. This makes the
study of the Jacobian equation much more difficult for various reasons; it prevents,
for instance, the flow method of Moser from being used. The relaxation on the sign
of the data is, however, vital in our setting since the assumption that the data h
belongs to H1(C) implies that

∫
C h = 0.

In [Kne12] O. Kneuss used ideas related to those in [CDK09] to study the case of
smooth, compactly supported data whose integral over Rn vanishes. The following
important result follows directly from [Kne12, Theorem 1] (see §4.1).

Theorem 1.5. The range of the operator J : Ẇ 1,2(C,C)→ H1(C) is a dense subset
of H1(C).

Theorem 1.5 and a weak continuity argument reduce Question 1.2, in the positive
direction, to proving a suitable a priori estimate (1.2) for energy-minimal solutions
that we next define.

Definition 1.6. If a mapping u ∈ Ẇ 1,2(C,C) satisfies∫
C
|uz̄|2 = min

{∫
C
|vz̄|2 : v ∈ Ẇ 1,2(C,C), Jv = Ju

}
,

then we call u an energy minimizer or an energy-minimal solution.

If the Jacobian equation Ju = h has a solution, then it has an energy-minimal
solution; for a proof of this basic result see Proposition 4.2.

Remark 1.7. Suppose every energy minimizer u ∈ Ẇ 1,2(C,C) satisfies

(1.2)
∫
C
|uz̄|2 . ‖Ju‖H1 .

Then J maps Ẇ 1,2(C,C) onto H1(C). We present a proof of this standard fact in
§4.2.
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It appears very difficult to control the norms of energy minimizers directly. We
therefore use a rather indirect way to study energy minimizers. The minimization
problem we are concerned with is the following one:

(1.3) minimize
∫
C
|uz̄|2 subject to the constraint Ju = h,

where h ∈ H1(C) is given. We approach the problem via Lagrange multipliers.
The Lagrange multipliers related to (1.3) belong to BMO(C). By C. Fefferman’s

famous theorem, BMO(C) is, suitably interpreted, the dual of H1(C) (see §2.5).
Likewise, by a result of R.R. Coifman and G. Weiss, H1(C) is the dual of VMO(C),
that is, of the closure of C∞0 (C,C) in BMO(C). When b ∈ BMO(C) and h ∈ H1(C),
we denote the dual pairing of b and h by∫ ∗

C
bh := 〈b, h〉BMO−H1 .

Definition 1.8. A function b ∈ BMO(C) is called a Lagrange multiplier for u ∈
Ẇ 1,2(C,C) if

d

dε

∫ ∗
C
bJu+εφ

∣∣∣∣
ε=0

=
d

dε

∫
C
|(u+ εφ)z̄|2

∣∣∣∣
ε=0

for every φ ∈ Ẇ 1,2(C,C), that is,

(1.4)
∫ ∗
C
bRe(uzφz − uz̄φz̄) = Re

∫
C
uz̄φz̄ for all φ ∈ Ẇ 1,2(C,C).

The definition of Lagrange multipliers is discussed more thoroughly in §4.2-4.3.
The basic idea behind using Lagrange multipliers is to introduce functional analytic
methods in the study of the problem. Furthermore, if the Lagrange multipliers are
uniformly bounded in the norm ‖ · ‖BMO, then they can be used to find mappings
that satisfy (1.2). Indeed, suppose b ∈ BMO(C) is a Lagrange multiplier for u ∈
Ẇ 1,2(C,C). Setting φ = u in condition (1.4) we get

(1.5)
∫
C
|uz̄|2 =

∫ ∗
C
bJu . ‖b‖BMO‖Ju‖H1 .

The following proposition summarizes the foregoing discussion.

Proposition 1.9. Suppose every energy minimizer u ∈ Ẇ 1,2(C,C) has a Lagrange
multiplier b ∈ BMO(C) and the norms of the Lagrange multipliers are uniformly
bounded. Then every energy minimizer satisfies∫

C
|uz̄|2 . ‖Ju‖H1

and the Jacobian operator maps Ẇ 1,2(C,C) onto H1(C).

In §4.3 we indicate why producing Lagrange multipliers is a non-trivial task in
our setting. We next discuss the method of constructing uniformly norm-bounded
Lagrange multipliers in this dissertation. We prefer to treat Lagrange multipliers
mostly in the setting of L2(C,C) and the nonlinear operator f 7→ |Sf |2 − |f |2 in-
stead of Ẇ 1,2(C,C) and the Jacobian. We thus write condition (1.4) in terms of L2

functions.
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Definition 1.10. A function b ∈ BMO(C) is called a Lagrange multiplier for f ∈
L2(C,C) if ∫ ∗

C
bRe(SfSϕ− fϕ) = Re

∫
C
fϕ for all ϕ ∈ L2(C,C).

In further analogy, we call f ∈ L2(C,C) an energy minimizer or an energy-minimal
solution if ∫

C
|f |2 = min

{∫
C
|g|2 : |Sg|2 − |g|2 = |Sf |2 − |f |2

}
.

We will construct Lagrange multipliers by using the norm that we next define.

Definition 1.11. When b ∈ BMO(C), we define

(1.6) ‖b‖BMOS := sup
f∈L2(C,C)\{0}

∫ ∗
C b(|Sf |

2 − |f |2)∫
C |f |2

= sup
‖f‖L2=1

∫ ∗
C
b(|Sf |2 − |f |2).

The corresponding dual norm of H1(C) is denoted by

‖h‖H1
S

:= sup

{∫ ∗
C
bh : b ∈ VMO(C), ‖b‖BMOS ≤ 1

}
.

The norm ‖ · ‖BMOS was defined, equivalently modulo a multiplicative constant
and in a different appearance, in [CLMS93]. The authors proved ‖ · ‖BMOS to be
equivalent to the standard norm ‖ · ‖BMO. In §2.8 we give a different proof of the
equivalence of the two norms by showing that ‖b‖BMOS = ‖Sb− bS‖L2→L2 for every
b ∈ BMO(C). Unlike the proof given in [CLMS93], our proof does not, however,
appear to generalize readily to higher dimensions.

Definition 1.12. When VMO(C) and BMO(C) are endowed with the norm ‖·‖BMOS ,
the resulting Banach spaces are denoted by VMOS(C) and BMOS(C). Likewise,
H1(C) equipped with the norm ‖ · ‖H1

S
is denoted by H1

S(C).
We denote the closed unit balls of the spaces defined above by BVMOS , BH1

S
and

BBMOS and the unit spheres by SVMOS , SH1
S
and SBMOS .

The following proposition shows that b ∈ SBMOS is a Lagrange multiplier for f ∈
L2(C,C) \ {0} exactly when the leftmost supremum in (1.6) is achieved at f .

Proposition 1.13. Let b ∈ SBMOS and f ∈ L2(C,C). The following conditions are
equivalent.

(i) b is a Lagrange multiplier for f .
(ii)

∫ ∗
C b(|Sf |

2 − |f |2) =
∫
C |f |

2.
If these conditions hold, then f is an energy minimizer.

The assumption ‖b‖BMOS = 1 in Proposition 1.13 and other results assures that
the Lagrange multipliers are uniformly bounded in norm. The condition is further
discussed in Remark 5.3.

Two natural questions now arise: which functions b are Lagrange multipliers and
which mappings f have a (uniformly norm-bounded) Lagrange multiplier? We first
treat the former question.
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In Theorem 5.10 we prove that BMOS(C) is not just isomorphic but isometrically
isomorphic to the bidual VMOS(C)∗∗. In particular,

(1.7)
∫ ∗
C
bh ≤ ‖b‖BMOS‖h‖H1

S
for all b ∈ BMOS(C) and h ∈ H1

S(C).

Recall that b ∈ SBMOS is said to be norm-attaining if
∫ ∗
C bh = 1 for some h ∈ SH1

S
.

Theorem 1.14. Let b ∈ SBMOS . The following conditions are equivalent.
(i) b is a Lagrange multiplier for some f ∈ L2(C,C) \ {0}.
(ii) b is norm-attaining.

In particular, every b ∈ SVMOS is a Lagrange multiplier for some f ∈ L2(C,C) \ {0}.

Remark 1.15. By the Bishop-Phelps theorem, norm-attaining elements are dense in
SBMOS (see [Meg98, Theorem 2.11.14]). However, since VMOS(C) is not reflexive,
BMOS(C) is not reflexive either, and so by a fundamental theorem of R.C. James
(see [Meg98, Theorem 2.9.4]), some elements of SBMOS are not norm-attaining.

We next characterize mappings possessing a Lagrange multiplier in terms of the
norm ‖ · ‖H1

S
. It is easy to show that every f ∈ L2(C,C) satisfies

(1.8) ‖|Sf |2 − |f |2‖H1
S
≤
∫
C
|f |2

(see Lemma 5.1). The following result follows easily from (1.8), (1.7), Proposition
1.13 and the Hahn-Banach theorem (see §5.3).

Theorem 1.16. Let f ∈ L2(C,C). The following conditions are equivalent.
(i) f has a Lagrange multiplier b ∈ SBMOS .
(ii)

∫
C |f |

2 = ‖|Sf |2 − |f |2‖H1
S
.

Theorems 1.14 and 1.16 make it natural to study mappings in L2(C,C) that satisfy
the condition ‖|Sf |2 − |f |2‖H1

S
=
∫
C |f |

2.

Definition 1.17. We denote

L2
S(C,C) =

{
f ∈ L2(C,C) :

∫
C
|f |2 = ‖|Sf |2 − |f |2‖H1

S

}
and SL2

S
:= L2

S(C,C) ∩ SL2 .

Remark 1.18. The class L2
S(C,C) is not a vector space. We briefly sketch the idea

of a proof of this fact. Consider any f ∈ L2
S(C,C) \ {0}, choose u ∈ Ẇ 1,2(C,C)

such that uz̄ = f (see Lemma 2.26) and set g := ūz̄. Then f, g ∈ L2
S(C,C) but

|S(f + g)|2 − |f + g|2 = Ju+ū = 0 and
∫
C |f + g|2 > 0 so that f + g /∈ L2

S(C,C).

Theorems 1.14 and 1.16 indicate that the set {|Sf |2−|f |2 : f ∈ L2
S(C,C)} is rather

large, but is it equal to the whole space H1
S(C)? By homogeneity, the question is

equivalent to the question whether {|Sf |2 − |f |2 : f ∈ SL2
S
} = SH1

S
. A partial result

is given in the following theorem.

Theorem 1.19. The following statements hold.
(i) {|Sf |2 − |f |2 : f ∈ SL2

S
} contains all the extreme points of BH1

S
.

(ii) {|Sf |2 − |f |2 : f ∈ SL2
S
} is closed in the relative weak-∗ topology of SH1

S
. In

particular, {|Sf |2 − |f |2 : f ∈ SL2
S
} is norm closed.
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Theorem 1.19 gives a fairly strong largeness criterion for {|Sf |2−|f |2 : f ∈ SL2
S
} as

we shall see below in Remark 1.21 and Theorem 1.27. SinceH1
S(C) is a separable dual

space (see Proposition 2.15), by a theorem of C. Bessaga and A. Pełczyński every
closed, bounded, convex subset of H1

S(C) is the closed convex hull of its extreme
points (see Theorem 2.42). This, among other things, motivates study of the duality
mapping.

Definition 1.20. The duality mapping D : SVMOS → SH1
S
is defined by

D(b) :=

{
h ∈ SH1

S
:

∫ ∗
C
bh = 1

}
.

Remark 1.21. When b ∈ SVMOS , the set D(b) is convex and weak-∗ compact (in
particular, closed and bounded). Furthermore, h ∈ D(b) is an extreme point of D(b)
if and only if h is an extreme point of SH1

S
. Thus, by Theorems 1.19 and 2.42, D(b)

is the closed convex hull of elements of {|Sf |2 − |f |2 : f ∈ SL2
S
} ∩D(b).

It turns out that we can say a lot more about D(b) by using the commutator
Sb − bS : L2(C,C) → L2(C,C). The basic properties of the operator defined below
are treated in §2.8.

Definition 1.22. When b ∈ BMO(C), we define the linear operator Kb : L2(C,C)→
L2(C,C) by

Kbf := (Sb− bS)Sf.
The following proposition, proved in §5.4, relates the operators Kb to Lagrange

multipliers; we denote the kernel of I −Kb by ker(I −Kb).

Proposition 1.23. Suppose b ∈ BMO(C) and f ∈ L2(C,C). The following condi-
tions are equivalent.

(i) f ∈ ker(I −Kb).
(ii) b is a Lagrange multiplier for f .

Furthermore, if b ∈ SVMOS , then ker(I −Kb) is finite-dimensional and contained in
L2
S(C,C).

We conclude that when b ∈ SVMOS , the set
ker(I −Kb) ∩ SL2

S
= {f ∈ SL2

S
: b is a Lagrange multiplier for f}

is the (Euclidean) unit sphere of a finite-dimensional subspace of L2(C,C). By Propo-
sitions 1.13 and 1.23,

{|Sf |2 − |f |2 : f ∈ ker(I −Kb) ∩ SL2
S
} = {|Sf |2 − |f |2 : f ∈ SL2

S
} ∩D(b).

These considerations prompt the following question.

Question 1.24. Does the operator f 7→ |Sf |2 − |f |2 map ker(I − Kb) ∩ SL2
S
onto

D(b) for every b ∈ SVMOS?

Remark 1.25. Solving this relatively concrete finite-dimensional problem in the pos-
itive would show that the operator f 7→ |Sf |2 − |f |2 maps L2

S(C,C) onto H1
S(C)

and thus provide a positive answer to Question 1.2! Indeed, suppose the answer to
Question 1.24 is positive. By the Bishop-Phelps theorem, norm-attaining elements
are dense in SH1

S
, and every norm-attaining element of SH1

S
belongs, by definition, to

D(b) for some b ∈ SVMOS . Now use Theorem 1.19 and homogeneity.
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We summarize many of the central points of the dissertation in the following result.
Theorem 1.26 is proved by combining Theorem 1.16, the definition of L2

S(C,C) and
Remark 1.25.

Theorem 1.26. The following statements are equivalent.
(i) The operator f 7→ |Sf |2 − |f |2 maps ker(I − Kb) ∩ SL2

S
onto D(b) for every

b ∈ SVMOS .
(ii) The operator f 7→ |Sf |2 − |f |2 maps L2

S(C,C) onto H1
S(C).

(iii) Every energy minimizer f ∈ L2(C,C) has a Lagrange multiplier b ∈ SBMOS .
(iv) Every energy minimizer f ∈ L2(C,C) satisfies

∫
C |f |

2 = ‖|Sf |2 − |f |2‖H1
S
.

If (i)-(iv) are true, then the answer to Question 1.2 is positive.

In §6.3 we prove the following partial result about Question 1.24. The author
considers Theorem 1.27 the main theorem of this dissertation. Recall that when
b ∈ SVMOS , the convex set D(b) is the closed convex hull of its extreme points.

Theorem 1.27. Let b ∈ SVMOS . The following statements hold.
(i) D(b) is contained in a finite-dimensional subspace of H1

S(C).
(ii) f 7→ |Sf |2 − |f |2 : ker(I −Kb) ∩ SL2

S
→ D(b) is Lipschitz continuous.

(iii) {|Sf |2− |f |2 : f ∈ ker(I −Kb)∩ SL2
S
} contains all the extreme points of D(b).

(iv) {|Sf |2 − |f |2 : f ∈ ker(I −Kb) ∩ SL2
S
} is closed and path-connected.

Remark 1.28. The gist of Theorem 1.27 is path-connectedness. If f, g ∈ ker(I−Kb)∩
SL2
S
and |Sf |2 − |f |2 6= |Sg|2 − |g|2, we have

tf + (1− t)g
‖tf + (1− t)g‖L2

∈ ker(I −Kb) ∩ SL2
S

for every t ∈ [0, 1]. This allows us to form an abundance of paths between points
in {|Sf |2 − |f |2 : f ∈ ker(I − Kb) ∩ SL2

S
}. A similar technique does not work in

{|Sf |2 − |f |2 : f ∈ SL2
S
} since L2

S(C,C) is not a vector space (see Remark 1.18).

Question 1.24 is further discussed in §6.3. Question 1.24 and Theorem 1.27 mo-
tivate a careful study of the interplay between a mapping f ∈ L2

S(C,C) and its
Lagrange multiplier b ∈ SBMOS . We present several results on this topic and the
local properties of energy minimizers in §7-8.

Local study of energy minimizers leads us to study Jacobians of Sobolev mappings
in bounded Lipschitz domains of C. This is the last topic of the dissertation. The
following analogue of Question 1.2 was posed by Z.J. Lou, S.Z. Yang and D.J. Song
in [LYS05].

Question 1.29. If Ω ⊂ C is a bounded Lipschitz domain and h ∈ H1(C) satisfies
supp(h) ⊂ Ω̄, does there exist u ∈ W 1,2

0 (Ω,C) with Ju = h in Ω?

We solve this problem in the negative by using a theorem of T. Iwaniec and V.
Šverák on mappings with integrable distortion (see §2.2). The solution is presented
in §8.3.
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2. Preliminaries

In this chapter we set definitions and present, mostly without proofs, some of the
results relevant to the study of the Jacobian equation. Sections 2.1-2.2 deal with
Sobolev spaces in the plane, whereas §2.3-2.5 treat VMO(C), H1(C), BMO(C) and
the interplay between them. In §2.6 we recall some basic facts about the Cauchy
transform C and the Beurling transform S, and they are applied in §2.7 to commu-
tators of the form Sb− bS, where b ∈ BMO(C). Banach space geometry is a central
tool in this dissertation, and in §2.9 we present some of the basic definitions needed.

2.1. Sobolev spaces. We first discuss the Sobolev spaces that are used in this
dissertation; some of the standard references are [AF03] and [EG92]. In the context
of Sobolev spaces partial derivatives are understood in the distributional sense.

Definition 2.1. The homogeneous Sobolev space Ẇ 1,2(C,C) is defined by

Ẇ 1,2(C,C) := {u = u1 + iu2 ∈ L1
loc(C,C) : Du ∈ L2(C,R2×2)},

and Ẇ 1,2(C,C) is equipped with the seminorm given by

‖u‖Ẇ 1,2 := ‖uz̄‖L2 .

Since ‖u‖Ẇ 1,2 = 0 whenever u is a constant function, ‖ · ‖Ẇ 1,2 is only a seminorm
on Ẇ 1,2(C,C). This is a slight nuisance, and one apparently natural option would
be to identify mappings in Ẇ 1,2(C,C) that differ by a constant. Compositions η ◦ u
with η ∈ C∞0 (C,C) and u ∈ Ẇ 1,2(C,C) are, however, an important tool in this
dissertation, and as a result of the identification such compositions would cease to
be well-defined.

Instead of factoring out constants we introduce the subspace of functions whose
integral over the unit disc vanishes and define

Ẇ 1,2
D (C,C) :=

{
u ∈ Ẇ 1,2(C,C) :

∫
D
u = 0

}
.

Here and elsewhere in this dissertation D is the unit disc. Note that Ẇ 1,2(C,C) =
Ẇ 1,2

D (C,C) + C. The range of J is obviously not affected by switching the domain
from Ẇ 1,2(C,C) to Ẇ 1,2

D (C,C), and depending on the context we use whichever space
is more convenient.

A proof of the following standard fact can be found at [OS12, p. 3].

Proposition 2.2. C∞0 (C,C) is dense in Ẇ 1,2(C,C).

We also use (inhomogeneous) Sobolev spaces in domains of the complex plane.

Definition 2.3. When Ω ⊂ C is a domain the Sobolev space W 1,2(Ω,C) consists of
functions u ∈ L2(Ω,C) such that Du ∈ L2(Ω,R2×2).

For computational simplicity we use the Hilbert-Schmidt norm given by

|Du|2 := (∂xu1)2 + (∂yu1)2 + (∂xu2)2 + (∂yu2)2 = 2(|uz|2 + |uz̄|2)

instead of the operator norm. The Sobolev spaceW 1,2(Ω,C) becomes a Hilbert space
when equipped with the norm ‖ · ‖W 1,2(Ω,C) given by

‖u‖W 1,2(Ω,C) :=
(
‖u‖2

L2(Ω,C) + ‖Du‖2
L2(Ω,R2×2)

) 1
2
.
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Definition 2.4. The closure of C∞0 (Ω,C) in W 1,2(Ω,C) is denoted by W 1,2
0 (Ω,C).

If u ∈ W 1,2
0 (Ω,C), then the mapping defined by

U(z) :=

{
u(z), z ∈ Ω,

0, z ∈ C \ Ω

belongs to W 1,2(C,C). The converse does not hold for a general domain Ω. It does,
however, hold when Ω is a Lipschitz domain.

Definition 2.5. A domain Ω ⊂ C is said to be a Lipschitz domain if for every point
z ∈ ∂Ω there exist l > 0 and a Lipschitz function g : R→ R such that, upon rotating
and relabeling the coordinate axes of C if necessary,

Ω ∩Q(z, l) = {w = w1 + iw2 : g(w1) < w2} ∩Q(z, l),

where Q(z, l) is the open square with center z and sidelength l.

When Ω is a Lipschitz domain, there exists, furthermore, a bounded linear operator
E : W 1,2(Ω,C) → W 1,2(C,C) such that Eu|Ω = u for every u ∈ W 1,2(Ω,C) (see
[EG92, p. 135]).

2.2. Invertibility of Sobolev mappings. Recall that if u ∈ C1(C,C) has nonvan-
ishing Jacobian at a point z ∈ C, then u is locally invertible by the Inverse function
theorem. The invertibility properties of Sobolev mappings are more delicate, as we
discuss in this section. We denote the operator norm of a matrix A ∈ R2×2 by ‖A‖.

Definition 2.6. Suppose Ω ⊂ C is a bounded domain and u ∈ W 1,2(Ω,C). Then u
is said to have finite distortion if

(2.1) ‖Du(z)‖2 ≤ K(z)Ju(z)

for a.e. z ∈ Ω and 1 ≤ K(z) <∞ for a.e. z ∈ Ω.

Suppose now u ∈ W 1,2(Ω,C) has finite distortion. By (2.1), Ju ≥ 0 a.e. in Ω. In
the points where Ju > 0 the linear distortion Ku is defined by

Ku(z) :=
‖Du(z)‖2

Ju(z)
=

(|uz|+ |uz̄|)2

Ju(z)
≥ 1.

Since |Du|2 = 2(|uz|2 + |uz̄|2), it follows that
|Du|2

2Ju
≤ Ku ≤

|Du|2

Ju
.

Condition (2.1) implies that Du(z) = 0 a.e. in the critical set

Zu := {z ∈ Ω: Ju(z) = 0},
and in points of Zu we set Ku(z) := 1.

When the Jacobian of a mapping u ∈ W 1,2(Ω,C) is positive and no higher reg-
ularity results on u are available, Ku ∈ L1(Ω) is a particularly natural qualitative
condition. Suppose, say, 0 < c ≤ Ju ≤ C <∞. Then |Du|2/2C ≤ Ku ≤ |Du|2/c and
so ∫

Ω

Ku .c

∫
Ω

|Du|2.

However, if Du does not enjoy higher integrability, the linear distortion Ku cannot
belong to L1+ε(Ω) for any ε > 0.
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In [IS93] T. Iwaniec and V. Svérak proved the following Stoilow-type factorization
result for mappings with integrable distortion.

Theorem 2.7. Let Ω ⊂ C be a bounded domain and suppose u ∈ W 1,2(Ω,C) sat-
isfies Ju ≥ 0 a.e. and Ku ∈ L1(Ω). Then there exists another domain Ω′ ⊂ C, a
homeomorphism g : Ω→ Ω′ and an analytic function φ : Ω′ → C such that u = φ ◦ g.

Theorem 2.7 allows us to conclude that a mapping with integrable distortion is a
local homeomorphism a.e.

Corollary 2.8. Let Ω be a bounded domain in C and suppose a non-constant mapping
u ∈ W 1,2(Ω,C) satisfies Ju ≥ 0 and Ku ∈ L1(Ω). Then u is a local homeomorphism
in Ω \ S, where S ⊂ Ω is discrete.

Locally, outside a discrete set, Corollary 2.8 can be used to assume that u is a
homeomorphism. Then the following result of K. Astala, T. Iwaniec, G. Martin and
J. Onninen (see [AIMO05, Theorem 9.1]) gives important information about the local
inverse.

Theorem 2.9. Let Ω ⊂ C be a bounded domain and suppose a homeomorphism
u ∈ W 1,2(Ω, u(Ω)) satisfies Ju ≥ 0 a.e. and Ku ∈ L1(Ω). Then u−1 ∈ W 1,2(u(Ω),Ω)
and ∫

u(Ω)

‖Du−1‖2 =

∫
Ω

Ku.

2.3. The Hardy space H1(C). Another function space essential to this dissertation
is the Hardy space H1(C) defined originally by E. Stein and G. Weiss. In this section
we give a definition of H1(C) and briefly discuss the atomic decomposition of H1(C).
The results and their proofs can be found in the books [Ste93] and [Gra04].

We fix, for the remainder of this dissertation, a smooth function Φ : C → R that
satisfies supp(Φ) ⊂ D and

∫
C Φ = 1. When t > 0, the function Φt ∈ C∞0 (C) is defined

by

Φt(z) :=
1

t2
Φ
(z
t

)
.

A change of variables yields
∫
C Φt = 1 for every t > 0. The smooth maximal function

of a tempered distribution h ∈ S ′(C) is given by

Mh(z) := sup
t>0
|h ∗ Φt(z)|.

Definition 2.10. The Hardy space H1(C) is defined by

H1(C) := {h ∈ S ′(C) : Mh ∈ L1(C)}.

We endow H1(C) with the norm

‖h‖H1 := ‖Mh‖L1 ,

and as a result H1(C) becomes a Banach space (see [Gra04, Proposition 6.4.10]).
There exists a plethora of equivalent norms that are used in H1(C) (see [Gra04,
Theorem 6.4.4]). In particular, in the definition of the smooth maximal function
Mh we can replace Φ by any Ψ ∈ S(C) that satisfies

∫
C Ψ 6= 0 and thereby get an

equivalent norm for H1(C). In §2.8 we recall the definition of another norm that is
particularly well-suited to the study of the Jacobian equation.
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Members of H1(C) are integrable. Furthermore, if h ∈ H1(C), then
∫
C h = 0. The

converse does not hold, but the following proposition gives a partial converse. The
result can be proved by adapting the argument from [Ste93, p. 106].

Proposition 2.11. Suppose 1 < p <∞ and a function h ∈ Lp(C) is supported on a
square Q ⊂ C and satisfies

∫
C h = 0. Then h ∈ H1(C) and h satisfies the inequality

‖h‖H1 .p |Q|
1
p′ ‖h‖Lp(Q).

One of the central theorems on H1(C) is the decomposition of H1 functions into
so-called H1 atoms which are defined as follows.

Definition 2.12. A measurable function a : C→ R is called anH1 atom if it satisfies
the following properties:

(i) a is supported in a square Q ⊂ C,
(ii) ‖a‖L∞ ≤ 1/|Q|,
(iii)

∫
C a = 0.

We also call a a Q-atom.

Suppose now a is a Q-atom. Then Proposition 2.11, Hölder’s inequality and con-
dition (iii) in Definition 2.12 give

‖a‖H1 . |Q|
1
2

(∫
Q

|a|2
) 1

2

≤ |Q|
1
2

(
|Q|‖a‖2

L∞

) 1
2 ≤ 1,

and so a belongs to H1(C) and has a uniformly bounded H1 norm.
The following fundamental result, the atomic decomposition of Hardy spaces, was

proved by R.R. Coifman in one dimension and generalized by R.H. Latter to higher
dimensions. We only state the atomic decomposition theorem in the case relevant to
us, namely H1(C) (see e.g. [Ste93, p. 107]).

Theorem 2.13. Let h ∈ H1(C). Then there exist λj ∈ R and H1 atoms aj such that

lim
n→∞

∥∥∥∥∥h−
n∑
j=1

λjaj

∥∥∥∥∥
H1

= 0,

∞∑
j=1

|λj| . ‖h‖H1 .

The decomposition given in Theorem 2.13 is not unique, neither is it linear with
respect to h. However, H1 atoms are so much easier to use than general H1 functions
that the atomic decomposition has found extensive use in analysis. The following
proposition presents one application of the atomic decomposition of H1(C).

Proposition 2.14. The set

C∞• (C) :=

{
ϕ ∈ C∞0 (C) :

∫
C
ϕ = 0

}
is a dense subspace of H1(C).

We briefly sketch the idea of the proof. Note first that by Theorem 2.13, finite linear
combinations of H1 atoms are dense in H1(C). When h is such a linear combination,
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the mollified functions h ∗Φt, t > 0, belong to C∞• (C). Proposition 2.11 can then be
used to approximate h by the functions h ∗ Φt.

Another basic property of H1(C) is presented in the following result. It turns out
to be crucial to us, as we use Banach space geometry as one of our main tools.

Proposition 2.15. The Hardy space H1(C) is separable.

Proof. When k ∈ N, denote

L2
0(D(0, k)) :=

{
f ∈ L2(C) : supp(f) ⊂ D(0, k) and

∫
C
f = 0

}
.

As a subspace of L2(C), the space L2
0(D(0, k)) is separable. The claim follows by

choosing a dense countable set in L2
0(D(0, k)) for each k ∈ N and using Propositions

2.11 and 2.14. �

We also need a Hardy-type space on bounded Lipschitz domains of C; [JSW84],
[Miy90], [CKS93], [Cha94], [CDS99] and [AR03] are a few of the main articles on this
topic. When Ω ⊂ C is such a domain, the Hardy space H1

z(Ω) consists of functions
whose zero extension to C \ Ω belongs to H1(C). More precisely:

Definition 2.16. A function h ∈ L1
loc(Ω) belongs to H1

z(Ω) if the extension H : C→
R,

H(z) :=

{
h(z), z ∈ Ω,

0, z ∈ C \ Ω,

belongs to H1(C).

The norm defined by ‖h‖H1
z(Ω) := ‖H‖H1 makes H1

z(Ω) a Banach space.

2.4. Jacobians of Sobolev mappings. As we mentioned in the Introduction, R.R.
Coifman, P.-L. Lions, Y. Meyer and S. Semmes proved in [CLMS93] that Jacobians
of mappings in Ẇ 1,2(C,C) belong to H1(C). The main motivation behind the work
done in [CLMS93] was the following result of S. Müller (see [Mül89, Theorem 1]).
Müller’s theorem and the other results mentioned in this section were proved in Rn,
n ≥ 2, but we formulate them only in the case relevant to us, the complex plane.

Theorem 2.17. Let Ω ⊂ C be open and suppose u ∈ W 1,2(Ω,C). If Ju ≥ 0 a.e.,
then Ju log(2 + Ju) ∈ L1

loc(Ω).

On the other hand, it follows from an earlier result of E.M. Stein (see [Ste69,
Theorem 1]) that if h ∈ H1(C) satisfies h ≥ 0 in an open set Ω ⊂ C, then h log(2+h) ∈
L1
loc(Ω). We now restate the theorem of R.R. Coifman, P.-L. Lions, Y. Meyer and S.

Semmes.

Theorem 2.18. Let u = u1 + iu2 ∈ Ẇ 1,2(C,C). Then the Jacobian Ju is in H1(C)
and satisfies the estimate ‖Ju‖H1 . ‖∇u1‖L2‖∇u2‖L2.

Theorem 2.18 has the following implication.

Corollary 2.19. The operator J : Ẇ 1,2(C,C)→ H1(C) is locally Lipschitz continu-
ous.
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Proof. Let u, v ∈ Ẇ 1,2(C,C). We write

Ju − Jv = Ju1+i(u2−v2) + Ju1−v1+iv2

and use Theorem 2.18 to estimate
‖Ju − Jv‖H1 ≤ ‖Ju1+i(u2−v2)‖H1 + ‖Ju1−v1+iv2‖H1

. ‖∇u1‖L2‖∇(u2 − v2)‖L2 + ‖∇(u1 − v1)‖L2‖∇v2‖L2

. (‖∇u1‖L2 + ‖∇v2‖L2)‖u− v‖Ẇ 1,2 .

This proves the local Lipschitz continuity of J . �

Coifman, Lions, Meyer and Semmes also proved the following Jacobian decompo-
sition theorem. A quick way to deduce Theorem 2.20 from the atomic decomposition
of H1(C) is shown in [LYS05].

Theorem 2.20. Suppose h ∈ H1(C). Then there exist λj ∈ R and uj ∈ Ẇ 1,2(C,C)
such that

h =
∞∑
j=1

λjJuj

(convergence in the norm ‖ · ‖H1),
∞∑
j=1

|λj| . ‖h‖H1

and ∫
C
|Duj|2 ≤ 1 for all j ∈ N.

We shall also use the following classical result which says that the Jacobian is a
null Lagrangian (see [AIM09, Corollary 2.9.3]).

Proposition 2.21. Let Ω ⊂ C be a domain and suppose u, v ∈ W 1,2(Ω,C) and
u− v ∈ W 1,2

0 (Ω,C). Then ∫
Ω

Ju =

∫
Ω

Jv.

2.5. VMO(C) and BMO(C). By a famous theorem of C. Fefferman, the space of
functions of bounded mean oscillation is the dual space of H1(C). In this section we
discuss Fefferman’s theorem and the later result of R.R. Coifman and G. Weiss that
says that H1(C) is the dual of the space of functions of vanishing mean oscillation.
As in the case of H1(C), [Ste93] and [Gra04] are some of the standard references.

When b ∈ L1
loc(C) and Q ⊂ C is a square, the average of b over Q is denoted by

bQ := −
∫
Q
b := |Q|−1

∫
Q
b.

Definition 2.22. A function b ∈ L1
loc(C) belongs to BMO(C), the space of functions

of bounded mean oscillation, if there exists a constant A ≥ 0 such that

(2.2) −
∫
Q

|b− bQ| ≤ A for every square Q ⊂ C.

The smallest constant for which (2.2) holds is denoted by ‖b‖BMO.
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To be precise, in BMO(C) functions that differ by a constant are identified. Then
‖ · ‖BMO becomes a norm with respect to which BMO(C) is a Banach space. One of
the central properties of BMO(C) is the following higher integrability theorem of F.
John and L. Nirenberg.

Theorem 2.23. Let b ∈ BMO(C). If 1 < p < ∞, then b ∈ Lploc(C) and b satisfies
the estimate (

1

|Q|

∫
Q

|b− bQ|p
) 1

p

.p ‖b‖BMO

for every square Q ⊂ C.

The duality theorem of C. Fefferman is another fundamental result on BMO(C).
We denote the space of finite linear combinations ofH1 atoms byH1

a(C). By Theorem
2.13, H1

a(C) is dense in H1(C). Note that if h ∈ H1
a(C), then h is bounded and

compactly supported and therefore bh ∈ L1(C) for every b ∈ BMO(C).

Theorem 2.24. Suppose b ∈ BMO(C). Then the linear functional ` : H1
a(C) → R

defined by the Lebesgue integral

(2.3) 〈`, h〉 :=

∫
C
bh

has a unique bounded extension to H1(C) and satisfies the estimate

(2.4) ‖`‖(H1)∗ := sup
‖h‖H1≤1

〈`, h〉 . ‖b‖BMO.

Conversely, for every continuous linear functional ` onH1(C) there exists b ∈ BMO(C)
such that (2.3) holds for all h ∈ H1

a(C) and

‖b‖BMO . ‖`‖(H1)∗ .

The element b ∈ BMO(C) corresponding to ` is unique.

As is customary, we identify the linear functional ` with the function b ∈ BMO(C).
Following [BIJZ07] we denote the dual pairing by

(2.5)
∫ ∗
C
bh := 〈b, h〉 = lim

n→∞

∫
C
b

n∑
j=1

λjaj,

where
∑∞

j=1 λjaj is an atomic decomposition of h generated by Theorem 2.13. The
value of

∫ ∗
C bh does not depend on the choice of the decomposition.

The pointwise product of b ∈ BMO(C) and h ∈ H1(C) neet not be integrable,
even locally (see [Ste93, p. 178]). Therefore the dual pairing of b and h needs to be
interpreted in some manner, for instance via (2.5). Different ways to give

∫ ∗
C bh a

meaning are discussed in [BIJZ07]. However, if bh ∈ L1(C), then
∫ ∗
C bh =

∫
C bh, and

this provides a justification for the suggestive notation
∫ ∗
C bh.

Not only is BMO(C) the dual of H1(C), R.R. Coifman and G. Weiss proved (see
[CW77, Theorem 4.2]) that H1(C) is the dual of a subspace of BMO(C) called
VMO(C), the space of functions of vanishing mean oscillation. There exist two
different and non-equivalent definitions of VMO(C) in the literature, but in this
dissertation the following one is used.

Definition 2.25. VMO(C) is the closure of C∞0 (C) in BMO(C).
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It turns out that VMO functions have useful properties that general BMO functions
lack. One example is discussed in §2.7; the commutator of a function b ∈ BMO(C)
with the Beurling transform is a bounded operator in L2(C,C), but if b belongs to
VMO(C), the commutator is a compact operator.

2.6. The Cauchy transform and the Beurling transform. Jacobians of map-
pings in Ẇ 1,2(C,C) can often be studied more conveniently by switching to the setting
of L2(C,C) via the Cauchy transform and the Beurling transform. Two of the prin-
cipal reasons for this are the relative ease of using duality arguments in L2(C,C) and
the nice operator theoretical properties of the Beurling transform. For proofs of the
facts mentioned in this section we refer to [AIM09].

Recall that we defined ‖u‖Ẇ 1,2 := ‖uz̄‖L2 for all u ∈ Ẇ 1,2(C,C). The operator
u 7→ uz̄ : Ẇ 1,2(C,C) → L2(C,C) is thus an isometry. It has a right inverse, the
Cauchy transform C : L2(C,C) → Ẇ 1,2(C,C) defined for φ ∈ C∞0 (C,C) by the
integral

Cφ(z) :=
1

π

∫
C

φ(w)

z − w
dw

which converges for every z ∈ C.
For the extension of C to a bounded linear mapping from L2(C,C) into VMO(C,C)

see [AIM09, Theorem 4.3.9]. This extension is only defined up to an additive constant,
but every representative of Cf ∈ VMO(C,C) belongs to Ẇ 1,2(C,C) and satisfies
(Cf)z̄ = f . We thus have the following crucial result.

Lemma 2.26. Suppose f ∈ L2(C,C). Then there exists u ∈ Ẇ 1,2(C,C) such that

uz̄ = f.

Another integral transform we need is the Beurling transform S given, for f ∈
C∞0 (C,C), by the Cauchy principal value integral

(2.6) Sf(z) := − 1

π
lim
ε↘0

∫
C\B(0,ε)

f(w)

(z − w)2
dw

which converges for every z ∈ C. The formula

(2.7) ‖Sf‖L2 = ‖f‖L2

holds for every f ∈ C∞0 (C,C), and therefore the Beurling transform can be extended
to an isometry S : L2(C,C) → L2(C,C). Identity (2.6) holds at a.e. z ∈ C for the
extended operator. The operator S is symmetric in the sense that

∫
C fSg =

∫
C(Sf)g

for all f, g ∈ L2(C,C). Furthermore, every f ∈ L2(C,C) satisfies f̄ = SSf .
When u ∈ Ẇ 1,2(C,C), the Beurling transform intertwines the Wirtinger derivatives

of u via the formula Suz̄ = uz. Consequently,

Ju = |uz|2 − |uz̄|2 = |Suz̄|2 − |uz̄|2.
On the other hand, if f ∈ L2(C,C), then Lemma 2.26 implies that |Sf |2−|f |2 = Ju for
some u ∈ Ẇ 1,2(C,C). The question about the surjectivity of J : Ẇ 1,2(C,C)→ H1(C)
can thus be posed equivalently by asking whether the operator

f 7→ |Sf |2 − |f |2 : L2(C,C)→ H1(C)

maps L2(C,C) onto H1(C).
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2.7. Commutators. Commutators of the form Sb − bS, where b ∈ BMO(C), turn
out to be very useful in studying the Jacobian equation. In this section we define the
commutators and mention some of their basic properties. Proofs can be found e.g.
in [AIM09].

When b ∈ BMO(C), Theorem 2.23 says that b ∈ L2
loc(C). Hence, given g ∈

C∞0 (C,C) the product bg belongs to L2(C,C), and therefore S(bg) ∈ L2(C,C). Since
the functions b and Sg both belong to L2

loc(C,C), we also have bSg ∈ L1
loc(C,C).

Thus
S(bg)− bSg ∈ L1

loc(C,C).

The commutator Sb − bS is therefore a well-defined mapping from C∞0 (C,C) to
L1
loc(C,C). Much more can be said about it; as a special case of a famous result of

R.R. Coifman, R. Rochberg and G. Weiss the commutator Sb − bS is bounded on
L2(C,C).

Theorem 2.27. When b ∈ BMO(C) and g ∈ C∞0 (C,C), the commutator (Sb− bS)g
belongs to L2(C,C) and the following inequality holds:

(2.8) ‖(Sb− bS)g‖L2 . ‖b‖BMO‖g‖L2 .

As a consequence the linear operator g 7→ (Sb − bS)g has a bounded extension that
satisfies (2.8) for every g ∈ L2(C,C).

The following important result is due to A. Uchiyama.

Theorem 2.28. When b ∈ VMO(C), the commutator

Sb− bS : L2(C,C)→ L2(C,C)

is a compact operator.

Commutators are related to Jacobians via the identity given in the following result
from [AIM09, p. 547].

Lemma 2.29. Suppose b ∈ BMO(C) and f ∈ L2(C,C). Then

(2.9)
∫ ∗
C
b(|Sf |2 − |f |2) =

∫
C
f(Sb− bS)Sf.

Proof. We prove (2.9) by an approximation argument. By Lemma 2.26 there exists
u ∈ Ẇ 1,2(C,C) such that uz̄ = f . Next use Proposition 2.2 to select a sequence of
mappings φj ∈ C∞0 (C,C) such that limj→∞ ‖φj − u‖Ẇ 1,2 = 0. By Corollary 2.19,

(2.10) ‖Jφj − Ju‖H1 → 0.

Fix j ∈ N, denote
f j := φjz̄ ∈ C∞0 (C,C)

and note that Sf j = φjz ∈ C∞0 (C,C). Thus bSf j ∈ L2(C,C). Since S is symmetric
in L2(C,C) and f j = SSf j, we may compute∫ ∗

C
b(|Sf j|2 − |f j|2) =

∫
C
bSf jSf j −

∫
C
bf jf j

=

∫
C
f jS(bSf j)−

∫
C
f jbSSf j

=

∫
C
f j(Sb− bS)Sf j.
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By (2.10),∫ ∗
C
b(|Sf j|2 − |f j|2) =

∫ ∗
C
bJφj →

∫ ∗
C
bJu =

∫ ∗
C
b(|Sf |2 − |f |2).

On the other hand, since f j → f in L2(C,C), Theorem 2.27 and formula (2.7) imply
that limj→∞ ‖(Sb− bS)S(f j − f)‖L2 = 0, and so∫

C
f j(Sb− bS)Sf j →

∫
C
f(Sb− bS)Sf.

The proof of (2.9) is complete. �

Lemma 2.29 yields the following result. When stated in terms of Jacobians, Propo-
sition 2.30 was (essentially) proved by R. Caccioppoli and generalized to higher di-
mensions by C.B. Morrey.

Proposition 2.30. Suppose f j ⇀ f in L2(C,C). Then |Sf j|2−|f j|2 ∗
⇀ |Sf |2−|f |2

in H1(C).

Proof. Since f j ⇀ f and S : L2(C,C) → L2(C,C) is a bounded linear operator, we
have
(2.11) Sf j ⇀ Sf.
Fix b ∈ VMO(C). By Theorem 2.28, Sb − bS : L2(C,C) → L2(C,C) is a compact
operator, thus, by (2.11), (Sb − bS)Sf j → (Sb − bS)Sf in L2(C,C). Finally use
Lemma 2.29 to write∫ ∗
C
b(|Sf j|2 − |f j|2) =

∫
C
f j(Sb− bS)Sf j →

∫
C
f(Sb− bS)Sf =

∫ ∗
C
b(|Sf |2 − |f |2).

�

2.8. An equivalent norm in BMO(C). When R.R. Coifman, P.-L. Lions, Y. Meyer
and S. Semmes proved the Jacobian decomposition of Theorem 2.20, they made use
of an equivalent norm in BMO(C). We give the norm another characterization via
commutators and also give an alternative proof of the equivalence of the norm and
the standard norm ‖ · ‖BMO.

Definition 2.31. When b ∈ BMO(C), we define

(2.12) ‖b‖BMOS := sup
‖f‖L2=1

∫ ∗
C
b(|Sf |2 − |f |2).

It is straightforward to check that ‖ · ‖BMOS is, indeed, a norm. The principal aim
of this chapter is to give a proof of the following result from [CLMS93].

Theorem 2.32. Suppose b ∈ BMO(C). Then

‖b‖BMO . ‖b‖BMOS . ‖b‖BMO.

The key to proving Theorem 2.32 is identity (2.9) given in Lemma 2.29. The
following definition is motivated by (2.9).

Definition 2.33. When b ∈ BMO(C), the operator Kb : L2(C,C) → L2(C,C) is
defined by

(2.13) Kbf := (Sb− bS)Sf.
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The following result collects some of the basic properties of Kb.

Lemma 2.34. Let b ∈ BMO(C). Then

(2.14)
∫ ∗
C
b(|Sf |2 − |f |2) =

∫
C
fKbf

for every f ∈ L2(C,C) and Kb : L2(C,C) → L2(C,C) is self-adjoint. Furthermore,
if b ∈ VMO(C), then Kb is compact.

Proof. Identity (2.14) was proved in Lemma 2.29. Since
∫
C fKbf is real-valued for

every f ∈ L2(C,C), the operator Kb is self-adjoint (see [Con90, Proposition II.2.12]).
If b ∈ VMO(C), then Sb − bS : L2(C,C) → L2(C,C) is a compact operator by
Theorem 2.28. As a consequence, Kb is compact as well. �

As mentioned in the Introduction, when b ∈ BMO(C), the norm ‖b‖BMOS turns
out to be equal to the operator norm ‖Sb− bS‖L2→L2 .

Proposition 2.35. Let b ∈ BMO(C). Then

‖b‖BMOS = ‖Kb‖L2→L2 = ‖Sb− bS‖L2→L2 .

Proof. Since f 7→ Sf : L2(C,C)→ L2(C,C) is an isometric isomorphism, we have

‖Sb− bS‖L2→L2 = ‖Kb‖L2→L2 .

Furthermore, since Kb : L2(C,C)→ L2(C,C) is self-adjoint, its operator norm equals
its numerical radius, that is,

‖Kb‖L2→L2 = sup
‖f‖L2=1

∣∣∣∣∫
C
fKbf

∣∣∣∣
(see [Con90, Proposition II.2.13]). By (2.14),

sup
‖f‖L2=1

∣∣∣∣∫
C
fKbf

∣∣∣∣ = sup
‖f‖L2=1

∫ ∗
C
b(|Sf |2 − |f |2) = ‖b‖BMOS .

�

When b ∈ BMO(C), Theorem 2.27 and Proposition 2.35 imply that ‖b‖BMOS .
‖b‖BMO. The converse inequality will also be a consequence of Proposition 2.35. The
estimate ‖b‖BMO . ‖Sb − bS‖L2→L2 follows from a theorem presented at [Jan78, p.
266], but by exploiting the relatively simple form of the Beurling transform we give
a more straightforward version of the proof given in [Jan78].

When g ∈ L∞(C) is compactly supported, the commutator of S and b is given by
the principal value integral
(2.15)

(Sb− bS)g(z) = − 1

π
lim
ε↘0

∫
C\B(0,ε)

b(w)g(w)

(z − w)2
dw +

1

π
b(z) lim

ε↘0

∫
C\B(0,ε)

g(w)

(z − w)2
dw

=
1

π
lim
ε↘0

∫
C\B(0,ε)

b(z)− b(w)

(z − w)2
g(w) dw

which converges for a.e. z ∈ C.

Proposition 2.36. If b ∈ BMO(C), then b satisfies

‖b‖BMO . ‖Sb− bS‖L2→L2 .
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Proof. Fix a disk B = B(z0, r) ⊂ C. We intend to show that

(2.16)
∫
B

|b(z)− bB| dz . ‖Sb− bS‖L2→L2|B|.

Define s(z) := sgn(b(z)− bB) for every z ∈ B. Then∫
B

|b(z)− bB| dz =

∫
B

s(z)(b(z)− bB) dz =
1

|B|

∫
B

s(z)

∫
B

(b(z)− b(w)) dw dz

=
1

|B|

∫
B

s(z)

∫
C
(z − w)2(b(z)− b(w))

χB(w)

(z − w)2
dw dz.

By writing (z−w)2 = (z− z0)2− 2(z− z0)(w− z0) + (w− z0)2 for all z, w ∈ C we get∫
B

|b(z)− bB| dz =
π

|B|

∫
B

s(z)(z − z0)2 (Sb− bS)χB(z) dz

− 2π

|B|

∫
B

s(z)(z − z0) (Sb− bS)((· − z0)χB)(z) dz

+
π

|B|

∫
B

s(z) (Sb− bS)((· − z0)2χB)(z) dz

=: I1 + I2 + I3.

By using the fact that |z− z0| < r for every z ∈ B and Hölder’s inequality we obtain

|I1| ≤
πr2

|B|

∫
B

|(Sb− bS)χB(z)| dz ≤ ‖(Sb− bS)χB‖L2‖χB‖L2

≤ ‖Sb− bS‖L2→L2‖χB‖2
L2 = ‖Sb− bS‖L2→L2|B|,

and similarly |I2|+ |I3| ≤ 3‖Sb− bS‖L2→L2|B|. Hence, (2.16) holds. �

Theorem 2.32 follows directly from Theorem 2.27 and Propositions 2.35 and 2.36.

2.9. Banach spaces. We recall some notions and results of Banach space theory.
Let X be a Banach space and X∗ its dual. We denote the unit sphere of X by SX
and that of X∗ by SX∗ .

An element x∗ ∈ SX∗ is said to be norm-attaining if there exists x ∈ SX such
that 〈x∗, x〉 = ‖x∗‖X∗‖x‖X = 1. It is then said that x∗ attains its norm at x. The
Hahn-Banach theorem implies that if x ∈ SX , then some x∗ ∈ X∗ attains its norm
at x (see [Con90, Corollary 6.7]).

We recall the following classical result of E. Bishop and R. Phelps (see e.g. [Meg98,
Theorem 2.11.14]).

Theorem 2.37. Norm-attaining functionals form a dense subset of SX∗.

When we study Lagrange multipliers in Banach spaces we need the notion of
Gâteaux derivative of a (possibly nonlinear) operator f between Banach spaces X
and Y .

Definition 2.38. A mapping f : X → Y is said to be Gâteaux differentiable at
x ∈ X if there exists a bounded linear operator L : X → Y such that

lim
R3t→0

∥∥∥∥f(x+ th)− f(x)

t
− Lh

∥∥∥∥
X

= 0

for every h ∈ X. The operator L is then denoted by f ′(x) and called the Gâteaux
derivative of f at x.
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As a special case, when f : X → R is Gâteaux differentiable at x ∈ X, the Gâteaux
derivative belongs to X∗. By a theorem of S. Banach (see [FHHMPZ01, Lemma 8.4]),
the norm ‖·‖X is Gâteaux differentiable at x ∈ SX if and only if there exists a unique
element x∗ ∈ SX∗ such that 〈x∗, x〉 = 1.

Definition 2.39. When X and Y are Banach spaces and T : X → Y is a bounded
linear operator, the kernel of T is denoted by kerT and the range of T by ranT . The
transpose of T is the bounded linear operator T ∗ : Y ∗ → X∗ defined by T ∗y∗ := y∗◦T
for every y∗ ∈ Y ∗.

Extreme points of convex sets are highly essential to the isometric duality theory
of Banach spaces, and our setting is not an exception.

Definition 2.40. When C is a convex subset of a Banach space X, a point x ∈ C
is an extreme point of C if there exists no proper line segment that contains x and
lies in C.

Equivalently, x ∈ C is an extreme point of C if x = (x1 + x2)/2 for x1, x2 ∈ C
implies that x1 = x2 = x.

Definition 2.41. A Banach space is said to have the Krein-Milman property if every
closed, bounded, convex set is the closed convex hull of its extreme points.

The Krein-Milman property and the related Radon-Nikodým property and dentabil-
ity are discussed thoroughly, e.g., in [Bou83]. Recall the following result of C. Bessaga
and A. Pełczyński (see e.g. [FHHMPZ01, Theorem 8.29]).

Theorem 2.42. Every separable dual space has the Krein-Milman property.

Theorem 2.42 applies, in particular, to H1
S(C) (see Definition 1.12 and Proposition

2.15).

Corollary 2.43. Every closed, bounded, convex subset of H1
S(C) is the closed convex

hull of its extreme points.
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3. The Jacobian Equation with Radial Data

Compactly supported and radial data h ∈ H1(C) is one natural model case of the
Jacobian equation Ju = h. Radial functions are easier to analyze than general datas
since they have fewer degrees of freedom. They also potentially provide hints as to
where to look for a counterexample to the surjectivity of J : Ẇ 1,2(C,C)→ H1(C).

It is natural to look for solutions that are radial stretchings or have more gen-
eral rotational symmetry properties. The goal of this chapter is to present criteria
that determine whether solutions of that kind exist. As the main results we prove
Theorems 1.3 and 1.4.

3.1. Radial stretchings as solutions. We first fix some terminology.

Definition 3.1. A measurable function h : C → R is radial if it is of the form
h(z) = h(|z|).

In many settings where the Jacobian equation is considered, if the data is radial,
one expects there to exist a solution that has some radial symmetry properties, in
particular a radial stretching.

Definition 3.2. A measurable mapping u : C → C is a radial stretching if it is of
the form

(3.1) u(z) := ρ(|z|) z
|z|
,

where ρ(r) ∈ R for every r ∈ [0,∞).

More generally, we consider more general mappings of the form

(3.2) u(z) := ρ(|z|) γ(z)

|γ(z)|
,

where γ(z) 6= 0 a.e. Studying whether solutions of the form (3.2) exist requires careful
analysis of mappings of the form (3.1). This section deals with radial stretchings,
and mappings of the form (3.2) are studied in the next section.

Condition (3.1) can be made more transparent by using polar coordinates. By
denoting z = reiθ we may express (3.1) in the form

u(reiθ) = ρ(r)eiθ, 0 ≤ r <∞, 0 ≤ θ < 2π.

When ρ is weakly differentiable, we denote ρ̇ := dρ/dr. We recall a lemma about
radial stretchings from [Bal82, p. 566].

Lemma 3.3. Suppose 1 ≤ p < ∞ and a measurable mapping u : D → C is of the
form (3.1). Then u ∈ W 1,p(D,C) if and only if ρ is absolutely continuous and

(3.3)
∫ 1

0

(
|ρ̇(r)|p +

∣∣∣∣ρ(r)

r

∣∣∣∣p) r dr <∞.
Furthermore, then the Jacobian

(3.4) Ju(z) =
ρ̇(|z|)ρ(|z|)
|z|

is radial.
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If u ∈ Ẇ 1,2(C,C) is a radial stretching, then ρ(0) = 0, since otherwise the integral
at (3.3) would not converge. By using (3.4) and polar coordinates we obtain

(3.5)
∫
B(0,r)

Ju(z) dz =

∫ 2π

0

∫ r

0

ρ̇(s)ρ(s)

s
s ds dθ = πρ2(r) ≥ 0

for every r > 0. If Ju = h, then by (3.5), ρ has to be of the form

(3.6) ρ(r) = ±
√

1

π

∫
B(0,r)

h(z) dz = ±

√∫ r

0

2sh(s) ds.

As (3.5) shows,

(3.7)
∫
B(0,r)

h(z) dz ≥ 0 for every r > 0

is a necessary condition for the existence of a radially symmetric solution . We next
show that when combined with a strong enough regularity assumption on h, (3.7) is
also a sufficient condition. We restate and prove Theorem 1.3.

Theorem 3.4. Suppose h ∈ H1(C) is compactly supported, Lipschitz continuous and
radial. Then the following conditions are equivalent.

(i) There exists a radial stretching u ∈ Ẇ 1,2(C,C) that satisfies the Jaco-
bian equation Ju = h.
(ii)

∫
B(0,r)

h(z) dz ≥ 0 for every r > 0.

Lipschitz continuity of h cannot be replaced by Cα continuity for any α ∈ (0, 1) in
Theorem 3.4; this is proved in Theorem 3.5.

Note that (3.5) proves direction (i) =⇒ (ii) of Theorem 3.4. We therefore only
need to prove that (ii) implies (i). For convenience we choose ρ to have a positive
sign so that u is of the form

(3.8) u(z) =

√∫ |z|
0

2sh(s) ds
z

|z|
.

We divide the proof into several steps and first show that u satisfies the Jacobian
equation.

Claim 1. Ju(z) = h(z) a.e. z ∈ C.

Proof. By (3.4) and (3.6), Ju(z) = h(z) whenever
∫ |z|

0
2sh(s) ds > 0. On the other

hand, in the set where
∫ |z|

0
2sh(s) ds = 0 we have u(z) = 0 a.e. and therefore

Du(z) = 0 a.e. (see [EG92, p. 130]). �

We also need to show that the mapping u defined by (3.8) belongs to Ẇ 1,2(C,C).
Since h is compactly supported and

∫
C h(z) dz = 0, it follows that ρ is compactly

supported as well, and so by Lemma 3.3 it suffices to show that ρ is Lipschitz. Choose
now R > 0 such that

supp(h) ⊂ B(0, R).

We show that ρ satisfies∣∣∣∣ρ(r2)− ρ(r1)

r2 − r1

∣∣∣∣ ≤√‖h‖L∞ + 2R‖ḣ‖L∞ whenever r1 6= r2

and divide the proof into three cases.
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Claim 2. If r > 0, then ∣∣∣∣ρ(r)− ρ(0)

r − 0

∣∣∣∣ ≤√‖h‖L∞ .
Proof. We calculate(

ρ(r)− ρ(0)

r − 0

)2

=

∫ r
0

2sh(s) ds

r2
≤ ‖h‖L∞

∫ r
0

2s ds

r2
= ‖h‖L∞ .

�

Claim 3. If r1 6= r2 are positive and ρ(r1) = 0, then∣∣∣∣ρ(r2)− ρ(r1)

r2 − r1

∣∣∣∣ ≤√2R‖ḣ‖L∞ .

Proof. Suppose r2 > r1; the case r2 < r1 is proved similarly. We may assume that
r2 ≤ R, as otherwise ρ(r2) = 0.

We first show that h(r1) = 0. Seeking contradiction, suppose h(r1) > 0. Since∫
B(0,r1)

h(z) dz = πρ(r1)2 = 0,

we get
∫
B(0,r1−ε) h(z) dz < 0 for small enough ε > 0, contradicting (ii). Similarly,

h(r1) < 0 would lead to a contradiction, and so h(r1) = 0.
Since ρ(r1)2 =

∫ r1
0

2rh(r) dr = 0, we may write ρ(r2)2 =
∫ r2
r1

2rh(r) dr, and so,
using the fact that h(r1) = 0,(

ρ(r2)− ρ(r1)

r2 − r1

)2

=

∫ r2
r1

2rh(r) dr

(r2 − r1)2

= −
∫ r2

r1

2r
h(r)− h(r1)

r − r1

r − r1

r2 − r1

dr

≤ ‖ḣ‖L∞ −
∫ r2

r1

2r ≤ 2R‖ḣ‖L∞ .

�

Note that if ρ(r) =
√∫ r

0
2sh(s) ds > 0, then ρ is continuously differentiable at r

and

ρ̇(r) =
rh(r)

ρ(r)
.

Recall that supp(h) ⊂ B(0, R).

Claim 4. If 0 < r1 < r2 and ρ(r1), ρ(r2) > 0, then∣∣∣∣ρ(r2)− ρ(r1)

r2 − r1

∣∣∣∣ ≤√‖h‖L∞ + 2R‖ḣ‖L∞ .

Proof. First suppose there exists r ∈ (r1, r2) such that ρ(r) = 0. Suppose ρ(r2) >
ρ(r1); the case ρ(r2) ≤ ρ(r1) is treated analogously. Then the trivial estimate |ρ(r2)−
ρ(r1)| < |ρ(r2)− ρ(r)| and Claim 3 yield∣∣∣∣ρ(r2)− ρ(r1)

r2 − r1

∣∣∣∣ < ∣∣∣∣ρ(r2)− ρ(r)

r2 − r

∣∣∣∣ ≤√2R‖ḣ‖L∞ .
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Suppose next ρ > 0 in the interval [r1, r2]. Use the Mean value theorem to write

ρ(r2)− ρ(r1)

r2 − r1

= ρ̇(r)

for some r ∈ (r1, r2). It thus suffices to show that |ρ̇(r)| ≤
√
‖h‖L∞ + 2R‖ḣ‖L∞

whenever r1 ≤ r ≤ r2.
We initially have little control over the values ρ̇(r1) and ρ̇(r2) and we therefore

want to consider a larger interval where ρ̇ satisfies useful bounds at the endpoints.
Let

r3 := max{r < r1 : ρ(r) = 0} and r4 := min{r > r2 : ρ(r) = 0};
note that r3 and r4 exist since ρ(0) = 0 and ρ is compactly supported. Since ρ(r3) = 0,
Claim 3 implies that the average of ρ̇ over [r3, r1] satisfies∣∣∣∣−∫ r1

r3

ρ̇(r) dr

∣∣∣∣ =

∣∣∣∣ρ(r1)− ρ(r3)

r1 − r3

∣∣∣∣ ≤√2R‖ḣ‖L∞ .

We may thus choose r̃1 such that

(3.9) r3 < r̃1 < r1 and |ρ̇(r̃1)| ≤
√

2R‖ḣ‖L∞ .

Similarly, we choose r̃2 such that

(3.10) r2 < r̃2 < r4 and |ρ̇(r̃2)| ≤
√

2R‖ḣ‖L∞ .

Now [r1, r2] ⊂ [r̃1, r̃2] and so it suffices to show that

(3.11) |ρ̇(r)| ≤
√
‖h‖L∞ + 2R‖ḣ‖L∞ for every r ∈ [r̃1, r̃2].

We now smoothen h and obtain (3.11) by approximation. To that end, fix a
mollifier Ψ ∈ C∞0 (R) such that supp(Ψ) ⊂ [−1, 1] and

∫ 1

−1
Ψ(r) dr = 1. When t > 0,

denote Ψt(r) := t−1Ψ(r/t) so that
∫∞
−∞Ψt(r) dr = 1. Define ht : R → R as the

one-dimensional convolution

ht(r) :=

∫ ∞
−∞

h(s)ψt(r − s) ds.

Clearly ‖ht‖L∞ ≤ ‖h‖L∞ and ‖ḣt‖L∞ ≤ ‖ḣ‖L∞ . Furthermore, ‖ht − h‖L∞ → 0 as
t↘ 0 since h is Lipschitz continuous.

Since ρ(r)2 =
∫ r

0
2sh(s) ds is bounded away from zero in [r̃1, r̃2], for small enough

t > 0 we may define

ρt(r) :=

√∫ r

0

2sht(s) ds > 0 for r ∈ [r̃1, r̃2].

Then

(3.12) ρ̇t(r) =
rht(r)

ρt(r)
→ ρ̇(r) uniformly in [r̃1, r̃2]

when t↘ 0. We will use (3.12) to prove (3.11).
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The smooth function ρ̇t attains its maximum in [r̃1, r̃2] either at one of the end-
points r̃1 and r̃2 or at a point where the second derivative ρ̈t vanishes. In the endpoints
(3.9), (3.10) and (3.12) imply that

max{|ρ̇t(r̃1)|, |ρ̇t(r̃2)|} ≤
√

2R‖ḣ‖L∞ + o(t)

as t↘ 0. Furthermore, if

ρ̈t(r) =
ht(r) + rḣt(r)− r2ht(r)2

ρt(r)2

ρt(r)
= 0,

then

ρ̇t(r)
2 =

r2ht(r)
2

ρt(r)2
= ht(r) + rḣt(r) ≤ ‖ht‖L∞ +R‖ḣt‖L∞ ≤ ‖h‖L∞ +R‖ḣ‖L∞ .

We conclude that

max
r∈[r̃1,r̃2]

|ρ̇t(r)| ≤
√
‖h‖L∞ + 2R‖ḣ‖L∞ + o(t) as t↘ 0.

Combining this estimate with (3.12) yields (3.11), and the claim follows.
We have now covered all the cases. We thus conclude that ρ is Lipschitz continuous

and Theorem 3.4 holds. �

Lipschitz continuity cannot be replaced in Theorem 3.4 by α-Hölder continuity for
any 0 < α < 1, as we show in the following result.

Theorem 3.5. Suppose 0 < α < 1. Then there exists a compactly supported, radially
symmetric function h ∈ H1(C) ∩ Cα(C) such that

∫
B(0,r)

h(z) dz ≥ 0 for every r > 0

but there exists no radial stretching u ∈ Ẇ 1,2(C,C) such that Ju = h.

Proof. In order to construct a suitable function h set a1 = 1 and

ak+1 = ak +
4

k
1
α

= 1 +
k∑
j=1

4

j
1
α

for every k ∈ N. Given k ∈ N define

h(r) :=



(r−ak)α

r
, ak ≤ r < ak + 1

k
1
α
,

(ak+2k−
1
α−r)α

r
, ak + 1

k
1
α
≤ r < ak + 2

k
1
α
,

−(r−ak−2k−
1
α )α

r
, ak + 2

k
1
α
≤ r < ak + 3

k
1
α
,

−(ak+1−r)α
r

, ak + 3

k
1
α
≤ r ≤ ak+1

so that
∫ ak+1

ak
2rh(r) dr = 0 as the integrals over the four subintervals of [ak, ak+1]

cancel out. Set h(r) := 0 when

r /∈

[
1, 1 +

∞∑
j=1

4

j
1
α

]
.

Now h has all the required properties.
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We next show that a mapping of the form u(z) = ρ(|z|)z/|z|, where ρ(|z|) =

±
√∫ |z|

0
2rh(r) dr a.e. z ∈ C, cannot belong to Ẇ 1,2(C,C). By Lemma 3.3, it suffices

to show that ∫ ∞
0

rρ̇(r)2dr =∞.

Fix k ∈ N and use the condition
∫ ak

0
2sh(s) ds = 0 to calculate∫ ak+k−

1
α

ak

rρ̇(r)2dr =

∫ ak+k−
1
α

ak

r3h(r)2∫ r
0

2sh(s) ds
dr

=

∫ ak+k−
1
α

ak

(r − ak)2αr∫ r
ak

2(s− ak)α ds
dr

&α

∫ ak+k−
1
α

ak

(r − ak)α−1dr &α
1

k
.

Thus ∫ ∞
0

rρ̇(r)2dr &α

∞∑
k=1

1

k
,

and since the series
∑∞

k=1 k
−1 diverges, we conclude that u /∈ Ẇ 1,2(C,C). �

3.2. Generalized radially symmetric solutions. As formula (3.5) shows, if u ∈
Ẇ 1,2(C,C) is a radial stretching, then∫

B(0,r)

Ju(z) dz ≥ 0 for every r > 0,

and this puts a severe restriction on solving the Jacobian equation. However, the
complex conjugate ū is then of the form

ū(z) = ρ(|z|) z̄
|z|
,

and since Jū = −Ju, we have
∫
B(0,r)

Jū(z) dz ≤ 0 for all r > 0. We would like to allow
the integrals

∫
B(0,r)

Ju(z) dz to change sign as r varies, and in particular, we wish to
allow u to be of the form u(z) = ρ(|z|)z/|z| for some |z| and u(z) = ρ(|z|)z̄/|z| for
others.

We generalize radial stretchings by only assuming that ρ = |u| is radially symmet-
ric; u is then of the form

(3.13) u(z) = ρ(|z|) γ(z)

|γ(z)|
,

where γ(z) 6= 0 a.e. Radial stretchings are a special case where γ(z) = z. In polar
coordinate notation a radial mapping is of the form u(reiθ) = ρ(r)eiθ whereas (3.13)
can be written (formally) as u(reiθ) = ρ(r)eiα(reiθ).

Even this generalization of radial stretchings does not allow us to solve the Jacobian
equation with general radial data, as the following theorem shows.

Theorem 3.6. Suppose h ∈ H1(C) is compactly supported, Lipschitz continuous and
radial. Then the following conditions are equivalent.

(i) There exists a mapping u ∈ Ẇ 1,2(C,C) of the form (3.13) that satisfies
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the Jacobian equation Ju = h.
(ii) If r > 0 and

∫
B(0,r)

h(z) dz = 0, then h(r) = 0.

Before beginning the proof we set the following notation.

Definition 3.7. When 0 ≤ a < b < ∞, the open annulus determined by a and b is
denoted by

A(a, b) := {z ∈ C : a < |z| < b}.
The closure of A(a, b) is denoted by Ā(a, b).

We first prove direction (i) =⇒ (ii). Seeking contradiction, assume
∫
B(0,r0)

h(z) dz =

0 and h(r0) > 0 for some r0 > 0 and that u is of the form (3.13) and solves the Ja-
cobian equation. We divide the proof by contradiction into three steps.

Claim 1. There exists δ > 0 such that in the annulus A(r0−2δ, r0 +2δ) the mapping
u is continuous and h, ρ ≥ C > 0.

Proof. Since h is continuous and h(r0) > 0, we can choose δ > 0 such that h(r) ≥ C
when r0−2δ ≤ r ≤ r0+2δ. Hence, u has integrable distortionKu = (|uz|+|uz̄|)2/Ju ≤
2|Du|2/C in the annulus A(r0 − 2δ, r0 + 2δ). By Theorem 2.7, u is continuous in
A(r0 − 2δ, r0 + 2δ). Thus ρ is continuous in A(r0 − 2δ, r0 + 2δ), and so by possibly
choosing a smaller annulus it suffices to show that ρ(r0) > 0.

Suppose, by way of contradiction, that ρ(r0) = 0. By continuity, u(z) = 0 for
every z ∈ ∂B(0, r0). As a consequence,

v := uχB(0,r0) ∈ Ẇ 1,2(C,C).

The linear distortion of v is given by Kv = Ku when r0−2δ < |z| < r0 and Kv(z) = 1
when r0 < |z| < r0 + 2δ. Thus Kv is integrable in the annulus A(r0 − 2δ, r0 + 2δ),
and by Theorem 2.7, v is either constant or an open mapping there. However, v is
not constant in A(r0 − 2δ, r0) (since Jv = h ≥ C in A(r0 − 2δ, r0)) and not open in
A(r0, r0 + 2δ). We have reached a contradiction, and therefore ρ(r0) > 0. �

The rest of the proof uses a winding number argument, and in order to ensure that
the calculations remain rigorous we approximate u. Recall that we fixed in §2.3 a
function Φ ∈ C∞0 (C) that satisfies supp(Φ) ⊂ B and Φt(z) := Φ(z/t)/t2 when t > 0
and z ∈ C. Consider smooth mappings of the form

ut(z) := ρ(|z|) u ∗ Φt(z)

|u ∗ Φt(z)|
, 0 < t < δ,

in A(r0 − δ, r0 + δ). We use the chain rule to write

D
u ∗ Φt

|u ∗ Φt|
=

[
y2

|z|3
−xy
|z|3

−xy
|z|3

x2

|z|3

]
◦ (u ∗ Φt)D(u ∗ Φt)

By Claim 1, u and ρ = |u| are continuous in A(r0 − 2δ, r0 + 2δ), and therefore the
convergence u ∗ Φt → u is uniform in A(r0 − δ, r0 + δ). In particular, by Claim 1,
|u∗Φt| ≥ C ′ > 0 for small enough t > 0. Consequently, ‖Dut−Du‖L2(A(r0−δ,r0+δ)) → 0
as t↘ 0. Therefore,

(3.14)
∫
A(r0−δ,r0+δ)

Jut(z) dz →
∫
A(r0−δ,r0+δ)

Ju(z) dz as t↘ 0.
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We use Claim 1 to choose t > 0 small enough that u∗Φt is bounded away from zero
when r0 − δ < |z| < r0 + δ. We can thus write, for t > 0 small and z ∈ A(r0 − δ, r0),

u ∗ Φt(z)

|u ∗ Φt(z)|
= eiαt(z),

where, written in terms of polar coordinates, the mapping

(r, θ) 7→ αt(re
iθ) : (r0 − δ, r0)× (0, 2π)→ R

is smooth.
Since ut is continuous and non-zero, the winding number of the closed path θ 7→

eiαt(re
iθ) : [0, 2π] → C around the origin is constant with respect to r in the interval

(r0 − δ, r0), and we denote

(3.15) Wt :=
1

2π

∫ 2π

0

∂θαt(re
iθ) dθ for every r ∈ (r0 − δ, r0).

In Claims 2 and 3 we find the contradiction we are seeking by proving that Wt ∈
Z \ {0} for small t > 0 but limt↘0Wt = 0.

Claim 2. Wt ∈ Z \ {0} for all small enough t > 0.

Proof. Claim 1 implies that
∫
A(r0−δ,r0)

Ju(z) dz > 0, and by (3.14) there exists t0 > 0

such that when 0 < t < t0, we have
∫
A(r0−δ,r0)

Jut(z) dz > 0. Let 0 < t < t0. When
r0 − δ < r < r0 and θ ∈ (0, 2π), we write ut(z) = ρ(|z|)(cosαt(z) + i sinαt(z)) and
calculate

(3.16) Jut(z) =
ρ̇(|z|)ρ(|z|)
|z|

(x∂yαt(z)− y∂xαt(z)) =
ρ̇(|z|)ρ(|z|)
|z|

∂θαt(z).

By combining this with (3.15) we get

0 <

∫
A(r0−δ,r0)

Jut(z) dz = 2πWt

∫ r0

r0−δ
ρ̇(r)ρ(r) dr.

As a consequence, Wt 6= 0. �

Claim 3. limt↘0Wt = 0.

Proof. Choose a smooth radial cutoff function ψ : C→ [0, 1] that satisfies

(3.17) ψ|[r0−δ/2,r0+δ/2] = 1 and ψ|[0,r0−δ]∪[r0+δ,∞) = 0.

Since the Jacobian is a null Lagrangian (see Proposition 2.21) and ‖ut−u‖W 1,2(A(r0−δ,r0)) →
0 when t↘ 0, we obtain

(3.18) 0 =

∫
B(0,r0)

Ju(z) dz =

∫
A(r0−δ,r0)

Jψu(z) dz = lim
t↘0

∫
A(r0−δ,r0)

Jψut(z) dz.

When r0 − δ < |z| = r < r0, we write, as in (3.16),

Jψut =
∂r(ψρ)ψρ

|z|
∂θαt.

Thus, using (3.15) and (3.17),∫
A(r0−δ,r0)

Jψut(z) dz =

∫ r0

r0−δ
∂r(ψρ)(r)ψ(r)ρ(r)

∫ 2π

0

∂θαt(re
iθ) dθ dr

= πρ(r0)2Wt.
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By combining this equality with (3.18) we obtain

πρ(r0)2 lim
t↘0

Wt =

∫
B(0,r0)

h(z) dz = 0,

and since ρ(r0) > 0 by Claim 1, the proof is complete. �

We have reached a contradiction by proving Claims 2 and 3, and so the proof of
direction (i) =⇒ (ii) of Theorem 3.6 is complete. We now prove the converse.

Proof of direction (ii) =⇒ (i). First express h in the form
h = hχ∫ |z|

0 2sh(s) ds>0
+ hχ∫ |z|

0 2sh(s) ds<0
=: h1 + h2,

where χ∫ |z|
0 2sh(s) ds>0

and χ∫ |z|
0 2sh(s) ds<0

are characteristic functions. By assumption

(ii), h(z) = 0 whenever
∫ |z|

0
2sh(s) ds = 0, and it easily follows that h1 and h2 are

Lipschitz continuous.
We express the open set {r ∈ (0,∞) :

∫ r
0

2sh(s) ds > 0} as an at most countably in-
finite union of disjoint intervals ∪j∈J(aj, bj). Note that

∫ aj
0
rh(r) dr =

∫ bj
0
rh(r) dr =

0 for every j ∈ J and calculate∫
C
h1(z) dz = 2π

∫ ∞
0

rh(r)
∑
j∈J

χ(aj ,bj)(r) dr = 2π
∑
j∈J

∫ bj

aj

rh(r) dr = 0.

Thus h1 ∈ H1(C), and clearly
∫
B(0,r)

h1(z) dz ≥ 0 for every r > 0. Similarly, h2 ∈
H1(C) satisfies

∫
B(0,r)

h2(z) dz ≤ 0 for all r > 0. We can thus apply Theorem 3.4 to
h1 and h2.

Define u : C→ C by
u(z)

:= χ∫ |z|
0 2sh1(s) ds>0

(z)

√∫ |z|
0

2sh1(s) ds
z

|z|

+ χ∫ |z|
0 2sh2(s) ds<0

(z)

√
−
∫ |z|

0

2sh2(s) ds
z̄

|z|
.

When
∫ |z|

0
2sh(s) ds > 0, choose j ∈ J such that |z| ∈ (aj, bj) and calculate∫ |z|
0

2sh1(z) ds =

∫ |z|
aj

2sh1(s) ds =

∫ |z|
aj

2sh(s) ds =

∫ |z|
0

2sh(s) ds.

Similarly,
∫ |z|

0
2sh2(z) ds =

∫ |z|
0

2sh(s) ds when
∫ |z|

0
2sh(s) ds < 0.

Theorem 3.4 implies that u ∈ Ẇ 1,2(C,C) and that Ju = h1 = h when
∫ |z|

0
2sh(s) ds ≥

0 and Ju = h2 = h when
∫ |z|

0
2sh(s) ds ≤ 0. �

If a compactly supported, Lipschitz continuous function h ∈ H1(C) satisfies h(r) >
0 and

∫
B(0,r)

h = 0 for some r > 0, Theorem 3.6 says that the Jacobian equation
Ju = h cannot have a solution of the generalized radially symmetric form (3.13).
However, at least in some cases there exists a solution without such radial symmetry
properties; this follows from [CDK09, Theorem 1]. To the author’s knowledge, it
remains an open problem whether the Jacobian equation always has a solution when
the data is radial.
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4. Energy-Minimal Solutions and Lagrange Multipliers

While in §3 we studied the Jacobian equation in a concrete model case, in this
chapter and the two following ones we use abstract functional analytic techniques to
study the Jacobian equation in more generality. We recall the definition of energy-
minimal solutions from the Introduction.

Definition 4.1. If a mapping u ∈ Ẇ 1,2(C,C) satisfies∫
C
|uz̄|2 = min

{∫
C
|vz̄|2 : v ∈ Ẇ 1,2(C,C), Jv = Ju

}
,

then we call u an energy minimizer or an energy-minimal solution.

The study of energy-minimal solutions begins in §4.1. The range of J : Ẇ 1,2(C,C)→
H1(C) is dense in H1(C) (see Corollary 4.4). Thus, if all energy-minimal solutions
satisfy the uniform estimate

(4.1)
∫
C
|uz̄|2 . ‖Ju‖H1 ,

then J maps Ẇ 1,2(C,C) onto H1(C) (see Proposition 4.5). In order to construct
a large class of minimizers that satisfy (4.1) we use Lagrange multipliers whose
definition we give in §4.2. Chapters 5 and 6 deal with Lagrange multipliers more
extensively. The main goal is to prove Theorems 1.26 and 1.27.

4.1. Energy-minimal solutions. If the Jacobian equation has a solution, then it
has an energy-minimal solution. We prove this standard fact by using the direct
method of the calculus of variations.

Proposition 4.2. Let h ∈ H1(C) and suppose there exists a solution v ∈ Ẇ 1,2(C,C)
of the Jacobian equation Jv = h. Then there exists an energy-minimal solution
u ∈ Ẇ 1,2(C,C) with Ju = h, that is,

(4.2)
∫
C
|uz̄|2 = min

{∫
C
|vz̄|2 : Jv = h

}
.

Proof. Choose a minimizing sequence so that Juj = h for every j ∈ N and

lim
j→∞

∫
C
|ujz̄|2 = inf

{∫
C
|vz̄|2 : Jv = h

}
.

The sequence of the values
∫
C |u

j
z̄|2 is bounded. Since the unit ball of L2(C,C) is

weakly compact, there exists g ∈ L2(C,C) such that, for a subsequence which we do
not relabel,

(4.3) ujz̄ ⇀ g

in L2(C,C).
By Lemma 2.26 there exists u ∈ Ẇ 1,2(C,C) such that uz̄ = g. By (4.3) and

Proposition 2.30, h = Juj = |Sujz̄|2 − |ujz̄|2
∗
⇀ |Sg|2 − |g|2 = Ju, and so Ju = h. Since

the L2 norm is weakly lower semicontinuous, it follows that∫
C
|uz̄|2 ≤ lim inf

j→∞

∫
C
|ujz̄|2.

The mapping u thus satisfies (4.2). �
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For the approach to the Jacobian equation via energy-minimal solutions to make
sense, it is crucial that the range of the Jacobian operator is dense in H1(C). Ex-
tending techniques introduced in [CDK09] O. Kneuss proved in [Kne12] the following
deep result.

Theorem 4.3. Suppose h ∈ C1
0(D) satisfies

∫
D h = 0. Then

inf
u∈C∞0 (D,C)

‖Ju − h‖C1(D) = 0.

Recall that by Proposition 2.14, C∞• (C) is dense in H1(C). Proposition 2.11 and
Theorem 4.3 then imply the following important result.

Corollary 4.4. The range of the operator J : Ẇ 1,2(C,C) → H1(C) is dense in
H1(C).

Corollary 4.4 can also be deduced from the earlier result [CDK09, Theorem 1] with
a little bit of work.

Since the range of J is dense in H1(C), proving the a priori estimate

(4.4)
∫
C
|uz̄|2 . ‖Ju‖H1

for energy-minimal solutions would show that J : Ẇ 1,2(C,C)→ H1(C) is surjective.
We prove this fact for completeness.

Proposition 4.5. Suppose every energy-minimal solution satisfies (4.4). Then J
maps Ẇ 1,2(C,C) onto H1(C).

Proof. Let h ∈ H1(C). By using Corollary 4.4 select a sequence (vj)∞j=1 in Ẇ 1,2(C,C)

such that limj→∞ ‖Jvj−h‖H1 = 0. Choose energy-minimal solutions uj ∈ Ẇ 1,2(C,C)
that satisfy Juj = Jvj and ∫

C
|ujz̄|2 . ‖Juj‖H1 ≤ ‖h‖H1 + 1

from some index on.
Again, for a subsequence, ujz̄ ⇀ g in L2(C,C), and by Lemma 2.26 there exists

u ∈ Ẇ 1,2(C,C) such that uz̄ = g. By Proposition 2.30, Juj
∗
⇀ Ju in H1(C), and so

Ju = h. �

Remark 4.6. By focusing on energy-minimal solutions we also gain more control on
the behavior of the solutions considered. As an example of this, if u ∈ Ẇ 1,2(C,C) is
an energy-minimal solution and Ju = 0 a.e. in a domain Ω ⊂ C, then u ∈ W 1,∞

loc (Ω,C)
and |u(Ω)| = 0 (see Proposition 8.4).

If the minimality assumption is dropped, the mapping may exhibit rather wild
behavior. There exists, for instance, a continuous mapping u ∈ W 1,2(C,C) such that
Ju = 0 a.e. in C and u maps the line segment [0, 1]× {0} onto the square [0, 1]2 (see
[MM95, p. 34]). Furthermore, the assumption that Ju = 0 in a domain Ω ⊂ C does
not, in general, imply additional integrability for Du. This is seen easily by choosing
any u1 ∈ Ẇ 1,2(C) and setting u2 = 0 in Ω.

Our main point of focus is the question whether every energy-minimal solution
satisfies (4.4). The author has been unable to solve this problem but a multitude of
partial results are proved in this dissertation.
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4.2. Lagrange multipliers. In multidimensional calculus Lagrange multipliers are
used to minimize a function subject to a constraint. We use a similar strategy in
Banach spaces; in our case the minimization problem is

minimize
∫
C
|uz̄|2 subject to Ju = h,

where h ∈ H1(C) is given. Lagrange multipliers in Banach spaces are treated, for
instance, in chapter 43 of [Zei85]. In order to get started we introduce some notations
and definitions.

When u, φ ∈ Ẇ 1,2(C,C), the Gâteaux derivative of the functional ‖ · ‖2
Ẇ 1,2 at u in

the direction φ is
d

dε

∫
C
|(u+ εφ)z̄|2

∣∣∣∣
ε=0

= 2Re

∫
C
uz̄φz̄.

Similarly, the Gâteaux derivative of the Jacobian operator J is of the form

(4.5) J ′uφ :=
d

dε
Ju+εφ

∣∣∣∣
ε=0

= Ju1+iφ2 + Jφ1+iu2 = 2Re(uzφz − uz̄φz̄).

In particular, J ′uu = 2Ju.

Definition 4.7. A function b ∈ BMO(C) is called a Lagrange multiplier for u ∈
Ẇ 1,2(C,C) if ∫ ∗

C
b
d

dε
Ju+εφ

∣∣∣∣
ε=0

=
d

dε

∫
C
|(u+ εφ)z̄|2

∣∣∣∣
ε=0

for every φ ∈ Ẇ 1,2(C,C), that is,

(4.6)
∫ ∗
C
bRe(uzφz − uz̄φz̄) = Re

∫
C
uz̄φz̄ for all φ ∈ Ẇ 1,2(C,C).

The Euler-Lagrange equations corresponding to Lagrange multiplier condition (4.6)
are familiar from the theory of incompressible nonlinear elasticity.

Proposition 4.8. Suppose u ∈ Ẇ 1,2(C,C). Then a function b ∈ BMO(C) is a
Lagrange multiplier for u if and only if u and b satisfy the equation

(4.7) uzz̄ = (buz)z̄ − (buz̄)z

in the sense of distributions. In real notation (4.7) can be written as

(4.8) ∆u1 = 2(∂x(b∂yu2)− ∂y(b∂xu2)), ∆u2 = 2(∂y(b∂xu1)− ∂x(b∂yu1)).

Proof. When b ∈ BMO(C), condition (4.7) means that

(4.9)
∫ ∗
C
bRe(uzφz − uz̄φz̄) = Re

(∫
C
b(uzφz − uz̄φz̄ )

)
= Re

∫
C
uz̄φz̄

for all φ ∈ C∞0 (C,C). Thus (4.6) implies (4.7).
Conversely, suppose (4.7) is valid, i.e., (4.9) holds for all φ ∈ C∞0 (C,C). Since∫ ∗

C bRe(uzφz − uz̄φz̄) =
∫ ∗
C b(Ju1+iφ2 + Jφ1+iu2) for all φ ∈ Ẇ 1,2(C,C), the operator

J : Ẇ 1,2(C,C) → H1(C) is continuous and C∞0 (C,C) is dense in Ẇ 1,2(C,C), we
conclude that (4.7) implies (4.6). �

In the next section we discuss what it means in operator theoretical terms for
b ∈ BMO(C) to be a Lagrange multiplier for u ∈ Ẇ 1,2(C,C).
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4.3. Operator theoretical treatment of Lagrange multipliers. Recall that we
defined in §2.1 the Banach space

Ẇ 1,2
D (C,C) :=

{
u ∈ Ẇ 1,2(C,C) :

∫
D
u = 0

}
;

the norm is inherited from Ẇ 1,2(C,C). In this section we study, for a fixed mapping
u ∈ Ẇ 1,2

D (C,C), the linear operator J ′u : Ẇ 1,2
D (C,C) → H1(C) and its transpose

(J ′u)
∗ : BMO(C)→ Ẇ 1,2

D (C,C)∗. We choose Ẇ 1,2
D (C,C) as the domain of J ′u because

Ẇ 1,2(C,C) is not a normed space and this restriction of the domain does not affect
the range of J ′u.

For the remainder of this section we denote

E[u] :=

∫
C
|uz̄|2

for every u ∈ Ẇ 1,2
D (C,C) and the Gâteaux derivative of E : Ẇ 1,2

D (C,C) → R by E′.
We now fix u ∈ Ẇ 1,2

D (C,C) \ {0}.
The Lagrange multiplier condition

〈E′[u], φ〉 =

∫ ∗
C
bJ ′uφ for all φ ∈ Ẇ 1,2(C,C)

can be written as E′[u] = (J ′u)
∗b. Thus the existence of a Lagrange multiplier means

that E′[u] ∈ ran(J ′u)
∗. In particular, if the transpose (J ′u)

∗ : BMO(C)→ Ẇ 1,2
D (C,C)∗

were a surjection, that would imply the existence of a Lagrange multiplier. However,
if (J ′u)

∗ were a surjection, we would have (ker J ′u)
⊥ = ran(J ′u)

∗ = Ẇ 1,2
D (C,C). Since

J ′uū = Ju1−iu2 + Ju1+iu2 = 0 and ū 6= 0, we have ker J ′u ) {0}, and so (J ′u)
∗ cannot

map BMO(C) onto Ẇ 1,2
D (C,C)∗.

Another standard way to construct a Lagrange multiplier would be to show that
the range ran J ′u ⊂ H1(C) is closed and that E′[u] ∈ (ker J ′u)

⊥, that is,
(4.10) J ′uφ = 0 =⇒ 〈E′[u], φ〉 = 0.

Indeed, suppose ran J ′u is closed and (4.10) holds. Since ran(J ′u)
∗ is a subspace of the

Hilbert space Ẇ 1,2
D (C,C), we have

(4.11) ran(J ′u)
∗ = (ran(J ′u)

∗)⊥⊥ = (ker J ′u)
⊥

(see [Con90, Corollary I.2.9]). Furthermore, by the Closed range theorem, ran(J ′u)
∗

is closed since ran J ′u is. When this is combined with (4.10) and (4.11) we conclude
that E′[u] ∈ (ker J ′u)

⊥ = ran(J ′u)
∗ and so u has a Lagrange multiplier.

It is now natural to ask whether the range of the Gâteaux derivative J ′u : Ẇ 1,2
D (C,C)→

H1(C) is closed for every u ∈ Ẇ 1,2
D (C,C) or at least every energy-minimal solution.

It turns out that if a Lagrange multiplier exists, then under very non-restrictive con-
ditions on u the range ran J ′u is not closed. We omit the proof of this fact as we have
no other use for the result.

Even though standard operator theoretical considerations are not sufficient to pro-
duce Lagrange multipliers in our setting, in the next two chapters we present a dif-
ferent way to construct a large class of Lagrange multipliers that satisfy the uniform
norm estimate ‖b‖BMO . 1.
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5. On the Existence of Lagrange Multipliers

We carry out most of the analysis on Lagrange multipliers in terms of the operator
f 7→ |Sf |2 − |f |2 instead of the Jacobian. Recall that b ∈ BMOS(C) is said to be a
Lagrange multiplier for f ∈ L2(C,C) if

(5.1) Re

∫ ∗
C
b(SfSϕ− fϕ) = Re

∫
C
fϕ for all ϕ ∈ L2(C,C).

Also recall from the Introduction and §2.8 the norm defined by

(5.2) ‖b‖BMOS := sup
f∈L2(C,C)\{0}

∫ ∗
C b(|Sf |

2 − |f |2)∫
C |f |2

for all b ∈ BMO(C).
In this chapter we study the norm ‖ · ‖BMOS and the corresponding dual norm
‖·‖H1

S
inH1(C). We prove, among other things, that every function on the unit sphere

SVMOS is a Lagrange multiplier for some energy-minimal solution. As a byproduct we
get a large class L2

S(C,C) of energy-minimal solutions that satisfy the norm estimate∫
C |f |

2 . ‖|Sf |2 − |f |2‖H1 we seek. This class studied more extensively in §6.

5.1. The norm ‖ · ‖BMOS and Lagrange multipliers. The norms ‖ · ‖BMOS and
‖·‖H1

S
allow more precise quantitative analysis of Jacobians and Lagrange multipliers

than the norms that are normally used in VMO(C), H1(C) and BMO(C). As a first
example of this we prove the following simple sharp inequality.

Lemma 5.1. Suppose f ∈ L2(C,C). Then

(5.3) ‖|Sf |2 − |f |2‖H1
S
≤
∫
C
|f |2.

Proof. If b ∈ SVMOS , then the definition of ‖b‖BMOS implies that∫ ∗
C
b(|Sf |2 − |f |2) ≤ ‖b‖BMOS

∫
C
|f |2 =

∫
C
|f |2.

Taking supremum over SVMOS yields (5.3). �

We next replicate Proposition 1.13 that connects the norm ‖ · ‖BMOS to Lagrange
multipliers: b ∈ SBMOS is a Lagrange multiplier for f ∈ L2(C,C) \ {0} if and only if
the supremum at (5.2) is achieved at f .

Proposition 5.2. Suppose b ∈ SBMOS and f ∈ L2(C,C). The following conditions
are equivalent.

(i) b is a Lagrange multiplier for f .
(ii)

∫ ∗
C b(|Sf |

2 − |f |2) =
∫
C |f |

2.
If these conditions hold, then f is an energy minimizer.

Proof. If (i) holds, setting ϕ = f in (5.1) yields (ii).
Suppose then (ii) holds and let ϕ ∈ L2(C,C). Since ‖b‖BMOS = 1, we have

I(ε) :=

∫ ∗
C
b(|S(f + εϕ)|2 − |f + εϕ|2)−

∫
C
|f + εϕ|2 ≤ 0

for every ε ∈ R, and by condition (ii), I achieves its maximum when ε = 0. Differ-
entiation of I at 0 gives (5.1). Hence, (ii) implies (i).
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We now prove that if (i) and (ii) hold, then f is an energy minimizer. Suppose
g ∈ L2(C,C) satisfies |Sg|2 − |g|2 = |Sf |2 − |f |2. Proposition 5.2, the definition of
‖b‖BMOS and the assumption ‖b‖BMOS = 1 imply that∫

C
|f |2 =

∫ ∗
C
b(|Sf |2 − |f |2) =

∫ ∗
C
b(|Sg|2 − |g|2) ≤

∫
C
|g|2.

This proves that f is an energy minimizer. �

Remark 5.3. In Proposition 5.2 and in most of the results on Lagrange multipliers
that follow we assume that ‖b‖BMOS = 1. This assumption allows the maximization
technique of the proof above to work, and it is also necessary in applying isometric
Banach space theory to Lagrange multipliers.

In general, if b ∈ BMOS(C) is a Lagrange multiplier for f ∈ L2(C,C) \ {0},
then

∫ ∗
C b(|Sf |

2 − |f |2) =
∫
C |f |

2 and so ‖b‖BMOS ≥ 1. If Lagrange multipliers with
‖b‖BMOS > 1 exist, it appears that they cannot be found by the methods used in this
dissertation.

5.2. Lagrange multipliers in VMOS(C). The proofs of Theorems 1.14 and 1.16
are started in this section; the former is completed in §6.2 and the latter in §5.3.
Recall from the Introduction that we defined

(5.4) L2
S(C,C) :=

{
f ∈ L2(C,C) :

∫
C
|f |2 = ‖|Sf |2 − |f |2‖H1

S

}
.

and SL2
S

:= L2
S(C,C) ∩ SL2 . We now begin to study SL2

S
.

Proposition 5.4. If b ∈ SVMOS , then
∫ ∗
C b(|Sf |

2 − |f |2) = 1 for some f ∈ SL2
S
.

Proof. Choose a sequence (f j)∞j=1 in L2(C,C) such that
∫
C |f

j|2 = 1 for every j ∈ N
and

(5.5) lim
j→∞

∫ ∗
C
b(|Sf j|2 − |f j|2) = 1.

The unit ball of L2(C,C) is weakly compact, and therefore there exists f ∈ L2(C,C)
such that, moving to a subsequence which we don’t relabel, f j ⇀ f in L2(C,C). By
the weak lower semicontinuity of the norm,

∫
C |f |

2 ≤ lim infj→∞
∫
C |f

j|2 = 1.
Since b ∈ VMOS(C) and f j ⇀ f , Proposition 2.30 yields

(5.6)
∫ ∗
C
b(|Sf |2 − |f |2) = lim

j→∞

∫ ∗
C
b(|Sf j|2 − |f j|2) = 1.

By using the assumption ‖b‖BMOS = 1 and Lemma 5.1 we obtain

1 =

∫ ∗
C
b(|Sf |2 − |f |2) ≤ ‖|Sf |2 − |f |2‖H1

S
≤
∫
C
|f |2 ≤ 1,

and so f ∈ SL2
S
. �

Since
∫
C |f |

2 = 1 for every f ∈ SL2
S
, Lemma 5.4 has the following direct conse-

quence.

Corollary 5.5. If b ∈ SVMOS , then b is a Lagrange multiplier for some f ∈ SL2
S
.

Next, recall the following notion from Banach space theory.
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Definition 5.6. LetX be a Banach space. A set B ⊂ BX∗ is called a James boundary
of X if for every x ∈ SX there exists x∗ ∈ B such that 〈x∗, x〉 = 1.

Lemma 5.4 and Proposition 5.5 have the following equivalent formulation.

Corollary 5.7. The set {|Sf |2−|f |2 : f ∈ SL2
S
} forms a James boundary of VMOS(C).

Since H1
S(C) is separable by Proposition 2.15, Corollary 5.7 allows us to use the

following special case of a theorem of G. Godefroy (see [FHHMPZ01, Theorem 3.46]).

Theorem 5.8. Let X be a Banach space. If B ⊂ BX∗ is a separable James boundary
for X, then the closed convex hull co(B) = BX∗.

Corollary 5.7 and Theorem 5.8 have the following consequence.

Theorem 5.9. co({|Sf |2 − |f |2 : f ∈ SL2
S
}) = BH1

S
.

Theorem 5.9 plays a crucial role in the next section.

5.3. Characterizations of the norms ‖·‖BMOS and ‖·‖H1
S
. Proposition 5.5 raises

the question under what conditions an energy minimizer f ∈ L2(C,C) \ {0} has a
Lagrange multiplier. The main goal of this section is to prove Theorem 1.16 which
says that a mapping f ∈ L2(C,C) has a Lagrange multiplier b ∈ SBMOS if and only
if
∫
C |f |

2 = ‖|Sf |2 − |f |2‖H1
S
. The proof is based on the following result. We denote

the dual norm of BMOS(C) by ‖ · ‖(VMOS)∗∗ .

Theorem 5.10. If b ∈ BMOS(C), then

‖b‖BMOS = ‖b‖(VMOS)∗∗ = sup
f∈S

L2
S

∫ ∗
C
b(|Sf |2 − |f |2).

Proof. Let b ∈ BMOS(C). By Lemma 5.1,

‖b‖BMOS = sup∫
C |f |2≤1

∫ ∗
C
b(|Sf |2 − |f |2) ≤ sup

‖|Sf |2−|f |2‖H1
S
≤1

∫ ∗
C
b(|Sf |2 − |f |2)

≤ sup
‖h‖H1

S
≤1

∫ ∗
C
bh = ‖b‖VMO∗∗S .

The inequality supf∈S
L2
S

∫ ∗
C b(|Sf |

2 − |f |2) ≤ ‖b‖BMOS is obvious.
In order to complete the proof note that, by Theorem 5.9,

‖b‖(VMOS)∗∗ = sup
h∈BH1

S

∫ ∗
C
bh = sup

h∈co({|Sf |2−|f |2 : f∈S
L2
S
})

∫ ∗
C
bh.

It is a standard fact about linear functionals that

sup
h∈co({|Sf |2−|f |2 : f∈S

L2
S
})

∫ ∗
C
bh = sup

h∈{|Sf |2−|f |2 : f∈S
L2
S
}

∫ ∗
C
bh = sup

f∈S
L2
S

∫ ∗
C
b(|Sf |2 − |f |2).

�

Theorem 5.10 shows, in particular, that BMOS(C) is isometrically the bidual of
VMOS(C) and

(5.7)
∫ ∗
C
bh ≤ ‖b‖BMOS‖h‖H1

S
for all b ∈ BMOS(C) and h ∈ H1

S(C).
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We next show that Theorem 5.10 implies Theorem 1.16.

Proof of Theorem 1.16. Suppose f ∈ L2(C,C). If f has a Lagrange multiplier b ∈
SBMOS , then Proposition 5.2, (5.7) and the assumption ‖b‖BMOS = 1 imply that∫

C
|f |2 =

∫ ∗
C
b(|Sf |2 − |f |2) ≤ ‖|Sf |2 − |f |2‖H1

S
.

Lemma 5.1 gives the converse inequality, and so ‖|Sf |2 − |f |2‖H1
S

=
∫
C |f |

2.
Conversely, if ‖|Sf |2−|f |2‖H1

S
=
∫
C |f |

2, then Theorem 5.10 and the Hahn-Banach
theorem imply that there exists b ∈ SBMOS such that∫ ∗

C
b(|Sf |2 − |f |2) = ‖|Sf |2 − |f |2‖H1

S
=

∫
C
|f |2.

By Proposition 5.2, b is a Lagrange multiplier for f .
The Hahn-Banach theorem implies that every b ∈ SVMOS , when considered as an

element of BMOS(C), is norm-attaining (see e.g. [Con90, p. 79]). �

We continue the study of the geometry of the spaces VMOS(C), H1
S(C) and

BMOS(C) in §6.

5.4. Connection to commutators. As mentioned in the Introduction, Lagrange
multipliers turn out to be closely related to commutators Sb − bS, where S is the
Beurling transform and b ∈ BMO(C). We will make use of the operator Kb :=

(Sb− bS)S· : L2(C,C)→ L2(C,C) defined in §2.8. We now present a proof of Propo-
sition 1.23 which we recall below.

Proposition 5.11. Suppose b ∈ BMO(C) and f ∈ L2(C,C). The following condi-
tions are equivalent.

(i) f ∈ ker(I −Kb).
(ii) b is a Lagrange multiplier for f .

Furthermore, if b ∈ SVMOS , then ker(I −Kb) is finite-dimensional and contained in
L2
S(C,C).

Proof. We shall prove that∫ ∗
C
bRe(SfSϕ− fϕ) = Re

∫
C
(Kbf)ϕ

for every ϕ ∈ L2(C,C). Then the condition f ∈ ker(I −Kb), that is, equation

(5.8) Kbf = f,

is clearly equivalent to Lagrange multiplier condition
∫ ∗
C bRe(SfSϕ−fϕ) = Re

∫
C fϕ.

Let ϕ ∈ L2(C,C) and use (2.14) and the self-adjointness of Kb to write

2

∫ ∗
C
bRe(SfSϕ− fϕ)

=

∫ ∗
C
b(|S(f + ϕ)|2 − |f + ϕ|2)−

∫ ∗
C
b(|Sf |2 − |f |2)−

∫ ∗
C
b(|Sϕ|2 − |ϕ|2)

=

∫
C
(f + ϕ)Kb(f + ϕ)−

∫
C
fKbf −

∫
C
ϕKbϕ

=

∫
C
(fKbϕ+ ϕKbf) =

∫
C
((Kbf)ϕ+Kbfϕ) = 2Re

∫
C
(Kbf)ϕ.
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Suppose now that b ∈ SVMOS . By Lemma 2.34, Kb is a compact operator. The
finite-dimensionality of ker(I−Kb) now follows by elementary Hilbert space geometry
(see [Con90, Proposition II.4.13]). Furthermore, Theorem 1.16 and the equivalence
of conditions (i) and (ii) imply that ker(I −Kb) ⊂ L2

S(C,C). �

Note that when b ∈ SBMOS , Proposition 2.35 implies that (5.8) can be written
as Kbf = ‖Kb‖L2→L2f , that is, f is an eigenvector corresponding to the maximal
eigenvalue ‖Kb‖L2→L2 .
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6. On the Class SL2
S

As we have seen in the Introduction and §5, the geometry of the unit spheres SVMOS ,
SH1
S
, SBMOS and SL2 is crucial in the study of Lagrange multipliers. Motivated, among

other things, by Theorem 1.16 we are particularly interested in the properties of the
set

(6.1) SL2
S

=

{
f ∈ L2(C,C) :

∫
C
|f |2 = ‖|Sf |2 − |f |2‖H1

S
= 1

}
.

In this chapter we prove Theorem 1.19 which we restate below.

Theorem 6.1. The following statements hold.
(i) {|Sf |2 − |f |2 : f ∈ SL2

S
} contains all the extreme points of BH1

S
.

(ii) {|Sf |2 − |f |2 : f ∈ SL2
S
} is closed in the relative weak-∗ topology of SH1

S
. In

particular, {|Sf |2 − |f |2 : f ∈ SL2
S
} is norm closed.

In §6.2 we use Theorem 6.1 to prove Theorem 1.14 which we also restate here.

Theorem 6.2. Let b ∈ SBMOS . The following conditions are equivalent.
(i) b is a Lagrange multiplier for some f ∈ L2(C,C) \ {0}.
(ii) b is norm-attaining.

In particular, every b ∈ SVMOS is a Lagrange multiplier for some f ∈ L2(C,C) \ {0}.

This chapter culminates in §6.3 in the proof of the main result of this dissertation,
Theorem 1.27.

6.1. Topological properties of {|Sf |2−|f |2 : f ∈ SL2
S
}. The topological properties

of L2(C,C) can be capitalized on when studying the set {|Sf |2− |f |2 : f ∈ SL2
S
}. As

an instance of this, since L2(C,C) is a Hilbert space, a sequence converges if it
converges weakly and the norms of the elements of the sequence converge. Another
feature useful to us is the weak compactness of the unit ball BL2 . These properties
are next used to prove the second of the two claims of Theorem 6.1.

Proof of Theorem 6.1(ii). Since VMOS(C) is separable, the unit ball BH1
S
is metriz-

able in the weak-∗ topology, and so it suffices to consider sequences instead of nets.
Suppose f j ∈ SL2

S
for every j ∈ N and |Sf j|2 − |f j|2 ∗

⇀ h ∈ SH1
S
. Since

∫
C |f

j|2 = 1

for every j ∈ N, we may pass to a subsequence and find f ∈ L2(C,C) such that
f j ⇀ f . By Proposition 2.30, |Sf j|2 − |f j|2 ∗

⇀ |Sf |2 − |f |2, and so h = |Sf |2 − |f |2.
By Lemma 5.1,

(6.2) 1 = ‖h‖H1
S

= ‖|Sf |2 − |f |2‖H1
S
≤
∫
C
|f |2 ≤ lim inf

j→∞

∫
C
|f j|2 = 1,

and therefore f ∈ SL2
S
. �

The coincidence of the norm and relative weak topologies in SL2 is reflected in the
following result.

Proposition 6.3. The relative weak-∗ topology of SH1
S
and norm topology coincide

in {|Sf |2 − |f |2 : f ∈ SL2
S
}.
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Proof. As in the previous proof, it suffices to consider sequences. Let f 1, f 2, · · · ∈ SL2
S

and f ∈ SL2
S
, and suppose |Sf j|2 − |f j|2 ∗

⇀ |Sf |2 − |f |2. We will prove the claim by
showing that every subsequence of (|Sf j|2−|f j|2)∞j=1 has a subsequence that converges
in norm to |Sf |2 − |f |2. Equivalently, we work with the sequence (f j)∞j=1. Fix a
subsequence and use the weak compactness of BL2 to pass to a further subsequence
that converges weakly, f j ⇀ g. By Lemma 2.30, |Sf j|2 − |f j|2 ∗

⇀ |Sg|2 − |g|2. On
the other hand, we assumed that |Sf j|2− |f j|2 ∗

⇀ |Sf |2− |f |2, and so |Sf |2− |f |2 =
|Sg|2 − |g|2. As in (6.2), ‖g‖L2 = 1. Now f j ⇀ g and 1 = ‖f j‖L2 → ‖g‖L2 imply
that ‖f j − g‖L2 → 0. By Corollary 2.19, |Sf j|2 − |f j|2 → |Sg|2 − |g|2 = |Sf |2 − |f |2
in H1

S(C). �

6.2. Extreme points of BH1
S
. The purpose of this section is to prove Theorem 6.1(i)

and Theorem 1.14. We will use the following theorem of M. Milman (see [Meg98,
Theorem 2.10.15]).

Theorem 6.4. Let K be a nonempty compact subset of a Hausdorff locally convex
space X such that co(K) is compact. Then every extreme point of co(K) lies in K.

We now complete the proof of Theorem 6.1 by showing that the set {|Sf |2 −
|f |2 : f ∈ SL2

S
} contains all the extreme points of BH1

S
.

Proof of Theorem 6.1(i). In Milman’s theorem choose X to be H1
S(C) endowed with

the weak-∗ topology and let K be the weak-∗ closure of {|Sf |2 − |f |2 : f ∈ SL2
S
} in

H1
S(C). By Theorem 5.9, co(K) = BH1

S
, and in particular, the weak-∗ closed convex

hull cow∗(K) = BH1
S
. Since BH1

S
is weak-∗ compact, Milman’s theorem implies that

every extreme point of BH1
S
lies in K.

Let h ∈ K be an extreme point of BH1
S
. By the definition ofK, there exist f j ∈ SL2

S

such that |Sf j|2 − |f j|2 ∗
⇀ h. On the other hand, as an extreme point of BH1

S
the

function h belongs to SH1
S
. By Theorem 6.1(ii), h = |Sf |2−|f |2 for some f ∈ SL2

S
. �

Theorem 6.1 is next used to prove Theorem 1.14. Here it is crucial that extreme
points of BH1

S
exist in abundance (see Corollary 2.43).

Proof of Theorem 1.14. Suppose first b ∈ SBMOS is a Lagrange multiplier for f ∈
L2(C,C) \ {0}. By Theorem 1.16 and scaling, we may assume that f ∈ SL2

S
, and

then Proposition 1.13 implies that b attains its norm at |Sf |2 − |f |2 ∈ SH1
S
.

Conversely, suppose b ∈ SBMOS is norm-attaining. The set

K :=

{
h ∈ SH1

S
:

∫ ∗
C
bh = 1

}
is non-empty. Since K is closed, convex and bounded, it follows from Corollary 2.43
that K contains an extreme point h. The definition of K easily implies that h is also
an extreme point of BH1

S
. Theorem 6.1 now implies that h = |Sf |2 − |f |2 for some

f ∈ SL2
S
. By Proposition 1.13, b is a Lagrange multiplier for f . �

6.3. The duality mapping D : SVMOS → SH1
S
. Suppose b ∈ SVMOS . One of the

useful features of the set K := {h ∈ SH1
S

:
∫ ∗
C bh = 1} is that h ∈ K is an ex-

treme point of K if and only if h is an extreme point of SH1
S
. Furthermore, K is

closed, bounded and convex and therefore K is the closed convex hull of its extreme



46 SAULI LINDBERG

points (see Corollary 2.43). This allows us to take advantage of Theorem 6.1(i) and
motivates study of the duality mapping.

Definition 6.5. Let X be a Banach space. The duality mapping D : SX → P(SX∗)
is defined by

D(x) := {x∗ ∈ SX∗ : 〈x∗, x〉 = 1}.

Before studying D : SVMOS → SH1
S
recall from Propositions 1.13 and 1.23 that

when b ∈ SVMOS and f ∈ SL2
S
, we have |Sf |2 − |f |2 ∈ D(b) if and only if f belongs

to the unit circle of the finite-dimensional subspace ker(I −Kb) ⊂ L2(C,C).
We recall Theorem 1.27 for the convenience of the reader.

Theorem 6.6. Let b ∈ SVMOS . The following statements hold.
(i) D(b) is contained in a finite-dimensional subspace of H1

S(C).
(ii) f 7→ |Sf |2 − |f |2 : ker(I −Kb) ∩ SL2

S
→ D(b) is Lipschitz continuous.

(iii) {|Sf |2− |f |2 : f ∈ ker(I −Kb)∩ SL2
S
} contains all the extreme points of D(b).

(iv) {|Sf |2 − |f |2 : f ∈ ker(I −Kb) ∩ SL2
S
} is closed and path-connected.

Proof. Fix b ∈ SVMOS . Claim (ii) follows from Corollary 2.19.
We next prove claim (i). By Corollary 2.43, D(b) is the closed convex hull of

its extreme points. All the extreme points of D(b) are also extreme points of BH1
S
,

and by Theorem 6.1 they belong to {|Sf |2 − |f |2 : f ∈ SL2
S
}. We will show that

{|Sf |2−|f |2 : f ∈ SL2
S
}∩D(b) is contained in a finite-dimensional subspace of H1

S(C);
then D(b) has the same property.

Choose an orthonormal basis {f 1, . . . , fn} for the finite-dimensional complex vector
space ker(I − Kb). If f ∈ SL2

S
and |Sf |2 − |f |2 ∈ D(b), then f ∈ ker(I − Kb) and

so f is a complex linear combination of f 1, . . . , fn. Thus |Sf |2 − |f |2 is a real linear
combination of mappings of the form Re(Sf jSfk − f jfk) or Re(i(Sf jSfk − f jfk))
where 1 ≤ j, k ≤ n. Consequently,

D(b) ⊂ span
n⋃

j,k=1

{
Re(Sf jSfk − f jfk), Im(Sf jSfk − f jfk)

}
.

This proves claim (i).
Claim (iii) follows from Theorem 6.1(i) and the fact that h ∈ D(b) is an extreme

point of D(b) if and only if it is an extreme point of BH1
S
.

Since ker(I−Kb)∩SL2
S
is compact and path-connected, so is the image set {|Sf |2−

|f |2 : f ∈ ker(I−Kb)∩SL2
S
}, by continuity. This completes the proof the theorem. �

In the Introduction we posed the question whether f 7→ |Sf |2− |f |2 maps ker(I −
Kb) ∩ SL2

S
onto D(b) for every b ∈ SVMOS . The following proposition gives a simple

partial result.

Proposition 6.7. For a dense subset of SVMOS the operator f 7→ |Sf |2 − |f |2 is a
surjection from ker(I −Kb) ∩ SL2

S
to D(b).

Proof. Since VMOS(C) has the separable dual H1
S(C), the norm ‖·‖BMOS is Gâteaux

differentiable (even Fréchet differentiable) in a dense subset of SVMOS (see [FHHMPZ01,
Theorem 8.21]). By a result of S. Banach (see [Meg98, Theorem 5.4.17]), when
b ∈ SVMOS , the set D(b) is a singleton if and only if the norm ‖ · ‖BMOS is Gâteaux
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differentiable at b. When D(b) = {h} is a singleton, Theorem 6.6(iii) implies that
h = |Sf |2 − |f |2 for some f ∈ SL2

S
. �

It is natural to ask whether the norm ‖ · ‖BMOS is Gâteaux differentiable at every
point of SVMOS . This would, by Theorem 6.6(iii), imply a positive answer to Ques-
tion 1.24 and thereby to Question 1.2. Since VMOS(C) is separable, there exists a
Gâteaux differentiable norm in VMOS(C) (see [FHHMPZ01, Theorem 8.13]).

We also present the following question related to Theorem 1.27.

Question 6.8. Let b ∈ SVMOS . If f, g ∈ ker(I − Kb) satisfy Re
∫
C fg = 0, does it

follow that Re(SfSg − fg) = 0?

Remark 6.9. A positive answer to Question 6.8 would imply a positive answer to
Question 1.24. We omit the proof of this fairly standard fact.

It is also tempting to ask whether every element of D(b) is a convex combination of
two elements of {|Sf |2−|f |2 : f ∈ ker(I−Kb)∩SL2

S
}. When combined with Theorem

6.1(ii), this would imply that every element of H1(C) is a sum of two Jacobians.
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7. Local Study of Energy-Minimal Solutions and Lagrange
Multipliers

Question 1.24 motivates the study of the way an energy minimizer u ∈ Ẇ 1,2(C,C)
(or f ∈ L2(C,C)) and its Lagrange multiplier b ∈ SBMOS (if one exists) are related.
We present several results on this topic in this chapter and the next one. Working
with mappings in Ẇ 1,2(C,C) instead of L2(C,C) appears to be the most natural
option in this context.

Our general strategy can be outlined as follows. If u ∈ Ẇ 1,2(C,C) has integrable
distortion and positive Jacobian in a domain Ω, it follows from Corollary 2.8 that u is
a local homeomorphism outside a discrete set. We then restrict to a subdomain where
u is a homeomorphism and use the Euler-Lagrange equations given in Proposition
4.8 to gather information about u and the Lagrange multiplier b ∈ BMO(C) in the
subdomain. In some cases we can then draw conclusions on the behavior of u and b
in the whole domain Ω.

7.1. Lagrange multipliers in a bounded domain. When an energy-minimal so-
lution has a positive Jacobian in a domain, ideas from the mathematical theory of
incompressible elasticity can be used to study the solution. For results in this di-
rection relevant to our study see e.g. [Bal77], [LO81], [BOP92], [Le Dre85], [CK09],
[Kar12] and the references contained therein. The setting of [CK09] and [Kar12] is
mathematically particularly close to ours.

The aim of this section is to give a local representation theorem for a Lagrange
multiplier provided it exists. The idea behind the proof of the theorem dates back at
least to [LO81] and is used under hypotheses more similar to ours in [CK09]. Some
technicalities are, however, needed in order to establish the result in our setting, and
we therefore present a proof. Theorem 7.1 applies, in particular, if b ∈ BMO(C) is
a Lagrange multiplier for u ∈ Ẇ 1,2(C,C). When φ ∈ W 1,2

0 (Ω,C), we identify φ and
the mapping that is obtained by extending φ as zero outside Ω.

Theorem 7.1. Let b ∈ BMO(C) and u ∈ Ẇ 1,2(C,C). Assume u satisfies Ju > 0 a.e.
in a domain Ω ⊂ C and u : Ω→ u(Ω) is a homeomorphism with inverse v := u−1. If
b and u satisfy

(7.1)
∫ ∗
C
bRe(uzφz − uz̄φz̄) = Re

∫
C
uz̄φz̄ for all φ ∈ W 1,2

0 (Ω,C),

then b|Ω is of the form
b = q ◦ u,

where q ∈ L1
loc(u(Ω)) satisfies

(7.2) qζ =

( |vζ̄ |2
Jv

)
ζ

−
(
vζvζ̄
Jv

)
ζ̄

in u(Ω) in the sense of distributions.

As part of the proof of Theorem 7.1 we show that |vζ̄ |2/Jv and vζvζ̄/Jv are in-
tegrable in u(Ω), so that (7.2) is well-defined. Before presenting the proof we need
some definitions and lemmas.
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Definition 7.2. Let Ω,Ω′ ⊂ C and let u : Ω → Ω′ be measurable. The mapping u
satisfies Lusin’s condition N if for every E ⊂ Ω,

|E| = 0 =⇒ |u(E)| = 0.

When u : Ω→ Ω′ is a bijection, we write Lusin’s condition N for u−1 as

(7.3) |u(E)| = 0 =⇒ |E| = 0

for all E ⊂ Ω.

Lemma 7.3. Suppose Ω ⊂ C is open, u ∈ W 1,2(Ω, u(Ω)) is a homeomorphism and
Ju > 0 a.e. Then both u and u−1 satisfy Lusin’s condition N .

Proof. For a proof of the fact that u satisfies Lusin’s condition N see [AIM09, The-
orem 3.3.7].

We sketch the proof of condition N for u−1. The primary idea is that since u
is homeomorphism in W 1,2(Ω, u(Ω)) and satisfies Lusin’s condition N , we have, for
every measurable E ⊂ Ω,

(7.4)
∫
E

Ju = |u(E)|

(see [MZ92, Theorem 3.1] when E is open and use approximation for general mea-
surable E).

If E ⊂ Ω is measurable, then (7.3) follows from (7.4) and the assumption that
Ju > 0 a.e. in Ω.

In general, if E ⊂ Ω and |u(E)| = 0, choose a Borel set B such that

(7.5) u(E) ⊂ B ⊂ u(Ω) and |B| = |u(E)| = 0.

Since |B| = 0 and u−1(B) is measurable, it follows from the case covered above that
|u−1(B)| = 0. Thus |E| = 0. �

Lemma 7.3 implies that u and u−1 preserve Lebesgue measurable sets. Thus, in
particular, if g : u(Ω) → R is a measurable function, then g ◦ u is measurable. The
following change-of-variables result is a special case of [Haj93, Theorem 2].

Lemma 7.4. Suppose Ω ⊂ C is open, u ∈ W 1,2(Ω, u(Ω)) is a homeomorphism and
Ju > 0 a.e. If g : u(Ω) → R is measurable and g ◦ uJu ∈ L1(Ω), then g ∈ L1(u(Ω))
and

(7.6)
∫

Ω

g ◦ uJu =

∫
u(Ω)

g.

The following lemma is a modification of [CK09, Lemma 3.4].

Lemma 7.5. Suppose u ∈ Ẇ 1,2(C,C) and b ∈ BMO(C) satisfy the assumptions of
Theorem 7.1. Then

2Re

∫
Ω

uz̄(η ◦ u)z̄ =

∫
Ω

b div η ◦ uJu

for every η ∈ C∞0 (u(Ω),C).

Proof. First calculate

2Re
(
uz(η ◦ u)z − uz̄(η ◦ u)z̄

)
= 2Re

(
uzηuuz + ηūuz̄ − uz̄ ηuuz̄ + ηūuz

)
= 2Re(ηuJu) = div η ◦ uJu.
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Then note that χΩ · η ◦ u ∈ W 1,2
0 (Ω,C) and use condition (7.1) to conclude that

2Re

∫
Ω

uz̄(η ◦ u)z̄ =

∫ ∗
C
bχΩ div η ◦ uJu =

∫
Ω

b div η ◦ uJu.

�

With the auxiliary results established we are ready to prove Theorem 7.1.

Proof of Theorem 7.1. We want to prove that b ◦ v ∈ L1
loc(u(Ω)) and set q := b ◦ v.

Lemma 7.3 implies that u maps measurable sets onto measurable sets. Hence, b ◦ v
is measurable.

Our next goal is to prove that b ◦ v ∈ L1
loc(u(Ω)); by Lemma 7.4 it suffices to show

that bJu ∈ L1
loc(Ω). Let K ⊂ Ω be compact and choose a square Q ⊂ C that contains

K. First calculate ∫
K

|bJu| ≤
∫
K

|b− bQ|Ju + |bQ|
∫
K

Ju.

Next let C > 0 and use the elementary inequality ab ≤ ea−1+b log(1+b) for a, b ≥ 0
to write

(7.7)
∫
K

|b− bQ|Ju ≤
∫
Q

(
exp

(
|b− bQ|
C

)
− 1

)
+

∫
K

CJu log(1 + CJu).

When C > 0 is chosen large enough, the John-Nirenberg theorem (see e.g. [Gra04,
Corollary 7.1.7]) implies that the first integral on the right hand side of (7.7) con-
verges. Since u ∈ W 1,2(Ω,C) and CJu > 0 a.e. in Ω, Theorem 2.17 yields CJu log(1+
CJu) ∈ L1

loc(Ω), and so the second integral converges as well. Thus bJu ∈ L1
loc(Ω)

and therefore b ◦ v ∈ L1
loc(u(Ω)).

We set q := b ◦ v and show that (7.2) holds in the sense of distributions. To this
end, let η ∈ C∞0 (u(Ω),C). Since bJu ∈ L1

loc(Ω), we have b div η ◦ uJu ∈ L1(Ω). We
may thus write, using Lemmas 7.4 and 7.5,

(7.8)
2Re

∫
u(Ω)

q ηζ =

∫
u(Ω)

q div η =

∫
Ω

b div η ◦ uJu = 2Re

∫
Ω

uz̄(η ◦ u)z̄

= 2Re

∫
Ω

|uz̄|2ηu + 2Re

∫
Ω

uzuz̄ηū.

Since u ∈ W 1,2(Ω, u(Ω)) is a homeomorphism, u is differentiable a.e. (see e.g.
[AIM09, Corollary 3.3.3]). Furthermore, by assumption, Ju > 0 a.e. in Ω. When u
is differentiable and Du is invertible at z ∈ Ω, we have uz̄(z) = −vζ̄(u(z))Ju(z) =
−vζ̄(u(z))/Jv(u(z)) (see [AIM09, p. 34]). By using this identity a.e. in Ω and Lemma
7.4 we get ∫

Ω

|uz̄|2 =

∫
Ω

|vζ̄ ◦ u|2

Jv ◦ u
Ju =

∫
u(Ω)

|vζ̄ |2

Jv
,

and so |vζ̄ |2/Jv ∈ L1(u(Ω)). In a similar vein,

(7.9) 2Re

∫
Ω

|uz̄|2ηu = 2Re

∫
Ω

|vζ̄ ◦ u|2

Jv ◦ u
ηζ ◦ uJu = 2Re

∫
u(Ω)

|vζ̄ |2

Jv
ηζ .
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Likewise, by using the identity uz(z) = vζ(u(z))Ju(z) = vζ(u(z))/Jv(u(z)) a.e. z ∈ Ω
and Lemma 7.4 we get vζvζ̄/Jv ∈ L1(u(Ω),C) and

(7.10) 2Re

∫
Ω

uzuz̄ηū = −2Re

∫
u(Ω)

vζvζ̄
Jv

ηζ̄ = −2Re

∫
u(Ω)

vζvζ̄
Jv

ηζ̄ .

By combining (7.8), (7.9) and (7.10) we obtain (7.2), and so the proof of the theorem
is complete. �

The local representation of Lagrange multipliers given by Theorem 7.1 allows us to
draw the following more global conclusion on the uniqueness of Lagrange multipliers.

Corollary 7.6. Let b ∈ BMO(C) and u ∈ Ẇ 1,2(C,C). Suppose Ω ⊂ C is a domain
such that in Ω, u satisfies Ju > 0 a.e. and has integrable distortion. If b and u satisfy

(7.11)
∫ ∗
C
bRe(uzφz − uz̄φz̄) = Re

∫
C
uz̄φz̄ for all φ ∈ W 1,2

0 (Ω,C),

then b|Ω is unique up to an additive constant.

Proof. By Corollary 2.8, u|Ω is a local homeomorphism outside a discrete set S.
When z ∈ Ω \ S, choose a smooth neighborhood Uz 3 z such that u : Uz → u(Uz) is
a homeomorphism.

Suppose b1, b2 ∈ BMO(C) both satisfy (7.11). By Theorem 7.1, there exist q1, q2 ∈
L1
loc(u(Uz)) such that b1 = q1◦u and b2 = q2◦u in Uz. Since q1 and q2 are real-valued,

(7.2) implies that ∇(q1 − q2) = 0. Hence, b1 − b2 is constant in Uz.
We still need to make sure that b1 − b2 equals the same constant in every neigh-

borhood Uz. Suppose K ⊂ Ω \S is compact. Then {Uz : z ∈ K} is a cover of K, and
by the compactness of K it has a finite subcover. It is now a standard topological
fact that b is constant in K. It follows that b1 − b2 is constant in the whole domain
Ω. �

The interesting feature of Corollary 7.6 is that we do not need any assumptions
about the behavior of b outside Ω in order to reach the conclusion that b|Ω is unique.
This makes it appear likely that if an energy minimizer u ∈ Ẇ 1,2(C,C) has a Lagrange
multiplier b ∈ BMO(C), then b is unique.

7.2. Smooth, compactly supported Lagrange multipliers. The Euler-Lagrange
equations presented in Proposition 4.8 are somewhat difficult to study because var-
ious algebraic manipulations are difficult (or impossible) to justify. This problem
does not, however, exist when the Lagrange multiplier is smooth enough. We there-
fore investigate the interplay between an energy-minimal solution u and its Lagrange
multiplier b in the model case where b is smooth and compactly supported. The
assumption b ∈ C∞0 (C) is natural since C∞0 (C) is dense in VMO(C).

Theorem 7.7. Suppose b ∈ C∞0 (C) is a Lagrange multiplier for u ∈ Ẇ 1,2(C,C)\{0}.
Then u ∈ C∞(C,C).

Proof. We shall prove that Du ∈ ∪∞n=0W
n,2(C,R2×2). Then the smoothness of u

follows from the Sobolev embedding theorem; u ∈ ∪∞n=1W
n,2
loc (C,C) ⊂ C∞(C,C) (see

e.g. [AF03, Theorem 4.12]).
First note that Du ∈ L2(C,R2×2) since u ∈ Ẇ 1,2(C,C). We make the inductive

assumption that Du ∈ W n,2(C,R2×2) for n ≥ 0 and intend to show that Du ∈
W n+1,2(C,R2×2).
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Condition (4.8) in Proposition 4.8 and the assumption b ∈ C∞0 (C) imply that

(7.12) ∆u1 = 2(∂xb ∂yu2 − ∂yb ∂xu2) ∈ W n,2(C).

Fix a multi-index α = (α1, α2) with |α| = α1 + α2 = n. Then ∂α∆u1 ∈ L2(C,C) by
(7.12). Therefore, by using the properties of second-order Riesz transforms Rij (see
[Gra04]) and in particular the boundedness of Rij in L2(C,C) we may write

∂x∂x∂
αu1 = −R11∆∂αu1 = −R11∂

α∆u1 ∈ L2(C).

Using a similar identity on the other second-order partial derivatives we write the
Hessian matrix of ∂αu1 as

H∂αu1 =

[
∂x∂x∂

αu1 ∂x∂y∂
αu1

∂y∂x∂
αu1 ∂y∂y∂

αu1

]
= −

[
R11 R12

R21 R22

]
◦∆∂αu1 ∈ L2(C,R2×2).

Thus ∂αHu1 ∈ L2(C,C), and consequently Du1 ∈ W n+1,2(C,C). Similarly, Du2 ∈
W n+1,2(C). This completes the proof by induction. �

Theorem 7.7 leaves open the question whether the energy-minimal solution u ∈
C∞(C,C) or the Jacobian Ju can be chosen to be compactly supported. We gain
some information on this matter in Corollary 8.10: if b ∈ BMO(C) is a Lagrange
multiplier for u ∈ Ẇ 1,2(C,C) and vanishes in a domain Ω, then either Ju = 0 in Ω
or Ju 6= 0 in a dense open subset of Ω (for the smooth representative of u).

Now that we know that u is smooth if b ∈ C∞0 (C) it is much easier to study the
relations between b and u. In the next two results we prove some identities b and u
satisfy.

Proposition 7.8. Suppose b ∈ C∞0 (C) is a Lagrange multiplier for u ∈ Ẇ 1,2(C,C)∩
C∞(C,C). Then b and u satisfy the equation

(7.13) (uzuz̄)z̄ = Jubz.

Proof. By Proposition 4.8, b and u satisfy

uzz̄ = (buz)z̄ − (buz̄)z = bz̄uz − bzuz̄.
Using that identity we calculate

(uzuz̄)z̄ = uzuzz̄ + uzz̄uz̄ = uz(bzuz − bz̄uz̄) + (bz̄uz − bzuz̄)uz̄ = Jubz.

�

By using the identities bx = bz + bz̄ and by = i(bz − bz̄) we may write (7.13) in real
notation in the form

∆u1∇u1 + ∆u2∇u2 = 2Ju∇b.
The following result gives a slightly more informative version of Theorem 7.1 for
Lagrange multipliers in C∞0 (C).

Proposition 7.9. Suppose b ∈ C∞0 (C) is a Lagrange multiplier for u ∈ Ẇ 1,2(C,C)∩
C∞(C,C). If Ju > 0 in a domain Ω and u : Ω → u(Ω) is a homeomorphism, then b
is of the form

b = q ◦ u
in Ω, where

(7.14) uzz̄ = qūJu.
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Proof. By Theorem 7.1, b is of the form b = q ◦ u. Note that q = b ◦ v ∈ C∞(u(Ω)).
We calculate

bz = quuz + qūuz̄,

bz̄ = quuz̄ + qūuz,

and by using Proposition 4.8 and the identities above we get
uzz̄ = bz̄uz − bzuz̄ = qū(|uz|2 − |uz̄|2) = qūJu.

�
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8. Behavior of Solutions in Domains Where the Jacobian Vanishes

Sobolev mappings behave in an entirely different manner in domains where the
Jacobian is positive and ones where the Jacobian vanishes. As an example of this,
if an energy-minimal solution u ∈ Ẇ 1,2(C,C) satisfies Ju = 0 in a domain Ω, then
|u(Ω)| = 0 (see Proposition 8.4); this should be contrasted with Corollary 2.8. In
this chapter we use the calculus of variations to study energy-minimal solutions in
domains where the Jacobian vanishes.

A natural first question that arises is whether every energy minimizer must satisfy
Du = 0 a.e. in sets where Ju = 0. The answer is no, and examples are provided,
for instance, in Corollary 8.9. However, in §8.1 we recall a result from [IO13] that
implies that if an energy-minimal solution has vanishing Jacobian in a domain Ω,
then it satisfies the Hopf-Laplace equation (uzuz̄)z̄ = 0 in Ω. As a consequence of
the equations Ju = 0 and (uzuz̄)z̄ = 0, either Du = 0 a.e. or Du 6= 0 a.e. in Ω (see
Proposition 8.4).

Harmonic mappings are natural solutions of the Hopf-Laplace equation, and in
§8.2 we discuss conditions under which an energy-minimal solution is harmonic in a
domain where the Jacobian vanishes. We relate the study of harmonicity to Lagrange
multipliers in Corollary 8.10.

We also discuss Jacobians in bounded Lipschitz domains of C and provide a nega-
tive answer to Question 1.29 of Z.J. Lou, S.Z. Yang and D.J. Song mentioned in the
Introduction.

8.1. The Hopf-Laplace equation. In the previous four chapters we have consid-
ered energy-minimal solutions mostly via their relation to Lagrange multipliers. In
this chapter we study energy-minimizers and other solutions without assuming the
existence of a Lagrange multiplier. We get started by presenting a basic variational
lemma that follows directly from the definition of an energy-minimal solution.

Lemma 8.1. Let u ∈ Ẇ 1,2(C,C) be an energy-minimal solution. Let ε0 > 0 and for
ε ∈ (−ε0, ε0) suppose that the mappings uε ∈ Ẇ 1,2(C,C), −ε0 < ε < ε0, satisfy

(8.1) u0 = u and Juε = Ju for every ε ∈ (−ε0, ε0).

If the derivative

(8.2)
d

dε

∫
R2

|uεz̄|2
∣∣∣∣
ε=0

exists, its value is 0.

The mappings uε treated in Lemma 8.1 are called variations. The idea behind
Lemma 8.1 is that in some cases one may write the derivative in (8.2) in another
form that depends on u and thereby get a partial differential equation that u satisfies.

It is, in general, difficult to find variations that satisfy (8.1); this is due to the non-
linear nature of the Jacobian operator. However, as an example of the applications of
Lemma 8.1 we next use so-called inner variations to study energy-minimal solutions
in domains where their Jacobian vanishes.

Suppose Ju = 0 in an open set Ω ⊂ C. When η ∈ C∞0 (Ω,C) and ε ∈ R is small
enough,

Ju◦(id+εη) = Ju ◦ (id + εη)Jid+εη = 0 in Ω.
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Lemma 8.1 thus applies to the functions defined by uε := u ◦ (id + εη) when ε ∈ R
is small. The derivative in (8.2) is given another form in the following result; for a
proof see e.g. [IO13, Lemma 3.1].

Lemma 8.2. Let Ω ⊂ C be an open set. Suppose η ∈ C∞0 (Ω,C) and an energy
minimizer u ∈ Ẇ 1,2(C,C) satisfies Ju = 0 in Ω. Then

d

dε

∫
C
|(u ◦ (z + εη))z̄|2

∣∣∣∣
ε=0

= 2Re

∫
Ω

uzuz̄ηz̄ dz = 0.

Lemma 8.2 and Weyl’s lemma imply that the integrable function uzuz̄ has an
analytic representative in Ω. We record this fact in the following result; for more on
the Hopf-Laplace equation see [CIKO], [IKO13], [IO13] and the references contained
therein.

Theorem 8.3. Suppose an energy minimizer u ∈ Ẇ 1,2(C,C) satisfies Ju = 0 in an
open set Ω ⊂ C. Then u satisfies the Hopf-Laplace equation

(uzuz̄)z̄ = 0

in Ω.

When an energy minimizer satisfies Ju = 0 and the Hopf-Laplace equation (uzuz̄)z̄ =
0 in a domain Ω ⊂ C, the mapping u satisfies some higher regularity properties in
Ω, as the following basic result shows.

Proposition 8.4. Suppose Ω ⊂ C is a domain and u ∈ W 1,2(Ω,C) satisfies

Ju = 0 and (uzuz̄)z̄ = 0

in the sense of distributions. Then u has the following properties:
(i) either Du(z) = 0 a.e. or Du(z) 6= 0 a.e.
(ii) u ∈ W 1,∞

loc (Ω,C) but not necessarily u ∈ C1(Ω,C).
(iii) |u(Ω)| = 0.

Proof. We first prove (i). Suppose Du = 0 in a set of positive measure. From
Ju = |uz|2 − |uz̄|2 = 0 it follows that |uz| = |uz̄|, and that in turn implies the chain
of equivalences

(8.3) uzuz̄ = 0⇔ uz = uz̄ = 0⇔ Du = 0.

Thus uzuz̄ vanishes in a set of positive measure in Ω. Since uzuz̄ is, by assumption,
analytic, it vanishes in the whole domain Ω. By (8.3), Du = 0 a.e. in Ω.

For the proof of (ii) note that since uzuz̄ is analytic,

|Du|2 = 2(|uz|2 + |uz̄|2) = 4|uzuz̄| ∈ L∞loc(Ω).

Thus u ∈ W 1,∞
loc (Ω,C).

In order to show that u need not belong to C1(Ω,C) consider

u(z) = u(x+ iy) := |x| =

{
x, x > 0,

−x, x < 0

in B(0, 1). It satisfies

uz(z) = uz̄(z) =

{
1
2
, x > 0,

−1
2
, x < 0.
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Hence, Ju = 0 and (uzuz̄)z̄ = 0 in the sense of distributions. However, u /∈
C1(B(0, 1),C).

Let A ⊂ Ω be compact. We intend to show that |u(A)| = 0; claim (iii) then follows
easily. Since u ∈ W 1,∞

loc (Ω,C), the mapping u is locally Lipschitz in Ω (see [EG92, p.
131]), and so the Area formula (see [EG92, p. 96]) gives∫

C
](A ∩ u−1({ζ})) dζ =

∫
A

Ju = 0.

Consequently, u−1({ζ}) ∩ A = ∅ for a.e. ζ ∈ C, that is, |u(A)| = 0. �

8.2. Harmonicity of solutions. Harmonic functions are natural solutions of the
Hopf-Laplace equation; if u is harmonic, then

(uzuz̄)z̄ = uzuzz̄ + uzz̄uz̄ = 0.

Moreover, by a theorem of T. Iwaniec, L. Kovalev and J. Onninen, every continuous,
discrete and open mapping in W 1,2

loc (Ω,C) that satisfies the Hopf-Laplace equation is
harmonic (see [IKO13, Theorem 1.3]).

Remark 8.5. The conditions Ju = 0 and (uzuz̄)z̄ = 0 do not imply harmonicity
of u even when u is smooth. Counterexamples are furnished, for instance, by the
mappings defined by u(z) := ei(z+z̄) in the plane and u(z) := z/|z| in a domain that
does not contain the origin.

These considerations motivate the following problem.

Question 8.6. If u ∈ Ẇ 1,2(C,C) and Ju = 0 in a domain Ω, under what further
conditions on u or Ju is u harmonic in Ω?

The following theorem provides a partial answer to Question 8.6.

Theorem 8.7. Suppose h ∈ H1(C) and h = 0 in a bounded domain Ω. The following
conditions are equivalent:

(i) There exists u ∈ Ẇ 1,2(C,C) such that Ju = h in C and u is harmonic in Ω.
(ii) There exists v ∈ Ẇ 1,2(C,C) such that Jv = h in C and v is real-valued in Ω.
(iii) There exists w ∈ Ẇ 1,2(C,C) such that Jw = h in C and w is both harmonic

and real-valued in Ω.

We will prove implications (i) =⇒ (ii) and (ii) =⇒ (iii), the direction (iii) =⇒
(i) being obvious.

Proof of (i) =⇒ (ii). Assume u is non-constant in Ω. Then uz 6≡ 0 in Ω. Since uz
is analytic in Ω, the set

S := {z ∈ Ω: uz(z) = 0} = {z ∈ Ω: uz̄(z) = 0}
is discrete. In Ω \ S we have(

uz
uz̄

)
z̄

=
uz̄ uzz̄ − uz uzz̄

(uz̄)2
= 0 and

∣∣∣∣uzuz̄
∣∣∣∣ = 1.

By the Maximum modulus principle, uz/uz̄ is constant in Ω \ S. Thus there exists
α ∈ C such that |α| = 1 and

αuz̄ = αuz
in Ω \ S. Furthermore, obviously αuz̄ = 0 = αuz in S.
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Now αu satisfies

(8.4) (αu)z = αuz

and, using (8.4),

(8.5) (αu)z̄ = αuz = (αu)z = αuz̄.

By combining (8.4) and (8.5) we get D(αu − αu) = 0, and so Im(αu) =: c ∈ R is
constant in Ω.

Define v := αu− ic. Then v is real-valued in Ω and

Jv = |(αu− ic)z|2 − |(αu− ic)z̄|2 = Ju = h

in the whole plane. Furthermore, since u is an energy-minimal solution, v is an
energy-minimal solution as well. �

Proof of (ii) =⇒ (iii). Since Ω is a bounded domain, a Poincaré inequality holds
for W 1,2

0 (Ω) (see e.g. [Eva98, p. 265]), and by exploiting that we can solve the
generalized Dirichlet problem and find f ∈ W 1,2(Ω) satisfying

(8.6) fzz̄ = 0, f − v ∈ W 1,2
0 (Ω)

(see e.g. [GT01, p. 181]). Define

w(z) :=

{
f(z), z ∈ Ω,

v(z), z ∈ C \ Ω

and note that since zero extensions of mappings in W 1,2
0 (Ω) belong to Ẇ 1,2(C,C),

we have w = v + (f − v)χΩ ∈ Ẇ 1,2(C,C). Now Jw = Jv = h and w is harmonic and
real-valued in Ω. �

The following consequence of Theorem 8.7 gives a partial answer to Question 8.6
in terms of the behavior of the Jacobian.

Corollary 8.8. Suppose Ω ⊂ C is a domain and Ω′ is a smooth, relatively compact
subdomain of Ω. If u ∈ Ẇ 1,2(C,C) satisfies

∫
Ω′
Ju > 0 and Ju = 0 in Ω \ Ω′, then u

is not harmonic in Ω \ Ω′.

Proof. Seeking contradiction, suppose u ∈ Ẇ 1,2(C,C) satisfies the assumptions of
the corollary and is harmonic in Ω \ Ω′. By Theorem 8.7, we may assume that u is
real-valued in Ω \ Ω′. Thus u− u1 ∈ W 1,2

0 (Ω,C), and so Theorem 2.21 yields∫
Ω′
Ju =

∫
Ω

Ju =

∫
Ω

Ju1 = 0.

This contradicts the assumption
∫

Ω′
Ju > 0. �

Corollary 8.8 is not vacuously true; in fact, the assumptions of Corollary 8.8 hold
for any mapping u ∈ Ẇ 1,2(C,C) that satisfies u(z) = z when |z| < 1 and u(z) = z/|z|
when 1 < |z| < 2. By taking h = Ju ∈ H1(C) for such a mapping u and using
Corollary 8.8 we get the following result.

Corollary 8.9. There exists h ∈ H1(C) such that the equation Ju = h has a
solution but no solution is harmonic in the (non-empty) interior of the whole set
{z ∈ C : h(z) = 0}.
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Theorem 8.7 can also be used to study energy minimizers that possess a Lagrange
multiplier.

Corollary 8.10. Suppose b ∈ BMO(C) is a Lagrange multiplier for u ∈ Ẇ 1,2(C,C).
If b = 0 in a domain Ω, then either Ju = 0 in Ω or Ju 6= 0 in an open dense subset
of Ω (for the smooth representative of u in Ω).

Proof. Since b = 0 in Ω, it follows from Proposition 4.8 that u = u1 + iu2 is harmonic
in Ω. Suppose the open set {z ∈ Ω: Ju(z) 6= 0} is not dense in Ω. Then Ju = 0 in
a nonempty open set Ω′ ⊂ Ω. By Theorem 8.7, we may assume that u2 = 0 in Ω′.
Now u2 is harmonic in Ω and vanishes in the nonempty open set Ω′, and therefore
u2 = 0 in the whole domain Ω. Consequently, Ju = 0 in Ω. �

8.3. Solution of a problem of Lou, Yang and Song. One way to approach
Question 8.6 is to assume Ju = 0 outside a bounded Lipschitz domain Ω and study
the way the behavior of Ju inside Ω affects the behavior of u outside Ω. Hardy space
theory of Jacobians of Sobolev mappings has been studied in bounded Lipschitz
domains of Rn in, e.g., [CDS99], [Lou05], [CDY10], [HLMZ00] and [LYS05]. Recall
from §2.3-2.4 that when Ω is a bounded Lipschitz domain, the Jacobian operator
maps the Sobolev space W 1,2

0 (Ω,C) into the Hardy-type space H1
z(Ω).

An analogue of the Jacobian decomposition of H1 functions, Theorem 2.20, can be
proved in bounded Lipschitz domains of C. The difference to Theorem 2.20 is that
the mappings whose Jacobians form the decomposition belong to W 1,2

0 (Ω,C). The
proof presented in [LYS05] is slightly erroneous, but it can be corrected (see [Lou05,
Proposition 3.2] or [CDS99, pp. 63-64]). Thus, in analogy to the case of the whole
plane, no proper closed subspace of H1

z(Ω) contains the Jacobian of every mapping
in W 1,2

0 (Ω,C). The following problem was posed by Z.J. Lou, S.Z. Yang and D.J.
Song in [LYS05].

Question 8.11. Does the Jacobian operator J map W 1,2
0 (Ω,C) onto H1

z(Ω)?

The answer to Question 8.11 is no, as the following theorem demonstrates.

Theorem 8.12. Let Ω ⊂ C be a nonempty bounded Lipschitz domain. If h ∈ H1
z(Ω)

and there exist z0 ∈ ∂Ω and r > 0 such that h ≥ C > 0 in B(z0, r) ∩ Ω, then the
equation Ju = h has no solution u ∈ W 1,2

0 (Ω,C).

Proof. Let h ∈ H1
z(Ω) satisfy the assumptions of the theorem. Suppose, by way of

contradiction, that u ∈ W 1,2
0 (Ω,C) satisfies Ju = h. Extend u as zero to C \Ω. Then

u has integrable distortion (see §2.2) in B(z0, r) as the following calculation shows:∫
B(z0,r)

Ku :=

∫
B(z0,r)∩Ω

‖Du‖2

Ju
+

∫
B(z0,r)\Ω

1

≤
∫
B(z0,r)∩Ω

‖Du‖2

C
+ |B(z0, r)| <∞.

By Theorem 2.7, u|B(z0,r) is either constant or an open mapping. However, u is not
constant in B(z0, r)∩Ω and not open in B(z0, r) \ Ω̄. Since z0 ∈ ∂Ω, it follows easily
from the definition of a Lipschitz domain (see §2.1) that the open sets B(z0, r)∩Ω and
B(z0, r) \ Ω̄ are nonempty. We get a contradiction, and so a solution u ∈ W 1,2

0 (Ω,C)
to the equation Ju = h cannot exist. �
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Functions of the kind treated in Theorem 8.12 can be constructed in any nonempty
bounded Lipschitz domain. Indeed, take any point z0 ∈ ∂Ω, choose r > 0 such that
Ω \B(z0, r) is nonempty and define h : Ω→ R by

h := χΩ∩B(z0,r) −
|Ω ∩B(z0, r)|
|Ω \B(z0, r)|

χΩ\B(z0,r).

Then h is bounded and has integral zero, and therefore h ∈ H1
z(Ω).

Remark 8.13. Even if h ∈ H1
z(Ω) satisfies the assumptions of Theorem 8.12, there

may exist u ∈ Ẇ 1,2(C,C) such that Ju = h in Ω and Ju = 0 outside Ω. Indeed,
in Figure 1 we give the values of a Lipschitz mapping u ∈ W 1,2

0 ((−2, 2) × (−1, 3))
with Jacobian Ju = χ(0,1)×(0,1) − χ(−1,0)×(0,1). Now set Ω = (−1, 1) × (0, 1) so that
Ju ∈ H1

z(Ω) and Ju ≡ 1 in, say, B(1 + i, 1/2) ∩ Ω.

Figure 1. Values of the mapping u in (−2, 2)× (−1, 3)

The essential idea of Theorem 8.12 is that if a mapping u ∈ Ẇ 1,2(C,C) vanishes
on one side of a Lipschitz boundary, then its Jacobian cannot be bounded from below
by a positive constant on another, even locally. There is, however, no such restraint
on the behavior of the Jacobian if only one of the components of u vanishes outside
the domain.

Suppose Ω ⊂ C is a bounded Lipschitz domain and u ∈ W 1,2(Ω) + iW 1,2
0 (Ω). We

may choose U ∈ W 1,2(C,C) such that U |Ω = u and U2 = 0 outside Ω (see §2.1).
Therefore Ju = JU |Ω ∈ H1

z(Ω). We end this dissertation by posing a modified version
of Question 8.11.

Question 8.14. Does J map W 1,2(Ω) + iW 1,2
0 (Ω) onto H1

z(Ω)?
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