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1. INTRODUCTION

Kakeya sets (also known as Besicovitch sets) in R" are sets of zero Lebesgue mea-
sure containing a line segment of unit length in every direction. Their study origi-
nated from a question of Kakeya, who asked to determine the smallest area in which
a unit line segment can be rotated 180 degrees in the plane. Besicovitch [2] con-
structed such a set with arbitrarily small area. Since then, these sets in general R"
have been studied extensively: in particular, it is conjectured that they should have
full Hausdorff dimension but it was proved only in the plane (Davies, [10]).

Several approaches have been used to get lower bounds for their Hausdorff dimen-
sion: Bourgain developed a geometric method [4], improved then by Wolff [25]; later
on, Bourgain himself [6] introduced an arithmetic combinatorial method, improved
by Katz and Tao [13].

For a more complete discussion on the results concerning Kakeya sets see [17]
(Chapters 11,22,23), where connections to other important questions in modern
Fourier analysis are described.

In this thesis we define Kakeya sets in an axiomatic setting in which we can prove
estimates for their Hausdorff dimension by suitably modifying Bourgain’s and Wolff’s
geometric arguments. The idea is to enlighten the geometric aspects of the meth-
ods, enclosing them in five axioms that can then be verified in some special cases.
Moreover, this approach allows us to deal with many special cases in a unified way.

The setting is a complete separable metric space (X,d), which is the ambient
space, endowed with an upper Ahlfors Q-regular measure p, and another metric
space (Z,dz) with a compact subset Y C Z, which is the space of directions (7 is
endowed with a measure v satisfying (2)). We define analogues of Kakeya sets as
subsets of X containing certain subsets F,(a) of X (corresponding to segments in the
classical case) associated to every direction u € Y and some a € A, which is a space
of parameters (see Section 2 for details). Tubes are defined as § neighbourhoods
of some objects I,(a) D F,(a). We assume that they satisfy certain axioms that
contain the geometric features (such as the p measure of the tubes and the way
they intersect) required to define a suitable Kakeya maximal function and to use the
geometric methods mentioned above to prove certain L? estimates for it, which imply
lower bounds for the Hausdorff dimension of Kakeya sets.

Modifying Bourgain’s method we obtain a weak type LP estimate for p = % (see
Theorem 5.1), which implies a certain lower bound for the Hausdorff dimension. The
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proof proceeds in the same way as in the classical case, where it yields the lower
bound "T“ for the Hausdorff dimension of Kakeya sets.

Wolff’s method requires a more complicated geometric assumption (Axiom 5),
which we were not able to obtain from simpler hypothesis. When this is verified we
prove another L? estimate (Theorem 6.2), which yields an improvement of Bourgain’s
bound in the classical case ("+2) and here only in some cases.

If one can thus show that a certain setting satisfies the axioms, one obtains es-
timates for the dimension of Kakeya sets in that setting. We show some examples
(apart from the classical Kakeya sets in R™ with the Euclidean metric), recovering
some known results and proving new ones. We recover the known dimension esti-
mates (252) for Nikodym sets, which were originally proved by Bourgain and Wolff.
Nikodym sets are subsets of R™ having zero measure and containing a segment of
unit length in a line through every point of the space. We prove the same lower
bound for the Hausdorff dimension of sets containing a segment in a line through
every point of a hyperplane (see Theorem 8.1). Another variant of Nikodym sets are
sets containing a segment in a line through almost every point of an (n—1)-rectifiable
set with direction not contained in the approximate tangent plane. We first reduce
the problem to Lipschitz graphs and then we prove the lower bound ”T*Q also for the
Hausdorff dimension of these sets (see Theorem 9.2), which is to our knowledge a
new result.

We also recover the known dimension estimates for curved Kakeya and Nikodym
sets, which were originally proved by Bourgain [5] and Wisewell [24]. Moreover, we
consider Kakeya sets with segments in a restricted set of directions. These were
considered by various authors before and Bateman [1] and Kroc and Pramanik [15]
characterized those sets of directions for which the Nikodym maximal function is
bounded. Mitsis [18] proved that sets in the plane containing a segment in every
direction of a subset A of the sphere have dimension at least the dimension of A plus
one. Here we show in Theorem 11.1 that a subset of R™, n > 3, containing a segment
in every direction of an Ahlfors S-regular subset of the sphere, S > 1, has dimension
greater or equal to 2 +3

We recover the lower bound proved by Wolff for the dimension of Furstenberg
sets in the plane and prove new lower bounds for them in higher dimensions (see
Theorem 12.1). Given 0 < s < 1, an s-Furstenberg set is a compact set such that
for every direction there is a line whose intersection with the set has dimension at
least s. Wolff in [26] proved that in the plane the Hausdorff dimension of these sets

is > max{2s,s + %} Our result states that in R" the Hausdorft dimension of an

s-Furstenberg set is at least max{ &= 1)"+2, 53} when n < 8 and at least 54”;’ 4

when n > 9. Making a stronger assumption, that is considering sets containing in
every direction a rotated and translated copy of an Ahlfors s-regular compact subset
of the real line, we can improve the previous lower bounds in dimension greater or
equal to three, proving Theorem 12.2. In this case the lower bounds are 2s + ”7_2 for
n < 8 and max{2s + 252, s73} for n > 9. Here we will see that we have only a
modified version of Ax10m 1 but we can obtain anyway these dimension estimates.
We then consider two applications in non-Euclidean spaces. We first prove dimen-
sion estimates for the usual Kakeya sets but considered in R" = R™ x ... x R™s
endowed with a metric d homogeneous under non-isotropic dilations and in which
balls are rectangular boxes with sides parallel to the coordinate axis. We show that
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the Hausdorff dimension with respect to d of any Kakeya set is at least %Q + %5,
where () = ijl Jjm;, and in the case when m; =n —1, my = --- = m,_; = 0 and
ms = 1 it is at least %23 when n < 12 (see Theorem 13.1). To prove these estimates
we will also use a modification of the arithmetic method introduced by Bourgain and
developed by Katz and Tao.

One motivation for this last example comes from the idea of studying Kakeya sets
in Carnot groups. The author in [21]| has proved that L? estimates for the classical
Kakeya maximal function imply lower bounds for the Hausdorff dimension of bounded
Besicovitch sets in the Heisenberg group H" = R***! with respect to the Koranyi
metric (which is bi-Lipschitz equivalent to the Carnot Carathéodory metric). By the
results of Wolff and of Katz and Tao one then gets the lower bounds @ forn <3
and w for n > 4 for the Heisenberg Hausdorff dimension.

In a similar spirit, it would be interesting to obtain some lower bounds for the
Hausdorff dimension of Besicovitch sets in a Carnot group with respect to a homo-
geneous metric. We will show that the axioms hold in a Carnot group of step 2
whose second layer has dimension 1, thus we can prove the lower bound ”TH for the
dimension of any bounded Kakeya set with respect to any homogenous metric (see
Theorem 14.4). Unfortunately this is not the case for other Carnot groups. We con-
clude with a negative result, showing that in Carnot groups of step 2 whose second
layer has dimension > 1 endowed with the d., metric (see (88), (89)) we cannot use
this axiomatic approach.

Moreover, we will consider a modification of the classical Kakeya sets in Carnot
groups of step 2, namely sets containing a left translation of every segment through
the origin with direction close to the z,-axis. We will show the lower bound "%“3
for their Hausdorfl dimension with respect to a homogeneous metric in any Carnot
group of step 2 whose second layer has dimension 1 (see Theorem 14.4).

The thesis is organized as follows. In Part 1 (Sections 3-6) we define Kakeya
sets in certain metric spaces and prove dimension estimates for them. In particular,
in Section 3 we introduce the axiomatic setting and in Section 4 we show that LP
estimates of the Kakeya maximal function imply lower bounds for the Hausdorff
dimension of Kakeya sets and how to discretize those L? estimates. Section 5 contains
the generalization of Bourgain’s method and Section 6 of Wolff’s method. In Part 2
(Sections 7-14) we explain various examples of applications.

2. LIST OF NOTATION

Since Part 1 is quite heavy in notation, we make here a list of the main symbols
that we will use with a reference to where they are defined and a short description.

Symbol Reference Description

(X,d) Section 3 Ambient space: complete separable metric space

1 (1) Upper Ahlfors regular measure on X

Q (1) Upper Ahlfors regularity exponent of p

Ba(a,r)  Below (1) Closed ball in the metric d

d Section 3 A second metric on X such that (X, d') is separable
(Z,dy) Section 3 Metric space containing the space of directions Y’
Y Section 3 Space of directions: compact subset of Z

v (2) Borel measure on Z
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S (2) Exponent of the radius in the v measure of balls centered
inY
dimg (3) Hausdorff dimension with respect to d
A Section 3 Set of parameters
F,(a) (4) Subset of X associated toa € Aand u €Y
I,(a) (4) Subset of X containing F,(a)
[.(a) (4) Subset of X containing I, (a)
Hua (5) Measure on F,(a)
T?(a) (6) Tube with radius ¢
TV (a) Below (6) Tube with radius W¢
T Axiom 1 Exponent of ¢ in the p measure of a tube
0 Axiom 2 Exponent of ¢ appearing in (7)
|14 Axiom 4 Constant appearing in the radius of larger tubes
d 9) Kakeya maximal function with width o
fa s (10) Kakeya maximal function on tubes with radius Wo
Q Axiom 5 Constant appearing in the exponent of « in (34)
A Axiom 5 Constant appearing in the exponent of ¢ in (34)

Part 1. Definition and dimension estimates for generalized Kakeya sets
3. AXIOMATIC SETTING AND NOTATION

Let (X, d) be a complete separable metric space endowed with a Borel measure p
that is upper Ahlfors Q-regular, Q) > %, that is there exists 0 < Cy < oo such that

(1) u(Ba(a, 1)) < Cor®,

for every a € X and every r < diam,(X) (we denote by B,(a, ) the closed ball in the
metric d and by diamy(X) the diameter of X with respect to d). Let d’ be another
metric on X such that (X, d’) is separable. Note that in most applications d and
d" will be equal whereas they will be different (and not bi-Lipschitz equivalent) in
Section 13, where we consider the classical Kakeya sets in R"” endowed with a metric
d homogeneous under non-isotropic dilations, and in Section 14, where we consider
Kakeya sets and a modification of them in Carnot groups of step two. In these cases
d’" will be the Euclidean metric and d the homogenous metric. With this choice the
diameter estimate in Axiom 3 below holds, whereas it would not if we used only one
metric d.

Let (Z,dz) be a metric space and let Y C Z be compact. Let v be a Borel measure
on Z such that 0 < v(Y) < 1 and there exist 5§, 1 < § < 2Q), and two constants
0<¢ < C’O < oo such that

(2) cor® < v(Ba,(u,r)) < C~’07“S,

for every v € Y and r < diamg,(Y). Note that Y is in general not Ahlfors regular
since the measure v is not supported on Y.

We will denote the s-dimensional Hausdorff measure with respect to d by Hj,
s > 0. We recall that this is defined for any A C X by

H3(4) = lim H(A),
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where for 6 > 0
'HﬂA)zqnf{Ejdmnuuay:A4:LJE;dmnuuz)<5}.

The Hausdorff dimension of a set A C X with respect to d is then defined in the
usual way as

(3) dimg A = inf{s : Hj(A) = 0} = sup{s : H;(A) = oo}.

Observe that the Hausdorff dimension of X (with respect to d) is > Q. We will
consider also the Hausdorff measures with respect to the metric d’, which we will
denote by Hj .

The notation A < B (resp. A 2 B) means A < CB (resp. A > CB), where C is
a constant (depending on @, S and other properties of the spaces X and Y); A~ B
means A < B and A 2 B. If p is a given parameter, we denote by C,, a constant
depending on p. For A C X, the characteristic function of A is denoted by x 4.

Let A be a set of parameters (we do not need any structure on A). To every a € A
and every u € Y we associate three sets

(4) Fu(a) C I(a) C L(a) C X

such that ¢ < diamg(l,(a)) < ¢ (where 0 < ¢ < ¢ < oo are constants) and
diamg (1,(a)) < ¢ diamg (I, (a)) for some other constant 1 < ¢ < oo. Moreover, there
exists a measure fi, , on Fy,(a) such that p, .(F,(a)) = 1 and it satisfies the doubling

condition, that is
(5) tua(Fu(a) N Ba(z,2r)) < Cpyo(Fu(a) N Ba(z,T))

for every a € A, uw € Y and x € F,(a). The measures p and i, , are not assumed to
be related, but they need to satisfy Axiom 2 below. In all applications that we will
consider p will be the Lebesgue measure on R". In most applications f,, , will be the
1-dimensional Euclidean Hausdorff measure on F,(a), which will be a segment or a
piece of curve. Only in the case of Furstenberg type sets (Section 12) p,, , will be an
(upper) Ahlfors s-regular measure for some 0 < s < 1.

Given 0 < § < 1, let T(a) be the & neighbourhood of I,(a) in the metric d,

(6) T(a) = {x € X : d(x, L(a)) < 5},

which we will call a tube with radius 8. Moreover, we define tubes 7" (a) with radius
W& as W6 neighbourhoods of I,,(a), where W is the constant such that Axiom 4 below
holds.

Note that in the case of the classical Kakeya sets the setting is the following:
X =R" d=d = dg is the Euclidean metric, u = L™ is the Lebesgue measure thus
Q =n; Z =Y = S"!is the unit sphere, d; is the Euclidean metric on the sphere,
v = 0" ! is the spherical measure thus S = n — 1. Moreover, A = R" and for every
e € S"!and a € R" F,(a) = I.(a) is the segment with midpoint a, direction e and
length 1, whereas fe(a) is the segment with midpoint a, direction e and length 2. The
measure /i, is the Euclidean 1-dimensional Hausdorff measure H} on I.(a). Then
the tubes are Euclidean § neighbourhoods of these segments and satisfy the axioms
which we assume here (we will see this briefly in Remark 3.1).

We assume that the following axioms hold:
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(Axiom 1) The function u — u(T2(a)) is continuous and there exist 5 < 7 < @ and two
constants 0 < ¢; < ¢g < 0o such that for every a € A, every u € Y and § > 0

10" < p(T)(a) < u(T,"(a) < e,
and if A C TV%(a) then p(A) < cydiamg (A)67.

(Axiom 2) There exist three constants 0 < 0 < %, 0 <K' <o00,1 <K < o,

such that for every a € A, u €Y, z € F,(a), if § <r <2§ and
fua(Fu(a) N Ba(x,r)) = M

for some M > 0, then

(7) pu(Ty(a) N By(w, Kr)) > K'M6°u(T; (a)).
(Axiom 3) There exists a constant b > 0 such that for every a,a’ € A, every u,v € Y
and 0 > 0
N - )
diamg (T)"° TV°(a)) < b :
©) fama (T147(0) N 729(0) < bt

(Axiom 4) There exist two constants 0 < W, N < oo such that for every u,v € Y with
u € Bq,(v,8) and for every a € A, TS (a) can be covered by tubes TV (by),
k=1,...,N,with N < N.

Observe that in the case of the classical Kakeya sets § = 0 and this will hold also in
all other applications presented here, except for Furstenberg sets (see Section 12.1).
The bound 6 < % ensures that the dimension lower bound proved later in
Theorem 5.1 is positive.

Definition 3.1. We say that a set B C X is a generalized Kakeya (or Besicovitch)
set if u(B) = 0 and for every u € Y there exists a € A such that F,(a) C B.

Note that the definition might be vacuous in certain contexts since it is possible
that generalized Kakeya sets of null measure do not exist. In the applications we will
see examples of cases where they exist.

Analogously to the classical Kakeya maximal function, we define for 0 < § < 1 and
f € L} (X,pn) the Kakeya mazimal function with width & related to d as f§ : Y —

loc

[0, o],
(9) fitw) =sup s [ | fld
acA W(TE(a)) Jrsa)
Similarly, we define the Kakeya maximal function on tubes with radius W4 as J;g(/(s :
Y — [0, 0],
(10) Fiatw) = sup s [ 1l

To be able to apply Wolft’s method we will need another axiom, which we will
introduce in Section 5.

We recall here the 5r-covering theorem, which we will use several times. For the
proof see for example Theorem 1.2 in [12].
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Theorem 3.1. Let (X, d) be a metric space and let B be a family of balls in X such
that sup{diam4(B) : B € B} < co. Then there ezists a finite or countable subfamily
{Bi}icr of B of pairwise disjoint balls such that

| Bcl5B:

BeB i€l

where 5B; denotes the ball By(x;,5r;) if Bi = Bg(x, 7).

Remark 3.1. (Axioms 1-4 in the classical Euclidean setting for Kakeya sets)
As was already mentioned, the classical Kakeya sets correspond to the case when
X =Ais R", d = d is the Euclidean metric, 4 = L™ (Lebesgue measure), Z =Y =
S"~1is the unit sphere in R", d is the Euclidean metric restricted to S*!, v = g™}
is the surface measure on S"~! and F,.(a) = I.(a) is the segment with midpoint a,
direction e € S™! and length 1 (fte,q is the 1-dimensional Hausdorff measure on
I.(a)). Thus @ =nand S =n— 1.

Let us briefly see that in this case the Axioms 1-4 are satisfied and try to understand
their geometric meaning.

Axiom 1 tells us that the volume of a tube is a fixed power of its radius. In
this case the tubes are cylinders of radius § and height 1 so we have £"(T°(a)) ~
LM(T?(a)) ~ 6" ', Indeed, we need roughly 1/§ essentially disjoint balls of radius &
to cover T%(a). Moreover, if A C T°(a) then £"(A) < diamp(A)6" !, hence Axiom
1 holds with T"=n — 1.

Axiom 2 holds here with § = 0. It says that if the measure of the intersection
of a segment with a ball centred on it is M then the density of the measure of the
corresponding tube (with radius essentially the same as the radius of the ball) is at
least M. Indeed, if I.(a) is a segment and = € I.(a), 6 < r < 2§ then

M = Hy(I.(a) N Bg(z,7)) =1~ 6.

Hence
LM(T%(a) N Bp(z,r)) = 6"~ 66" ~ ML (T’(a)).

Axiom 3 tells us that the diameter of the intersection of two tubes is at most ¢§
if the directions of the tubes are sufficiently separated and it can be essentially 1
if the angle between their directions is < §. Here it follows from simple geometric
observations. Let e, f € S"~!. Then |e — f| is essentially the angle between any two
segments with directions e and f. Let a,a’ € R" be such that T (a) N T}(a’) # 0.
Looking at the example in Figure 1 on the left, we see that the diameter of the
intersection is essentially L. In the thickened right triangle the angle A is essentially
le — f| hence we have L = 20/sin A =~ d/|e — f|. Hence we have

J

diampg (T2 (a) N Tf(a')) < b|6 —7

for some constant b depending only on n.

For Axiom 4 the intuition is that given two directions e,e¢’ € S™ ! such that
le — €/| <6 and given any tube T?(a) it can be covered by a fixed number of bigger
tubes (with radius W) in direction ¢’. We can verify that 7°(a) C T%(a), where
T%(a) is the 26 neighbourhood of I.(a), which is the segment with midpoint a,
direction ¢’ and length 2 (so W = 2). Indeed, if p € T?(a) then there exists ¢ =
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te+a € I.(a), —1/2 <t <1/2, such that |p — te — a| < §. Then we have
Ip—te' —a| < |p—te—al|+|te —te'| <26,

which means that p is contained in the 26 neighbourhood of I./(a), that is p € T%(a)
(see the right picture in Figure 1).

A

N |

T°(a)

(@)

FIGURE 1. Axioms 3 and 4 in the classical Euclidean case (in R?)

Remark 3.2. Observe that Axioms 1 and 4 imply that if u € By, (v,4) then [ u) <
fd5(v). Indeed, for every a € A we have T°(a) C UN_ TWO(b;,) with N < N. Thus

N
1 / 1
— [ s> / fldp
(T3 (a)) T5(a)| | 107 1 T,YV5(bk)| |

u

1
<N sup —/ fldp
1 k=1,..N u(TWV(by)) JTws ()
C o~
S_ZNfIC/lV&(U)v
C1

which implies f&(u) < fis(v).

Remark 3.3. (Measurability of f&) The Kakeya maximal function is Borel mea-
surable if the set {f¢ > «a} is open for every positive real number «. This follows
from the fact that u + u(T?(a)) is continuous (in fact this is assumed only to ensure
measurability). Indeed, this implies that if f¢(u) > a then there exists a € A such

that
1

_— d .
W(T3(a)) /ma) > o

m ng(a) |f|du > « for v sufficiently close to u, which means

that {f¢ > a} is open. Thus f¢ is Borel measurable.

Then we also have

Remark 3.4. In the applications we will consider only objects I,,(a) of dimension < 1
since the validity of Axiom 3 is essential in what we will prove later and it would not be
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meaningful for example for 2-dimensional pieces of planes. Indeed, let G(n,2) be the
Grassmannian manifold of all 2-dimensional linear subspaces of R". For P € G(n,2)
and 6 > 0 define P° as a rectangle of dimensions 1 x 1 x § x - - - x § such that its faces
with dimensions 1 x 1 are parallel to P (that is P° is the J neighbourhood in the
Euclidean metric of a square of side length 1 contained in P, so it would correspond
to a tube). Given two such rectangles P{ and Py, there cannot be a diameter estimate
like (8) since diam(P{ N P{) can be 1 even if the angle between P, and P, is /2.

Remark 3.5. (Relation between T" and Q) A priori there is no relation between 7" and
@, but in all applications that we will consider we can express any tube T°(a) as a
union of essentially disjoint balls By(p;, ), i = 1,..., M, and this implies a relation
between T and (). The number M will also be some power of §: as was seen in
Remark 3.1, M ~ §~! in the Euclidean case; in Sections 12.2, 13 and 14, it will be a
different power of 9. Since
0"~ pl(T () = (UL, Balpi, 6)) = M9,
we have T'= Q — t if M ~ 6~ for some t.

Remark 3.6. (Axiom 2 with union of balls) Axiom 2 implies that for every a € A,
uweY,z; € Fy(a), j €T (a finite set of indices), if § < r; < 20 for every j € Z and

(11) foua(Fu(a) N U By(wj,ry)) = M
jET
for some M > 0, then
(12) u(T8(a) (1| Balay, K6ry)) 2 K'MO (T (@),
JET
Indeed, by the 5r-covering theorem 3.1 applied to the family of balls By(x;, K1;),
j € T, there exists Z' C Z such that
(13) UBd(Ij,KTj) C U Bd(ZEZ‘,E)KT‘Z')
jET €T’

and Bgy(x;, Kr;), i € T', are disjoint. Using the doubling condition for f, , and the

fact that U,z Ba(zj,7j) C Uier Ba(zi, 5K7r;) by (13), we have
Z,uua u de(mzam > Z,uua u( )de(mu5Krz>)
1€T’ 1€T’
> pua(Fu(a) N ) Ba(w:,5K75)) > pua(Fula) 0 Bala;, ) = M.
€T’ JET

Letting jiyq(Fu(a) N By, r;)) = a; for i € Z', we thus have ), 7, a; 2 M. By (7)
we have
(T (a) N Ba(wy, Kri)) > K'aid’ (T, (a)),

thus (since the balls By(z;, Kr;), i € 7', are disjoint)

(T5 )N Balzy, Kry)) > w(T(a) N | Balwi, Krs))

JET i€’
= w(TP(a) N Ba(wi, K13)) = Y K'aid’ (T (a)) 2 K' M6 (T} (a)).
i€T’ i€T’

Hence (12) holds.
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Remark 3.7. Suppose that u is Ahlfors Q-regular, that is (1) holds and there exists
another constant ¢y > 0 such that

p(Ba(a,r)) > cor®
for every a € X and every r < diamgy(X). If there exists 0 < ¢t < @ — T such that
(15) Mu,a(Fu(a) N Bd(l‘7 T)) < Crt

for every x € F,(a) and r > 0, where C' is a constant not depending on u and a,
then Axiom 2 holds with § = @ —t — T and K = 1. In fact, we show that it holds
for balls with radius 6 < r < 10§ (we will need this in the following Remark 3.8). If
for some = € F,(a), § <r <105 and M > 0 we have

fa(Fu(a) N By(z,r)) =M

then M < COr' =~ ¢'. Since x € F,(a) C I,(a), we have By(r,6) C T’(a) and
By(z,9) C By(x,r). Thus
w(T;(a) N Ba(w,r)) = p(T,(a) N By(x, ) = 69

16
1o 5 TT 2 MO (T ),

which implies that Axiom 2 holds with § = Q —t —T.

Remark 3.8. (Axiom 2 with union of balls without doubling condition for p, ,) We
can prove that Axiom 2 implies (12) as in Remark 3.6 even if p,, , does not satisfy the
doubling condition but it satisfies instead condition (15) and p is Ahlfors Q-regular
as in the previous Remark 3.7.

Assume that By(z;,7;), j € Z, is a family of balls such that z; € F,(a), 0 <r; <20
for every j € Z and

(17) fua(Fu(a) N U Ba(zj,r;)) =M
jez
for some M > 0. Then we want to show that

(18) w(T(a) N Balwy,ry)) 2 M6 (T2 (a)).
jET
By the 5r-covering theorem 3.1, there exists Z' C Z such that
(19) U Bd(l’j, T’j) C U Bd(l’i, 57’1)
jET €T’
and the balls By(x;,r;), i € Z', are disjoint. Then by (17) and (19)
M = pua(Fula) 0 Ba(wj 1)) < prua(Fu(a) 0 | Balwi, 5r4))
jET ieT!

S Z Mu,a(Fu(a) N Bd(mi’ 57’1))

1€T’
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Let a; = puya(Fu(a)N Ba(x;,5r;)). Then M < 3., a; and by (16) we have pu(T2(a)N
Bay(zi,573)) 2 a;097 T p(T?(a)) since § < 5r; < 105. Thus

w(T(a) ﬂUBd (z5,75)) > u(To(a) UBd i, 7))

JET i€’
_ZM de Izarz 25Q
€L’ 1€’
2> u(TP(a) N Ba(wi,5r9) 2> a:d? " u(T2(a))
i€’ 1€’

2 M9 (T, (a)),
which proves (18).

Remark 3.9. (Wolff’s axioms) In [25] Wolff used an axiomatic approach to obtain
estimates for both the Kakeya and Nikodym maximal functions at the same time.
The axioms are different, even if there are some small similarities with the setting
considered here. In Wolff’s axioms the ambient space is R" with the Euclidean
metric and the Lebesgue measure. The space of directions is a metric space (M, dy)
endowed with an Ahlfors m-regular measure for some m > 0. To each o € M is
associated a set F, of lines in R™ such that the closure of U, F,, is compact and
dy (o, B) < leFigﬂfeFB dist(l, m).
Here dist(l, m) ~ £(l,m) + dppin(l,m), where £(I,m) is the angle between the direc-
tions of [ and m and d,;,(I,m) = inf{|p —¢| : p € LN 100D,q € m N 100D}, D is
a disk intersected by [ and m and 100D is the disk with the same center as D and
radius 100 times the radius of D.
For f € L},.(R") and 0 < § < 1 the maximal function is defined as

1 n
Msf(a) = SUP SUD o) /Tf(a) |fldL",
where TP (a) is the tube with length 1, radius d, axis [ and center a. The Kakeya
case corresponds to M = S"~! endowed with the Euclidean metric and the spherical
measure. For every e € S"~!, F, is the set of lines with direction e. In Section 8 we
will prove the lower bound "T” for the Hausdorff dimension of Nikodym sets, which
was originally proved by Wolff in his axiomatic setting. It corresponds to the case
when M is the x1,...,z,_i-hyperplane and for a € M, F,, is the set of lines passing
through «.

The other assumption in Wolff’s paper (called Property (%)) roughly states that
there is no 2-dimensional plane II such that every line contained in II belongs to a
different F,.

In Section 9 we will consider sets containing a segment through almost every point
of an (n — 1)-rectifiable set, which reduces to the case of sets containing a segment
through every point of an (n — 1)-dimensional Lipschitz graph. This case could also
be treated using Wolff’s original axioms.

4. BOUNDS DERIVED FROM LP ESTIMATES OF THE KAKEYA MAXIMAL FUNCTION

As in the Euclidean case, one can show that certain LP estimates of the Kakeya
maximal function yield lower bounds for the Hausdorff dimension of Kakeya sets.
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We first prove that the bounds follow from a restricted weak type inequality, which
we will use when dealing with Bourgain’s method.

Theorem 4.1. If for some 1 < p < oo, > 0 such that Q — (f+0)p > 0 there exists
C = C,p > 0 such that

(20) v{u €Y : (xu)iu) > A}) < CAP6~7u(E)

for every u measurable set E C Xand for any A >0, 0 < 6 < 1, then the Hausdorff
dimension of any Kakeya set in X with respect to the metric d is at least Q —(5+0)p.

Recall that 0 is the constant appearing in Axiom 2. The proof is essentially the
same as for the Euclidean case, see [17] (Theorems 22.9 and 23.1), where one gets
the lower bound n — fp for the Hausdorff dimension of Kakeya sets.

Proof. Given a Kakeya set B, consider a covering B C U;By(z;,7;), r; < 1. We divide
the balls into subfamilies of essentially the same radius, by letting for £ = 1,2, ...

Je={j: 27" <r; <275}
Since B is a Kakeya set, for any u € Y there exists a, € A such that F,(a,) C B.
For k=1,2,..., let
YVi={ueY: pqF.(a,)N U Bay(xj,15)) >
J€Jx
Then UgY;, =Y. Indeed, if there exists u € Y such that u ¢ Y for any k, then

1= pua(Fu(an) <Y pua(Fula) 0 | Balajr)) <D % <1

JjEJL k

1
TELA

which yields a contradiction.

For u € Yy, if F,(ay,) N By(zj,m;) = 0 then we can discard By(z;,r;). Otherwise,
there exists y; € F,(a,)NBy(x;,7;), thus By(z;, ;) C Ba(y;,2r;). Since 217%F < 2r; <
227F and f1, o (Fyu(a,) N Ujes, Baly;,2r;)) > 512> we have by Axiom 2 and Remark 3.6

1—-k K, _ 1—-k
plTE ™ (@) 0 F) 2 552072 (),

where Fj, = Ujeg, Ba(y;, 2Kr;). Letting f = xp,, it follows that f&_, (u) > 207k /k2
for every u € Y. Using then the assumption and p(Fy) < #J,227%9 one gets

v(Y;) < k2p2k9p2kﬁp,u(pk) < f2PQ—HQ=Br=0p) 4 7,
Henceif 0 <a <@ —(B+0)p

D= #L27 2D (Vi) = w(Y).

j
This implies that H*(B) > 0 for every 0 < a < @ — (8 + 0)p, thus dim; B >
Q—(6+0)p. O

As a corollary, we get the following.

Corollary 4.2. If for some 1 < p < o0, f > 0 such that Q — (6 + 0)p > 0, there
exists C' = Cp 3 > 0 such that

(21) 1511 e vy < COP1I 1o
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for every f € LP(X, ), 0 < 6 < 1, then the Hausdorff dimension of any Kakeya set
in X with respect to the metric d is at least QQ — (B + 0)p.

Indeed (20) follows from (21) by Chebyshev’s inequality.

We can discretize the above inequalities as follows. Given 0 < § < 1, we say that
{ui,...,up} C Y is a d-separated subset of Y if dz(u;,u;) > § for every i # j.
Observe that this implies that m < Cysd6~°, where Cyg is a constant depend-
ing on S and diamg,(Y"). Indeed, since the balls By, (u;,0/2), j = 1,...,m, are
disjoint and Y C Bg,(v,diamg,(Y)) for any v € Y, we have UL, By, (u;,6/2) C
Ba, (v, diamg, (Y') 4+ 1) thus

m502is(55 < ZV (de <'LL]', g)) =V <U BdZ (Uj, g))
- =1

7j=1
< v(By, (v, diamg, (V) + 1)) < Cy(diamg, (V) + 1)°.

We say that {uy,...,u,} C Y is a mazimal §-separated subset of Y if it is -
separated and for every u € Y there exists j such that u € Bg,(u;,0). We can
find this subset for example by taking any u; € Y, us € Y \ By, (uy,0), us €
Y \ (Bi,(u1,0) U By, (us2,d)) and so on. The process is finite since Y is compact.
Observe that Y C U, By, (u;,8), thus m 2 v(Y')6~%, hence m ~ 6.

The following lemma can be proved as in the Euclidean case (see [17], Proposition
22.4).

Lemma 4.3. Let 1 <p < o0, q = 0<d<land0< M < oo. If for all tubes

Ty,....,T,, T; = Tg‘s(aj), where {ul, oy Uy} 18 a mazimal §-separated subset of Y
and a; € A, and all positive numbers ti, ..., t, such that

m
s q
) E t7 <1,
=1
we have

< M5,

L1(X,p)

iXT;

then for every f € LP(X, u)

15 llzrevey S MIFllzocx -

Recall that S is the power of the radius appearing in (2) in the description of the
measure v, whereas T is the constant appearing in Axiom 1. For completeness, we
show the proof.

Proof. Let {uy,...,u,} be a maximal §-separated subset of Y. By Remark 3.2, we
have

10 < Z -,
dZ(uJ

))Pdvu
(22) " .
ZV (B, (uj,6 fW6 uj)) Z chS u;))
J=1 J=1
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Using then the duality of [” and %, one can write

155 [ZRERS §° thfﬁfa(uj)a
J=1

where 6% 37" | 7 = 1. Thus for some a; € A,
d
p v N d
1l S5 3 s g, V10

S| ZL‘ijquw(ajﬂ|Lq(x,p>\|f\|LP(x,m < M| fll1o(x p0)-
by Axiom 1, Holder’s inequality and the assumption. O

As a corollary, we get the following (see [17]|, Proposition 22.6).

Proposition 4.4. Let1 < p < o0, g = z%’ 0<d<landl <M <oo. If for every
€ > 0 there exists C. such that

m

Z XT;

=1

(23) < C. M (mo%)Va5T=9,

L1(X,p)

for all tubes Ty, ..., T,,, where T; = Tlffﬁ(aj), {uy, ..., un} is a d-separated subset of
Y and a; € A, then for every f € LP(X, p)

15 llzocvay < CME™ | fllzocx -

Proof. Let Ti,...,T,, be tubes T; = Tg‘g(aj), where {uy,...,u,} is a maximal o-
separated subset of Y. Let t1,...,t,, be positive numbers such that §° ot <L
By Lemma 4.3 it is enough to show that

Z tixr;
j=1

Since t; <65/ and || Y7 0" xz || La(x ) S 67F, it suffices to sum over j such that
6T <t; < 675/4. Split this sum into N5 & log(1/d) subsums I, = {j : 2¥"1 < ¢; < 2%}
and let my, be the cardinality of I;. Using the assumption (23) with €/2, we have

Z tiXTy < Z 2 Z XT;

T . -5
§T<t;<6-5/4 La(X,) JEly

(24) < M55,

L1(X,p)

Ns
<G> 2EME I (myd%)15TS,

L4(X ) k=1

Since m;, 25 < 7T (2t5)7 < 296, we have (my,0%)"/7 < 2'7F, thus

>t < 20 NsMo~/?6"5 < M§—6"5,
6T <t;<5-5/a (X p)

that is (24) holds. O
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5. BOURGAIN’S METHOD

Bourgain developed a method whose main geometric object is the so called "bush",
that is a bunch of tubes intersecting at a common point. Using the same ideas we
will show the following.

Theorem 5.1. There exists C' > 0 such that
(25) v({u €Y : (xp)f(u) > A}) < CA~ 255271, (E)

for every p measurable set E C X and for any A > 0, 0 < § < 1. It follows

that the Hausdorff dimension with respect to d of every Kakeya set in X is at least
2Q-2T+S _ pS+2
2 2 -

The statement about Kakeya sets follows from Theorem 4.1, where p =T —% >0
and p = % Note that w — 9% > () since 6 < %
Observe that interpolating (see Theorem 2.13 in [17]) between this weak type

inequality and the trivial inequality || f¢||zoo(vi) S 07| f (x> we get for 1 < p <
S+2 _pS
2 47 31

_T41
1 evay S CO8 7 [ fl]oix g
for every f € LP(X, p).
We will now prove Theorem 5.1 (see Theorem 23.2 in [17] for the Euclidean case).

Proof. Given a u measurable set £ C X and A > 0, let
Ex={ucY:(xg)iu) > A

Let uq,...,uy be a maximal d-separated subset of E), that is Ey C U " B, (uj,9)
and dZ(uZ,u]) > ¢ for every i # j.

We have
N
(26) v(Ey) <Y v(Ba,(uy,6)) S N&°,
7j=1
hence
(27) N > v(E\)65.
By the definition of E), we can choose tubes Tj = T? u, (a;) such that
(28) p(ENTy) > Mu(Ty) = Ao

To find the bush, consider the smallest integer M such that there exists zg € E
that belongs to M tubes Tj and all the other points of £ belong to at most M tubes.
This means that

N
Z XT]'OE < M7

j=1
hence integrating over E and using (28)

N

(29) p(E) > M"Y p(ENT) 2 NM'As".
j=1

Suppose xg € Ty N -+ NTyy.
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We can show that there exists a constant ¢ < b (where b is the constant appearing
in Axiom 3) such that for every a € A, u € Y,

(30) H(T(@) 0 Ba(ro,eN) < n(T(@)

Indeed, diamg (T2 (a)N Ba (70, c)\)) < 2¢), hence by Axiom 1, (T2 (a)N By (20, c))) <
z—fQCAu(Tg(a)), which implies that we can choose ¢ = min{{*, b} so that (30) holds.
By (28) and (30) for every j =1,..., M,

A
(31) H(E O T\ Balwo. X)) > n(T)).
Consider the family of balls { By, (u;, %),j =1,..., M}, where % > when A <1
(as we may assume). By the 5r covering theorem 3.1 there exists {vq,...,v } C
{uy,...,up} such that By, (v;, %), i=1,...,L, are disjoint and

M L
b bo
U de (’LLJ', a) C U de (?)Z', 55) .
7=1 i=1
Thus, since the balls By, (u;, g), j=1,..., M, are disjoint,

M L
J bo
S Sy\—S
(32) Mé” S (' |de (uj, 5)) <v (Lll By, <vi,5c>\>) S LOPAT7,

=1

which implies L > M)°.
Let T} be the tubes corresponding to vy, k = 1,..., L, as chosen above. Since
dz(v;,v;) > 2 for every i # j € {1,..., L}, it follows by (8) (Axiom 3)

diamd/(T; N TJ/) S CA.
Thus the sets ENT, \ By (xo,c)), k=1,..., L, are disjoint, which implies by (31)

L
(33) p(E) > (BT Ba(xo,cA) 2 LA Z MASH ST
k=1
It follows by (29), (33) and (27)
w(E) = max{NM7INT, MASTTY > VNM—INTMNS+16T =
_ (5+2)/25T > 1/2 §T—5/2\ (S+2)/2
N ) v(Ey)=8 A .
Hence, since v(E)) < v(Y) < 1, we get
V(E)\) < V(E,\)l/z 5 M(E)55/27T)\7(S+2)/2’
which completes the proof. 0

6. WOLFF’S METHOD

In Wolff’s argument the main geometric object is the hairbrush, that is a configu-
ration of tubes intersecting a fixed one. More precisely, we call an (N, 0)-hairbrush a
collection of tubes T, ..., Ty such that T; = qu][,/‘;(aj), dz(u;,uy) > 6 for every j # k
and there exists a tube T' = TV(a) such that T NT; #  for every j € {1,...,N}.

We will use a simplification of Wolft’s proof due to Katz. Here we need to assume
also the following, that contains the geometric part of the proof.
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(Axiom 5) There exist two constants o, A with
Ogagmin{%—Q,S—l} (if@ =0thenonly 0 <a<S—1),

max{S —a,S —2T +2} <A <2Q -2+ S+2—-20(a+2)

and 0 < C" < oo such that the following holds. Let 0 < 4§, 8,7 < 1and let Tt,..., Ty
be such that T; = T,V°(a;), dz(u;, u) > 6. Let T = T,"*(a) be such that TNT; # 0
and dyz(uj,u) > /8 for every j =1,...,N. Then for every j =1,..., N,
< C'5TBy e

Recall that @ is the upper Ahlfors regularity constant of u, 6 is the constant
appearing in Axiom 2, S is the constant related to the v measure of balls centered
in Y (see (2)) and T is the constant in Axiom 1. Observe that if 6 > 1/2 then
2Q — 2T + S +2—20(a+2) > S — a only when o < 2921224 (§f 0 < ¢ < 1/2
then 2Q) — 27T+ S +2 —20(a+2) > S — « holds).

In the applications that we will consider A will always be 1 except in the case of
Kakeya sets in R" endowed with a metric homogeneous under non-isotropic dilations

(see Section 13, where we do not show that Axiom 5 holds but only that in general
we need to have A > 1).

(34)

Remark 6.1. (Axiom 5 in the Euclidean case for Kakeya sets) Let us now see
why Axiom 5 holds in the Euclidean case with A = 1 and v = n — 2 (see also Lemma
23.3 in [17]) to have some geometric intuition. Recall that in this case a tube T?(a)
is the ¢ neighbourhood of the segment I.(a) with direction ¢ € S"~! and midpoint
a € R".

Let 0 < §,8,7 < 1andlet T3,...,Ty be such that T; = Tezj‘s(aj), le; —ex| > 6. Let
T = T?(a) be such that TNT; # 0 and |e; — ¢| > 3/8 for every j =1,...,N. We
want to show that for every j =1,..., N,

S Cldflﬁ,)/an,

where C’ is a constant depending only on n.
Fix one j. We can assume that § is much smaller than v because if § 2 v, then
since the points e, are d-separated we have

il —ej| < BYS BT < BIIST S B

Thus (35) would hold.

The tubes T and Tj intersect thus there exist two intersecting segments [ and [;
contained in 7" and T} respectively. We can assume that [ N [; is the origin and
that [ and [; span the x;, zo-plane. The angle between them is 2 (. Suppose now
that T} intersects both 7" and Tj in such a way that the angle between 1" and 7; is
2 B and the angle between T; and T} is < 3. It follows from this and the fact that
dg(T; NT;,T; N T) > ~ that also dg(T; N1;,T,NT) 2 v (see Figure 2). Thus T;
makes an angle < 0/ with the xy, zo-plane. Since |e; — e;| < 8, we have that e; is
contained in the set

Bj = Bg(ej, B)N{x = (z1,...,2,) € S" Vi |ap| /v, k=3,...,n}.

(35)
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Since o™ 1(B;) < B(6/v)" 2, it can contain < 35~ 14*7" points e; that are d-separated.
Hence (35) holds.

X3

FIGURE 2. Axiom 5 in the classical Euclidean case (in R?)

Following the Euclidean proof ( [17|, Lemma 23.4), one gets then this behaviour
of the hairbrushes.

Lemma 6.1. Let Ty,...,TN be an (N,0)-hairbrush. Then for every e > 0 and

a+2
Q—HSPSZ

N p
. / (Z Xﬂ) R G
j=1

Proof. We may assume that diamg,(Y) < 1. We partition the set of indices I =
{1,...,N} in several ways. First, for k = 0,1,..., with § < 27% we let I(k) =
{i € I:27%1 < dy(u;,u) < 27%}. Observe that there is at most one i such that
dz(u;,u) < /2, thus we can ignore this and assume that every i belongs to some
I(k).

Note also that the second exponent of § in (36) is non positive since A > S —a > 1
implies that p > 3—ﬁ > O‘Of—ij\“l, hence A + o +1 — p(A + a) < 0. There are only
~ log(1/9) values of k to consider, thus it is enough to show the estimate summing
over xr, with ¢ € I(k) for a fixed k. Since

JOE vardu= 3 |

( Z XTi)p_ld:uv
iel(k) jer(k)’ i (k)

Jael
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this is reduced to show that for each j € I(k),
/ ( Z XT~)p_ld,U < 5T5/\+a+1—p()\+a)—e'
Ti ier(k)

Then for fixed k and j € I(k), we define for positive integers [, m such that [ > k — 2
(otherwise the set is empty) and 6/2 < 27,270 < 1,

I(k,j,l,m) ={i € I(k): 277" < dg(us,u;) <27 TN Ty # 0,
2L < (T, N Ty, TyNT) < 62m
and for m =0,
I(k,j,1,0) ={i € I(k) : 277" < dy(us,uy) <27, TN Ty # 0,
d(T;NT;, T;NT) < 62'}.
Then by Axiom 5,

(37) #I1(k,j7,l,m) < 5_(>\+a)2—l(2m+l)—a'
This holds also when m = 0, since we can trivially estimate
(38) #1(k,5,1,0) < 279575 < 9—l(at1) 5—(\+a)

Since there are again only logarithmically many values of [, m, it suffices to show that
for fixed k, 5,1, m

p—1

39 / Xt d,U, 5 5T5)\+a+1—p()\+a)'
(39) [y w

g ZGI(kalvm)

For i € I(k,j,1,m) we have dz(u;,u;) ~ 27!, which implies by Axiom 3 that
diamgy (T; N T;) < 02'. Thus we need only to integrate over T;(l,m) = {z € T} :
d(z, T; NT) < §2™+}. We have that Tj(I,m) C T; and dz(u,u;) ~ 27% > 27m
thus by Axiom 3 diamg/ (7; N T) < 62™ ) which implies diamg (T;(1, m)) < 62™H. Tt
follows by Axiom 1 that u(T;(l,m)) < 2§71 Using Hélder’s inequality we get

p—1 p—1
/ Y. oxn| dp< / Y xmdp | u(Ti(lm)*
Tj \ie1(kjlm) i ie1(k,jl.m)
(40) p—1
,S Z ,U(Tz N T]) (2m+l5T-‘rl)2—p.
i€l(k,j,l,m)

Since diamg (T; N'T;) < 62!, we have p(T; N'T;) < 2167 by Axiom 1. It follows by
(37),

p—1
Sooxn | dp S F (kG 1m)2s T Ty
(41) T3 \ie1(k,jlm)
< 2(m+l)(a+2—p(a+1))5T5)\+a+1—p()\+a)
< 5T5)\+a+1*p()\+o¢)
when p > Z—ﬁ Thus (39) holds. O
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Using then Proposition 4.4 and Lemma 6.1, we can prove the following estimate
for the Kakeya maximal function.

Theorem 6.2. Let 0 < § < 1. Then for every f € L*T?(X, ) and every € > 0,

_2T—S54A-2
Sl povzvp) S Ced 2@ | f|| oz xp)-

Hence the Hausdorff dimension with respect to d of every Kakeya set in X 1is
> 2Q-2T+S—-X+2 (9(04 + 2)
I B )

The claim about Kakeya sets follows from Corollary 4.2. Note that w —

O(a+2) > 0 since A < 2QQ — 2T 4+ S + 2 — 20(a + 2). This lower bound improves
the estimate % — 9%, which was found using Bourgain’s method, only when
A <240(S —2a —2). In the other cases it gives a worse (or equal) estimate. The
proof proceeds as in the Euclidean case ( [17], Theorem 23.5), but we show it here

for completeness.

Proof. We may assume that diamg,(Y) < 1. Let {uy,...,u,} CY be a d-separated
subset. By Proposition 4.4 it suffices to show that

2(T—S)(a+1)—S—A+2

/(Z XT~)(a+2)/(a+1)d/J/ 5 5*”27(571?;2*6777/655(71—5)% _ méSé CIGESY e7

J

j=1

where T} = T‘f_"s(aj). This is reduced to prove

u

2AT=5)(atl)~S=2A+2

Z/ (Z XTi)l/(a+1)du S mo°s 2(at1)
j=1"Ti i=1

If we subdivide into dyadic scale by letting I(j, k) = {i : 27571 < dz(u;, u;) < 27%}
for k such that 6 < 27%, then there are N5 ~ log(1/§) values to consider and we can
take the sum in %k out of the integral. This follows from the fact that 1/(a+ 1) < 1.
Indeed we have

m m m Ny m
3 KV SBLESTED 9 ) D DERELLTED o) T
j=1 71 j=171i (3:k) i=1771

ii=1 i k=1i€l(jk

=5) DY KD DRCILLES S

J=1 k=1""7 i€l(j,k) Jj=1

< Ns maxZ/ ( Z xr) YV dp + moT.
i=1"Ti ic1(jk)
2T —8)(at+1)—S—At2
Since méT < md®§ 2(FD) ~, we are left with pairs i, j such that dz(u;, uj) ~
27%. For a fixed k we can cover Y with balls By, (v;,27%), v; € Y, such that the
balls Bq, (v;,2'7%) have bounded overlap. If i € I(j, k) then u; and u; belong to the
same ball By, (v, 2'7%) for some [. Fix one of these balls B of radius 2% and let
I(B) = {i : u; € B}. Then it suffices to show that

(42) Z / ( Z XTi)l/(oc—‘rl)dlu ,S #1(3)5552(T—S)(2<Ez;ri)1;5—>\+2_6'
T.
(B)

jer(B)’1i ier
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The next step consists in finding as many (N, ¢) hairbrushes as possible in the
set of tubes indexed by I(B), where N will be chosen later. By doing so, one gets
Hy, ..., Hy hairbrushes and, letting H = H;U---U H)y, we have that K = I(B)\ H
does not contain any (N, ¢) hairbrush.

Since uy,...,u, are d-separated, the balls By, (u;,d/2) are disjoint. Moreover,
§ < 27% thus By, (u;,6/2) C 2B, where 2B denotes the ball with the same center as
B and double radius. Hence

B)3® < Y w(Ba,(ui,6/2)) <v(2B) Suv(B) <274,

i€l(B)
which implies #1(B) < 27%96~%. Thus
(43) M < 2705575 /N.
We can then split the sum into four parts
Z / > xe)VVdp < S(H,H) + S(K,H) + S(H,K) + S(K, K),
T i€I(B)

where
SUCH) = Y [ (3 )iy
JEK T; 1€H

and similarly for the others. For the first term by Minkowski’s inequality and Lemma
6.1 we have

S(H, H) /) = ||ZXT )<Z||ZXT||a+2)/a+1

i€H =1 ZEHZ

(44) ;
< Z((ST#HI(S(_)\+1)/(Q+1)_E)(a+1)/(a+2),

=1
thus by Holder’s inequality and (43) we get

S(H,H) < MYt gy 575240/ (a+1)
T 9—kS §—S=A+1 1/(ot1)
<G HI(B)T [
(45) S0 41(B) ( ¥ )

9—kS §—S—A+1+(T—=5)(a+1) \ 1/(@F1)
= 6~ “H#I(B)s°
#1(50° ( . )

For the second term, using twice Holder’s inequality we get

1/(a+1)
S(K,H) < Z (/ ZXT d’u> ’u(Tj)a/(a+1)
JjEK T; i€H
1/(a+1)
= [ )

JjeK T; i€H

#K a/ a+1) (
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Since dz(u',u’) ~ 27* it follows by Axioms 1 and 3 that u(7;N7T}) < 2867+, Using
the fact that #{i € K : T,NT # 0} < N for any tube T, we get

1/(a+1)
S(K, H) S (#K)a/(a+1) Z Z 2k5T+1 5Ta/(a+1)

icH je K, T;NT;#0

1/(a41)
S (#EK) e (Z N2’“5T+1) §Te/(a+1)
ieH
< #[(B)&S(N2k5(T—S)(a+l)+l)1/(a+1)'

The remaining two terms can be estimated in the same way, obtaining

(47) S(H,K)+ S(K,K) < #I(B)§%(N2FsT =9t/ (a+l)

S+1

Choosing then N = 2773 F§=3"  we get (42) by (45), (46) and (47). O

Part 2. Examples of applications
7. CLASSICAL KAKEYA SETS

We have seen in Remark 3.1 that in the case of the classical Kakeya sets Axioms
1-4 are satisfied with T'= S =n—1, Q = n and § = 0. We then get by Theorem 5.1
the lower bound 3 for the Hausdorff dimension of Kakeya sets (which was obtained
by Bourgain).

Moreover, Axiom 5 holds with A = 1 and o = n — 2 as seen in Remark 6.1. Hence
we obtain the improved lower bound ”T” proved originally by Wolff. In Figure 3 it
is shown how Bourgain’s bush and Wolft’s hairbrush look like in this case.

We now consider some more examples to which the axiomatic setting can be applied
and one to which it cannot.

FIGURE 3. Bourgain’s bush and Wolft’s hairbrush in the classical Eu-
clidean case (in R?)
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8. NIKODYM SETS

Nikodym sets are closely related to Kakeya sets. A Nikodym set E C R™ is such
that £"(F) = 0 and for every x € R” there is a line L through x such that £ N L
contains a unit line segment. The Nikodym conjecture states that every Nikodym
set in R™ has Hausdorff dimension n. This is implied by the Kakeya conjecture, see
Theorem 11.11 in [17].

The Nikodym maximal function of f € L (R") is defined as f}* : R" — [0, oc],

loc

where the supremum is taken over all tubes T of radius d and length 1 containing x.
There is also a Nikodym maximal conjecture, stating that

15 | @y < Cred ™[ f1|n(n)

for every € > 0, 0 < 6 < 1. This is equivalent to the Kakeya maximal conjecture (see
Theorem 22.16 in [17]).

Making some reductions, we can use the axiomatic setting to prove the known
estimates "3 and "2 for the Hausdorff dimension of Nikodym sets (these lower
bounds were originally proved by Bourgain and Wolff).

First we will consider a natural setting in which the roles of Y and A are basically
swapped with respect to the Kakeya case, but in which we can only prove the lower
bound "TH In Section 8.1 we will then consider a different approach, which will
yield the lower bound ”T“ for the Hausdorff dimension of Nikodym sets but not the
corresponding Nikodym maximal function inequality. It will also give lower bounds
for the dimension of sets containing a segment in a line through every point of a
hyperplane.

Let X =R", u= L", d = d be the Euclidean metric, () = n. The set of parameters
A is given by those directions e € S"~! that make an angle < /100 with the x,-axis.

Let Z be the x4, ..., x,_1-hyperplane, v = ’H%‘l‘z, Y be a compact subset of Z such
that 0 < H%'(Y) < 1, dz be the Euclidean metric on Z. Then for every p € Y we
have H5 ' (Bg(p,7)) ~ "1, thus S =n — 1.

For p € Y and e € A, we define F,(e) = I,(e) as a segment of unit length with
direction e starting from p and I,(e) D I,(e) as a segment of length 2 (starting
from p). In this case . = ’HH 1)’ the 1-dimensional Euclidean Hausdorff measure
restricted to I,(e). Let T?(e) be the 0 neighbourhood of I(e) in the Euclidean metric
and let sz‘s(e) be the 26 neighbourhood of I,(e).

Axiom 1: We have £"(T%(e)) ~ L™(T?(e)) ~ 6" ! and if A C T2 then L™(A) <
diampg(A)6" . Thus Axiom 1 holds with T =S =n — 1.

Axiom 2: It is easy to see that Axiom 2 holds with # = 0 (since the tubes and
the balls are the same as in the classical Kakeya case).

Axiom 3: Now we show that Axiom 3 is also satisfied, that is there exists b = b,
such that for every e, e € A and every p,p € Y,

- - )
(48) diampg (T2 (e) N T2 (e)) < bﬁ,
p—Dp
where diampg denotes the diameter with respect to the Euclidean metric.
Indeed, if e = € or |e — €| < § then the intersection is non-empty only if [p —p| < 26.
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In this case the left-hand side in (48) is at most 1 up to a constant and the right-hand
side is 2 1. If |e — €| 2 ¢ then the intersection is non-empty only if |p — p| < |e — €.
Thus by the standard diameter estimate,
< J < J _

le—el ™ [p—pl

Axiom 4: Let p,p" € Y such that [p —p'| < and let e € A. We want to show
that T} (e) C T2(e). The segment I,(e) is the set of points te 4+ p with 0 <t < 1.
Let g € T?(e), that is there exists ¢ € [0,1] such that |¢ — te — p| < §. Then

diamE(Tf‘;( )N T25( €)) <

(49) lg—te —p'| <|g—te—p|+|p—p'| <26,

thus ¢ € Tjé(e), where Iy(e) = {se +p : 0 < s < 2}.
Hence all the Axioms 1 — 4 are satisfied. Defining, as in (9), f¢:Y — [0, 00|,

(50) 0 =0 gy [, 1708

this satisfies by Bourgain’s method a weak type inequality (25) with S =T =n —1
for all Lebesgue measurable sets.

Remark 8.1. Note that any estimate of the form || f§||rp@n-1) < Cs||f]|Lr@rn) valid
for any f € LP(R"™) with bounded support, implies the corresponding estimate
| f5*]| Lrny < CuCs|| f||Lr@ny. Indeed, the assumption means that

(51) /‘<mmwwwas%/ (@ 2) AL d,
R'nfl

{(@zn):len|<1}
where f§75 is the maximal function as f;* but with tubes that make an angle <
7/100 with the z,-axis. Actually there is a small difference between f§ and f;75:

given a point p, in f¢ we consider averages over tubes starting from p whereas in
5100 the tubes just contain p. However, any tube T, 5( ) is a tube containing p,
thus fd(p) < f$300(p). On the other hand, if T' is any tube containing p, say that
T = T?(e) for some point ¢, then T' C Tp?‘s(e) UT2°(—e). Indeed, [p —te —q| <6
for some t € [0,1] and if ¢ € T then |¢' — se — q| < ¢ for some s € [0,1]. Thus
74 —(s—t)e— pl < |¢ —se—q|l+|qg+te—p| <25 and s —t € [—1,1]. Hence

5100(P) < f35(p)-
Since in (51) 0 could be replaced by any ¢ € R, we have

/ ( g,’foo(f,t))pdﬁn_lx' < 05/ |f (2!, ) [PAL o di,.
Rn—1 {(z',zn):|zn—t|<1}
For any ¢ there exists k € Z such that ¢ € [k, k + 1]. Thus
| Uil typacria < | 7@ )P d,
n—1 {($/7$n)5|73n_k‘§2}

Integrating over t and summing over k, we have

k1
/ / Sr00(2’,1)PdL 'dt<C’52/ \f(2', 2,)|PdL™ 2 dy,

keZ kez Y 1@ mn)]en—k| <2}
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thus by Fubini’s theorem we get the estimate || f37oollzr@®n) < CnCsl|f|[Lr@n). The
restriction on the direction of the tubes can be removed by using finitely many
different choices of coordinates.

In the same way we can show that any weak type inequality of the form

L7 ({p = (2,0) 12" € R, (xp)§(p) > A}) < AP 7L (E)

valid for any Lebesgue measurable set £ C R™ and any A > 0, implies the corre-
sponding estimate

L({p € R": (xp)5"(p) > A}) < CATPOPLY(E).
Hence we have a weak type inequality also for the Nikodym maximal function
L'{p e R": (xp)5"(p) > A}) < OA D250 L (),

which implies the lower bound ”T“ for the Hausdorff dimension of any Nikodym set
in R".

Wolft proved the lower bound ”T“ simultaneously for the Hausdorff dimension
of Kakeya and Nikodym sets (see Remark 3.9). Unfortunately with our approach
it seems that we cannot prove the validity of Axiom 5 in the present setting with
A =1, a =n — 2. The main obstacle is the fact that here if two tubes Tp%(e) and

Tg‘s(é) intersect then it could happen that [p — p| is much smaller than |e — €|, thus
having information about the distance between the starting points of two tubes is
not enough to know the angle at which they intersect. The validity of Axiom 5 would
give an L™ bound for the Nikodym maximal function, which would imply the lower
bound ”T“ for the Hausdorff dimension of Nikodym sets.

We will now use another approach, letting Y and A be different sets, which will
also give dimension estimates for some related sets.

8.1. Sets containing a segment in a line through every point of a hyper-
plane. Let V C R" be a hyperplane and let A C V be H" ! measurable and such
that H""1(A) > 0. We say that N C R" is an (A, V)-Nikodym set if L"(N) = 0 and
for every p € A there is a line L, through p not contained in V' such that L, N N
contains a segment of length 1. We will obtain the following dimension estimate.

Theorem 8.1. IfV C R"™ is a hyperplane, A C V is H"! measurable, H"*(A) > 0,
and N C R™ is an (A, V)-Nikodym set then the Hausdorff dimension of N is > "T”

We will prove this by showing that Axioms 1-5 are satisfied and using Wolff’s
method. The setting is the following. Let X = R", d = d' be the Euclidean metric and
p=L" thus Q =n. Let Y C Z =V be compact and such that 0 < H" 1Y) < 1.
We let dz be the Euclidean metric on V' (thus By (p,r) is any Euclidean ball in V)
and v = ”H"_1|V. Thus S =n — 1.

Given 0 < 0 < 7/2, let

1
A={(e,t):ec S Lle,V*) <0’t€R’Z <t<C,},

where £(e, V1) denotes the angle between a line with direction e and V+ and C, is
a fixed constant depending only on . For p € Y and (e, t) € A let

(52) F,(e,t) =1,(e,t) ={p+te+se:se0,1]}
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thus I,(e,t) is the segment starting from p + te with direction e and length 1.
Here we consider only 0 < § < m (this is needed in (53) and (54) and it is
not restrictive since we could define tubes and prove all the results of Sections 3, 4,
5for 0 < § < ¢ <1 forany c). Let TS(e,t) be the ¢ neighbourhood of I,(e,t) in
the Euclidean metric, let I,(e,t) = {p + te + se : s € [0,2]} and Tp%(e,t) be its 20
neighbourhood.

Here < (resp. 2) means < C,,, (resp. > C,, ) for some constant C,, 5.

Axiom 1: It holds with T'=n — 1, since the tubes are the usual Euclidean ones.

Axiom 2: Since the tubes and balls are the same as in the Euclidean Kakeya case,
Axiom 2 holds with 6§ = 0. )

Axiom 3: Let p # p € Y and (e,t), (6,1) € A, e # €, be such that T?(e,t) N
fg‘s(é,t_) # 0. First observe that if [p—p| < Cy,6 then §/|p—p| 2 1 2 diamp (T (e, t)N
T2 (e, 1)), thus Axiom 3 holds.

Hence we can assume that |p — p| > C})gi_. We can find points p/, p’ € Y such that
26

p—p| <2 [p—p| <2 and the point u = {p'+se:s e R}N{p +se:s €R}

Ccos

is contained in T (e, t) N T2(€,t). Thus

1 1
(53) <1 —2§(1 +tano) < |u—p'| < C, + 1+ 26(1 + tano) < Cg—l—g

and

1 1 9
(54) S < 1 26(1 +tano) < |u—p'| < Cy +1+426(1 + tano) < C, + 3

Since £ (e, V1) < o, the angle between the line {p' +se: s € R} and V is > 7/2 — 0.
This implies that [p’ — p/| & |e — €|, which is essentially the angle between the lines
{p/+se:seR}and {p'+se:s e R} Since [p—p| ~ |p' —p'|, the classical diameter
estimate implies

st

—e[ ™~ lp—pl

which proves the validity of Axiom 3. Observe that if e = & then 72 (e, t)NT2 (e, 1) #
0 only if |p — p| < 2. Also in this case (55) still holds.

Axiom 4: Let p,p € Y be such that [p—p| < J. We want to show that T?(e,t) C
Tﬁz‘s(e,t). Indeed, if w € T?9(e,t) then |w — p — te — se| < & for some s € [0,1]. Thus

(55) dmmEaf%atywﬁ?&%B)§|€

(56) lw—p—te—se| <|w—p—te—sel+ |p—p|l <26,

which implies w € T2 (e, t). Hence Axiom 4 holds.

Axiom 5: We can prove Axiom 5 as in the classical Kakeya case, see Remark 6.1
(and Lemma 23.3 in [17]).

Lemma 8.2. Let 0 < 0,5,7 < 1 and let Tt, ..., Ty be such that T; = T}?;S(ej,tj),

lpj — pe| > O for every j # k. Let T = T}?‘S(e,t) be such that T N'T; # 0 and

lpj —p| > B/8 for every j=1,...,N. Then forall j=1,...,N,
#Lj=#{i:Ipi—p)| <B,TiNT; #0,dp(T;NT;,T;NT) = v}

57
S e
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Proof. We may assume that ¢ is much smaller than v and . This follows from
the fact that since p;,p; are d-separated we have #{i : |[p; — p;| < B} < g 16t
If 6 > v we would have #{i : |p; — p;| < B} < " 10 9* ™ and if § 2 § then
#{i - |p; — pj| < B} < B, thus (57) would hold.

Since |p — p;| > B/8 >> § for every j = 1,..., N, we have seen above (in Axiom
3) that we have |e —e;| = [p —p;| 2 B and there exist p’, p; such that [p —p'| < Cfs‘scr,
Ip; — P;| < 22 and the lines {p/ + se; : s € R} and {p, + se : s € R} intersect.

Fix now one of these j. Since |p;—p;| > d, we have #{i : |p;—p;| < 100/coso} S 1,
hence we can assume that |p; —p;| > 100/ coso. Then for i € Z;, we have |e; — ;| &
|pi—p;| < B, hence we are essentially in the same situation as for the classical Kakeya
case and we can use the same proof, which we summarize here.

Let P be the 2-dimensional plane spanned by the lines {p’ 4+ se : s € R} and
{p;- + se; : s € R} and let L be the line given by the intersection between P and V.
Thus L contains p’ and p;-. Observe that the angle between P and V' (that is, the
angle between their normal vectors) is 2> 7/2 — 0.

Since T; intersects T and 7} in such a way that the angle between T; and Tj is
at most constant times the angle between 7" and 7Tj, it follows from the fact that
de(T;NT;,T; NT) > v that also dg(T; N T;, T, N T) 2 v. Hence T; makes an angle
< 0/~ with P. Thus the distance from p; to L is < 6/7. Moreover, p; € By (p;, (),
hence

20

lpi — Pl < |pi —pil + Ip; — Pl < B+ <28
cos o
since ¢ << . It follows that
)
(58) pe{oeviasan st}

Since this set has H" ! measure < 36" 2~4*7", it can contain < 36142~ d-separated
points p;. 0

For f € L} (R") and 0 < § < 1 we define the maximal function f¢:Y — [0, 00
as in (9) by
1
fd(p) = sup —/ fldcr.
6< ) (est)eA £"(T£(€7t)> Tg(e,t) | |

Since all the Axioms 1 — 5 are satisfied, Theorem 6.2 implies the following.

Theorem 8.3. There exists a constant C = C,,, such that for every f € L"(R")
and every € > 0,

2on_
1£51lrry < CCO™= I f| .

If N is an (A, V)-Nikodym set then there exists Y C V and A as above such that
for every p € Y there exists (e,t) € A with I,(e,t) C N, which means that (A, V)-
Nikodym sets are generalized Kakeya sets. Indeed, for every p € A there exists a half
line L, = {se, + p: s > 0} for some e, € S"! such that L, N N contains a segment
of length 1/2, call it I,(ep, t,) (where t, is such that p + t,e, is the starting point of
the segment). Since L, is not contained in V' we have £(e,, V*) < 7/2 for every e,
as above. If for some p the segment I,(e,,t,) contains p, that is ¢, = 0, then we can
redefine I,(ep,0) = I}(ep, 1/4) = {p+sep : s € [1/4,1/2]} = {p+ 1/4e, + se, : 5 €
[0,1/4]}. Thus we can assume ¢, > 1/4.
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For R=1,2,...,let Vg = {p € V : t, < R}. Since V = UY_, Vg, there exists
R such that H" ' (Vg) > 0. For i = 1,2,..., let Vg; = {p € Vg : L(e,, V*) <
7/2 — 1/i}. Then there exists ¢ such that H"'(Vz;) > 0. Let Y C Vg, such that
0<H"(Y)<1andY is compact. Then for every p € Y there exists (e,,t,) € A
(where 0 = /2 — 1/i and C, = R) such that I,(e,,t,) C N.

Hence Theorem 8.3 implies by Corollary 4.2 that the Hausdorff dimension of every
(A, V)-Nikodym set is > ”T”, that is Theorem 8.1 is proved.

Remark 8.2. If M C R"™ is a Nikodym set, then in particular there is a hyperplane
V C R" such that for every p € V there exists a line L, through p with L, N M
containing a unit segment and H" '({p € V.: L, € V}) > 0. Thus M is an (A, V)-
Nikodym set (where A= {p €V : L, ¢ V}), which implies dim M > 22,

Remark 8.3. We considered here sets such that for every p € V' the line L, is not
contained in V. On the other hand, if a set N C R" is such that for every p € V
there exists a line L, C V with L, N /N containing a unit line segment, then N is
essentially a Nikodym set in R™~!. Thus in this case we only have the known lower
bounds for the dimension of Nikodym sets in R*~!.

9. SETS CONTAINING A SEGMENT IN A LINE THROUGH ALMOST EVERY POINT OF
AN (n — 1)-RECTIFIABLE SET

Instead of the classical Nikodym sets, we now consider sets containing a segment
in a line through almost every point of an (n — 1)-rectifiable set with direction not
contained in the approximate tangent plane (this will be defined later).

There are various equivalent definitions of rectifiable sets (see chapters 15-18 in [16]
for definitions and properties of rectifiable sets). We recall here two definitions that
we will use. Let E C R™ be an H" ! measurable set with 0 < H"}(E) < co. Then

(1) Eis (n— 1)-rectifiable if and only if there exist (n — 1)-dimensional Lipschitz
graphs G1, G, ... such that H"'(E \ U;G;) = 0;

(2) Eis (n — 1)-rectifiable if and only if there exist (n — 1)-dimensional C'' sub-
manifolds My, My, ... of R™ such that H" ! (E \ U;M;) = 0.

An important property of rectifiable sets is the existence of approximate tangent
planes at almost every point. Let us recall here the definition (see Definition 15.17
in [16]). Following the notation in [16], 15.12, given a hyperplane V' C R", a € R"
and 0 < s <1 we let

(59) X(a,V,s) ={x e R" : dg(z — a,V) < s|x — al|}.

Given A C R”, we say that V is an approximate tangent hyperplane for A at a if
O 1(A,a) > 0 and for all 0 < s < 1,
lirré "1 (AN Be(a,r) \ X(a,V,s)) = 0.
r—
Here ©*""1(A, a) denotes the upper (n — 1)-density of A at a, defined (see Definition
6.1 in [16]) as
limsup(2r)' "H" "' (AN Bg(a,r)).

r—0

The set of all approximate tangent hyperplanes of A at a is denoted by ap Tan(A, a).
The following holds (see Theorem 15.19 in [16]).
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Theorem 9.1. Let E C R™ be an H"™' measurable set with H" *(E) < oco. Then
E is (n — 1)-rectifiable if and only if for H"™' almost every p € E there is a unique
approximate tangent hyperplane for E at p.

Definition 9.1. Given an (n — 1)-rectifiable set £ C R"™, we say that K C R"
is an E-Nikodym set if L(K) = 0 and for H"" ' almost every p € E there exists
e, € S"! such that e, ¢ ap Tan(F, p) and L,(e,) N K contains a unit segment, where
L,(e,) = {te, +p:t>0}.

We will prove the following.
Theorem 9.2. Let K C R" be an E-Nikodym set. Then dim K > 22,

To prove the theorem, we will reduce to show the following lemma. Here we let
V be an (n — 1)-dimensional linear subspace of R™, g : V' — V< be a Lipschitz map
with Lipschitz constant L > 0 (that is, |g(z) — g(y)| < L|z — y| for every z,y € V)
and G be its graph. For e € S"7! let £(e, V1) denote as before the angle between a
line in direction e and V*.

Lemma 9.3. Let G be the graph of a Lipschitz map g : V. — V* with Lipschitz
constant L. Let N C R™ be such that there exists 0 < 0, < arctan(1/L) and for every
p € A C G, where H" "1 (A) > 0, there exists e, € S such that £(e,, V*) < 0,
and Ly(ep,) NN contains a unit segment. Then dim N > "£2.

Let us first see how the lemma implies Theorem 9.2.

Proof. (Lemma 9.3 = Theorem 9.2)

Let K C R" be an E-Nikodym set. Then for H"~! almost every p € E there exists
e, € S"! such that e, ¢ ap Tan(FE,p) and L,(e,) N K contains a unit segment. For
j=12,....1et E;={p € E: (e, (ap Tan(E,p))*) < /2 — %} Then there exists
k such that H" ' (E}) > 0.

Since Ej is a subset of F, it is (n — 1)-rectifiable. Hence by one of the definitions
that we have seen there exists an (n — 1)-dimensional C'' submanifold M of R" such
that H"'(E, N M) > 0. It follows from Lemma 15.18 in [16] that for H"~! almost
every p € Ep N M we have ap Tan(FEy,p) = Tan(M,p), where Tan(M,p) is the
tangent hyperplane to M at p.

Since M is a C'! manifold, for every point p € M N E, there are a neighbourhood
U C MNEof pand a C! function f : W — U such that f(W) = U, where
W c R" ! is open. We can assume that Df is uniformly continuous on W. Let
0 <e<1/(2tan(1l/k)). For every x € W let §, > 0 be such that for every y € W
such that |z — y| < 6, we have

fy) = f(x) = Df(x)(y — x) + e(x)(y — x)
(60) = Df(xo)(y — ) + (Df(x) = Df(x0))(y — 2) + e(x)(y — ),

where g € W and |e(z)(y — x)| < €ly — z|. If we let for j = 1,2,..., W

{r € W4, > 3}, then there exists [ such that H"~'(W;) > 0. Let 0 < 9 < 7

be so small that |Df(x) — Df(y)| < € when |z —y| < §. Fix xop € W, such that
H" Y (Bgr(xo,6/2) NW;) > 0. Let V = Df(x0)(R"!) and let h be the isometry such
that h(V) =R L. Let g = Pyrofoh:V — V+ where P,. denotes the orthogonal
projection onto V*. Then for every z,w € h™'(Bg(zo,6/2) N W;) C V, we have
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z = h™!(z) for some x € Br(xq,d/2) N W; and |h(z) — h(w)| = |z — w| < §, thus by

( ( |
:|PVL(Df(xO)(h(Z> — h(w)) + (Df(h(2)) = D f(w0))(h(2) = h(w))

<|Df(x) - Df(l‘o)HZ w| + €[z — w
! |Z_w|7

where we used Py (Df(xo)(h(z) — h(w))) = 0 since Df(xzo)(h(z) — h(w)) € V.
Thus ¢ is Lipschitz with Lipschitz constant L < 1/tan(1/k). Hence there exists
E] C Exn M, H"Y(E]) > 0, such that E] is contained in a Lipschitz graph G with
Lipschitz constant L.

Then for p € E] we have £(e,, (ap Tan(E], p))*) = £(ep, ( Tan(M, p))*) < n/2—
On the other hand, since E] is contained in a Lipschitz graph we have £(( Tan(M, p)
7/2 — arctan(1/L). Hence £ (e,, V*) < arctan(1/L) — 1/k < arctan(1/L).

It follows that the subset K’ C K containing a segment in L,(e,) N K’ for every
p € Ej satisfies the assumptions of Lemma 9.3. Hence dim K > dim K’ > "T” O

v

IA

We will now prove Lemma 9.3 by showing that in this setting all the Axioms 1-5
are satisfied. Let X =R", d=d = dg, p = L", Q = n. We can assume without loss
of generality that V' is the zy,...,x,_j-hyperplane and that g(z) > 0 for every z.

Let Z =G and Y C A C G be a compact set such that 0 < H"1(Y) < 1, let dy
be the Euclidean metric on G and v be the (n — 1)-dimensional Hausdorff measure
Hr ! ’G restricted to G, thus S =n — 1. Let

1
A={(e,;t) € S" ' xR : £(e, 1 ,-axis) < 0y, 1< t < M},
where 0 < 07, < arctan(1/L) and M € R. For p € Y and (e, t) € A let, as in (52),
F,(e,t) =1I,(e,t) ={p+te+se:se]01]}.

Since we will use the diameter estimate (55), we consider also here 0 < ¢ < m.
Let T9(e,t) be the § neighbourhood of I,(e,t) in the Euclidean metric. Let also
Tp%(e,t) be the 28 neighbourhood of (e, t) = {p + te + se : s € [0,2]}.

Axiom 1: Since the tubes are Euclidean, we have £™(T9(e,t)) ~ E”(Tp%(e, t) ~
6! and if A C T?(e,t) then £"(A) < diamp(A)d"~. Thus Axiom 1 holds with
T'=n-—1.

Axiom 2 holds with § = 0 since the tubes and balls are the usual Euclidean ones.

Axiom 3: We want to show that there exists a constant b = by, ,, such that for all
p=(x,9(x)), p = (2/,9(2")) € Y and (e, t), (¢/,t') € A we have

(61) dlamE(Tz‘s(e t)N T%(e ) <b——
"o —vT

First observe that if [p—p/| < C,,0 then §/|p—p'| = 1 = diamE(sz‘s(e, t)ﬂTI?,‘S(e’, '),
thus (61) holds (here the constants depend on n and L). Hence we can assume that

lp—7p'| > C;fgL. If g(z) = g(2) then we are in the same situation as in Section 8.1




DIMENSION ESTIMATES FOR KAKEYA SETS DEFINED IN AN AXIOMATIC SETTING 35

(indeed p and p’ lie in the same hyperplane parallel to the z1, ..., x,_j-hyperplane),
thus (61) follows from (55).

Lp(e)

9(x)
g(x

X

FIGURE 4. Lipschitz graph in R? (proof of Axiom 3)

Suppose that g(z) > g(z’). Let P be the hyperplane parallel to the zq, ..., 2, 1-
hyperplane and passing through p’. Let L,(e) be the line containing I,(e,t) and
let ¢ = Ly,(e) N P (see Figure 4). Let s be the projection of p onto P. Then
s =p/| = o =2, [p—s| = |g(z) — g(a')] and |s —q| = |p — s[tanf, where
0. = £(e, rp-axis) < ;. Thus we have

== 1]s=p| = |s—ql =z — 2’| = [p— s| tan 0.
> |z —a'| = [g(x) — g(a')| tan O
> (1— Ltanfp)|x — 2|
1 — Ltan QL’
V14 L2 P

where 1 — Ltanf;, > 0 since tanf;, < 1/L. Moreover,

>

i
)

lg— [ <lg—s[+|s =D
< |g(z) — g()[ tan Op, + |z — 2|
< (1+ Ltanfp)|z — 2|
< (1+ Ltanfy)|p — p'|.

Hence |p—p/| = |¢ —p'|. But we know from Section 8.1 (see Axiom 3) that |¢ —p/| =
le — €|, thus

J

diamp (T (e,t) N T (¢, 1)) < by, Pk
p—p

— <
le —e'| — m.L
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Axiom 4: As in (56), we can see that if p,p’ € Y are such that |p — p/| < 6, then
T)(e,t) C T>’(e,t). Hence Axiom 4 holds.
Axiom 5: Let 0 < 4,8,7 < 1 and let T1,...,Ty be such that T = Tgf(ej,tj),

lp; — pr| > & for every j # k. Let T = Tp%(e,t) be such that T NT; # 0 and
lpj —p| > B/8 for every j=1,...,N. Thenforall j=1,..., N,

#L; = #{i i~ 0| BTN T #0.dp(LN T TN T) 2 7}
<oy

Proof. Asin the proof of Lemma 8.2, we can assume that ¢ is much smaller than 5 and
v. Let p = (z,9(x)), p; = (z;,9(x;)). We can also assume that g(x;) > g(x). Since
lp—pj| > B/8 >> 4§, we have seen above in Axiom 3 that we have [p —p;| = |¢ — pj|,
where ¢ = L,(e) N P and P is the hyperplane parallel to the x4, ..., z,_i-hyperplane
and passing through p;. Hence we are in the same situation as in Lemma 8.2 and
(62) follows from (57). O

(62)

Since all the Axioms 1-5 are satisfied, the maximal function
1
d( — - n
p) = sup / |[fldL
’ (eyea LH(TP (e 1) Jrs(en

satisfies by Theorem 6.2

(63) £ | vy < Ced 2 || fl] pe ey

for every € > 0 and every f € L™(Y).

Let N C R™ be such that for every p € A there exists e, € S™ ! such that
A(e,, VL) < 01 and Ly(e,) N N contains a unit segment. Then, in particular, for
every p € Y C A we have I,(e,,t,) C N for some t, > 1/2, where here I,(e,, t,) has
length 1/2. Hence (63) implies the lower bound £ for the Hausdorff dimension of
N and proves Lemma 9.3.

Remark 9.1. (Sets containing a segment through every point of a purely unrectifiable
set)

If BCR" H"'(B) > 0, is purely (n — 1)-unrectifiable and K C R” is such that
for every p € B there exists a segment {p+te,: 0 <t < 1} C K for some ¢, € S",
then we cannot use the axiomatic system to obtain lower bounds for the dimension
of K. Indeed, we will show that we cannot find a diameter estimate as in Axiom 3
(where the tubes are Euclidean tubes). This is due to the geometric properties of
purely unrectifiable sets, which are rather scattered.

Recall that a set B C R" is called purely (n — 1)-unrectifiable if " *(BNF) =0
for every (n — 1)-rectifiable set F. Fix some direction e € S"~! and let L be the line
through the origin with direction e. We can define as in (59) for a € R", 0 < s < 1
and 0 <r < oo

X(a,L,s) ={z € R":dg(x —a,L) < slx —al}
and
X(a,r,L,s) = X(a,L,s)N Bg(a,r).
By Lemma 15.13 in [16], since B is purely (n — 1)-unrectifiable, for every 0 < s < 1
there exists p € B such that

BN X(p,1,L,s)#0.
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Let s be much smaller than 1 and let p’ € BN X(pj 1,L,s). Letting 6 = s|p —p'|, we
have p’ € T (e). It follows that diampg(T7°(e) N T2 (e)) ~ 1. If we had a diameter

estimate of the form of Axiom 3 then we would have diampg(T2(e) N T%(e)) <
bd/|p — p'| = bs, which is not possible since s is much smaller than 1.

10. CURVED KAKEYA AND NIKODYM SETS

Bourgain [5] and Wisewell ( [24], [22]) have studied the case of curved Kakeya and
Nikodym sets, that is when [,(a) is a curved arc from some specific family. We will
recall here briefly the setting to see that Wisewell’s results follow from Theorems 5.1
and 6.2 since the axioms are satisfied.

The family of curves they consider arises from Hormander’s conjecture regarding
certain oscillatory integral operators. For z = (2/,x,) € R™ (with 2/ € R*!) and
y € R"' h(z,y) is some smooth cut-off and ¢(x,y) is a smooth function on the
support of A that satisfies the following properties:

(i) the rank of the matrix %(m, y) isn — 1;
(ii) for all # € S™ ! the map y — (0, %(w,y» has only non degenerate critical
points.

These imply that ¢ can be written as
$@,y) = y'a’ + zay Ay + O|anllyl® + |2[*y]*),

where A is an invertible (n — 1) x (n — 1) matrix. To prove Bourgain’s lower bound
Wisewell considers functions ¢ for which the higher order terms depend only on x,
and not on z’. These can be written as

(64) &z, y) = y' M(2,)2" + ¢(20,y),

where M : R — GL(n — 1,R) is a matrix-valued function.

Let X = R", d = d' be the Euclidean metric, u = L". Let Z =Y = A be a certain
ball in R"~! whose radius depends only on ¢ (Wisewell in Section 2 in [24] explains
how to find it). We will denote it by B. Let dz be the Euclidean metric in R"~*
(restricted to B) and v = £"'. Thus Q =n and S =n — 1.

Here F,(a) = I,(a) is defined for a,u € B as

Iu(a) = {x e R": Vugb(x,u) = a, (x,u) € supp(h)},

which is a smooth curve by condition (i) and the implicit function theorem. The
tube T?(a) is defined by

Tg(a) ={z e R" : |V o(z,u) —a| <6, (x,u) € supp(h)},

thus p(T%(a)) ~ "' and if A C T?(a) then pu(A) < diampg(A)0"~! (Axiom 1 holds
with T'=n — 1). Here p, 4 is the 1-dimensional Hausdorff measure on I,(a).

In the straight line case the Kakeya and Nikodym problems are equivalent at least
at the level of the maximal functions (see Theorem 22.16 in [17]), whereas we will
see that in the curved case this is not true.

A curved Kakeya set is a set K C R" such that £"(K) = 0 and for every u € B
there exists a € B such that I,,(a) C K. A curved Nikodym set is a set N C R" such
that £"(N) = 0 and for every a € B there exists v € B such that [,(a) C N.
Wisewell in [23] has proved that there exist such sets of measure zero.
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As in (9), we define the curved Kakeya maximal function as

1
ol (u) =50 2ot /Ts(

and the curved Nikodym maximal function as

)IfIdE"

1
)= 0 g g

Axiom 2: In the proof of Theorem 11 in [22] it is proved that Axiom 2 holds with
0 = 0 (indeed, Theorem 11 is the corresponding Theorem 4.1 for the curved case).

Axiom 3: One can prove the diameter estimate of Axiom 3 (see Lemma 6 in [24]).
This estimate does not hold if the non-degeneracy criterion (ii) is dropped, since in
this case two curves can essentially share a tangent, thus the intersection of the
corresponding tubes can be larger.

Axiom 4: In [24] Wisewell observes that since ¢ is smooth, if |u — v| < § then
T%(a) € TV(b), where |a — b| < § and W is a constant depending only on ¢ (see
also Lemma 7 in [22]). Thus Axiom 4 holds.

Hence all the Axioms 1-4 are satisfied and Bourgain’s method, as shown in [24]
(Theorem 7), gives the lower bound 241 for the Hausdorff dimension of curved Kakeya
and Nikodym sets for any phase function ¢ of the form (64).

Bourgain in dimension n = 3 has showed some negative results for certain families
of curves, whose associated Kakeya sets cannot have dimension greater than ”TH =2

| fldL”.

In particular, these are related to phase functions ¢ such that 86—;2(%) atr=y=0
3

is not a multiple of g—;?(g—i) at © =y = 0. For example, the curves given by

I.(a) = {(a1 — z3us — T3u1, a3 — T3uy, T3)}

lie in the surface 1 = xox3 if we choose a; = 0, as = —uy. Thus if K is a Kakeya set
that for every u € B contains a curve [,((0, —usg)), then K has Hausdorff dimension
2.

The failure is caused by the presence in ¢ of terms non linear in x. This is why
Wisewell considers only parabolic curves of the form

I(a) = {(a — tu — t*Cu,t) : t € [0,1]},

where C'is a (n — 1) X (n — 1) real matrix, when looking for an improvement of
the above lower bound. However, also in this case there are some negative results.
In [24] (Theorem 10) it is proved that if C' is not a multiple of the identity then we
cannot have the optimal Kakeya maximal inequality. This failure does not concern
the Nikodym maximal function.

Axiom 5: Wisewell shows that when C? = 0 Axiom 5 holds (for the Nikodym
case) with A = 1 and @ = n — 2 (see Claim in the proof of Lemma 13 in [24]).

Thus Wolft’s argument gives the lower bound ”T” for the Hausdorff dimension of
curved Nikodym sets (for this class of curves).

11. RESTRICTED KAKEYA SETS

Given a subset A C S™! one can study the Kakeya and Nikodym maximal
functions restricting to tubes with directions in A. In [9] Cordoba studied the
Nikodym maximal function in the plane restricting to tubes whose slopes are in
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the set {1/N,2/N,...,1}. Bateman [1| gave a characterization for the set of direc-
tions A for which the Nikodym maximal function in the plane is bounded, whereas
Kroc and Pramanik [15] characterized these sets of directions in all dimensions.

If AC S™! we say that a set B C R" is an A-Kakeya set if L"(B) = 0 and for
every e € A there exists a € R™ such that I.(a) C B, where I.(a) is the unit segment
with direction e and midpoint a.

Mitsis [18] proved that if B C R? is an A-Kakeya set, where A C S', then dim B >
dim A + 1 (and the estimate is sharp).

Here we consider n > 3 and prove lower bounds for A-Kakeya sets using the
axiomatic setting, where A is an S-regular subset of the sphere, S > 1. This means
that there exists a Borel measure v on A and two constants 0 < ¢; < ¢y < oo such
that

(65) crr® <v(Bg(e,r) N A) < cor’
for every e € A and 0 < r < diamgA. We prove the following.

Theorem 11.1. Let n > 3 and let A C S™! be an S-reqular set, S > 1. Then the
Hausdorff dimension of any A-Kakeya set in R™ is > %

Let X = R", d = d' be the Euclidean metric, p = L™ thus () = n. Moreover, we

let Z =Y = A (S-regular subset of S"!), d; be the Euclidean metric restricted to
A, v be a measure on A as in (65). We let A = R".
For e € A and a € R", F.(a) = I.(a) is the segment with direction e, midpoint a
and Euclidean length 1. The measure ., is the 1-dimensional Hausdorft measure
restricted to I.(a). The tube T?(a) is the § neighbourhood of I.(a) in the Euclidean
metric, thus 7= n — 1. The Axioms 1-4 are satisfied (with § = 0) since the tubes
are the usual Euclidean tubes.

From Bourgain’s method we get the lower bound % = % for the Hausdorff
dimension of any A-Kakeya set.

Axiom 5 holds with A = 1 and o« = S — 1. This can be proved as in the usual
Euclidean case, see Lemma 23.3 in [17]. Indeed, we only need to modify the end of
the proof, using the S-regularity of Y. We explain it briefly here.

Lemma 11.2. Let 0 < §,8,7 < 1 and let Ty, ..., Ty be such that T; = f3j5(aj),

e; €Y, |ej —er| > 6 for every j # k. Let T = T?(a) be such that T NT; # () and
le; —e| > /8 for every j =1,...,N. Then for allj =1,...,N,

#Lj=#{iles — e < B, TiNT; #0,dp(TiNT;, T;NT) = v}
<5 pyS,
Proof. We can assume that 5 > ,éy. Indeed, if 5 < % then

S—1
#iclei—el <O S ?—j <8 (%) 6075 = g5y,

thus (66) holds. As in the proof of Lemma 23.3 in [17] we can show that for i € Z;

(66)

)
e; € Bp(ej,f)N{x € A: |z gc;,k:i’),...,n},

where ¢ is a constant depending only on n. The number of balls of radius ¢/ needed
to cover this set is < Bvd~!, thus this set has v measure < Sy671(5/7)% = 3671y,
It follows that it can contain < Bd~1y1~% points of Y that are d-separated. 0J



40 LAURA VENIERI

Thus Wolff’s method yields the lower bound % for the Hausdorff dimension of
A-Kakeya sets (which proves Theorem 11.1).

12. FURSTENBERG TYPE SETS

12.1. Furstenberg sets. Given 0 < s < 1, an s-Furstenberg set is a compact set
F C R" such that for every e € S"~! there is a line [, with direction e such that
dim(F Ni.) > s. Wolff [26] has proved that when n = 2 any s-Furstenberg set F’
satisfies dim F' > max{2s,s + 1/2}. Moreover, there is such a set F' with dim F' =
3s/2 +1/2. In [7] Bourgain has improved the lower bound when s = 1/2, showing
that dim F' > 1 + ¢, where ¢ > 0 is some absolute constant.

We can show, using the axiomatic method, the lower bound 2s (this is essentially
the same way in which Wolff found it). Moreover, we can find a lower bound for
the Hausdorff dimension of Furstenberg sets in R”, n > 3. In R"™ the conjectural
lower bound is 25* 4 s (see Conjecture 2.6 in [27], where Zhang considers the
Furstenberg problem in higher dimensions and proves a lower bound for the finite
field problem when s = 1/2). More precisely, we prove the following.

Theorem 12.1. Let F' C R™ be an s-Furstenberg set.
i) If n <8, then

25 — 1 2 4
dimFZmaX{(S Jn+ n+3}.

2 5T

In particular, it is > s*2 for s < ZEZ:% and > w for s > ZEZ:?;
i) Ifn > 9, then dim F > 54"—;“3.

To prove the Theorem, we show that all the Axioms 1-5 are satisfied and apply
Wolft’s method. Moreover, we use Katz and Tao’s estimate for the classical Kakeya
maximal function.

Here is the setting. Let F' C R™ be an s-Furstenberg set. Let X = A =R", d = d’
be the Euclidean metric, p = L™ and () = n. Since F' is compact, there exists R > 0
such that ' C Bg(0, R/2). For every e € Z = S"! and a € R" we define I.(a)
as the segment with diamg(/.(a)) = R, direction e and midpoint a. Then we let
F.(a) =I.(a)NF.

For every e € Z = S"! there exists a = a, € A such that dim F,(a) > s. Thus
for every ¢ < s there exists a Borel measure f., such that pu.(F.(a)) = 1 and
pe.a(Fe(a) N Be(x,r)) < Ceqort for every x € F,(a) and every 0 < r < R. Observe
that since a = a, depends on e € S ! actually C., = C. depends only on e. We
want to choose Y C S™ ! such that C, < C for every e € Y for some constant C.
For k =1,2,..., let

Sp={e€S":C. <k}

Since S"7! = U | Sy, there exists k such that 0" 71(Sy) > 0. We let then Y C Sy be
compact and such that " 1(Y) > 0, v = 0"~ 1, dz be the Euclidean metric on S™ 1.
Hence 0 <v(Y)<land S=n—1.
Let T?(a) be the § neighbourhood of I.(a) in the Euclidean metric.

Axiom 1 holds with T'=n — 1 since L*(T?(a)) ~ §"! for every e € Y and every
a € R" and if A C T°(a) then L*(A) < diamp(A)i" L.
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Axiom 2: By Remark 3.7 Axiom 2 holds with § = 1 — ¢. Indeed, with the choice
made above, for every e € Y and every x € F.(a) we have i o(F.(a) N Bg(x,r)) <
Cer' < krt, thus Axiom 2 is satisfied with 6 =Q —t—-T=n—-t—(n—1)=1—+t.

Axioms 3 and 4 hold since the tubes and balls are Euclidean.

Hence Bourgain’s method yields the lower bound t”TH for every t < s, which
implies the lower bound S"T“ for the Hausdorff dimension of s-Furstenberg sets.

Axiom 5 holds with A = 1 and @ = n — 2 since the tubes are the usual Euclidean
tubes used for Kakeya sets.

Thus Wolft’s method (Theorem 6.2) yields the lower bound (25_2)"“. When n = 2

this gives 2s, in general this improves the previous bound s";rl when s > Z—j

Remark 12.1. Here the maximal function f¢ is the usual Kakeya maximal function
since the tubes are the Fuclidean tubes and p is the Lebesgue measure. Katz and
Tao in [14] proved the estimate

(67) A, s gy S 58NS

Snl ~

4n+3

for every € > 0 and every f € L (R™). This implies by Corollary 4.2 the lower
bound 34"+3 for the Hausdorff dimension of s-Furstenberg sets (in Corollary 4.2 we
need the same p on both sides of (67) but we can take p = 4"; 2 since it is smaller than
4n£3) * This improves the lower bound s for any value of n > 2 and 0 < s < 1.

Moreover, it improves the lower bound WT"H for n < 8 when s < ("j)

n > 9 for any value of s. This estimate completes the proof of Theorem 12.1.

and for

12.2. Sets containing a copy of an s-regular set in every direction. Let us now
make a stronger assumption, that is consider F' C R" (n > 2) that contains in every
direction a rotated and translated copy of an Ahlfors s-regular compact set K C R
(we can assume K C zp-axis). More precisely, let as above X = A =R", d = d’ be
the Euclidean metric, = £" and Q = n. Let Z =Y = S"!, d, be the Euclidean
metric on S" 1 v =0""1 thus S =n—1. Fore € S" ! and a € R" let F,(a) = I.(a)
be a copy of K rotated and translated so that it is contained in the segment with
direction e, midpoint a (and length diamgK). Since F,.(a) is s-regular, there exists
a measure ., such that p..(Fe(a)) =1 and r°/C < peq(Fe(a) N Bg(z,r)) < Cr®
for every x € F.(a) and 0 < r < diamgK (here C' does not depend on e since the
F.(a)’s are all copies of the same set).

We say that a set F' C R" is a K-Furstenberg set if for every e € S"! there exists
a € R" such that F.(a) C F. We will prove the following.

Theorem 12.2. Let K C R be an s-reqular compact set and let FF C R" be a K-
Furstenberg set.

i) If n <8, then dim F' > 2s + "7’2

ii) If n > 9, then

-2 4 3
dimFZmaX{Qs—l—n nt }

7 %7

4n+3

- when

In particular, it is > 2s + ”T’Q for s < =2 ond gt is > sind3

> n—11)
7(n—2)

5> 3un—1)-
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To prove the Theorem, we will show that a modified version of Axiom 1 holds and
that all the other Axioms are satisfied. Going through the proofs of Lemma 6.1 and
Theorem 6.2, one can see that they can easily be modified to handle this case and
we will see what dimension estimate they give.

Axiom 1: If T%(a) is the & neighbourhood of F,(a) then L£L™(T?(a)) ~ §"~ .
Indeed, we need essentially §—* balls of radius & to cover 7°(a). On the other hand,
if ACT’(a)then £(T?(a) N A) < (diamg(A))*6"*. Thus T = n — s, even if we do
not have exactly Axiom 1 but a modified version of it.

Axiom 2: By Remark 3.7 Axiom 2 holds with § = 0 and K = 1 (K’ is a constant
depending only on n and s) since i o(F.(a) N Bg(z,r)) ~ r® for every « € F.(a) and
thus0=Q—s—T=n—s—(n—s)=0.

Axiom 3: Since T?(a) is contained in the § neighbourhood of the segment con-
taining F.(a) (that is, in one of the usual Euclidean tubes), Axiom 3 holds.

Axiom 4: To see that Axiom 4 holds, write the points of F.(a) as p = o.(z) + a,
where x € K C xj-axis and o, is the rotation that maps (1,0,...,0) to e. Suppose
that |e —€’| < § and ¢ € T?(a). Then there exists p = o.(z) + a € F,(a) such that
|g — p| < 0. On the other hand,

00(z) — 0w (x)] < O,

where C' is a constant depending on n, diamgK and the distance from K to the
origin. Thus if we let p’ = 0. (x) + a we have p’ € F.(a) and

lg—p | <lg—pl+p—p|<1+C)d

It follows that ¢ € T""“(a), which is the (1 + C)d neighbourhood of Fy(a) (here
we do not need to take longer tubes). Thus Axiom 4 holds with W = 1+ C. Observe
that Axiom 4 does not necessarily hold if we only know that F.(a) is s-regular but
we do not assume that the F,.(a)’s are (rotated and translated) copies of the same
set.

Axiom 5: Let us now see that Axiom 5 holds with A =1 and o =n — 2.

Lemma 12.3. Let 0 < 6,8,v < 1 and let T = 1.7 (), T) = TSV (a)), j =
L,....N, such that TNT; # 0, |e; —e| > /8, |e; — ex| > 0 for every j # k. Then
forallj=1,...,N,

#ILj=#{i:lei— el < B, TNT; #0,de(TiNT;, T;NT) > v}
(68) <551 2n

Proof. We may assume that § is much smaller than v. Indeed, if § = ~ then #{i :
le; —e;| < B} < AP < 307192 since e, e; are & separated. Thus (68) holds.

Observe that each tube Tj, T is contained in one (and only one) Euclidean tube
(the (1 + C)0 neighbourhood of a segment of length diamg(K)), thus counting how
many tubes 7; we can have will be the same as counting how many such Euclidean
tubes there can be.

To see this, let I” be the segment of length diamp(K) (direction e and midpoint a)
containing F,(a) and let TF be its (1+C')d neighbourhood. Then 7' C T¥. Similarly,
let T; C T} and for i € Z; let T; C T;”. Then we have the usual Euclidean tubes T,
TF, TP that satisfy |e —e;| > /8, |e —e;| > /8,0 < |e; — e;| < B, T} intersects

P and T}" intersects both T% and TF. Moreover, dg(T” NT, T NT) > v/2.
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Indeed,
de(T* NTE,TE N TF) >dp(T, N T}, T; N T)
(69) — diamp(T}” NTF) — diamg(T" NT)).
By the diameter estimate for Euclidean tubes we have
b
(70) diamg(T;” N TF) < ,
le; — €

where b is a constant depending only on n. We can assume that § > C% and
le; — ej| > C’% for some sufficiently big constant C' = C,,. Indeed, if § < C’% then
since the points are J-separated we have

Bt e — e < B} < Lt = Lggnzgin
Co Co

5n72 CO
,yn—Z

hence we would have the desired estimate (the constants Cy and ¢ are those appear-
ing in (2)). Similarly we have

S &BCTL_2 51—11 Cn 25 2— n5— 7
Co

C’o o

# {Z . |€i — €j| < C’ﬁ} < ﬁcn—lgn—l,yl—nél—n _ On 20 2— n5—1
~
Cocn 26 2— n§- 1
where we used 3 > C %. Thus we have by (70)
bo b
d TFNTP) < < =7
i (TF N TF) < 2 <
Similarly, since |e — ¢;| > £ 5> C , we have
bo 8bry
d TPNTF) < < —
iamp( ) < e =] c

It follows from (69) that dg(T"NT7, T NTF) > ~(1-9b/C). If we choose C' > 18b,
then we have dg(T" N TP, T NTF) > /2. Thus by Axiom 5 for the Euclidean
tubes we have

#{i e —e| < BTENTE #0,dp(TF NTF. TP NTF) 2 7/2}
<5612n

On the other hand, to each tube T/ corresponds only one tube T} thus (68) follows.
0

Since the Axioms 2-5 are satisfied and we have a modified version of Axiom 1, we
can get the following result. Here f¢ is defined as in (9) by

diy _ ; n
file) = e L(T2(a)) /Tg(a) I FldL”



44 LAURA VENIERI

n— 2+2

Theorem 12.4. Let 0 < 6 < 1. Then for every feL = (R") and every e > 0,

(71) Hfg”L#(S"—l) < Cpsed Srareg — WA o= IR T,
Proof. This is obtained by modifying the proofs of Lemma 6.1 and Theorem 6.2.
Indeed, in the proof of Lemma 6.1 one needs to modify p(7;(l,m)) in (40) since
diamp(Ty(l,m)) < §2™+ implies in this case (by the modified Axiom 1) that £(T;(l,m)) <
2(mA)s g5 gn—s — () )36m. Moreover, diamg(T;NTy) < 62! implies £7(T;NT;) < 2155"
Hence (41) becomes
p—1
[ X ) ae sermgnmpzeey- oy
15 \iel(k,jlm)

< 2[(p(1—n)+n+s—1)+m(p(2—n—s)+n+2s—2)5p(1—n)+2n—1

< 67178571714’87])(7171)
when p > 2= 221258 > ”:f;l (since in this case the exponent of 2 is non positive). Thus
Lemma 6. 1 has the following formulation. Let T7,...,7x be an (IV,d)-hairbrush.
Then for every ¢ > 0 and every 7;__22:285 <p<2,

N p
(72) / (Z XTj) acr S Cp7€(5n_SN5n—l+s—P(n—l)—e'
j=1

n—242s
n—2+s

In the proof of Theorem 6.2, using (72) with p =
estimate for S(H, H) in (44), thus (45) becomes

one gets a different

2—k:(n—1)5 oF
N

2n—4+6s—4sn 5/(n_2+5)
(73) S(H,H) < 6~#1(B)5"" < )

Moreover, in (46) one needs to change p(7; N T;) since |e; — e;| ~ 27 implies
diamp(T;NT;) < 62F, thus by the modified Axiom 1 L™(T;NT;) < 285567 —% = 2ksgm,
Hence

2n—4+6s—2sn S/(TL—2+S)
(74) S(K, H) < #1(B)6" (NZ’“(Si% ) .

Taking N = 272%672, we get by (73)

2—n)k _2n—4+6s—3sn S/(n_2+8)
(75) S(H, H) < 6~ #I(B)o"" 1< (el o antife=s ) ,
and by (74)
2s-n)k _2n—4+6s—3sn \ S/ (R—2+8)
(76) SUKH) S #1(B)o" " (2557 6757

Since n > 2 > 2s, the exponents of 2 in (75) and (76) are non positive, hence we

obtain
/ (Z XT;
j=1

which implies (71) by Proposition 4.4 (this and Lemma 4.3 do not need to be modified
since they do not use the second part of Axiom 1). 0

—44+6s—3sn

(n—242s)/(n—2+s)
> < mén 15 2(n 2+s) ,
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It follows from Corollary 4.2 (this holds as usual since it does not use the second
part of Axiom 1) that the Hausdorff dimension of a K-Furstenberg set is > 2s +
”T_Q, which improves the lower bound M obtained in Section 12.1 for general
Furstenberg sets when n > 2. For n = 2 we get 2s, which is the known lower

bound for general Furstenberg sets in the plane. Moreover, the lower bound 2s+ "7_2

improves 54”; 3 the best one found for general Furstenberg sets when n > 9 (see
Remark 12.1), when s < 2&2:?1). Hence we proved Theorem 12.2.

Remark 12.2. In the plane for these special Furstenberg sets considered here the
dimension can be s + 1. Indeed, let K C xj-axis be a Cantor set of Hausdorff
dimension s and let ' = K x [0,1]. Then dim /' = dim C' + dim|[0, 1] = s+ 1 and F
contains essentially a copy of K in every line which makes an angle between 0 and
7/4 with the z;-axis.

13. KAKEYA SETS IN R®™ ENDOWED WITH A METRIC HOMOGENEOUS UNDER
NON-ISOTROPIC DILATIONS

We will now consider the usual Kakeya sets in R™ and find dimension estimates for
them with respect to the metric d defined in (77) (in which balls look like rectangular
boxes as in Figure 5).

Let X = R" = R™ x ... x R™ wheren > 2, s >1,m; >0,j=1,...,5—1,
ms > 1 and m; are integers, and let () = ijljmj. Observe that when m; = 0,
R™i = {0} and it could be removed but it will be convenient for the notation to keep
it. Denote the points by p = (x1,...,1,) = [p*,...,p%], where z; € R, i = 1,...,n,
and p/ € R™ for every j = 1,...,s. Consider the following metric on R":

Jj—1 J
(77) d(p, q) = max{|z; — ;|7 : ka +1<i< ka,j =1,...,s},
k=1 k=1
where p = (x1,...,2,), ¢ = (Y1,-..,Yn). We assumed s > 1 because for s = 1 the

metric d is essentially the usual Euclidean metric in R".

FIGURE 5. A ball By(p,r) with r < 1in R =R x R?

The metric d is homogeneous under the non-isotropic dilations

5)\(p) = [)\pla )‘2 27 s 7)\8p8]7
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where A\ > 0. Indeed,

Balls centred at the origin By(0, ) are rectangular boxes of the form
[—r, 7™ x [—7“2,7"2]’”2 X e X [=rf rf)me

and balls By(p,r) are obtained by translating by p the above boxes. Letting u = £",
we have L£"(By(p,r)) = (2r)%.
We will prove the following.

Theorem 13.1. Let R" = R™ x --- x R™s be endowed with the metric d defined in
(77). Let K C R™ be a standard Kakeya set. We have the following:
(a) Ifmy=n—1,my=---=ms_1 =0 and ms = 1, then

dim, K > n+2s

for n <12,
(78)

) 6 6
dldeZEn—ﬁ—i-s for n > 13.

(b) Otherwise,
dimg K > EQ + 3s.
- 11 11

We will prove the Theorem by showing that the Axioms 1-4 are satisfied and in
the case (a) also Axiom 5, thus we can use Wolff’s method to obtain the first lower
bound in (78). Then in Remark 13.2 we will explain how to modify Katz and Tao’s
arithmetic argument to obtain the other lower bounds.

Let d = dg be the Euclidean metric. We will denote a Euclidean ball in R”
by By(a,r) and a Euclidean ball in the x4, ..., z,_;-hyperplane by B,_;(u,r). Let
Z =Y = B, 1(0,7) be such that L *(B,_1(0,7)) < 1 and let dz = d,,_; be the
restriction of the metric d to Y, that is for u = (uy, ..., up_1), v = (v1,...,0p1) €Y

J—1 J
dn_l(U,U) = max{{|ui - Ui|1/jazmk +1<i< ka’aj = 17 sy ST 1}7
k=1 k=1

| Uiy oty 41 — Um1+~~-+msf1+1|1/sv . Um1+~--+ms—1|1/s}~

Note that if m, = 1 we do not have the terms with power 1/s. Letting v = L") we
have v(Bg, ,(u,r)) = 1?7 thus S = Q — s. For p,q € R", we have

d(p7 Q> = maX{dn—l(('rlv B axn—l)v (yla s ayn—l))’ |l’n - yn|1/5}

For u = (uy,...,up—1) € B,—1(0,7) we consider the unit segment
1
Fo=1I,={tul):0<t< — "},
Viul?+1
where | - | denotes the Euclidean norm, and for 0 < § < 1 we define a tube with

central segment [, and radius 0 with respect to d,,_1,

1
sz{p:(xl,...,:cn):ngng—,
(79) Vw2 +1

dn—1(<5€17 s 7*7;77,—1)7 xn“) S 5}
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For a € A = R" denote by F,(a) = I,(a) the unit segment starting from a

(80) I(a) ={t(u,1)+a:0<t < }

1
Viul?+1

and by T°(a) the corresponding tube

n S -
(81) S
dn*l((a’/j? I 7377171)7 (xn - an)u -+ (al, RN ,an,1>) S 5}

T(a)={p=(21,...,2,):0< 2, — @

Then T?(a) = T? + a. We define I,(a) as

~ 2
La)={t(u,1)+a:0<t < —=-—1},
(@) = {t(u. ) —

which is a segment of (Euclidean) length 2 containing I, (a), and T2°(a) as

~ 2
T%(a)={p=(x1,...,2,): 0 < 1, — O < —eeer,
(82) Viu2+1

dp (1, ..y 2p1), (T — ap)u+ (@, ... an_1)) < 20}.

Recall that a Kakeya set in R" is a set K C R" such that £"(K) = 0 and for
every e € S ! there exists b € R" such that the unit segment {te +b,0 <t < 1} is
contained in K. In particular, for every u € B,,_1(0, ) there exists a € R" such that
I,(a) C K.

Remark 13.1. Observe that T? is not exactly the § neighbourhood of I, as in (6).
Indeed, it is contained in it since if p € T? then d(p,I,) < & but not vice versa.
Nevertheless, the § neighbourhood of I, is contained in T5% | where

TH = {p=(z1,...,2,): —=0° <z, < + 6%, dp1((x1, ...y Tpo1), Tpu) < 20}

1
Vw241
Indeed, if p = (z1,...,2,) is in the § neighbourhood of I, then

inf  max{d,_1((z1,...,Tn1),tu), |z, —t|'/*} <.

1

Thus —0° < x, < ——— + ¢°. Moreover, for every t € [0, ——],

S Ve N
dn—1((x1, ..oy Tpo1),xpu) < dpy (21, .00y Tpo1), tu) + dypy (tu, xpu)
<dp (@1, ), tu) + |2 — ]V
Taking the infimum over ¢, we have d,,—1((21,...,%,-1),z,u) < 26, that is p € L%,
The tube 7% is not contained in T’(a) since the points p = (z1,...,2,) with
—§% <z, < 0 are not in T2 (a). See Figure 6 for a visual example of the comparison

between a tube T°(a) and T'%(a). We could work with the tubes TL? instead of
T2 since the same results would hold, but we will use the latter ones for simplicity.
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2

T°,(a)

FIGURE 6. Tubes T°(a) and TL%(a) in R®* = R x R x R

Axiom 1: Observe that we consider only segments I,,(a) that make an angle > 7/4
with the @1,...,2,_i-hyperplane thus the volume of the tubes T%(a) and T2 (a) is
essentially 697°. Moreover, if A C T?(a) then £*(A) < diamp(A)§9~*. Thus Axiom
1 is satisfied with T'= 5 = @ — s.

Axiom 2: We now show that Axiom 2 is satisfied with § = 0. Let a,xz € R",
u € B,_1(0,7), z € I,(a), 6 <r < 2§ be such that

Hy (I (a) N By(z,7)) = M.

Then for p € I,,(a)NBy(z,r) any segment starting from p, parallel to the z1, ..., x, 1-
hyperplane and contained in T°(a) is also contained in Bgy(z,2r). Thus for any
segment I parallel to I,(a) and contained in T°(a) we have HL(I N By(z,2r)) > M.
It follows by Fubini’s theorem that
LTy (a) N Ba(w,2r)) Z ML (T, (a)).
Axiom 3: The following lemma shows that Axiom 3 holds.

Lemma 13.2. For any u, v € Y and any a,a’ € R"

J

83 di T?(@)NT?(d)) < b—on—
(53) iame(T20(a) N T29(a')) < b
where b > 0 1s a constant depending only on n.

Proof. Tt is enough to estimate diamg (72 NT2) (that is, we can assume a = a’ = 0).
Let p,qg € T?® NT*. Since we want to estimate sup|p — ¢|, we can assume that
p=(x1,...,2,-1,0) and g = (y1,...,y,) With y, > 0. We have by (79)

dnfl(ynl% ynv) S dnfl(ynu7 (yla s 7yn71)) + dnfl((yb s aynfl)a ynv) S 4(5
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On the other hand since y,, < 2 (thus y,/2 < 1),

dn—l(ynuy ynv) Z dn—l <%U, %U> 2 y?ndn—l(ua U)u
hence
1)
84 <
(84) Yn = dy—1(u,v)
Thus

p—ql = (x1 —v1)* + -+ (@ny = Ymd)* + @1 — Y1)’ + -+ 45 =
= (21 = yatr + Your = y1)* + -+ (Tony = Yty + Yoy — Yony)*+
+ (Tt = Ynlmy 41 + Ynlmy a1 — Ymy1)° + -+ 4 <
< 3(af +yput + (Yo — 1)*) + -+ 3(2n, + yntg, + Ynttng — Yony)?)+
+3(25, 11+ Yntiy 11+ Unting 11 = Yy 1)?) + -+ 4 <
<3802 +y2) + -+ 3(80% +y2) +3(326" +y2) + - + 12,
where we used (79) (p,q € T2, x,, = 0) and |u| < 1. Then by (84) we get (83).
0

Axiom 4: To see that Axiom 4 is satisfied, let u,v € Y, u € By, ,(v,0). We want

to show that T° C Tv%. Let p = (x1,...,2,) € T?. Then 0 < z,, < ‘1|2+1
u
2

T Moreover, since d,, _1((21, ..., Tn_1), Z,u) < 0, we have by triangle inequality

dn—l((l‘h oo 71:71—1)7 mnv) S dn—l((xla s 7xn—1)7 xnu) + dn—l(xnua IL‘nU)
<5+ dyp1(u,v) <26

Thus p € T2 by (82).

Hence all the axioms 1 — 4 are satisfied. We obtain by Theorem 5.1 (Bourgain’s
method) the lower bound 2Q2_S = % for the Hausdorftf dimension with respect to d
of any Kakeya set in R”. Moreover, we have a weak type inequality

L7 {ueYy: (XE)g(u) > A} < C)\_(Q—S+2)/25—(Q—s)/2£n(E)

for every Lebesgue measurable set £ C R" and for any A > 0,0 < § < 1. As we have
seen, this implies an LP — L? inequality for any 1 < p < w and g =2 (Q=s)

2(p—1) °
Axiom 5: Observe that when 6 = 0, A is the only one of A\, , 5 that appears in the

dimension estimate w implied by Theorem 6.2. We will see in the following
example that in general we cannot have anything better than A = Q) — s — n + 2.

Example 13.1. Forany n > 3, let s >2 my=n—2, my=---=ms_1 =0, mg = 2,
thus Q =n—2+2sand R" = R" 2 x {0} x --- x {0} x R®2. Then Q —s—n+2 = s.
Fix some 0 < ,7,0 < 1, § < 3, and suppose that u = [0,0], T = T2 and u' =
0, 3¢ /8] (thus d,,_(u,u') = 3/8), Ty = Tf{s.

Let also v?,...,ul uf™ ... uY be such that for i = 2,..., L+ 1, v’ = [0,u} ],

» Pn—1
B85 < wi | < (8 +1)B%/8° (so that d,_i(u’,u) > 3/8 and d,_1(u’,u') < B)
and |ul | —ul || > forl #i¢€{l,...,L+1} (that is, d,_i(u’,u!) > &), where
L=~ [35§%.
Moreover, fix some point p € I, such that Ip| > v + 46 and assume that for i =
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2,..., L+ 1 the points a; are given so that I,» N I,i(a;) = {p} and I (a;) NT # 0.
Then

#{Zdn 1( : 1)<67EHT17£ (TﬂT17T1mT)ny}

> i cu’ =[0,u 4], 6%/2° < wl_y < (1+2°)8°/2°, Li(a;) N 1o = {p}}
=L~ (3% "

Hence in this case the exponent A of § in Axiom 5 is at least s.

Thus the best lower bound that we could get by Theorem 6.2 (Wolff’s argument)
is ”*25 , which improves the estimate Q+ found using Bourgain’s method only when
mi=n—1myg=mg="-=ms 1 = 0 and mg = 1, which is case (a) in Theorem
13.1. In this case the tubes are essentially Euclidean since d,,_; is equivalent to the
Euclidean metric in R?~!. Thus Axiom 5 holds with A =1 =Q —s —n + 2 and
a =n — 2, giving the lower bound %25

Remark 13.2. (Completing the proof of Theorem 13.1) The arithmetic method in-
troduced by Bourgain in [6] and developed by Katz and Tao in [13] can be modified
almost straightforwardly to this case to obtain the lower bound 11Q + —3 for the
Hausdorff dimension of Kakeya sets with respect to d. This will complete the proof
of Theorem 13.1 since it improves the estimate % found with Bourgain’s method
and in case (a) of the theorem the lower bound £&n — & + s improves the one found
with Wolff’s method in high dimension (n > 13).

We will show here only the proof for the lower Minkowski dimension (see Theorem
23.7 in [17] for the Euclidean case). This can be extended to the Hausdorff dimension
using a deep number theoretic result and we will just mention what we would need
to modify to adapt the Euclidean proof to our situation. We first recall the definition
of lower Minkowski dimension with respect to the metric d. Let A C R™ be bounded
and let A(0)g = {p € R™ : d(p, A) < 0} be its ¢ neighbourhood with respect to d.
Then we can define

QggMdA::hﬂ{t>O:hgn§fy‘Q£"@M6M):(H.
’ —

Recall that dim,, ;K > dimg K.
We will prove the Minkowksi dimension lower bound following the Euclidean proof
with some minor changes.

Theorem 13.3. The lower Minkowski dimension with respect to d of any bounded
Kakeya set K C R™ is > I%Q + %s

Proof. We can reduce to have a set K C R" such that for every v € B,,_1(0,7) there

exists a € [0,1]""! C x4, ..., 7, 1-hyperplane such that
I(a)={t(u,1)+a:0<t<1} C K.

We consider here for convenience these longer segments than those considered in

(80) even if we could use also those. Suppose by contradiction that dim,, ;K <

cQ + (1 — ¢)s for some ¢ < 6/11. By definition of Minkowski dimension this means
that for some arbitrarily small 6 we have

LMK (26)4) < 6079@Q=),
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Using this we have by Chebyshev’s inequality and Fubini’s theorem
LY{t € [0,1] : LHEK(20)g N {zy = t}) > 10001 9(@=9)])
Jo LN K (20)a0 {w = )t LMK (28)0) _ 1
< = < —.
- 1000(1-9) (@) 1000(1-9(@=5) — 100

Thus the measure of the complement of this set is > 99/100, which implies that we
can find

tt+d,t+2d e {te(0,1]: LN (K(26)aN {z, = t}) < 1006079@=)}

for some d < 1/2. We can assume that ¢ = 0 and d = 1/2 so the numbers are 0, 1/2
and 1. Letting now for ¢ € [0, 1],

(85) K[t = {i € 0Z™ x - x 8Z™ - (i,t) € K(8)4),

we have that the balls By((4,t),d/3), i € K|[t], are disjoint and contained in K(24)4.
Thus we have

£rt U By ((i,t), g) N{z, =t} | <L"YK((20)y N {x, =1}),
]

€Kt
which implies for t = 0,1/2 and 1,
#K[t](;Qfs < sU=)(@=s)
Hence
#K[0), #K[1/2], #K[1] < 5479
Let now
G ={(p,q) € K[0] x K[1] : (p,0), (¢,1) € T?(a) C K(8)q4 for some u,a}.

For (p,q) € G, we have that (p,0), (¢,1) € T°(a), which implies that ((p+q)/2,1/2) €

T(a) C K(8)4. Since (p+ q)/2 € (6Z™ x --- x §°Z™~1)/2, it follows that the

cardinality of {p + ¢ : (p,q) € G} is bounded by that of K[1/2]. Hence
#{p+a€G:(pg) € G} L5

On the other hand, there are essentially §*~? tubes T%(a) in K(§)y that are §-
separated, each of them contains points (p,0) and (g,1) for some (p,q) € G and
p — q give their directions, thus

H{p—qeG:(pq) €G} =69

This gives a contradiction with the following combinatorial proposition (see Propo-
sition 23.8 in [17]).

Proposition 13.4. Let A and B be finite subsets of a free Abelian group such that
#A < N and #B < N. Suppose that G C A x B is such that

#{r+yeG:(x,y) € G} <N.

then
#{r—yeG:(r,y) € G} < NS,
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As can be seen, this proof relies on the arithmetic structure of R”, thus it cannot
be generalized to a metric space X as considered in our axiomatic setting.

The proof of the lower bound for the Hausdorff dimension relies on a deep result
in number theory proved by Heath-Brown, which gives a sufficient condition for a set
of natural numbers to contain an arithmetic progression of length 3 (see Proposition
23.10 in [17]).

In the proof for the Hausdorff dimension of the classical Kakeya sets (see Theorem
23.11 in [17]) instead of looking at intersections with hyperplanes {z,, = t} one
considers the following sets. For certain small enough 0 < n < 1 and ¢ one defines

fori=0,...,Mandj=0,...,N—1, where N, M are integers such that N < §7! <
N+1, MN) > 1 and M = 6. Then one finds two points a., b, in 0Z" belonging to
A, ; for two different ¢ and to the nd neighbourhood of a segment (contained in the
Kakeya set) such that also (a. + be)/2 belongs to the nd neighbourhood of the same
segment. In the case of (R",d) we need to replace A;; by

{r eR": j6° +iN§° <z, < jo° +iNo° + 0°}
with M, N such that N <" ° < N+ 1, MN®* > 1 and M =~ §~". Moreover §Z" is
replaced by §Z™ x .- x 0°Z™s, similarly to what was done in (85).

The proof of Theorem 13.1 can then be concluded arguing as in Theorem 23.11
in [17].

14. BOUNDED KAKEYA SETS AND A MODIFICATION OF THEM IN CARNOT
GROUPS OF STEP 2

We now consider both bounded Euclidean Kakeya sets in a Carnot group of step
2 and a bit modified Kakeya sets (which we will call LT-Kakeya sets, where LT
stands for left translation), that is sets containing a left translation of every segment
through the origin with direction close to the z,-axis. We will see that when the
second layer of the group has dimension 1 we can obtain lower bounds for their
Hausdorff dimension with respect to a left invariant and one-homogeneous metric
using the axiomatic setting, whereas if the dimension is > 1 we cannot.

We recall here briefly some facts about Carnot groups that will be useful later
(see for example [3| for more information). Let G be a Carnot group of step s and
homogeneous dimension () = ijljmj, where m; = dimV, and g =V, ®--- @ Vj
is a stratification of the Lie algebra g of G such that [V;,V;] = Vi, Vi # {0} and
V; = {0} if j > s (here [V4,V;] is the subspace of g generated by the commutators
[X,Y] with X € V4, Y € V). Via exponential coordinates, we can identify G with
R"™, n = my + - - -+ my, and denote the points by p = (z1,...,x,) = [p',...,p*] with
p' € R™i. There are two important families of automorphisms of G, which are the
left translations

m(q) =p- 4,
where - denotes the group product, and the dilations defined for A > 0 as
Sx(p) = Aph, A%p%, .. Al

One can define the Carnot-Carathéodory distance doc on G as follows. Fix a left
invariant inner product (-, -)g on V; and let Xy,..., X,,, be an orthonormal basis for
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V1. An absolutely continuous curve v : [0, 1] — G is called horizontal if its derivative
~" lies in V; almost everywhere. The horizontal length of ~ is

Lengthoe(v) = /O 1<7’(t)77'(t)>§;/ “dt.
The Carnot-Carathéodory distance is defined for any p,q € G as
dco(p, q) = inf{Length, () : v horizontal curve, v(0) = p,v(1) = ¢}.
It is left invariant, that is
dec(p-q,p-q') = dec(a.q),
and one-homogeneous with respect to the dilations:
dec(0r(p), 0x(q)) = Adcc(p, ).

If Boo(p,r) denotes a ball in G with respect to deoe, then by the Ball-Box theorem
(see [19], Theorem 2.10) there exists a constant C' > 0 such that

(86) BOXCC(p7 T/C) C BCC(p7 T) C BOXCC(p7 CT)

for every r > 0, where Boxcc(0,7) = By(0,7) = [—r,7]™ x -+ x [=r®,7*]™ and
Boxee(p, ) = 7,(Boxec(0,7)) = p - Boxce(0,r) (here d is the metric defined earlier
in (77)).

We call a metric homogeneous if it is left invariant and one-homogeneous under
the dilations of the group. Such a metric is equivalent to the Carnot-Carathéodory
one (see Corollary 5.1.5 in [3], where it is shown that any two homogeneous metrics
are equivalent).

We now define LT-Kakeya sets in Carnot groups of step two and see if we can find
lower bounds for their Hausdorff dimension with respect to a homogeneous metric.
We will then consider the classical bounded Kakeya sets.

Let G be a Carnot group of step s = 2. We can identify G with R = R™ x R™2,
denoting the points by p = [p', p?| = (21, ..., z,) with p' € R™. The group product
has the form (see Proposition 2.1 in [11] or Lemma 1.7.2 in [20])

(87) p-qg=[p'+¢,p*+ ¢+ Ppq),

where P = (P, +1,...,P,) and each P; is a homogeneous polynomial of degree 2
with respect to the dilations of G, that is

P;(0xp, 8xq) = N P;(p, q)
for every p,q € G. Moreover for every j =my + 1,...,n and every p,q € G,
Pj(p> 0) = P](O7Q) = 07 Pj(pv _p) = P](pyp) =0
and
Pi(p,q) = P;(p".q").
It follows that each P; has the form (see Lemma 1.7.2 in [20])
Pip.q)= > bl(xwi—zm),
1<l<i<m,

for some b{l € R, where p = (z1,...,2,), ¢ = (y1,...,Yn). We will work with the
following metric, which is equivalent to the Carnot-Carathéodory metric:

(88) doo(p, q) = dso(q™" - p, 0),
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where
(89) doo(p, 0) = max{|p* [z, e|p? |5, }.

Here € € (0,1) is a suitable constant depending on the group structure (see Section
2.1 and Theorem 5.1 in [11]). The metric do is left invariant and one-homogeneous
with respect to the dilations. Moreover, the following relations between the metric
ds and the Euclidean metric dg holds, since they hold for any homogeneous metric
on G (see Proposition 5.15.1 in [3]).Here and in the following B, (0, R) denotes the
Euclidean ball in R™ with center 0 and radius R.

Lemma 14.1. Let R > 0. Then there exists a constant C'r > 0 such that for every
p.q € Ba(0, R)

The Lebesgue measure L" is the Haar measure of the group G. Letting X =G, d =
dso and p = L, we have (B (p, 7)) ~ r?, where Q = m; +2ms is the homogeneous
dimension and By (p,7) = Ba_(p,r). Observe that the Hausdorff dimension of G
with respect to do, (and with respect to any homogeneous metric) is ). Moreover,
for any set A C G we have dimg A > dimg A, where dimg denotes the Hausdorff
dimension with respect to any homogeneous metric and dimg the Euclidean Hausdorff
dimension. We let d’ = di be the Euclidean metric on G.

As in the previous section, we denote by B, 1(0,1) the Euclidean unit ball in
the z1,...,x, 1-hyperplane. For u = (uy,...,u,_1) € B, 1(0,1) we consider the
segment (of unit length with respect to d’) starting from the origin

1
———}
V02 +1
and for 0 < 0 < 1 we define a tube with central segment I, and radius ¢ with respect
to do by

(91) Ty ={p: do(p, 1) < }.
Let R > 0 and for a = [a', @] € B, (0, R) (which will be our set of parameters A) let

2

(90) I, ={t(u,1):0<t <

1
F,(a) = I,(a) = 7,(1,) = {[a" + tu',a® + t(u*, 1) + tP(a',u")] : 0 <t € ——
(a) = Iu(a) = 7a(lu) = {] (u”, 1) +tP(a’,u)]: 0 <t < PET

where u = [u!, u?], u* € R™~! and the corresponding tube

(92) T(a) = {p: deo(p, Lu(a)) < 0} ={a p:p € T)} = (T}).
We let i, = ’H}E’I (@ Let Z=Y = B,—1(0,rg) C B,-1(0,1), where
(93) <mind1,
rr < min
R Y 2CR7n Y

and

— _ 2
(94) Crn = R\/mgml(ml 1) mﬂ%gmgﬁ??ml(b{ﬂ) .

Observe that Cg, depends also on the group structure, that is in this case on the
coefficients b ; of the polynomials P;. Here and in the following we do not write for
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brevity the dependence of constants on the group structure, that is also on € that
appears in the definition (89) of the metric dy..

Let v = 'H%*wy. We will see that for Axiom 3 to hold we need to take d to be
essentially the Euclidean metric on Y.

Remark 14.1. Observe that HL(I,) = 1, whereas the Euclidean length of I, (a) varies

with a. Anyway, \/1 — 2Cg,rr < Hp(lu(a)) < /24 2C% 1%, where 1 —2Cg ,rg >
Osince rg < 1/(2CR,,). Indeed, I,(a) is a segment with starting point a and endpoint

1

1
g= |a' + Y ca’ + ((
V02 +1 Vw2 +1

u®, 1) + P(a', ul))] .

Thus
0= 0l = o (P 2 1) 4 Pla, )P
We have
PP = Y Bty
j=mi1+1
" 2
= Z ( Z bil.(alui—aiul))
j=mi1+1 \1<i<i<my
" 2
) -3 (3 sl )
j=mi+1 \1<I<i<mi
< mgmy(m; —1) max max  (b7,)%]a)?|ul?
m1+1<j<n 1<I<i<m; 7
< Chlul?,

where (-, -) denotes the scalar product and we used the Cauchy-Schwarz inequality.
Hence

la—q* < (Ju'* + [u?* + 1+ [ P(a’, uh)[*)

u? +1
|P(a', ul)[?

|ul2 4+ 1
< 2+42C%,|ul® <2+2CF 1%

<242
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and by Cauchy-Schwarz inequality

o — qf* = (Ju'* + [u?* + 1+ [P(a’, uh)[* + 2((u?, 1), P(a’, u')))

1
lul2+1

([ + [w?* + 1+ [P(a’, ul)[* = 2|(u?, DI P(a’, u')])

> ————(|u'|' + [*? + 1 — 2/ |u)]? + 1| P(a', u'!
ul> +1
2|P(a’, u')]

>1 -0
o Vw2 +1

Z 1-— QCRJL|U| Z 1— QCR,RT’R.

>
~fuf+1

We are now ready to define LT-Kakeya sets.

Definition 14.1. We say that a set K C G is a (bounded) LT-Kakeya set if for
every u € B,_1(0,rg) there exists a € B, (0, R) such that [,(a) C K.

Remark 14.2. (LT-Kakeya sets can have measure zero)

LT-Kakeya sets are a natural variant of Kakeya sets in Carnot groups. Indeed, if
K C R" is a classical bounded Kakeya set (say K C B,(0, R)) then in particular
for every u € B,,_1(0,rg) there exists a € B,(0, R) such that I, + a C K. Hence
Kakeya sets contain a Fuclidean translated of every segment I,,. On the other hand,
LT-Kakeya sets contain a left translated a - I, = I,(a) of every I,. Note that all
segments [, +a have the same direction as I,,, whereas the direction of I,,(a) depends
also on a.

LT-Kakeya sets can have Lebesgue measure zero. Indeed, they can be obtained
as cartesian products K x R™2, where K is a bounded Kakeya set in R™. If K C
T1,...,ZTm-plane is a bounded Kakeya set, then £™(K) = 0 and for every e €
S™1~1 there exists p € By, (0, R) such that {se + p : 0 < s < 1} C K, where
B, (0, R) denotes the ball with center 0 and radius R in the xy,...,z,,,-plane. Let
B = K x R™. Then L"(B) = 0. Moreover, for every u € B, 1(0,7r), u' # 0,
there is e € S™ ™! such that u' = |u'|e, hence there exists p € B,,, (0, R) such that
{tu' +p:0 <t <1/u'|} x R™ C B. In particular, for every ¢ € R™ |¢| < R, we
have {[tu' + p,q + t(u?, 1) + tP(p,u)] : 0 < t < 1/|u'|} € B. This means that for
every u € B,_1(0,7r) there exists [p,q| € B,(0, R) such that ,([p,q]) C B. Thus B
is an LT-Kakeya set.

We will now consider separately two cases: 1) my > 1, in which case in general
the axioms are not satisfied; II) my = 1, in which case they are. We will see that
the same holds also for the usual Kakeya sets, even if we will find for their Hausdorff
dimension different lower bounds in case II.

14.1. Case I: my > 1. We will see that in this case Axiom 1 holds (or more precisely,
we show only the first part of Axiom 1). For Axiom 3 to hold we cannot take anything
better than dz to be essentially the Euclidean metric on Y, but then Axiom 4 is not
satisfied. We will not actually need the result that Axiom 1 holds since we cannot
use this axiomatic method to prove any dimension estimate. On the other hand,
the fact that the measure of tubes is a fixed power of the radius is a very natural
condition so we show anyway that it is satisfied.
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Axiom 1: We show that with the choice of rg made in (93) for every u €
B, 1(0,7g) and every a € B,(0, R) we have £L"(T°(a)) ~ §972. Since L" is the
Haar measure of the group, we have £"(T%(a)) = L"(7,(T°)) = L™(T?) for every
a € B,(0,R) so it is enough to show that £"(T°) ~ §9=2. This follows from the
following lemma.

Lemma 14.2. There exist two constants 0 < ¢ < 1 < C (depending only on n,
R) such that for every u € B,_1(0,7r) there exist N points p;, j = 1,..., N, with
672/v2 < N <2672, such that

N N
U Be(pj. ) € T3 C | Boo(p;, C9)

J=1 J=1

and the balls By (pj, cd) are pairwise disjoint.
Observe that this implies that £"(T?) ~ §9~2 since

"(T?) < Z,c" o (pj, 00)) = N(C)? ~ §972

and

ZE” wo(Dj, €0)) & N(c0)? ~ 5972,
Proof. Let t; = O ty =0% ..., t; =tj1+ 6% = (j — 1)6% where j = 1,... N and
(N -1)8%< < N&? (then 672/v/2 < N < 2072). Let p; = tj(u, 1) € I,.

Vit ||2

First observe that for any 0 < ¢ < 1 we have By (pj,cd) C T? since p; € I,. Now
we want to find ¢ small enough such that the balls B (p;, cd) are pairwise disjoint.
It suffices to show that By (pj, ¢0) N Boo(pj41,¢0) = 0 for every j =1,..., N — 1. Let
q = [¢",¢*] € Bxo(t;(u,1),¢d), which means that

(96) max{|q' — tjul], elg* — t;(u* 1) — P(t;u', ¢")['/*} < .
Observe that
|@* — tjr1(u?, 1) = Ptjau',q')]
=l¢* = (t; +0%)(w*, 1) = P((t; + 0%)u’, ¢")]
>|(t; +0%)(w?, 1) + P((t; + 0%)u', q") — t;(u”, 1) — P(tju’,q)]
—l¢* = t;(u*, 1) = P(tju’, )]
=|0%(u?, 1) + *P(u', ¢')| = |¢* — t;(u®, 1) = P(tju', q")].
We have |¢* — ¢;(u?, 1) — P(t;u', ¢")| < 26 /€ by (96) and
0%|(u?, 1) + Plu', q")| = 6*(|(u®, 1)] = |P(u’, ¢")]),
|(w?, 1) > 1,

n

|P(u',q")| = Z Py(ut, ¢")? < Crulul < Cratr

k=mi1+1
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by the same calculation as in (95). Hence

¢* = ti1(u®, 1) = P(tjau', ¢")|
252

2 52(1 — CR,nTR) — —2
€

We can choose 0 < ¢ < 6\/1—0# (where 1 — Crpnrr > 0 since rgr < 1/(2CR,)).
Then we have

€|q2 - tj+1(u27 1) - P(tj-f-lula q1)|1/2 > 057
which means
dOO<Q7 tj+1(u7 1)) = maX{lql - tj+1u1|7 6|q2 - tj+1(u27 1) - P(tj-l-lul? q1)|1/2} > ¢d,
thus ¢ ¢ Beo(tj+1(u, 1), ¢d). Hence By (p;,cd) N Boo(pji1,¢d) = 0.
Next we want to find C' > 1 such that

N
T C | Buo(t;(u,1),C0).
j=1

Let ¢ € T°. There exists 0 < t < T such that d(q,t(u,1)) < 6. Since
[tj1 —t;| = 6%, there is j € {1,..., N} such that |t —t;| < §2. We have
doo (t(u, 1), 5 (u, 1)) = max{|t — t;]|u'], e[t(u?, 1) — t;(u® 1) — P(t;u', tu')|/?}.
Since [t — t||ul| < §%rg, P(tjul,tul) = 0 and €|t — ¢;]1/2|(u?, 1)|Y/2 < €8(rd + 1)Y4,
it follows that
doo (t(u, 1), t5(u, 1)) < max{d?*rg, ed(1 + r%)/*}.
Thus
Aoo(q, t(u, 1)) < doo(q, t (1, 1)) 4 doo(t(u, 1), 1 (u, 1)) < 6 4 de(1 4+ rE) V4.

Choosing C' = 1+ ¢(1 + r%)/*, we have d.(q,t;(u, 1)) < C§, hence ¢ € Bu(p;, C6).
0

Axiom 3: Let us look now at what diameter estimate we can prove (to see that
we need to take dz to be essentially the Euclidean metric on Y).

Suppose that we can find u = [u!,u?],v = [v},v*] € Y (with u? v* € R™™!) such
that [u' —v'| ~ 0 ~ |[u® — v?| and $P(u',v') = u® — v, Then

1 1 1
oo <§(u, 1), §(U’ 1)) = max {5 ut — o'

1
= max{§|u1 —U1|,O} ~ 0.

Thus 0, 2 (u,1), 2(v,1) € TE°NTX? for some K > 0, where T'%? is the K¢ neighbour-
hood of I,,. This implies that diampg(TX° N TX%) ~ 1. Hence we cannot get anything
better than

(97) diamg(TX° N TH?) < o
u— v

2 2 1

Thus in order for Axiom 3 to hold we need to take d; to be essentially the Euclidean
metric in R"!, thatis S =n — 1.
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To find u and v as above, we need to have u = (u1,...,u,_1), v = (V1,..., V1)
such that [u! —vl| ~ § ~ [u? — v?| and the following is satisfied:

Z blj’i(ulvi —uy) =2(u; —v;) forall j=my+1,...,n—1,

1<i<i<mi

Z Li(wv; — ugvy) = 0.

1<i<i<my

(98)

We do not know if we can find such u, v in any Carnot group of step 2 with my > 1,
but at least it is possible in some cases as we will see now.
Suppose that there exist 1 < k < h <mj and m; +1 < J <n — 1 such that

(99) rp=0 and b, #0.

Let uy # 0 and u; = 0 for every i € {1,...,my} \ {k}. Let vy = ug + 6, v, = ¢ and
v; =0 for every i € {1,...,m;}\ {k,h}. Then |u! —v!| ~ ¢ and

n n
E b (v — ugvy) = by jugvp, =0

1<l<i<mi

thus the last equation in (98) holds. For j =my; +1,...,n— 1, let v; = 0 and

1 ~ 1 Ly
Ui =75 Yo bwv —ww) = Sy uon = 5B,

, 2 2
1<l<i<mg

which means that all the equations in (98) are satisfied. We can choose u; small
enough so that u,v € Y. Since b}, # 0, we have at least u; # 0, hence |u® —v?| ~ 4.
Hence in this case we found u, v as desired, which implies that in general we cannot
take d; to be better than the Euclidean metric on Y.

Observe that condition (99) is satisfied for example in free Carnot groups of step
2 (see Section 3.3 in [3]). To define these, it is convenient to use the following
notation. For a point p = [p',p?] = (x1,...,2,), we denote the coordinates of
p* = (Tmy41, - - -, Tn) by pri, where (1,7) € Z and

(100) T=A{(li):1<l<i<m}.

Then #Z = my(my — 1)/2 and we set this to be my. The composition law is given
by p - q, where

(p- @k =k +yr, k=1,...,my,

1 )
(P Qi =pii+qi+ i(xzyz —awyi), (i) el

Thus in this case each polynomial P;, where j = (I,i) for some (Il,7) € Z, has
coefficients all zero except b{l = %

Another example of a Carnot group satisfying condition (99) is the quaternionic
Heisenberg group (see for example Section 2.1 in [8]). This is identified with R" =

R*N*3 equipped with the group operation

07 - ldh @ = [p' + ¢ p° + ¢+ PO, ¢Y)],
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where p', ¢' € R, p?,¢*> € R® and P = (Pyny1, Panya, Panss),
N N
P4N+1(p1, ql) =2 <Z(QipN+i - pi‘]N-i—i) + Z(Q3N+ip2N+i - p3N+iQ2N+i) )
i=1 i=1
N N
P4N+2(p17 ql) =2 (Z(qmmﬂ- - QQN+ipi> + Z(QNHP:SNH - QSN+ipN+i) )
i=1 i=1
N

n
Pinis(p'q') =2 <Z<Qip3N+z’ — Pig3N+i) + Z(Q2N+z’pN+i — PaN+iGN+i)
i1 i1

Hence my = 4N, my = 3, Q = 4N + 6. Here for example bf}[\;ﬁ = 0 and bf}fvfl =2,
which means that (99) holds with k =1, h=N+1, J =4N + 1.

It is more tedious to verify that condition (99) is satisfied also in another Iwasawa
group, the first octonionic Heisenberg group (see Section 2.1 in [8]). This is modeled
as O x Im(Q) = R® x R7, where O denotes the octonions. These form the eight-
dimensional real vector space spanned by the indeterminates e;, j = 0,...,7 and
equipped with a certain product rule that is explained in the table in Section 2.1.3
in [8] (g = 1 is the identity element). An element in @ can be expressed as z =
20 + 237.:1 z;e; and Im(z) = 237.:1 z;ej. The first octonionic Heisenberg group is
O x Im(0) equipped with the group product

(z,7)- (Z,7) = (z+ 2,7+ 7 +2Im(2'2)),

where 2/ = zj —Im(z’). It can be verified that for example b} , = 2 and b}% = 0 hence
(99) holds with J =9 =my+1land k=1, h=2.

Other examples of Carnot groups of step 2 satisfying (99) can be found in Chapter
3in [3]: in Remark 3.6.6 there are two examples of Carnot groups of Heisenberg type
on R® = R* x R? and on R” = R* x R3; in Exercise 6 (page 179) there is one example
of a Kolmogorov type group on R®> = R3 x R2.

Axiom 4: Now we want to show that Axiom 4 does not hold with dz equal to the
Euclidean metric on Y. For Axiom 4 to hold, we would need to be able to cover T?°
with N tubes TX?(b;), where K > 0 and N are independent of §, when |u — v| < 4.
We will see that this cannot happen in general.

Let u = [0,0] and v = [0, (6,0, ...,0)], thus ju—v| = |v| = . We want to show that
we need > 6~1/2 tubes TX(b;,) to cover T¢. Consider a point p = (0,...,0,a) € Iy,
0Y2 < g < 1. We have

deo(p, 1)) = inf doo(p,t(v, 1
(p, I,) o (p, (v, 1))

= inf max{0, e((t6)? + (t — a)?)'/*
it (0. (19 + (0 = 0)))

= inf e((t6)2 + (t — a)2)V/4,
t€[0,1/+/62+1) (( ) ( ))

The minimum is attained when ¢ = %

a8 R

(101) deo(p, 1y) = € ((52 T 1) - (02 + 1

Moreover, we cannot find K independent of § such that §%* < K¢§. Hence p ¢ TX?
for any K (for small § > 0). On the other hand, 0 € TX?. Thus for every p € I, such

1/4
)2) Z a1/251/2 > 63/4 > 4.
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that |p| > 62 we have that p ¢ TX° which implies that 75° covers only a piece of
Iy of Euclidean length < §'/2. To cover T{ we need to cover at least Iy and we will
now see that we need at least > 6~/2 tubes T?(b;) to do so.

If p! = ¢! for any two points p, ¢ € G, then for any y = [y!,y*] € G we have

pry=p +y 0" +v"+ POy
=g +y', ¢+ v+ Plg',y)] +[0,0° — ¢
=q-y+1[0,p° - .
If we let by = [by, b2], b; = [bi, b7] € Iy, we have b = b; = 0 hence

T2 (bs) = 7, (1)) = 7, (1) + [0, — 03] = T, (bi) + [0, b — bg].

Thus the tube TX°(b,,) is obtained by translating T5°(b;) in the Euclidean sense.
It follows that each TX°(b;,) with by € Iy covers a piece of I of Euclidean length
< 62, Thus we need > §~/2 of such tubes to cover Iy, which means that Axiom
4 does not hold. Observe that it would not help to take longer tubes TX%(by) (K6
neighbourhoods of I, (by), which are segments containing I,(b;) and having double
length).

Hence when my > 1 we cannot use this axiomatic setting to obtain estimates for
the Hausdorff dimension of LT-Kakeya sets with respect to d.

Remark 14.3. (Classical Kakeya sets)
Almost in the same way we can see that we cannot obtain estimates for the Hausdorff
dimension (with respect to dy,) of the classical Kakeya sets when mgy > 1.

In this case we can define I, as in (90) and T° as in (91), whereas we let for
a € B,(0,R) and u € B, _1(0,7r),
1

V1 [uf?

L(a)=I,+a={[tut+a't+a,):0<t <

}

and
T(a) = {p = doo(p, Tu(a)) < 0}

A bounded Kakeya set K C B,(0,R) C R™ contains a unit segment in every
direction, thus in particular for every u € B, _1(0,7g) there exists a € B, (0, R) such
that I,(a) C K.

Let us now see that also in this case the measure of the tubes is ~ §9~2, Axiom 3
holds if dy is essentially the Fuclidean metric and Axiom 4 does not hold.

Axiom 1: For every u € B, 1(0,7g) and every a € B, (0, R) we have L*(T?(a)) ~
0972, Indeed, in this case we can prove the following version of Lemma 14.2.

Lemma 14.3. There exist two constants 0 < ¢ < 1 < C' (depending only on n, R)
such that for every a € B, (0, R) and every u € B,_1(0,rg) there exist N points p;,
j=1,...,N, with 6 2/v/2 < N <2672, such that

N N
U Boo(pj,cd) C To(a) C U B (p;, C9)
j=1

j=1
and the balls By (pj, cd) are pairwise disjoint.

Proof. The proof is the same as that of Lemma 14.2 if we define p; = t;(u,1) +a €
I.(a), where t; = (j —1)6%, j=1,...,N. O
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Axiom 3: The tubes starting from the origin T° are the same as those defined in
(91), thus we can use the same argument used to show (97) to see that in general we
cannot take dz to be anything better than essentially the Euclidean metric.

Axiom 4: Also here we can show that Axiom 4 is not satisfied with the same
example used previously, that is u = [0,0], v = [0,(6,0,...,0)]. We can see that
we need at least 6~/ tubes TX%(b;) (which is the K¢ neighbourhood of I,(b) =

{t(v, 1)+ b, :0<t < \/11? ) to cover T for any constant K independent of 6.

Indeed, as was seen in (101), 759 covers only a piece of I, of Euclidean length < §'/2.
Moreover, if b, € Iy and ¢ = (0,...,0,a) € I, such that |b; — q| > §'/2, we can use a
similar calculation as in (101) to show that

doo(q, 1o (bi)) > 6%/,

Hence also any tube T/ (b;,) with by, € I covers only a piece of Iy of Euclidean length
< 0'/2, which means that we need > 6~/2 of them to cover the whole I.

14.2. Case II: my = 1. We will prove the following theorem.

Theorem 14.4. Let G be a Carnot group of step 2 whose second layer has dimension
1. The Hausdorff dimension of any bounded LT-Kakeya set in G with respect to any
homogeneous metric is > ”%“3 and the Hausdorff dimension of any bounded Kakeya
set with respect to any homogeneous metric is > "TH.

Proof of Theorem 14.4 for LT-Kakeya sets: Let us first look at the case of
LT-Kakeya sets and show that the Axioms 1-4 are satisfied hence Bourgain’s method
yields the required lower bound.

When my =1 we have Q = mq +2mo =n — 142 =n+ 1. We denote the points
by p = [p',pa] = (p1,. .., pn), where p* € R*"1. The group operation thus becomes

p-q=[p" +¢"pn+a.+ PO, ),
where

PpLq) = > bulpg — pia):

1<l<i<n—1

Here we let Z =Y = B,,_1(0,7r), where

(102) rr < \/1+C%, — Cra,

and

(103) Crn = R\/(n —1)(n—2) max |b;]%

1<l<i<n—1

Note that rx is smaller than the one chosen in (93), whereas Cg,, is essentially the
same constant as in (94). We let dz be the Euclidean metric on Y, which is (n — 1)-
Ahlfors regular, so S =n — 1.

Observe that when mgy = 1 the tubes T?(a) defined in (92) are essentially the same
as the Euclidean tubes. The rough idea is that for every point p there is only one
direction (which depends on p) in which balls By (p, ) do not behave like Euclidean
balls and with the above choice of rp this direction is close to the direction of the
segments [,(a), u € Y (when p € B,(0, R)). More precisely, the following holds.
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Lemma 14.5. For every q € B,(0, R) the angle between the horizontal hyperplane
H, passing through q (that is, the left translation by q of the x1, ..., x,_1-hyperplane)
and the xy,...,x,_1-hyperplane is at most

1

,/1+C]%Mn'

Note that by the angle between two hyperplanes we mean the angle between their
normal vectors.

Or.n := arccos

Proof. The horizontal hyperplane H, passing through ¢ is the set of points p = [p', p,)]
such that

(104) Pn = Gn + P(¢",p") = ¢ + (B¢',p"),
where
By — ( 5 b,,iql) ,
1<I<n—1, l#i I<i<n—1
¢ =(q,--.,qu-1), bi; = —b;;. Hence a normal vector to H, is
ny = [~Bq', 1].
Since a normal vector to the z1, ..., x,_j-hyperplane is ny = [0, 1], the angle between
them is
ny,n 1
0 = arccos M = arccos

[n1||na| V1+[Bg']*

We have

n—1 2
|Bg'|* = Z ( Z bl,in)

i=1 \1<i<n—1, l#£i
< ((n = 1)(n — 2) maxbylg])?
S 0}2{771?

where Cg,, is defined in (103). Hence

6 < arccos

1
———— =0Ora.
\/1+CE.,

Let us see more precisely how the tubes T°(a) compare with Euclidean tubes.

Lemma 14.6. There ezist 0 < ¢ < C < oo (depending only on n and R) such that
for every a € B, (0, R) and every u € B,,_1(0,7R)
(105) T9(I,(a)) C T)(a) € T"(L(a)),

where TEC°(1,(a)) denotes the C§ neighbourhood of I,(a) in the Euclidean metric,
whereas T (I,(a)) denotes the set of points ¢ € R™ such that a line through q
orthogonal to I, (a) intersects I,(a) in a point ¢ and |q — q| < cd.
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Observe that T9%(I,(a)) is not exactly the ¢d neighbourhood of I,,(a): it does not
contain all the points whose distance from the extremal points of I,(a) is < ¢d (see
Figure 7). On the other hand, these tubes T9<(I,(a)) are often used to define the
Kakeya maximal function, see for example Definition 22.1 in [17].

T=(1,(a))

l(a)

TO%(1y(a))

FIGURE 7. The tubes T9%(I,(a)) and TP%(I,(a)) in R?

Proof. One inclusion is easy since by Lemma 14.1 there exists C' = Cg such that for
every p,q € B,(0, R) we have

Ip — q| < Cd(p, q).

Thus T2(a) C T®°(1,(a)).

For the other implication, we want to find ¢ such that T9<(I,(a)) C T°(a). Let
q=1[q" q.] € TO(I,(a)). This means that |¢—q| < cd, where ¢ € I,(a) is such that
the line containing ¢ and ¢ is orthogonal to I,(a). The points in I,(a) are given by

(106) v(t) = [a' + tu,a, +t +tP(a',u)],

where a = [a',a,], 0 <t < \/;'—'2 Let H, be the horizontal hyperplane passing

through ¢, that is the left translation by ¢ of the zq,...,x,_i;-hyperplane. As seen
in (104), it has the form

Hq = {p = Lplapn] YPn = qn t+ P(ql,pl)]}-
Let y(t) = H, N I,(a), that is

dn — Qn + P(ql,CLl)
1+ P(a',u) = P(¢*, u)

(107) f=

Let 6 be the angle between I,(a) and the segment joining ¢ to v(¢) (see Figure 8).
If § € H, then (t) = ¢ and 0 = 7/2 is the angle between [,(a) and H,. In general
6 is greater or equal to the angle between I, (a) and H,. By Lemma 14.5 the angle



DIMENSION ESTIMATES FOR KAKEYA SETS DEFINED IN AN AXIOMATIC SETTING 65

between H, and the x1, ..., x,_i-hyperplane is < 0g,,. On the other hand, the angle
between I, (a) and the z1, ..., z, 1-hyperplane is

|ul

arccos

V]uP + (1 + P(al,u))?
"R
[T+ Plal, )]
"R
1 —|P(at,u)|

> arccos

> arccos

FIGURE 8. Geometric situation in the proof of Lemma 14.6

Since |P(a',u)| < Cr,rr by a similar calculation as in (95), we have
'R 'R 7]

———— >arccos ——— =: g ,,.

1- |P(a17u)| = 1_CR,nTR f

By the choice of rz made in (102), 0z, > 0p,. Thus we have 6 > Op,, — Op, > 0.
Hence

lg — gl _
(109) lq —~(t)] g S Crnlq — G| < Crpcd =0

if we choose ¢ = 1/cg,,, where cg, =1/ sin(H_R,n — 0Ory). It follows that
doo(q,7(?)) = max{|q' — tu — a!|,ela, + T+ tP(a*,u) — g, — P(¢", tu+a")|V/2} <6
because by (109) we have

(108) arccos

lq" —tu—al] < g =) <6
and from the expression (107) of ¢ we have
la, +t+tP(a',u) — g, — P(q", tu+ a')|Y? = 0.
Hence
doo(q, Lu(a)) = inf du(q,7(t)) < doo(g,7(D)) <6,
te ot |
which means ¢ € T?(a). Thus T9¢(I,(a)) C T?(a) and (105) is proved. O
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Axiom 1: From (105) it follows that £"(T?(a)) ~ §"~! for every a € B, (0, R) and
every u € B,_1(0,7r). Moreover, if A C T?(a) then A C T°(a) N B,(q, diamg(A))
for every ¢ € A. Using again (105) we have A C TP (I,(a)) N B,(q,diamg(A)),
which implies £"(A) < diampg(A)6"!. Hence Axiom 1 holds with 7'=n — 1.

Axiom 3: We can use the diameter estimate for Euclidean tubes and Lemma 14.6
to prove the following lemma, which states that Axiom 3 is satisfied.

Lemma 14.7. There exists b = br, > 0 such that for every a,a’ € B,(0,R),
u,v € B,_1(0,7R),
)

u—of

(110) diamg (T (a) N T2 (d')) < b

Proof. Suppose that T°(a) N T?(a ) (), otherwise (110) holds trivially. Then there
exists ¢ € I,(a) such that d(q,,(a’)) < 26. This means that dw(gq,p) < 20 for
some p € I,(a’). Then we have

where
. 1
L(q) = {[tu+¢",t + g, +tP(qg",u)] : —————e <t
)=l ( | lul2 + 1 ]u\2+1

Indeed, if ¢ = [tu + a',t + a, +tP(a',u)] € I,(a), for some 0 < t < then
| (@' )] € L(a) T

———1

L.(q) = {[tu + tu+ a',t + T + a, + tP(a*,u) + tP(tu + a',u)] :

1 1
———<t< ——}
Vw2 +1 Vw2 +1

= {[tu+t_u—|— a',t +t+a, +tP(a',u) +tP(a',u)] :

1
\/IUI2 b \/IUI2+1}'

If z € I,(a) then z = [su+ a',s + a, + sP(a',u)] for some 0 < s <

1
‘ T Thus
z € I,(q) since

z=[(s—tHu+tu+ta',(s—1t) +t+a,+ (s —1t)P(a',u) +tP(a',u)]

and ———— < s -1 < Hence I,(a) C I,(q), which implies that

ulP+1 — \/W
(111) T)(a) € T)(a),

where T‘S(q) is the & neighbourhood of I,(a). Similarly, since p € I,(a’) we have
L,(a') C L,(p), hence

(112) T(a') C T (p)-
On the other hand, we now want to see that
(113) T3(q) C T (p),

where T%(p) is the 30 neighbourhood of I,(p). Let § € T?(g). Then there exists
z) <

z=[su+q,5+q,+5P(¢",u)] € fu(q) such that d(q, 5. Let 2/ = [su+p', 5+



DIMENSION ESTIMATES FOR KAKEYA SETS DEFINED IN AN AXIOMATIC SETTING 67

pn +5P(p',u)] € I,(p). Then
doo(z,2') = max{|su + ¢* — 5u — p'|,
€5+ qn +5P(¢", u) — 5 — p, — 5P(p*, u) — P(5u + ¢*, 5u + p")|'/*}
— max{|q" — p'|,elgn — pn — P(¢",p")["*}
= doo(q,p) < 20.

Hence
doo(q, 2') < doo(q, 2) + doo(2,2") < 39,

which implies that duo(q, I,(p)) < 38. Thus (113) holds. It follows from (111), (112)
and (113) that

(114) To(a) C Ty(q) C T (p) and T)(a') C T7(p)-
On the other hand,

(115) TP ()N T (p) = (T NTY).

If AC G then for every p € B,(0, R)

(116) diamp(7,(A)) < 1/2(1 + C%,,)diamg(A).
Namely,

diamg(7,(A)) = sup [p-q—p-q
q,GEA

and
pg—p-ad’=p" +¢ —p" =@ +Ipa+ ¢+ P ¢") = pa— G — P T)
<lg' =P+ 2l — @l + 2P0 ¢" — )
<lg' ="+ 2lgn — @l* +2C% 10" — 7'
< 2(1+Ch)lg —al*.
Hence by (114), (115) and (116),
diamp(T)(a) N T} (d')) < diamp(T (p) N 1) (p))
= diamp(7,(T3 N T?))
< diamp(T¥ N TY).
Since by Lemma 14.6
T c TE39([,) and T° c TP9(1,),
we have by the diameter estimate for Euclidean tubes,
diamg (T2 N T°) < diamp(TE*(1,) N TP (1,)) < bn%.

Hence (110) follows. O



68 LAURA VENIERI

Axiom 4: Let u,v € B,,_1(0,7r) be such that |u — v| < 4. We want to show that
for every a € B,(0, R)

(117) T3(a) € T, (a),
where TX%!(a) is the K neighbourhood of
1 2
I'(a) = {[tv + a',t + a, + tP(a',v)] : ———— <t < ————}

VITE T T /Ir P

and K is a constant depending only on n and R.
To prove (117), it suffices to show

(118) TS c TX

since then (117) follows by applying the left translation by a. By Lemma 14.6, we
know that

T° ¢ T*9(1,).
Since |u —v| < J, we have
TECS(T,) C TE,C’S(IU)’
where C” is another constant depending only on n and R. On the other hand,
TE,C’J(IU> c TO’C"S(If))
and again by Lemma 14.6,
TO,C/5<LI)) c Tvc'(s/c,z.

Hence (118) holds with K = C'/c.

Axiom 2: In [21] we considered (bounded) Kakeya sets in the Heisenberg group,
which we can identify with R = R?" x R, equipped with the Koranyi metric dg
(which is bi-Lipschitz equivalent to the Carnot-Carathéodory metric). The proof of
Theorem 1 in [21]| contains the proof that Axiom 2 holds (with # = 0) when the
tubes are defined with respect to the Euclidean metric and the balls with respect
to dy. We could use essentially the same proof also for tubes defined with respect
to dy. Actually in the proof of Theorem 1 we proved directly that (12) holds, that
is Axiom 2 with union of balls instead of one single ball. Proving only Axiom 2
would have been easier since we would have not needed to look at how the angle
between horizontal segments through a point = € [,(a) and I,(a) varies depending
on x. Essentially the same proof can be used in any Carnot group G of step 2 with
ms = 1 endowed with the metric d,,. We show it here.

Lemma 14.8. There exist two constants (depending only onn and R) 1 < K < oo,
0 < K' < oo such that the following holds. Let a € B,(0,R), u € B,_1(0,7g),
p € l(a) and § <r <2§. If

(119) Hp(lu(a) N Bo(p, 7)) = M
for some M > 0, then

(120) LT (a) N Buo(p, K1) > K'ML™(T;(a)).
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Proof. Let H, be the horizontal hyperplane passing through p, that is

H,={q=1[¢" q1) : @ = pn + P(p",q")}.

As was seen in the proof of Lemma 14.6, the angle between I,(a) and H, is >
Opn — Orn > 0 (since the angle between I,(a) and the zy,...,x, -hyperplane is
> éR,n and the angle between the x4, ..., x,_;-hyperplane and H, is < fg,,).

Let b = [b',b,] € I,(a) N Bs(p, 7). Then we will show that any segment starting
from b, with direction parallel to H, and contained in the tube T*°(I,(a)) D T?(a)
is also contained in B (p, K1), where K = 14+ Ccpy, Crp = l/sin(é’_Rm —Ogryn). Let
P be the hyperplane orthogonal to I,(a) passing through the origin and let Sp be
the unit sphere contained in P. For e € Sp and s > 0 let

o¢(s) = [se + ', by + sP(p' )]

be a point in any segment starting from b with direction parallel to H,,. It is contained
in T#(I,(a)) for those s such that dg(ob(s), I,(a)) < Cé. Since the angle between
I.(a) and {ob(s) : s > 0} is > Or,, — Op.n, this implies

dp(oe(s), Lu(a))

121 b—ob(s)] < £
(121) \ a(s)\_sm(em_ O

e

< CCR’né.

Since b € By (p,r), we know that
(122) doo(b, p) = max{[b" — p'|, elb, — p, — P(p',b")["*} <r.
The d, distance from p to ob(s) is
doo (08 (5), p) = max{|b" + se — p'|, e|b, + sP(p',e) — p, — P(p', 0" + se)|'/*}
= max{|b' + se — p'|, e|b, — p, — P(p*,b")|"/?}.

Since by (121) [b' + se —b'| = |se| < |b—0b(s)| < Ccrnd, and by (122) [o' —p'| <7,
we have

o' + se — p'| < |se| + |b' — p'| < Cerpd +1 < K.
Moreover, by (122)
€lbn = pn = P(p', b1)[* <.

Thus it follows that du.(c?(s), p) < Kr, which means 0%(s) € B (p, K7).

Since for every b € I,(a) N By (p, 1), the segment {0%(s) : dp(c®(s), I,(a)) < Cd} is
contained in B, (p, Kr), it follows from (119) that for every segment I parallel I,(a)
contained in T9¢(I,(a)) C T°(a) we have

Hp(I NTO(1,(a)) N Buo(p, K1) > M.
To get
(123) LT (1,(a)) N Boo(p, K7)) Z ML (T (1,(a))),
we use the following formula valid for any Lebesgue measurable and integrable func-

tion f on R™,

a2 [ swace= [ ([T [ ) ao )
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which is obtained by changing the order of integration in the formula giving inte-
gration in polar coordinates in translates of the zq,...,z,_1-hyperplane along the
T,-axis:

n 00 o) o Ly
- f(p)dL"p = /OO (/0 r - f(ry, py)do (y)dr> dp,,.

Indeed, consider now the coordinate system where a is the origin and I,(a) is con-
tained in the x,-axis (we can reduce to this situation by translating in Euclidean
sense and rotating I,(a)). If we let f = Xro.es(1,(a)nBo (p,ir) I (124) We obtain

(125)
LY(TO (I, () N Bu (p, K1) /S ( /0 " e /_ Z fry, z)dzdr) do™2(y).

Every segment I parallel I,(a) contained in T9(I,(a)) is contained in
L,={(ry,z) : z € R}
for some y € S" 2 and 0 < r < ¢§. Hence

| w2 = W1, N TO(L0) 1 Bl K1) 2 M
and in (125) we need only to integrate over r such that 0 < r < ¢d. Thus we obtain
cd
LYTO(I,(a)) N Bao(p, K1) > M / / P2 drdo™2(y) ~ M"Y ~ ML (TO(I, (a))),
sn=2Jo

which proves (123). From (123) we can then get (120) since
LT (a) N Boo(p, K1) = LT (1(a)) N Buo(p, K7))
2 ML T (1,(a)))
~ ML" (T’ (a)).
0

Thus Axioms 1-4 hold and Bourgain’s method yields the lower bound "TJF?’ for the
Hausdorff dimension (with respect to any metric that is bi-Lipschitz equivalent to the
Carnot-Carathéodory metric) of any bounded LT-Kakeya set in G. This completes
the proof of Theorem 14.4 for LT-Kakeya sets.

Remark 14.4. We do not know if Axiom 5 holds or not since the direction of a
segment I, (a) depends not only on u but also on a. In Axiom 5 we consider tubes
with central segments I, (a), I,;(a;) and I, (a;) such that [u—u;| > /8, lu—u;| > 3/8
and ¢ < |u; —u;| < . In general, however, the angle between the directions of 1, (a)
and I, (a;) is not comparable to |u — u;| (and the same for the angle between the

other directions).

Proof of Theorem 14.4 for Kakeya sets: To prove Theorem 14.4 for the
classical bounded Kakeya sets, we define as in Remark 14.3

I.(a)=1I,+a and T°(a) = {p:du(p, I,(a)) < &}
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Here we can let
1

,/1+O]%L7n

Note that for LT-Kakeya sets we needed a smaller rg as chosen in (102). The reason
is that here, given a € B, (0, R) and u € B,_1(0,7r), the angle between the segment
I,(a) and the z4,...,z,_1-hyperplane is

(126) TR <

(127) arccos _ > arccos(rr) =: Og.n,
V14 |ul? 7
which is greater than the angle fp,, in (108). With the choice of rz made above in
(126) we have Q_R,n > O, where O, is as in Lemma 14.5.
First observe that also with these tubes T°(a) we can prove Lemma 14.6, that is
there exist 0 < ¢ < C' < oo such that for every a € B, (0, R) and every u € B,,_1(0,7g)
we have

(128) T (I, (a)) C T2(a) C T (1,(a)).

Indeed, there are only few changes in the proof of Lemma 14.6. The first change is
in (106) since here
v(t) = [a* + tu,a, + ],

where 0 < ¢ < 11‘ - Thus (107) becomes

qn _an—i_P(qla@l)
1- P(qlau)

Taking also here ¢ = sin(fg,, — 0r,) (With the new value of 0z, given by (127)), we
obtain the same result.

Axiom 1: It follows from (128) that Axiom 1 holds with 7'=n — 1.

Axiom 2: Since Lemma 14.8 can be proved in the same way, Axiom 2 holds with
6 =0.

Axiom 3: Here Axiom 3 follows directly from (128) and Axiom 3 for Euclidean
tubes. Indeed here the direction of I,(a) is [u, 1], thus

~ |

dinmp (T3 (e) O TE)) < dinmnp (7L 0) VT () < b

Axiom 4: Also Axiom 4 follows directly from (128) and Axiom 4 for Euclidean
tubes. Indeed, if |u — v| < 4, then

Ty(a) € TP (L,(a)) € TP*(1,(a)) € T*?(L(a)) C T (a),
where I'(a) = {[tv + a',t + 1] : —2— <t < 22—},

v/ 1+]|v|2 v/ 1+]v|2

Axiom 5: It holds with A = 1 and o = n — 2 since it follows again from (128) and
Axiom 5 for Euclidean tubes. Indeed, we can show the following.
Lemma 14.9. Let 0 < §,8,v <1 and let T = T?(a) and T; = T[fj(aj), j=1,...,N,
a,a; € B,(0,R), u,u; € B,_1(0,rg), TNT; # 0 for every j. Suppose that |u—u;| >
B/8 and |u; — uy| > § for every j # k. Then for all j=1,...,N,

(129) #I; = #{i : lui —uy| < B, TN Ty #0,dp(T;NT;, TyNT) > 9} S GO y* 7
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Proof. As showed in the proof of Lemma 12.3, we can assume that ¢ is much smaller
than v and that 8 > %. We have by (128) T' = T%(a) C TE°(I,(a)) =: TF and
Ty = T; (a;) C TP(Ly(ay)) =: T} for every j. Fix j and let i € Z;. The directions
of T#, T and T} are respectively [u, 1], [u;, 1] and [u;, 1]. By assumption |u —u,| >
B/8, lu—us| > /8 and d < |Ju;—u;| < B. We can show that dp(T*NT, TFNTF) 2 ~
as was done in the proof of Lemma 12.3. Hence by axiom 5 for Euclidean tubes we
have

i us — | < B, TENTY #0,dp(T7 N7 T NTY) 29} S 861",

which implies (129). O
Hence Theorem 14.4 for bounded Kakeya sets follows from Theorem 6.2.
Remark 14.5. In [21] in the Heisenberg group we found the same lower bound ”TH for

the Hausdorff dimension of bounded Kakeya sets when n < 8. Moreover, we derived
a better lower bound w for n > 9 from the Kakeya estimate obtained by Katz
and Tao ( [14]) using arithmetic methods (see also Remark 12.1).

Note that in the proof of Lemma 14.8 we showed that Axiom 2 holds also with balls
defined with respect to d,, and tubes defined with respect to the Euclidean metric
in the case of a Carnot group of step 2 and my = 1 (see (123)). Thus we could prove
the following, which for Heisenberg groups is the same as Theorem 1 in [21] (and it
can be proved as Theorem 4.1). Let G be a Carnot group of step 2 with ms = 1, let
1<p<mn,p>0suchthat n+1—pp>0.If

(130) HfékHLp(sn—l) < Cn,p,ﬁfs_ﬁHfHLP(R")

holds for any f € LP(R™), then the Hausdorff dimension with respect to a homoge-
neous metric of any bounded Kakeya set in G is at least n+1 — Sp. Here f§ denotes
the classical Kakeya maximal function in which tubes are defined with respect to the
Euclidean metric.

As seen in (67), Katz and Tao’s result shows that (130) holds with p = @ and
£ = ig;g, hence it implies the lower bound w for the Hausdorff dimension (with
respect to any homogeneous metric) of any bounded Kakeya set in any Carnot group
of step 2 if the second layer has dimension 1. This improves the lower bound "TH
when n > 9.
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