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1. Introduction

Analytic number theory, in the modern sense, is said to begin with the work
of Dirichlet. Modifying Euler’s well-known analytic proof that there are infinitely
many primes, Dirichlet’s idea was to generalize Euler’s formula

∏
p(1 − p−s)−1 =∑∞

n=1 n−s, valid for �(s) > 1. He introduced the characters, now bearing his name,
to prove that any arithmetic progression a + nq, n = 0, 1, 2, . . . , where a and q
are relatively prime, contains infinitely many prime numbers. Ever since, these
characters and the associated Dirichlet series called L-functions have been studied
extensively.

Our aim is to study the mean square of quadratic Dirichlet L-functions, proving
in particular the asymptotic formula

(1.1)
∑∗

χ

L2(1, χ) = A∗X + P ∗(X)X1/2 + O
(
X1/2ω(X)

)
,

where the summation is taken over all real primitive non-principal characters χ
(possible restricted to even or odd characters) with conductor at most X. Here A∗

is a constant, P ∗(X) is an explicitly given function of order log X and ω(X) is a
function, similar to that occurring in the error term of the prime number theorem,
which tends to zero as X tends to infinity. This result, to be exactly formulated in
Theorem 4.13, improves for k = 2 the mean value result

(1.2)
∑∗

χ

Lk(1, χ) = a(k)X + O
(
X1/2(log X)b(k)

)
,

proved by Jutila [21] in 1973.
The Dirichlet class number formula gives a connection between the value of L(1, χ)

and the number of ideal classes of the corresponding quadratic number field, or the
number of classes of quadratic forms for a given discriminant. This connection is
briefly recalled in Chapter 5. Especially, in the case of imaginary quadratic fields
or positive definite quadratic forms, (1.2) gives almost directly the corresponding
moments for the class numbers.
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Already Gauss made conjectures about the average order of the number of prim-
itive classes of quadratic forms for a given discriminant. Gauss’ conjecture for
imaginary quadratic fields was first proved by Lipschitz in 1865. (For real quadratic
fields, Gauss’ conjecture concerned the average order of the product of the class
number and the logarithm of the fundamental unit of the field, which was proved
by Siegel in 1966.) Vinogradov was the first to obtain a mean value result with
two main terms in 1917. The exponent of the error term in Vinogradov’s result was
5/6 + ε, which he improved later on. At present the best result of this type is

(1.3)
∑
n≤N

h(−n) =
π

18ζ(3)
N3/2 − 2

2π2
N + O

(
N29/44+ε

)
due to Chamizo and Iwaniec [6]. Actually, the above formula is given in a slightly
different form from that in Vinogradov’s paper [33], since Vinogradov and Gauss
considered the narrow class number.

Although the Dirichlet class number formula has been well known for a long time,
sums of Lk(1, χ) over real primitive characters, or equivalently over fundamental
discriminants, did not appear in the literature until the latter half of the twentieth
century. Jutila’s moment formula,∑∗

1≤d≤X

hk(−d) = c(k)X(k+2)/2
(
1 + O

(
X−1/2(log X)d(k)

))
,

obtained from (1.2), with −d running over fundamental discriminants, is the best
known for general k. For the case k = 2 our result (1.1) gives that

(1.4)
∑∗

1≤d≤X

h2(−d) = aX2 + b(X)X3/2 + O
(
X3/2ω(X)

)
,

where a is a constant and b(X) = O(log X). A similar result for the so-called relative
class numbers is also considered in Chapter 5.

We begin by giving a survey of the basic properties of characters and L-functions
in Sections 2.1 and 2.2. Some known estimates for character sums are presented in
Section 2.3.

The square of the L-series at s = 1 for a non-trivial character χ can be written
as

L2(1, χ) =
∞∑

n=1

d(n)χ(n)

n
=

∞∑
ν=0

χ(2)νd(2ν)

2ν

∞∑
n=1
2�n

d(n)χ(n)

n
,

where d(n) is the number of divisors of n. Here it is understand that χ(2)0 = 1 even
if χ(2) = 0. In particular, we apply this for the real character χ(n) =

(
qα2

n

)
, where

|q| ≤ X and α is odd, and split up the series over n on the right into two parts,
where the sum is taken over n ≤ Y or n > Y, respectively. The latter part will give
an error term when Y is chosen suitably.

When we take the average over q, the contribution of the terms with n a square
is easy to deal with, and it gives the first main term in (1.1). The harder part is
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to treat the non-square values of n. We change the order of the summations and
consider the sum over q, for a given n, by attaching a smooth weight. The resulting
double sum is similar to that studied by Conrey et al in [9], up to the presence of
the divisor function d(n). However, the treatment of the smoothed sum over q by
Poisson summation will be similar, and an analysis of the sum over n yields a term
similar to the one obtained in [9], which will essentially give the second main term.

The motivation for the paper [9] originated from Soundararajan’s paper [30] where
he studied sums over fundamental discriminants. Our approach generalizes the
method used in [9], since we allow the q-sum to run over all discriminants (of certain
type), instead of restricting to the fundamental ones. In Chapter 3 we obtain the
mean square result over (all) discriminants with error term O(X2/5+ε). The sum
over primitive characters, and the proof for (1.1), are considered later in Chapter 4.

The mean square of primitive L-functions is obtained by sieving out the primitive
characters from the sum over all characters by using the Möbius function µ. The
efficiency of this method depends on the known zero-free region for the Riemann
zeta-function. In particular, assuming the Riemann hypothesis we would get an
error term O(X8/17+ε) in (1.1).

Readers interested in historical facts are referred, for example, to the article [29]
or to the excellent introductions of the articles [15] and [6], and to the book [16],
which all provide some historical information concerning the subject of this work.

Notations. In sums concerning characters or discriminants two notations are used:
the sum

∑′ is taken over discriminants or non-trivial real characters, and the sum∑∗ is taken over fundamental discriminants or primitive characters. The integral∫
(c)

means an integral over the complex line with real part equal to c, that is,∫
(c)

= limT→∞
∫ c+iT

c−iT
. The letter p denotes a prime number, and

∏
p and

∑
p are

taken over all primes. Basic facts about such sums and products are assumed to
be known. Familiar estimates for the Riemann zeta-function like ζ(s)−1 � (σ − 1)
near the line σ = 1 (σ > 1) and ζ(s) � log t for σ ≥ 1 can be found for example in
[19] or [32]. Here and elsewhere in the thesis s = σ + it.

Quite often the properties of a function depend on whether its argument is a
square or not, so for example by

∑
n=� we mean that the summation is taken over

square values, hence the symbol � stands for an arbitrary square integer. A small
positive number, which may be different from line to line, is denoted by ε. We
also use the standard notation e(x) = e2πix . The notation f(x) � g(x), due to
Vinogradov, is used to mean that the absolute value of the function f is less than
a positive constant times the function g, that is, f(x) = O(g(x)).

2. Preliminaries

2.1. Dirichlet characters and Gaussian sums. By definition a Dirichlet char-
acter modulo n, where n is a natural number, is a function χ : Z → C which is
periodic modulo n, completely multiplicative, not identically zero, and χ(m) = 0 if
(m,n) > 1. For every n there is always at least the trivial character χ

(n)
0 (m) which
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is one if (m,n) = 1, and zero otherwise. For every character χ modulo n there
is a unique primitive character χ∗ modulo n∗ which induces it, that is, n∗ is the
smallest divisor of n such that χ can be written as χ = χ

(n)
0 χ∗. The number n∗

is the conductor of the character χ. Characters can be divided into even and odd
characters depending on the value χ(−1). If χ(−1) = 1, the character is even, and
if χ(−1) = −1, it is odd.

A Dirichlet character is real (or quadratic) if its values are real. It is well known
that the Kronecker symbol

(
q
m

)
defines a real non-principal character modulo |q|

if q is a discriminant, that is, q ≡ 0, 1 (mod 4) and q is not a square. Actually,
all real characters modulo |q| can be formed by using this symbol and moreover
all primitive real characters modulo |q| are of the form χq(m) =

(
q
m

)
, where q is a

fundamental discriminant, that is, q is a squarefree discriminant or q = 4D, where
D is squarefree and D ≡ 2 or 3 (mod 4). From now on, the symbol χq is always
used to mean the Kronecker symbol

(
q
·
)

and hence a real character modulo |q|. For
odd positive n, the Jacobi symbol

(
a
n

)
defines the real character

(
a
n

)
= χñ(a), where

ñ = n if n ≡ 1 (mod 4), and ñ = −n if n ≡ 3 (mod 4). This character modulo n is
primitive if n is squarefree.

Remark 2.1. The theory of real characters is closely related to the theory of qua-
dratic fields, or to the equivalent theory of the binary quadratic forms. The fun-
damental discriminants are just the discriminants of quadratic fields, and a real
primitive character χq is associated with a real quadratic field or with an imaginary
quadratic field, according to whether χq is even or odd.

In the theory of quadratic forms the discriminant of ax2 + bxy + cy2 is defined to
be b2 − 4ac, which is clearly congruent to zero or one modulo four. A fundamental
discriminant is one which has the property that all forms of that discriminant have
(a, b, c) = 1.

Basic but not elementary properties of the real characters are the law of qua-
dratic reciprocity and its supplements: If m and n are odd relatively prime natural
numbers, then for the Jacobi symbols we have(

m

n

)(
n

m

)
= (−1)((m−1)/2)((n−1)/2),

(−1

n

)
= (−1)(n−1)/2 = χ−4(n),

and (
2

n

)
= (−1)(n2−1)/8 = χ8(n).

When m and n are primes, the first of these relations is the reciprocity law for
Legendre symbols. While trying to generalize the quadratic reciprocity law for Le-
gendre symbols to higher power residues, Gauss gave all in all six different proofs for
this law. The fourth and sixth proof led him to study sums which are now known
as Gaussian sums.
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A Gaussian sum related to the character χ modulo n is the exponential sum

τk(χ) =
∑

a (mod n)

χ(a)e

(
ak

n

)
,

where k ∈ Z. If k and n are relatively prime, then τk(χ) = χ̄(k)τ(χ), where τ(χ) =

τ1(χ). Actually, Gauss introduced in 1801 the quadratic Gauss sum
∑n−1

a=0 e2πika2/n,
which coincides with the sum τk(χ) if χ is a real character, n is an odd squarefree
integer, and (n, k) = 1 (see [2]). In this case, the character is defined by the Jacobi
symbol

(
a
n

)
and it is easy to show that

τ(χ) =

{ ±√
n if n ≡ 1 (mod 4),

±i
√

n if n ≡ 3 (mod 4).

However, the sign here is not so easy to decide. Even Gauss needed several years
before in 1805 he was able to prove that the sign is always plus.

For further use we introduce, from [30], the function

Gk(n) =

(
1 − i

2
+

(−1

n

)
1 + i

2

) ∑
a (mod n)

(
a

n

)
e

(
ak

n

)

=

(
1 − i

2
+

(−1

n

)
1 + i

2

)
τk(n),

where n is odd and positive, k ∈ Z, and τk(n) is the Gaussian sum related to the
real character

(
a
n

)
modulo n. Hence this sum can be written as

τk(n) =

(
1 + i

2
+

(−1

n

)
1 − i

2

)
Gk(n).

The main properties of the function Gk(n) are listed in the next lemma (see [30,
Lemma 2.3]).

Lemma 2.2. The function Gk(n) is multiplicative in n, that is, if m and n are odd
natural numbers and (m,n) = 1, then Gk(mn) = Gk(m)Gk(n). If pa is the greatest
power of the prime p 
= 2 which divides the number k, and a = ∞ if k = 0, then for
b ≥ 1

Gk(p
b) =




0 if b is odd and b ≤ a,
ϕ(pb) if b is even and b ≤ a,
−pa if b = a + 1 is even,(

k/pa

p

)
pa√p if b = a + 1 is odd,

0 if b ≥ a + 2.

Moreover, Gmk(n) =
(

m
n

)
Gk(n) if (m,n) = 1, χ−4(n)Gk(n) = G−k(n), and

χ8(n)Gk(n) = G2k(n).
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2.2. Dirichlet L-functions. Dirichlet [10, 11] proved his famous theorem on primes
in arithmetical progressions in 1837 by studying the series

(2.3) L(s, χ) =
∞∑

m=1

χ(m)

ms
,

where χ is a character modulo n. This series known as the Dirichlet L-function is
absolutely convergent in the half plane σ > 1, where it has the Euler product

L(s, χ) =
∏

p

(
1 − χ(p)

ps

)−1

.

It can be shown [28, Satz 3.3] that (2.3) actually converges even when σ > 0 if
χ 
= χ

(n)
0 , and by analytic continuation it is a regular function in the whole complex

plane. For primitive non-principal characters, let

(2.4) ∆(s, χ) =
τ(χ)

ia
√

n

(π

n

)s−1/2 Γ(1
2
(1 − s + a))

Γ(1
2
(s + a))

,

where a = 0 if χ is even, and a = 1 if χ is odd. Now we have the functional equation
for the L-function

L(s, χ) = ∆(s, χ)L(1 − s, χ̄),

and hence the L-function is entire for primitive non-principal characters. For the
L-functions with non-primitive characters, the Euler product formula and the func-
tional equation for the L-function with the corresponding primitive character give
the analytic continuation. Only for the function L(s, χ

(n)
0 ) there is a simple pole at

1 with residue ϕ(n)n−1.
The Euler product formula shows that the L-function has no zeros if σ > 1.

Therefore, there are no zeros in the plane σ < 0 either, except the trivial ones which
cancel the poles of the Γ-function in (2.4). It is known that there are no zeros on
the line σ = 1 and the generalized Riemann hypothesis (GRH) asserts that there
are no zeros with real part σ > 1/2. Therefore, all non-trivial zeros should lie on the
line σ = 1/2. However, like for the Riemann zeta-function, only a certain zero-free
region is known.

Estimates for a single L-function at s = 1 have been obtained for example by
Elliott [12] by showing that there exist constants c1 and c2 such that

c1

log log q
≤ |L(1, χ)| ≤ c2 log log q,

for almost all primes q ≤ X, where χ(a) =
(

a
q

)
is the Legendre symbol. Assuming

GRH, Littlewood [25] has shown that there are infinitely many q such that this
lower (or upper) bound is really the correct size of L(1, χ). Later Chowla [7] has
shown without the assumption of GRH that

L(1, χq) ∼ π2 e−γ

6 log log |q|
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for infinitely many q with χq real and primitive. Albeit there are discriminants for
which the value of L(1, χq) is near to the lower or upper bound mentioned above,
the values of L(1, χq) are of constant size in mean, as Jutila’s result (1.2) shows.

The distribution of the values of Lk(1, χq) have also been studied by probabilistic
methods, for example in [17, 26]. However, compared with Jutila’s result (1.2),
these probabilistic methods give bigger error terms.

On the line σ = 1/2, the convexity bound [20, Th. 5.23] for the Dirichlet L-
functions shows that

L(s, χ) � (q |s|)1/4,

where χ is a primitive character modulo q. This implies

(2.5) L(s, χqα2) � |qs|1/4 d(α)

for non-principal (possible non-primitive) real characters. The mean value estimate

(2.6)
∑′

|q|≤X

∫ T

−T

∣∣∣∣L
(

1

2
+ it, χq

)∣∣∣∣
2

dt � (XT )1+ε.

proved by Jutila [23] in 1975, is essentially of the expected order. For the fourth
power, we have Heath-Brown’s [18] result

(2.7)
∑′

|q|≤X

∣∣∣∣L
(

1

2
+ it, χq

)∣∣∣∣
4

� (X(|t| + 1))1+ε,

which is stronger in the q-aspect, but the averaging in the t-aspect is missing.

2.3. Estimates for character sums. A central question in analytical number
theory is to understand the behaviour of the character sum∑

n≤Y

χq(n),

where χq is a non-principal real character modulo |q| . (Indeed, this is the case for
every non-trivial character, but here we consider only real characters.) Since the
characters are periodic functions, it is easy to show that this sum is always ≤ |q| in
absolute value. Around 1918 Pólya and Vinogradov improved this upper bound to
O(

√|q| log |q|). On the other hand, Paley [27] has shown, in 1932, that there exist
character sums of size

√|q| log log |q| . For short character sums, Burgess [4] has
shown some better estimates, but albeit plenty of work has been done, the classical
upper bound of Pólya and Vinogradov is still the best known in general.

In 1973 Jutila [21] has shown that

∑′

χq

∣∣∣∣∣
∑
n≤Y

χq(n)

∣∣∣∣∣
2

� XY log8 X,



12 HENRI VIRTANEN

where the character sum is over non-trivial real characters whose modulus is at most
X. In 2002 the author [34] proved the fourth power estimate

∑′

χq

∣∣∣∣∣
∑
n≤Y

χq(n)

∣∣∣∣∣
4

� XY 2Xε.

Jutila [22] has conjectured that a similar estimate would hold for all even powers
of the character sum, but only the second and fourth power are settled. The best
known estimate for the mean square is due to Armon [1], where the exponent of
log X is one.

More general estimates for character sums, involving some complex coefficients
an, are also known. For example, Heath-Brown gives in his paper [18] the following
nicely symmetric character sum estimate:

∑
m

∣∣∣∣∑
n

an

( n

m

)∣∣∣∣
2

� (MN)ε(M + N)
∑

n

|an|2,

where m and n are restricted to odd squarefree numbers in the intervals [1,M ] and
[1, N ], respectively. In this thesis, Heath-Brown’s result is used in the form [18,
Corollary 2]

∑∗

χq

∣∣∣∣∣
∑
n≤N

anχq(n)

∣∣∣∣∣
2

�ε (XN)ε(X + N)
∑

n1n2=�
|an1an2 | ,

where χq runs over real non-trivial primitive characters with conductor at most
X and the coefficients an are arbitrary complex numbers. For |an| ≤ 1, the sum∑

n1n2=� |an1an2| can be estimated using the following lemma, which is essentially
from [34], but the proof presented here is more elementary.

Lemma 2.8. If 2 ≤ N0 ≤ N, then∑
N−N0≤m,n≤N+N0

mn=�

1 � N0 log N0.

Proof. Since m and n run trough the same numbers, there are at most 2N0 + 1
trivial squares m = n.

For the non-trivial squares, let us write n = n1a
2 and m = n1b

2, where n1 is
squarefree and a 
= b. Now two different numbers a and b lie in an interval whose
length is of the order N0√

n1N
which can be used to estimate the number of the numbers

a and b. Therefore, the number of the non-trivial squares is

�
∑

n1≤N2
0

N

N0√
n1N

· N0√
n1N

� N2
0

N
log N0 � N0 log N0.

�
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Corollary 2.9. Let |an| ≤ 1 and N0 ≤ N. Then

∑∗

|q|≤X

∣∣∣∣∣
∑

N−N0<n≤N+N0

anχq(n)

∣∣∣∣∣
2

�ε (XN)ε(X + N)N0.

The method used later in this thesis is based on the paper [9] by Conrey, Farmer
and Soundararajan, where they obtained an asymptotic formula for the sum

(2.10) S(X,Y ) =
∑
m≤X
m odd

∑
n≤Y
n odd

(
m

n

)
.

The motivation for studying this sum originated from Soundararajan’s proof [30]
that L(1

2
, χq) 
= 0 for a positive proportion of fundamental discriminants q. The

interesting case of (2.10) is when X and Y are of somewhat comparable size. In [9],
a smoothed sum was considered instead of the sum (2.10), where the smoothing was
done with respect to both parameters of summation. This leads to the asymptotic
formula

S(X,Y ) =
2

π2
C (Y/X) X3/2 + O

((
XY 7/16 + Y X7/16

)
log XY

)
,

where

(2.11) C(x) =
√

x +
1

2π

∞∑
k=1

1

k2

∫ x

0

√
y

(
1 − cos

(
2πk2

y

)
+ sin

(
2πk2

y

))
dy,

for x ≥ 0, with the alternative expression

C(x) = x + x3/2 2

π

∞∑
k=1

1

k2

∫ 1/x

0

√
y sin

(
πk2

2y

)
dy.

The function C(x) is quite complicated. For example, C ′(x) is not everywhere
differentiable. Indeed, when the sum over k in the second expression of C(x) is
considered as a function of y, we have a function which is commonly called “Rie-
mann’s nondifferentiable function” since Riemann suggested it as an example of a
continuous function which is not differentiable. For a discussion of this topic see
[9] and its references. In [9] it was left to the reader to verify that the above two
expressions for C(x) agree. We give here a proof for that.

Since both expressions of C(x) tend to zero as x tends to zero from above, it
is sufficient to show that the derivatives of these expressions agree when x > 0.
Differentiating the second expression for C(x) and using partial integration in the
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remaining integral term with respect to the factor √
y, we get

1 + x1/2

∞∑
k=1

∫ 1/x

0

y−1/2 cos

(
πk2

2y

)
dy

= 1 + x1/2

∞∑
k=1

∫ ∞

x

y−3/2 cos

(
πk2y

2

)
dy

= 1 + x1/2

∞∑
k=1

1

2

(∫ ∞

x

y−3/2 e
πik2y

2 dy +

∫ ∞

x

y−3/2 e−
πik2y

2 dy

)
.

Here the integrals are from x to infinity, but by Cauchy’s integral theorem the line
of integration can be turned upwards or downwards without changing the value of
the integral. So we may turn the line of integration upwards in the first integral
and downwards in the second integral, and change the order of integration and
summation to obtain

(2.12) 1 +
x1/2

2

(∫ x+i∞

x

y−3/2

∞∑
k=1

e
πik2y

2 dy +

∫ x−i∞

x

y−3/2

∞∑
k=1

e−
πik2y

2 dy

)
.

Let θ(z) = 1 + 2
∑∞

k=1 e−πk2z, where z > 0. It is well-known that

θ(1/z) =
√

zθ(z).

By analytic continuation, this holds for �(z) > 0, in particular if z = −iy and

(y) > 0, or z = iy and 
(y) < 0. By this transformation formula, the expression
in the brackets in (2.12) is

∫ x+i∞

x

y−3/2

(
−1

2
+

1√−iy/2

∞∑
k=1

e−2πik2/y +
1√−2iy

)
dy

+

∫ x−i∞

x

y−3/2

(
−1

2
+

1√
iy/2

∞∑
k=1

e2πik2/y +
1√
2iy

)
dy

= − 2x−1/2 +

√
2

2
x−1

(
e−πi/4 + eπi/4

)
+
√

2 eπi/4

∞∑
k=1

1

−2πik2

(
e−2πik2/x −1

)

+
√

2 e−πi/4

∞∑
k=1

1

2πik2

(
e2πik2/x −1

)

= − 2x−1/2 + x−1 +
∞∑

k=1

1

πk2

(
1 − cos

(
2πk2

x

)
+ sin

(
2πk2

x

))
.
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Hence (2.12) is

1

2
x−1/2 +

√
x

2π

∞∑
k=1

1

k2

(
1 − cos

(
2πk2

x

)
+ sin

(
2πk2

x

))

which indeed is the derivative of (2.11), and hence the two expressions of C(x)
agree.

2.4. Some methods of estimation. In this section, we introduce some basic
methods for estimating the sum

(2.13)
∑
n≤x

f(n),

where f is an arithmetical function.
If the series

∑∞
n=1 f(n) converges, we may simply separate the tail part as an

error term, and write∑
n≤x

f(n) =
∞∑

n=1

f(n) −
∑
n>x

f(n) = main term + error.

As an example of this, see the proof of Lemma 3.6.
For a positive real number x which is not an integer, we have

(2.14)
∑
n≤x

f(n) =
1

2πi

∫
(c)

F (s)xs ds

s
,

where F (s) =
∑∞

n=1 f(n)n−s is the generating function of f, which is assumed to
converge absolutely on the line σ = c > 0. If x is an integer, then the term f(x)
must be replaced by 1

2
f(x) on the left. Formula (2.14), known as Perron’s formula,

gives an opportunity to study the sum (2.13) using analytic devices. It is usually
applied in a truncated form,

(2.15)
∑
n≤x

f(n) =
1

2πi

∫ c+iT

c−iT
F (s)xs ds

s
+ O

(
xc

T

∞∑
n=1

|f(n)|
nc

+ Ax

(
1 +

x log x

T

))
,

where Ax = max 3
4
x≤n≤ 5

4
x |f(n)| . In the above formulation of Perron’s formula it

is essential that the generating function is absolutely convergent on the line of
integration and c > 0. Hence, if the function f(n) decays rapidly, (2.15) is not the
most effective form of Perron’s formula. The conditions of absolute convergence and
positivity of c can be retained by using two different parameters. Namely, (2.15)
can be stated in the form
(2.16)∑
n≤x

f(n)n−w =
1

2πi

∫ b+iT

b−iT
F (s + w)xs ds

s
+ O

(
xb

T

∞∑
n=1

|f(n)|
nb+u

+
Ax

xu

(
1 +

x log x

T

))
,

where Ax is as before and w = u+iv, b > 0, u+b ≥ ca+ε, where ca is the abscissa of
absolute convergence of the series F (s). For more details, see for example [3, 28, 31].
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By the theorem of residues, when the integration is moved to the left, the possible
poles of the integrand give the main terms and in the best case the remaining
integrals can be estimated satisfactorily.

The partial summation provides a method to estimate the sum∑
y≤n≤x

f(n)g(n),

when an estimate for the sums∑
y≤n≤ξ

f(n) with y ≤ ξ ≤ x

is known and the function g is continuously differentiable in the range of summation.
Namely,

∑
y≤n≤x

f(n)g(n) = g(x)
∑

y≤n≤x

f(n) −
∫ x

y

( ∑
y≤n≤ξ

f(n)

)
g′(ξ)dξ.

Another common method is to use a smooth weight function. When the summa-
tion in the original problem is over some interval [M,N ], the smooth weight function
makes it possible to start and end the summation more “gently”, and hence to use
analytic methods to estimate the sum. When a smooth weight function is used, it
usually causes an error which should be estimated satisfactorily. A smooth weight
function for a character sum is introduced in Section 3.2, and the consequent error
is analysed in Section 3.4.

Of course, there are other commonly used methods, too, but those mentioned
above are the most used in this thesis.

3. The mean square of quadratic Dirichlet L-functions at 1

In this chapter, we apply the method taken from [30], as further developed in [9],
to obtain an asymptotic mean value formula for the square of quadratic Dirichlet
L-functions at s = 1. In order to avoid some technical complications, we first study
a smoothed mean value over even characters with odd modulus; the smooth weight
function will be introduced in Section 3.2, and the consequent smoothing error
is estimated in Section 3.4. Mean values over other types of real characters are
obtained similarly. In Section 3.5, we formulate the main theorem of the thesis. The
case where the characters are restricted to primitive ones will be treated separately
later in Chapter 4.

3.1. Sum over even characters with odd modulus; a preliminary decom-
position. Let us start from the sum

(3.1)
∑

1<q≤X
q≡1 (4)
q �=�

L2(1, χqα2).
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Here and henceforth α is odd and X > 3. The square of an L-function is a series of
multiplicative functions, so we can separate the evenness from the series by writing

L2(1, χqα2) =
∞∑

n=1
(n,α)=1

d(n)χq(n)

n
=

∞∑
ν=0

χ8(q)
νd(2ν)

2ν

∞∑
n=1

(n,2α)=1

d(n)χq(n)

n
.

The remaining series over n can be split up into two parts, where the sum is taken
over n ≤ Y or n > Y, respectively. Here Y is a parameter at our disposal, to be
chosen later suitably. Lemma 3.2 below shows that

∑
1<q≤X
q≡1(4)
q �=�

∞∑
ν=0

χ8(q)
νd(2ν)

2ν

∑
n>Y

(n,2α)=1

d(n)χq(n)

n
�

∑
1<q≤X
q≡1(4)
q �=�

∣∣∣∣∣
∑
n>Y

d(n)χ4qα2(n)

n

∣∣∣∣∣
� O(XY −1/2d2(α)(log Y )17).

Note that since we are looking for an estimate with an error smaller than X1/2, Y
should exceed X.

Lemma 3.2. Let X and Y be greater than 3 and β a natural number. Then

∑′

|q|≤X

∣∣∣∣∣
∑
n>Y

d(n)χqβ2(n)

n

∣∣∣∣∣ � XY −1/2d2(β) log17(XY ),

where the sum over q is taken over discriminants.

Proof. First the sum over n is divided into dyadic parts,

(3.3)
∞∑

j=0

∑
2jY <n≤2j+1Y

d(n)χqβ2(n)

n
.

By partial summation, the absolute value of the sum over n in (3.3) summed over
q is

1

2j+1Y

∑′

|q|≤X

∣∣∣∣∣∣
∑

2jY <n≤2j+1Y

d(n)χqβ2(n)

∣∣∣∣∣∣ +

∫ 2j+1Y

2jY

y−2
∑′

|q|≤X

∣∣∣∣∣∣
∑

2jY <n≤y

d(n)χqβ2(n)

∣∣∣∣∣∣ dy.

Now the lemma follows by using the mean value estimate

∑′

|q|≤X

∣∣∣∣∣
∑
n≤N

d(n)χ
(β)
0 (n)χq(n)

∣∣∣∣∣ � XN1/2d2(β) log17(XN)

proved by Jutila [24], and noticing that the summation over j in (3.3) converges. �
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To the remaining sum

(3.4)
∑

1<q≤X
q≡1 (4)
q �=�

∞∑
ν=0

χ8(q)
νd(2ν)

2ν

∑
n≤Y

(n,2α)=1

d(n)χq(n)

n

it is useful to introduce a smooth weight function. In [9] the smoothing was done in
both n and q aspects, but we use it here only for the sum over q. Weighting requires
that the summation should be taken over all values of q ≡ 1 (mod 4). Therefore,
we add the extra terms q = � into (3.4), and then from the final result we subtract
the influence of these terms which can be evaluated by the following lemma, since

∑
q≤X1/2

2�q

χ
(q)
0 (n) =

∑
q≤X1/2

(q,2n)=1

1 = X1/2 ϕ(n)

2n
+ O(d(n))

for odd n, where ϕ(n) is the Euler totient function.

Lemma 3.5.∑
n≤Y

(n,2α)=1

d(n)ϕ(n)

n2
= b1(α) log2 Y + b2(α) log Y + b3(α) + O(Y −1/2 log2 Y d(α)),

where 0 < b1(α) < 1, b2(α) = O(log log 3α), and b3(α) = O((log log 3α)2).

Proof. The generating function of d(n)ϕ(n)n−1χ
(2α)
0 is

∏
p�2α

(
1 − 1

ps

)−2 (
1 − 2

ps+1
+

1

p2s+1

)
= ζ2(s)Q(s)Q2(s)Qα(s),

where, for σ ≥ σ0 > 0,

Q2(s) = 1 − 2s+1 − 1

22s+1 − 2s+1 + 1
= O(1),

Qα(s) =
∏
p|α

(
1 − (p − 1)(2ps − 1)

p2s+1 − 2ps + 1

)

=
∏
p|α

(
1 − 2

ps
+ O

(
1

pσ+1

))
= O(d(α)),

and

Q(s) =
∏

p

(
1 − 2

ps+1
+

1

p2s+1

)
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converges. By Perron’s formula (2.16) we have∑
n≤Y

(n,2α)=1

d(n)ϕ(n)

n2
=

1

2πi

∫ ε+iT

ε−iT
ζ2(s + 1)Q(s + 1)Q2(s + 1)Qα(s + 1)

Y s

s
ds

+ O

(
Y ε

T
+ Y ε−1

)
.

Let us choose T = Y and move the integration to the line σ = −1/2. The pole
s = 0 of order three produces the main terms b1(α) log2 Y + b2(α) log Y + b3(α). By
the theorem of residues we obtain

b1(α) =
1

5

∏
p

(
1 − 2

p2
+

1

p3

) ∏
p|α

(
1 − 2p − 1

p2 + p − 1

)
< 1,

b2(α) = b21Q
′
α(1) + b20Qα(1), and b3(α) = b32Q

′′
α(1) + b31Q

′
α(1) + b30Qα(1), where

the coefficients bij are constants, Qα(1) < 1 and

Q′
α(1) =O


∑

p|α

log p

p


 = O(log ω(α)) = O(log log 3α),

Q′′
α(1) =O


∑

p|α

log2 p

p


 + O





∑

p|α

log p

p




2
 = O(log2 ω(α)) = O((log log 3α)2),

where ω(α) is the number of distinct prime factors of α. (Note that the symbol ω
has here different meaning than elsewhere in the thesis.)

Since ζ2(σ+iT ) � T 1−σ log2 T +1, when σ ≥ 0, and
∫ T

−T

∣∣ζ(1
2

+ it)
∣∣2 dt � T log T,

see [19, p. 29], the remaining integrals are

�d(α)Y −1/2

∫ 1/2+iT

1/2−iT

|ζ2(s)|
|s| |ds| + d(α)T−1 log2 T

�Y −1/2d(α) log2 Y.

�

The contribution of the terms n = � in (3.4), with the condition q 
= � omitted,
is

1

2

∞∑
ν=0

d(2ν)

2ν

∑
n≤Y 1/2

(n,2α)=1

d(n2)

n2


 ∑

q≤X
(q,n)=1

χν
8(q) +

∑
q≤X

(q,n)=1

χν
8(q)χ−4(q)


 ,

with the convention χ0
8 = χ

(8)
0 . Here the condition q ≡ 1 (mod 4) is rewritten by

using characters modulo 4. This leads to “full” character sums, which are easier to
handle. Those sums over q, which are non-trivial character sums, give a contribution
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O(1). However, for even ν the first sum over q gives a main term by the following
lemma.

Lemma 3.6.∑
n≤Y 1/2

(n,2α)=1

d(n2)

n2

∑
1<q≤X
(q,2n)=1

1 = a(α)X + O
(
XY −1/2 log2 Y

)
+ O(1),

where

a(α) =
1

2

∞∑
n=1

(n,2α)=1

d(n2)ϕ(n)

n3
≤ a(1).

Proof. Since ∑
1<q≤X
(q,2n)=1

1 = X
ϕ(n)

2n
+ O(d(n)),

for odd n, we need to estimate the sum
∞∑

n≤Y 1/2

(n,2α)=1

d(n2)ϕ(n)

n3
=

∞∑
n=1

(n,2α)=1

d(n2)ϕ(n)

n3
−

∞∑
n>Y 1/2

(n,2α)=1

d(n2)ϕ(n)

n3
.

The main term is a convergent series and it has the Euler product
18

29
ζ2(2)

∏
p

(
1 +

1

p2
− 3

p3
+

1

p5

) ∏
p|α

(
1 − 3p2 − 1

p4 + p3 + 2p2 − p − 1

)
.

Clearly the product over the prime divisors of α is positive and less than one, and
the error term is ∞∑

n>Y 1/2

(n,2α)=1

d(n2)ϕ(n)

n3
� log2 Y

Y 1/2
,

owing to the estimate
∑

n≤x d(n2) � x log2 x. �

Since the summations over ν in (3.4) converge, and 1
2

∑∞
ν=0

d(4ν)
4ν = 10

9
and∑∞

ν=0
d(2ν)
2ν = 4, we have shown that (3.1) is

10

9
a(α)X +

∞∑
ν=0

d(2ν)

2ν+1

∑
n≤Y

(n,2α)=1
n�=�

d(n)

n

∑
1<q≤X

χν
8(q)(1 + χ−4(q))

(
q

n

)

−2b1(α)X1/2 log2 Y − 2b2(α)X1/2 log Y − 2b3(α)X1/2

+O(XY −1/2d2(α)(log Y )17) + O(log2 Xd(α)),

(3.7)

To the remaining sum, we apply a smooth weight function, which is introduced
next. The error caused by the weighting will be estimated in Section 3.4.
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3.2. Smoothing and transforming the q-sums. In [9] the authors consider the
sum of Jacobi symbols

(
m
n

)
for given n (and then the sum over n), which leads them

to the sum S0,n(X) below. We generalize their method to the sums of χt(q)
(

q
n

)
over

q, where χt is a character modulo 8 and n is a given odd number.
Let H be a smooth function compactly supported in (0, 1). Let us assume also

that H(y) = 1 for y ∈ (1/U, 1− 1/U), and H(j)(y) �j U j for all integers j ≥ 0. The
parameter U > 2 will be chosen later. Let

Ĥ(ξ) =

∫ ∞

−∞
H(y)e(−ξy)dy

be the Fourier transform of the function H.
We define

H̃±(ξ) =
1 + i

2
Ĥ(ξ) ± 1 − i

2
Ĥ(−ξ).

It is an easy calculation to see that

iH̃+(−ξ) = H̃−(ξ) and iH̃−(−ξ) = −H̃+(ξ).

By partial integration and the estimate H(j)(t) � U j we get that

(3.8)
∣∣∣Ĥ(ξ)

∣∣∣ ,
∣∣∣H̃±(ξ)

∣∣∣ ,
∣∣∣(H̃±(ξ))′

∣∣∣ � U j−1 |ξ|−j

for all integers j ≥ 1 and for all real numbers ξ. Furthermore,

(3.9) H̃+(ξ) =
1 − cos(2πξ) + sin(2πξ)

2πξ
+ O

(
1

U

)
.

When ξ is small, H̃+(ξ) = 1 + πξ + O(ξ2) + O(U−1) is always positive, but for large
ξ the non-oscillating term 1/(2πξ) changes sign with ξ.

Let

(3.10) St,n(X) =
∞∑

q=1

χt(q)

(
q

n

)
H

( q

X

)
,

where n is an odd non-square integer, and t = 0,−4, 8 or −8. So χt is a real
character modulo 8 and (3.10) is a smoothed version of the character sum

∑
q≤X

χt(q)

(
q

n

)

for odd n. When t is zero, Lemma 2.6 of [30] gives

S0,n(X) =
X

2n

(
2

n

) ∞∑
k=−∞

(−1)kGk(n)H̃+

(
kX

2n

)
.
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For t 
= 0, we get by the Poisson summation that

St,n(X) =
∞∑

q=1

χt(q)

(
q

n

)
H

( q

X

)
=

∑
b (mod |t|n)

χt(b)

(
b

n

) ∞∑
d=0

H

(
(|t|nd + b)

X

)

=
X

|t|n
∑

b (mod |t|n)

χt(b)

(
b

n

) ∞∑
k=−∞

Ĥ

(
kX

|t|n
)

e

(
bk

|t|n
)

.

Since n is odd, the numbers b can be written in the form un + v |t| , where u goes
through the residue classes modulo |t| and v goes through the residue classes modulo
n. Hence∑
b (mod |t|n)

χt(b)

(
b

n

)
e

(
bk

|t|n
)

= χt(n)

(|t|
n

) ∑
u (mod |t|)

χt(u)e

(
uk

|t|
) ∑
v (mod n)

(
v

n

)
e

(
vk

n

)

= χt(n)

(|t|
n

)
χt(k)τ(χt)τk(n),

which means that

St,n(X) =
X

|t|nχt(n)τ(χt)

(|t|
n

) ∞∑
k=−∞

Ĥ

(
kX

|t|n
)

χt(k)τk(n)

for t 
= 0. Now

S−4,n(X) =
2iX
4n

χ−4(n)
∞∑

k=−∞
Ĥ

(
kX

4n

)
χ−4(k)

(
1 + i

2
Gk(n) +

1 − i
2

G−k(n)

)

=
2iX
4n

χ−4(n)
∞∑

k=−∞
χ−4(k)Gk(n)H̃−

(
kX

4n

)

=
2iX
4n

∞∑
k=−∞

χ−4(k)G−k(n)H̃−

(
kX

4n

)

=
−2iX

4n

∞∑
k=−∞

χ−4(k)Gk(n)H̃−

(−kX

4n

)

=
2X

4n

∞∑
k=−∞

χ−4(k)Gk(n)H̃+

(
kX

4n

)
.

Similarly,

S8,n(X) =
2
√

2X

8n

∞∑
k=−∞

χ8(k)Gk(n)H̃+

(
kX

8n

)
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and

S−8,n(X) =
2
√

2X

8n

∞∑
k=−∞

χ−8(k)Gk(n)H̃+

(
kX

8n

)
.

Let us put henceforth H̃ = H̃+, and define

Sn(x) =
x

2n

∞∑
k=1

Gk2(n)H̃

(
k2x

n

)
and S(odd)

n (x) =
x

2n

∞∑
k=1
2�k

Gk2(n)H̃

(
k2x

n

)
.

Now we can use Sn(X) to get a main term from S0,n(X) by separating the terms
k = 2� from the sum over k. Since

(
2
n

)
Gk(n) = G2k(n), we have

S0,n(X) =
X

2n

∞∑
k=1

Gk2(n)H̃

(
k2X

n

)
+

X

2n

∞∑
k=−∞
k �=2�

(−1)kG2k(n)H̃

(
kX

2n

)

=Sn(X) + R0(X,n).

Similarly, extracting the terms k = � from the sums St,n(X) for t 
= 0, we may
separate a main term in terms of S

(odd)
n (x) from these sums;

S8,n(X) =4
√

2S(odd)
n

(
X

8

)
+

√
2X

4n

∞∑
k=−∞
k �=�

χ8(k)Gk(n)H̃

(
kX

8n

)

=4
√

2S(odd)
n

(
X

8

)
+ R8(X,n),

S−4,n(X) =4S(odd)
n

(
X

4

)
+

X

2n

∞∑
k=−∞
k �=�

χ−4(k)Gk(n)H̃

(
kX

4n

)

=4S(odd)
n

(
X

4

)
+ R−4(X,n),

S−8,n(X) =4
√

2S(odd)
n

(
X

8

)
+

√
2X

4n

∞∑
k=−∞
k �=�

χ−8(k)Gk(n)H̃

(
kX

8n

)

=4
√

2S(odd)
n

(
X

8

)
+ R−8(X,n).

So instead of (3.10), it is enough to deal with the sums Sn(x) and S
(odd)
n (x).

Note that the remainders Rt(X,n) are also similar to each other. We study these
remainder terms more carefully in Section 3.4.
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3.3. Summing the smoothed sums. We are now ready to analyse the double
sum

(3.11)
∑
n≤Y

(n,2α)=1
n�=�

d(n)

n

∑
1≤q≤X

χν
8(q) (1 + χ−4(q))

(
q

n

)
,

which remained to be handled in (3.7). The character sum in (3.11) is a sum of two
sums of the form

∑
χt(q)

(
q
n

)
, where χt is a character modulo 8. Using the weight

function H introduced in Section 3.2, transforming the sum over q into a sum over
k as in Section 3.2, and taking into account the contribution involving S

(odd)
n , we

end up with the sum

(3.12)
∑
n≤Y

(n,2α)=1
n�=�

d(n)

n
S(odd)

n (x) = x

∞∑
k=1
2�k

∑
n≤Y

(n,2α)=1
n�=�

d(n)

n2
Gk2(n)H̃

(
k2x

n

)
=: x

∞∑
k=1
2�k

Mα(k),

for x = X/8 or X/4. Note that Mα(k) depends on the parameters X and Y, although
this is not indicated. The contribution of the sums Sn is a similar sum without the
oddness condition for k. Our aim is to show that from (3.12) we get a main term,
plus error terms which are smaller than X1/2, and likewise for the sums involving
Sn. Hence, up to the error arising from the use of the smooth weight and from the
terms Rt(X,n), the sum (3.11) reduces to (3.12). The following lemmas give us
useful tools to deal with the sums Mα(k).

Lemma 3.13. Let β be a natural number. Then∑
n≤x

(n,β)=1

µ2(n)d(n) = A1(β)x log x + A2(β)x + O
(
d(β)x1/2 log5 x

)
,

where

A1(β) =
1

ζ2(2)

∏
p

(
1 − 1

(p + 1)2

) ∏
p|β

p

p + 2
< 1,

and A2(β) = A1(β)B(β), where

B(β) = 2γ − 1 − 4
ζ ′

ζ
(2) + 2

∑
p

log p

(p + 1)(p + 2)
+ 2

∑
p|β

log p

p + 2
= O(log log 3β).

Proof. The Euler product of the generating function of µ2(n)d(n) is

∏
p

(
1 +

2

ps

)
=

ζ2(s)

ζ2(2s)

∏
p

1 + 2
ps(

1 + 1
ps

)2 .
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Thus

∞∑
n=1

(n,β)=1

µ2(n)d(n)

ns
=

ζ2(s)

ζ2(2s)

∏
p|β

(
1

1 + 2
ps

) ∏
p

(
1 − 1

(ps + 1)2

)

=
ζ2(s)

ζ2(2s)
Qβ(s)Q(s),

where

Qβ(s) =
∏
p|β

(
1

1 + 2
ps

)
=

∏
p|β

(
1 + O

(
1

pσ

))
= O(d(β)) for σ ≥ ε,

and

Q(s) =
∏

p

(
1 − 1

(ps + 1)2

)
=

∏
p

(
1 − 1

p2s
+ O

(
1

p3σ

))
� 1

|ζ(2s)| �
1

2σ − 1
,

when 1/2 < σ � 1.
By Perron’s formula

∑
n≤x

(n,β)=1

µ2(n)d(n) = (2πi)−1

∫ 1+ε+iT

1+ε−iT
Qβ(s)Q(s)

ζ2(s)

ζ2(2s)

xs

s
ds + O

(
x1+ε

T
+ xε

)
.

Moving the line of integration to the line σ = 1/2+(log x)−1 and setting T = x, the
horizontal parts of integration give O(d(β)xε) and on the line σ = 1/2 + (log x)−1

the integral is O(d(β)x1/2 log5 x), since
∫ T

1
|ζ(σ + it)|2 dt = O(T log T ), when 1/2 ≤

σ ≤ 1.
The main terms, which come from the double pole at s = 1, can be calculated by

using the following Laurent series:

xs

s
= x + (x log x − x)(s − 1) + O

(
(s − 1)2

)
,

ζ2(s)

ζ2(2s)
=

1

ζ2(2)
(s − 1)−2 +

2γ − 4 ζ′
ζ
(2)

ζ2(2)
(s − 1)−1 + O (1) ,

Q(s) = Q(1)

(
1 + 2

∑
p

log p

(p + 1)(p + 2)
(s − 1)

)
+ O

(
(s − 1)2

)
,

Qβ(s) = Qβ(1)


1 + 2

∑
p|β

log p

(p + 2)
(s − 1)


 + O

(
(s − 1)2

)
.
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Hence, by the theorem of residues, the main terms are

Q(1)Qβ(1)

ζ2(2)
x log x

+
Q(1)Qβ(1)

ζ2(2)
x


2γ − 1 − 4

ζ ′

ζ
(2) +

∑
p

2 log p

(p + 1)(p + 2)
+

∑
p|β

2 log p

p + 2


 .

�

Lemma 3.14. Let k be a natural number. Then∑
n≤Y

(n,2α)=1

Gk2(n)d(n)√
n

=A3(α, k)Y log Y + A4(α, k)Y

+ O
(
Y 1/2(log Y )5d(αk)d3(k)

)
,

where A3(α, k) = O(log log 3k) and A4(α, k) = O ((log log 3αk)2) .

Proof. Let n = n1n2, where (n1, k) = 1 and n2 is divisible only by primes dividing
k. Hence (n1, n2) = 1 and

∑
n≤Y

(n,2α)=1

Gk2(n)d(n)√
n

=
∑

n2≤Y
(n2,2α)=1

Gk2(n2)d(n2)√
n2

∑
n1≤ Y

n2
(n1,2αk)=1

Gk2(n1)d(n1)√
n1

.

Since Gk2(n1) = µ2(n1)
√

n1 by Lemma 2.2, the second sum is by Lemma 3.13

∑
n1≤ Y

n2
(n1,2αk)=1

µ2(n1)d(n1) = A1(2αk)
Y

n2

log
Y

n2

+ A2(2αk)
Y

n2

+ O

((
Y

n2

)1/2 (
log

Y

n2

)5

d(αk)

)
,

where A1(2αk) and A2(2αk) are as in Lemma 3.13. Therefore, it is enough to
estimate the sums

S1 =
∑

n2≤Y
(n2,2α)=1

Gk2(n2)d(n2)

n
3/2
2

, S2 =
∑

n2≤Y
(n2,2α)=1

Gk2(n2)d(n2) log n2

n
3/2
2

and S3 =
∑

n2≤Y
(n2,2α)=1

Gk2(n2)d(n2)

n2

log5 Y

n2

.
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By Lemma 2.2 the generating function of Gk2(n2)d(n2)χ
(2α)
0 (n2) is

F (s) =
∏
pa||k
p�2α

(
1 +

ϕ(p2)d(p2)

p2s
+ · · · + ϕ(p2a)d(p2a)

p2as
+

p2a+1/2d(p2a+1)

p(2a+1)s

)

=
∏
pa||k
p�2α

(
1 +

(
1 − 1

p

) (
3

p2(s−1)
+ · · · + 2a + 1

p2a(s−1)

)
+

2a + 2

p(2a+1)(s−1)p1/2

)

=
∏
pa||k
p�2α

(
1 +

3(1 − p−1)

p2(s−1) − 1
+

p − 1

(p2(s−1) − 1)2

(
2

p
+

p2(s−1) + 1

p2(s−1)a+1

)

+
2a + 2

p(2a+1)(s−1)

(
1

p1/2
− (p − 1)ps−2

p2(s−1) − 1

))
,

for s 
= 1, and

F (1) =
∏
pa||k
p�2α

(
1 +

(
1 − 1

p

)
(a + 2)a +

2a + 2

p1/2

)
.

Since Gk2(n2) is always non-negative, we may estimate the sum S3 by using the
generating function:

S3 ≤ F (1) log5 Y ≤ log5 Y
∏
pa||k

((a + 1)(a + 1) + 2(a + 1))

≤ log5 Y
∏
pa||k

(a + 1)3 = O
(
d3(k) log5 Y

)
,

which gives the error term O
(
Y 1/2(log Y )5d(αk

)
d3(k)).

The sum S1 can be written in the form

∑
n2≤Y

(2α,n2)=1

Gk2(n2)d(n2)

n
3/2
2

=
∞∑

n2=1
(2α,n2)=1

Gk2(n2)d(n2)

n
3/2
2

+ O


 ∑

n2>Y
(2α,n2)=1

Gk2(n2)d(n2)

n
3/2
2


 .

Since ∑
n2>Y

(2α,n2)=1

Gk2(n2)d(n2)

n
3/2
2

≤ 1

Y 1/2

∑
n2>Y

(2α,n2)=1

Gk2(n2)d(n2)

n2

≤ F (1)

Y 1/2
,

we have

S1 = F (3/2) + O

(
d3(k)

Y 1/2

)
,
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where
F (3/2) =

∏
pa||k
p�2α

(
1 +

3

p
+

2

p(p − 1)
− p + 1

pa+1(p − 1)

)
,

and the error multiplied by Y log Y is still dominated by O(Y 1/2(log Y )5d(αk)d3(k)).
Hence the coefficient of Y log Y is

A3(α, k) : = A1(2αk)F (3/2)

�
∏
p|k
p�2α

p

p + 2

∏
pa||k
p�2α

(
1 +

3

p
+

2

p(p − 1)
− p + 1

pa+1(p − 1)

)

�
∏
p|k
p�2α

(
p

p + 2
· p2 + 2p − 1

p(p − 1)

)
�

∏
p|k
p�2α

(
1 +

1

p

)
� log log 3k.

The sum S2 can be estimated similarly. When we differentiate the function
F (3/2 − s) and set s = 0, we get a sum with the factor log n2. Let us write
F (s) =

∏
Fp(s), then

S2 =
d
ds

F

(
3

2
− s

)∣∣∣∣
s=0

+ O

(
d3(k) log Y

Y 1/2

)

= −F

(
3

2

) ∑
pa||k
p�2α

F ′
p(3/2)

Fp(3/2)
+ O

(
d3(k) log Y

Y 1/2

)
,

where

F ′
p

(
3

2

)
= − 2 log p

(p − 1)2

(
3p + 1 − 1

pa+1

(
2(a + 1)p2 + 3p − (2a + 1)

)) � log p

p
,

and the contribution of the error is dominated by O
(
Y 1/2(log Y )5d(αk)d3(k)

)
.

Hence the coefficient of Y is

A4(α, k) : = A1(2αk)
d
ds

F

(
3

2
− s

)∣∣∣∣
s=0

+ A2(2αk)F (3/2)

= A3(α, k)


−

∑
pa||k
p�2α

F ′
p(3/2)

Fp(3/2)
+ B(2αk)


 � (log log 3k)(log log 3αk),

where B(2αk) is as in Lemma 3.13. �
Remark 3.15. If the sum over n is taken just over the square terms, then the sum
over n1 is one, and there are less than d(k2) terms in the sum over n2, and each
term is

Gk2(n2)d(n2)√
n2

≤ ϕ(n2)d(n2)√
n2

≤ d(n2)
√

n2 � Y 1/2+ε.
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The contribution of the square terms is therefore O(Y 1/2+εkε), so Lemma 3.14 holds,
with a slightly weaker error term, even if the square terms are left out.

Remark 3.16. Although, the coefficients A3(α, k) and A4(α, k) are of the size of
some log log factors, they are nevertheless of constant size in mean over k (or over
odd k’s). Indeed,∑

k≤K

|A3(α, k)| �
∑
k≤K

∏
p|k

(
1 +

1

p

)
=

∑
k≤K

∑
n|k

µ2(n)

n
�

∑
n≤K

µ2(n)

n
· K

n
� K.

Similarly,

∑
k≤K

|A4(α, k)| �
∑
k≤K


∏

p|k

(
1 +

1

p

) 
∑

p|k

log p

p
+

∑
p|2αk

log p

p







�
∑
k≤K

∑
n|k

µ2(n)

n


∑

p|k

log p

p
+ log log 3α




�
∑

n,p≤K

µ2(n)

n

log p

p

K

[n, p]
+ log log 3α

∑
n≤K

µ2(n)

n

K

n
,

where [n, p] is the least common multiple of n and p, which is np or n. Since in both
cases the sums over n and p converge, we have∑

k≤K

|A4(α, k)| � K log log 3α.

Let us now return to the sum Mα(k) defined in (3.12). By Lemma 3.14 and
Remark 3.15 we obtain by using partial summation that

Mα(k) =
∑
n≤Y

(2α,n)=1
n�=�

Gk2(n)d(n)√
n

H̃

(
k2x

n

)
1

n3/2

=
(
A3(α, k)Y log Y + A4(α, k)Y + O

(
Y 1/2+εd(αk)d3(k)

))
H̃

(
k2x

Y

)
1

Y 3/2

−
∫ Y

1

(
A3(α, k)y log y + A4(α, k)y + O

(
y1/2+εd(αk)d3(k)

))(
H̃

(
k2x

y

)
1

y3/2

)′
dy.

Integration by parts gives

Mα(k) =

∫ Y

1

A3(α, k) log y + A3(α, k) + A4(α, k)

y3/2
H̃

(
k2x

y

)
dy

+ O

(
UY εd(αk)d3(k)

k2x

)
,

(3.17)

where the error term is estimated using (3.8) for j = 1 or 2.
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Let A(k, y, α) = A3(α, k) log y + A3(α, k) + A4(α, k). Using (3.8) when k >
(Uy/x)1/2 (j = 1), and (3.9) for smaller k, we get

∞∑
k=1
2�k

A(k, y, α)H̃

(
k2x

y

)

=
y

2πx

∑
k≤
√

Uy/x

2�k

A(k, y, α)

k2

(
1 − cos

(
2πk2x

y

)
+ sin

(
2πk2x

y

))

+ O

(( y

Ux

)1/2
(

Uyα

x

)ε)
.

Actually, the summation on the right can be taken over all values of k with the same
error. Since the summation over k in the error term of (3.17) converges, we have

∞∑
k=1
2�k

Mα(k) =
1

2πx

∫ Y

1

1√
y

∞∑
k=1
2�k

A(k, y, α)

k2

(
1 − cos

(
2πk2x

y

)
+ sin

(
2πk2x

y

))
dy

+ O

(
UY εd(α)

x

)
+ O

((
1

Ux

)1/2 (
UY α

x

)ε
)

.

The integral can be extended to be from zero to Y with an error O(1/x), hence

(3.18) x
∞∑

k=1
2�k

Mα(k) = Cα (x, Y )
√

x + O

(( x

U

)1/2−ε

(αY )ε

)
+ O(UY εαε),

where we define

Cα(x, Y ) =
1

2π

∫ Y/x

0


 1√

y

∞∑
k=1
2�k

A(k, xy, α)

k2

(
1 − cos

(
2πk2

y

)
+ sin

(
2πk2

y

))
 dy

for x > 1.

Remark 3.19. For k2 > y the values of the trigonometric functions in Cα(x, Y ) are
strongly oscillating, so we approximate them trivially to be � 1, but for k2 < y the
integrand is more stable and the trigonometric functions can estimated with their
Taylor series. Since x > 1 and by Remark 3.16 A(k, xy, α) is O(log xy + log log 3α)
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in mean over k, we have

Cα(x, Y ) �
∑

k≤
√

Y/x

1

k2

(∫ k2

0

|A(k, xy, α)|
y1/2

dy +

∫ Y/x

k2

|A(k, xy, α)|
y1/2

(
k4

y2
+

k2

y

)
dy

)

+
∑

k>
√

Y/x

1

k2

∫ Y/x

0

|A(k, xy, α)|
y1/2

dy

�
∑

k≤
√

Y/x

|A(k, Y, α)|
k

+

(
Y

x

)1/2 ∑
k>
√

Y/x

|A(k, Y, α)|
k2

� log
Y

x
(log Y + log log 3α) .

3.4. Error terms. When we started to estimate (3.12) instead of (3.11), we made
errors of two kind. First, an error was caused by the smoothing, and then, by the
approximation of the sums St,n in terms of the sum Sn or S

(odd)
n .

3.4.1. The error from the approximation. As mentioned in Section 3.2, all the error
terms arising from the transformations from St,n to Sn or S

(odd)
n are quite similar.

The term containing R0(X,n) is almost the same as the one treated in [9], and the
others can be estimated similarly. Here we handle in detail the term

(3.20)
∑
n≤Y

(n,2α)=1
n�=�

d(n)

n
R−4(X,n) =

X

2

∞∑
k=−∞
k �=�

χ−4(k)
∑
n≤Y

(n,2α)=1
n�=�

d(n)

n2
Gk(n)H̃

(
kX

4n

)
.

Truncating the k-series at k = [Y ], estimating trivially Gk(n) � n, and using
(3.8), the tail part of (3.20) is seen to be

(3.21) � X
∑
|k|>Y

∑
n≤Y

d(n)nj−1U j−1

kjXj
�

(
U

X

)j−1

Y 1+ε,

which may be ignored by choosing suitable large j, and assuming that U < Xδ1 and
Y < Xδ2 for some positive constants δ1 < 1 and δ2 > 1. To estimate the sum over
smaller values of k, we start with the sum

(3.22)
∑
n≤x

(2α,n)=1
n�=�

d(n)√
n

Gk(n),

where x ≤ Y, and write n = n1n2, where n1 and n2 are odd, (n1, k) = 1, and all
prime divisors of n2 divide k. Since Gk(n) is multiplicative in n, we have Gk(n) =
Gk(n2)Gk(n1) and by Lemma 2.2 Gk(n1) = µ2(n1)

√
n1

(
k
n1

)
. Furthermore, Gk(n2) =
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0 unless n2 | k2, and in any case |Gk(n2)| ≤ n2. Therefore, (3.22) is

�
∑
n2|k2

n2≤x
(n2,2α)=1

d(n2)
√

n2

∣∣∣∣∣∣∣∣
∑

n1≤x/n2

(n1,2α)=1

d(n1)µ
2(n1)

(
k

n1

)∣∣∣∣∣∣∣∣
+ x1/2+εd(k).

The last term comes from the extra terms n = �, since in that case the sum over
n1 is one.

The inner sum above is similar to the sum studied in Lemma 3.13. Now the
related generating function is∏

p>2

(
1 + 2χ(p)p−s

)
=

L2(s, χ)

L2(2s, χ)

∏
p

1 + 2χ(p)p−s

(1 + χ(p)p−s)2

(
1 + χ(2)21−s

)−1
,

where χ = χkα2 if k ≡ 1 (mod 4), and χ = χ−kα2χ−4 if k ≡ 3 (mod 4). Thus
∞∑

n=1
(n,2)=1

µ2(n)d(n)χ(n)

ns
=

L2(s, χ)

L2(2s, χ)
Q(s, k, α),

where

|Q(s, k, α)| �
∏
p�kα

∣∣∣∣1 − 1

p2s
+ O

(
1

p3σ

)∣∣∣∣
�

∏
p

(
1 +

1

p2σ

)
� |ζ(2σ)| � 1

2σ − 1
,

when σ ≥ 1/2 + ε. Since the L-function is regular at s = 1, no main term appears
when Perron’s formula is applied and the integration is moved to the line σ = 1/2+ε.

When σ > 1/2, (2.5) gives by convexity that L2(σ + iT, χ) � αε(kT )1−σ+ε, and
(L2(2s, χ))

−1 � (σ − 1)−1 which means that the integrand and hence also the
horizontal parts of integration are

� (αkT )ε

(
x

n2T
+

(
xk

n2T

)1/2
)

.

Since x and k are at most Y , we get by choosing T = Y that

∑
n1≤x/n2

(n1,2α)=1

µ2(n1)d(n1)

(
k

n1

)
�

(
x

n2

)1/2+ε
(∫ Y

−Y

∣∣L(1
2

+ ε + it, χ)
∣∣2

|1/2 + ε + it| dt + (Y kα)ε

)
.

Hence (3.22) is
� x1/2+εkε (I(Y, χ) + (Y α)ε) ,
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where I(Y, χ) is the above integral. Now summing by parts and using (3.8), with
j = 1 or 2, for the function H̃, we have

X
∑
n≤Y

(n,2α)=1
n�=�

d(n)

n2
Gk(n)H̃

(
kX

4n

)

� X(kα)ε (I(Y, χ) + Y ε)

(
Y ε

Y

∣∣∣∣H̃
(

kX

4Y

)∣∣∣∣ +

∫ Y

1

y1/2+ε

∣∣∣∣
(

H̃

(
kX

4y

)
1

y3/2

)′∣∣∣∣ dy

)

� (I(Y, χ) + Y ε)

k
U(Y kα)ε.

(3.23)

Summing by parts and using (2.6), which holds also for σ > 1/2 by convexity, we
get

(3.24)
∑
|k|≤Y

2�k

I(Y, χ) + Y ε

k1−ε
�

∑′

|k|≤Y
k≡1 (mod4)

I(Y, χ) + Y ε

k1−ε
+

∑′

|k|≤Y
k≡3 (mod4)

I(Y, χ) + Y ε

k1−ε
� Y ε.

Hence equations (3.21), (3.23) and (3.24) show that (3.20) is

(3.25) � U(Y α)ε.

3.4.2. The error from the smoothing. The error caused by the use of a smooth weight
function appears in the q-intervals [0, X

U
] and [X − X

U
, X]. Let us consider the sum

∑
n≤Y

(n,2α)=1
n�=�

d(n)

n

∣∣∣∣∣∣
∑

X−X
U
≤q≤X

χt(q)

(
q

n

) (
1 − H

( q

X

))∣∣∣∣∣∣ ,

which is by partial summation

� max
X−X

U
≤η≤X

∑
n≤Y

(n,2α)=1
n�=�

d(n)

n

∣∣∣∣∣∣
∑

X−X
U
≤q≤η

χt(q)

(
q

n

)∣∣∣∣∣∣ .

The other interval can be treated similarly.
By the classical Pólya–Vinogradov inequality we have

∑
n≤Z

(n,2α)=1
n�=�

d(n)

n

∣∣∣∣∣∣
∑

X−X
U
≤q≤η

χt(q)

(
q

n

)∣∣∣∣∣∣ �
∑
n≤Z

(n,2α)=1
n�=�

d(n)

n1/2
log n � Z1/2+ε.
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On the other hand, by Corollary 2.9,

∑
n≤x

(n,2α)=1
n�=�

∣∣∣∣∣∣
∑

X−X
U
≤q≤η

χt(q)

(
q

n

)∣∣∣∣∣∣ �
∑

j≤x1/2

(j,2α)=1

∑
1<n≤x/j2

(n,2α)=1
µ2(n)=1

∣∣∣∣∣∣∣∣∣
∑

X−X
U
≤q≤η

(q,j)=1

χt(q)

(
q

n

)
∣∣∣∣∣∣∣∣∣

�
∑

j≤x1/2

(j,2α)=1

j−1
√

x
√

(η + x/j2)(ηx)εXU−1

� √
x
√

(η + x)XU−1(ηx)ε.

Restricting n from below by Z, partial summation gives

∑
Z<n≤Y
(n,2α)=1

n�=�

d(n)

n

∣∣∣∣∣∣
∑

X−X
U
≤q≤η

χt(q)

(
q

n

)∣∣∣∣∣∣

�
(

(η + Y )X

Y U

)1/2

(XY )ε +

∫ Y

Z

(
y(η + y)X

U

)1/2
(Xy)ε

y2
dy

�
(

ηX

ZU

)1/2

Y ε,

assuming that Z < X < Y. Combining these results and choosing Z = XU−1/2, the
error induced by the smoothing is seen to be

(3.26) � Z1/2+ε +
X√
ZU

Y ε � X1/2

U1/4
Y ε.

Gathering together all the error terms from (3.7), (3.18), (3.25) and (3.26), we
find three different shapes of the dominating error terms, namely

X

Y 1/2
Y εd2(α),

X1/2

U1/4
Y ε, and U(Y α)ε.

The last two error terms are balanced by choosing U = X2/5, which means that Y
must be greater than X6/5, in order to obtain the error term

O(X2/5+εαε).

Here the order of Y is quite flexible, as far as it is less than some fixed power of X,
and hence log Y � log X.

3.5. Main theorem. In the preceding sections, we have studied the mean square
over even characters with odd modulus. Similar results can be obtained for the
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mean squares over other types of real characters. For example, the mean square
over even positive discriminants is

∑′

1<q≤X
q≡0(4)

L2(1, χq) =
∞∑

n=1

d(n)

n

∞∑
i=1




∑
q≤X/4i

2�q
q �=�

(
4q

n

)
+

∑
q≤X/(2·4i)

2�q

(
8q

n

)

 .

Here it is enough to study the case i = 1, since the other cases follow by substituting
X/4i for X. The square terms in the n-series give the first main term, the extra
terms from the possible square values of q give the B-part (that is, the terms with
coefficients Bi(α)), and the tail part of the n-series can be estimated by Lemma 3.2.
Since here n is automatically odd, the smoothed sums over q reduce to the sum of
terms S0,n(X/4) or S0,n(X/8), and the character χ8(n) can be included to Gk(n) by
changing a bit the error term R0(X/8, n).

For the sum over negative odd discriminants, the B-part does not appear, and
the smoothed sum is

∞∑
q=1

χt(−q)

(−q

n

)
H

( q

X

)
,

which gives us sums similar to Sn(x) and S
(odd)
n (x) except that H̃(ξ) is replaced by

H̃(−ξ). This leads to the function

1

2π

∫ Y/x

0

(
1√
y

∑
k

A(k, xy, α)

k2

(
sin

(
2πk2

y

)
−

(
1 − cos

(
2πk2

y

))))
dy

instead of Cα(x, Y ), with k running over all or only odd positive integers. This is,
however, of the same order as Cα(x, Y ). The negative even discriminants can be
treated analogously.

Moreover, the appearing error terms are similar to those studied earlier, and since
the remaining ν-sums converge, we have the following general theorem.

Theorem 3.27. Let α be odd. Then∑′

q

L2(1, χqχ
(α)
0 ) = A(α)X + Pα(X)X1/2 + O(X2/5+εαε),

where the summation is taken over all positive discriminants not exceeding X, A(α)
is a constant depending only on α, and Pα(X) � log2 X. The same result holds also
for the sum over negative discriminants −X ≤ q < −1.

Especially, for the mean square over even characters with odd modulus we have:
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Theorem 3.28. Let α be odd and X6/5 ≤ Y ≤ Xδ, for some constant δ. Then∑
1<q≤X
q≡1 (4)
q �=�

L2(1, χqχ
(α)
0 ) = A(α)X + Pα(X)X1/2 + O(X2/5+εαε),

where

A(α) =
5

9

∑
(n,α)=1

d(n2)ϕ(n)

n3

and

Pα(X) =c1Cα(X,Y ) + c2C
(odd)
α

(
X

4
, Y

)
+ c3C

(odd)
α

(
X

8
, Y

)
− B1(α) log2 Y − B2(α) log Y − B3(α).

Here c1, c2 and c3 are constants and

Cα(x, Y ) =
1

2π

∫ Y/x

0

1√
y

∞∑
k=1

A(k, xy, α)

k2

(
1 − cos

(
2πk2

y

)
+ sin

(
2πk2

y

))
dy,

� log
Y

x
(log Y + log log 3α),

where
A(k, xy, α) = A3(α, k)(log xy + 1) + A4(α, k),

and A3(α, k) and A4(α, k) are as in Lemma 3.14. The function C
(odd)
α (x, Y ) is similar

except that the sum over k is restricted to odd numbers. The coefficients Bi(α) are

Bi(α) =
i−1∑
j=0

bij
dj

dsj


∏

p|α

(
1 − (p − 1)(2ps − 1)

p2s+1 − 2ps + 1

)


∣∣∣∣∣∣
s=1

,

where the bij are constants. Especially, B1(α) < 1, B2(α) � log log 3α and B3(α) �
(log log 3α)2 .

While referring later on to the function Pα(X) we will speak about C- and B-
parts, where C-part refers to the terms Cα(x, Y ) and C

(odd)
α (x, Y ), and B-part to

the terms Bi(α).

Remark 3.29. As mentioned earlier, the parameter Y can be chosen quite freely. We
have also shown that the sizes of the B- and C-parts are O(log2 Y ). We may now
wonder whether our sum depends on Y ? Of course, this cannot be the case, since
Y is just an extra parameter which we used to derive our formula, and it does not
appear in the original sum (3.1).

The answer is that there has to be some connection between the B- and C-parts,
when q is positive. Indeed, they necessarily compensate each other as both parts
depend on Y but their sum does not. When q is negative, the situation is a bit
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different since there is no B-part. Hence the balance must be obtained inside the C-
part. This happens, because in this case the sum over small values of k in Cα(x, Y )
and the tail part of the k-series have opposite signs, as mentioned in Section 3.2.

Remark 3.30. The above ideas can be also used to study the sum over the values
q ≡ 3 (mod 4), which appears when the sum over primitive characters χ4q is studied
in Chapter 4.

4. The mean square of primitive quadratic

Dirichlet L-functions at 1

In the preceding chapter, a formula for the mean square of Dirichlet L-function
over all non-trivial real characters was developed. However, in many applications
of L-functions, the formula over primitive characters is needed instead. The sum
over primitive characters can be sieved out from the sum over all real characters by
using the Möbius function µ.

4.1. Mean value estimate for the Möbius function. Let M(X) =
∑

n≤X µ(n).
The exact order of the function M(X) is not known. A trivial estimate is |M(X)| ≤
X and the Riemann hypothesis is equivalent to the estimate M(X) � X1/2+ε. The
best known result is

(4.1) M(X) � X exp
(
−C log3/5 X(log log X)−1/5

)
,

where C is a suitable constant. Hence we may write M(X) � Xω(X), where ω(X)
is of the same form as the exponential function above, which tends to zero when X
goes to infinity. Note that all positive powers of log X can be embedded into the
term ω(X) by changing the constant C.

The proof for (4.1) is based on Perron’s formula. Since the generating function
of µ is ζ−1(s), Perron’s formula gives that

M(X) =
∑
n≤x

µ(n) = (2πi)−1

∫ b+iT

b−iT

xsds

sζ(s)
+ O(xT−1 log x)

= (2πi)−1

(∫ a−iT

b−iT
+

∫ a+iT

a−iT
+

∫ b+iT

a+iT

)
xsds

sζ(s)
+ O(xT−1 log x),

where b = 1 + (log x)−1 and a = 1 − c(log T )−2/3(log log T )−1/3 with a suitable
positive constant c. For σ ≥ a,

1/ζ(s) = O
(
(log T )2/3(log log T )1/3

)
,

so (4.1) follows by choosing T = exp
(
log3/5 x(log log x)−1/5

)
. For more details, see

[19]. This estimate depends vitally on the known zero-free region for the Riemann
zeta-function since the integration can be safely moved to the left only if we are
sure that there are no zeros inside the region. The largest known zero-free region
of the Vinogradov–Korobov type is due to Ford [13, 14] which gives the constants
C = 0.2098 and c = 1/57.54 above.
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Similar ideas can be used to estimate the sum∑
y<n≤x

µ(n)f(n).

If f(n) is a multiplicative function, then the generating function of µ(n)f(n) is

F (s) =
1

ζ(s)

∏
p

(
1 +

1 − f(p)

ps − 1

)
.

Now if the product over primes converges this generating function has similar prop-
erties as the function ζ−1(s) when Perron’s formula is applied.

4.2. Restriction to primitive characters. For a non-principal primitive char-
acter χq, either q ≡ 1 (mod 4) and q 
= 1 is squarefree, or q = 4D and D ≡ 2, 3
(mod 4) is squarefree. Hence∑∗

q≤X

L2(1, χq) =
∑

1<q≤X
q≡1(4)

µ2(q)L2(1, χq)+
∑

q≤X/4
q≡3(4)

µ2(q)L2(1, χ4q)+
∑

q≤X/8
2�q

µ2(q)L2(1, χ8q),

and similarly for negative discriminants. Since µ2(q) =
∑

α2|q µ(α), it remains to
study the sum
(4.2)

∑
1≤α≤X1/2

2�α

µ(α)




∑
1<q≤ X

α2

q≡1(4)
q �=�

L2(1, χqα2) +
∑

1<q≤ X
4α2

q≡3(4)

L2(1, χ4qα2) +
∑

1<q≤ X
8α2

2�q

L2(1, χ8qα2)




All these sums can be estimated by using the ideas presented in Chapter 3. Below
the sum over q ≡ 1 (mod 4) is studied in detail, the others are obtained similarly.

If α is near X1/2, then the sum over q is very short. Since the L-functions are
O(1) in mean square, we get by changing the order of the summations, for the values
X0 < α ≤ X1/2, that∑

X0<α≤X1/2

2�α

µ(α)
∑

1<q≤X/α2

q≡1(4)
q �=�

L2(1, χqα2)

=
∑

1<q≤X/X2
0

q≡1(4)
q �=�

L2(1, χq)
∑

X0≤α≤
√

X/q

2�α

µ(α)
∏
p|α

(
1 − χq(p)

p

)2

�
√

X

X2
0

√
Xω(X0) � X

X0

ω(X0),
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since (4.1) holds also for this slightly modified sum over α as we observed in the
remark at the end of preceding section.

For the values α ≤ X0 < X1/2 we follow the proof of Theorem 3.28. Clearly the
first main term is

X
∑

1≤α≤X0
2�α

µ(α)A(α)

α2
= A∗X + O


X

∑
α>X0
2�α

µ(α)A(α)

α2




= A∗X + O

(
X

X0

ω(X0)

)
,

(4.3)

where A(α) = O(1) is a product over the prime factors of α, and A∗ is a constant.
The multiplier of X1/2 is determined in the next section.

4.3. The second main term in the primitive case. When the ideas of the proof
of Theorem 3.28 are applied to the first sum over q in (4.2), for α ≤ X0 < X1/2, the
multiplier of X1/2 is seen to be

(4.4)
∑

2�α≤X0

Pα

(
X

α2

)
µ(α)

α
.

Let us assume that X0 > X1/4, and rewrite (4.4) as

(4.5)
∑

2�α≤X1/4

Pα

(
X

α2

)
µ(α)

α
+

∑
0≤i	log(X0/X1/4)

∑
2�α

2iX1/4<α≤2i+1X1/4

Pα

(
X

α2

)
µ(α)

α
,

where the last sum may be incomplete. In order to apply the ideas of Chapter 3
we choose Y = X1/4 · (X/α2) in the first sum in (4.5), and show that it will give
a main term of the order log X. The second term in (4.5) consist of dyadic sums
where X1 < α ≤ 2X1, and X1 = 2iX1/4. Choosing Y = (X/X2

1 )1/5 · X/α2, we are
going to see that each of these dyadic sums is small, and hence the second term in
(4.5) will give an error term.

The function Pα consists of two parts; the B-part, appearing when q is positive,
is a sum of the terms

Bi(α) log3−i Y, for i = 1, 2, 3,

and the C-part is written in terms of

Cα

(
X

α2
, Y

)
, C(odd)

α

(
X

4α2
, Y

)
or C(odd)

α

(
X

8α2
, Y

)
.

Terms with the multipliers Bi(α) appeared when the trivial characters were added
to our sum. Recall from Lemma 3.5 that these coefficient functions are B1(α) =
b10Qα(1), B2(α) = b21Q

′
α(1)+b20Qα(1) and B3(α) = b32Q

′′
α(1)+b31Q

′
α(1)+b30Qα(1),



40 HENRI VIRTANEN

where the bij are constants, and Qα(r) is a product over the prime factors of α. So
we need estimates for the sums

Σ1(x) =
∑

2�α≤x

Qα(1)µ(α)

α
, Σ2(x) =

∑
2�α≤x

Q′
α(1)µ(α)

α
,

Σ3(x) =
∑

2�α≤x

Q′′
α(1)µ(α)

α
, Σ4(x) =

∑
2�α≤x

Qα(1)µ(α) log α

α
,

Σ5(x) =
∑

2�α≤x

Qα(1)µ(α) log2 α

α
, Σ6(x) =

∑
2�α≤x

Q′
α(1)µ(α) log α

α
.

Let us extend the definition of Qα(r) by the convention Qα(r) = 0 if α is even.
Then the generating function related to the sum Σ1(x) is

(4.6)
∞∑

α=1

µ(α)Qα(r)

αs+1
=

1

ζ(s + 1)

∏
p

(
1 +

1 − Qp(r)

ps+1 − 1

)
,

when r = 1. Let Q(r, s) be the above product over primes. The series (4.6) converges
for �(r) > 0 and �(s) > 0, and it can be differentiated with respect to r. So

(4.7)
∞∑

α=1

µ(α)Q′
α(r)

αs+1
=

Q(r, s)

ζ(s + 1)

∑
p

Q′
p(r)

Qp(r) − ps+1

and
∞∑

α=1

µ(α)Q′′
α(r)

αs+1
=

Q(r, s)

ζ(s + 1)

(( ∑
p

Q′
p(r)

Qp(r) − ps+1

)2

+
∑

p

(
Q′′

p(r)

Qp(r) − ps+1
− Q′

p(r)
2

(Qp(r) − ps+1)2

) )
.

(4.8)

Setting r = 1 in (4.7) and (4.8) we obtain the generating functions related to the
sums Σ2(x) and Σ3(x).

By the estimates of Qα(1), Q′
α(1) and Q′′

α(1), presented at the end of the proof of
Lemma 3.5, we see that

Q(1, s) =
∏

p

(
1 + O

(
1

pσ+2

))

and the sums over p in (4.7) or (4.8) are of the order

∑
p

log p

pσ+2
or

∑
p

log2 p

pσ+2
.
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Hence these sums converge in the region σ > −c(log T )−2/3(log log T )−1/3, and by
Perron’s formula Σi(x) = O(ω(x)) for i = 1, 2, 3. By partial summation

Σ4(x) = lim
Z→∞

(
Σ4(Z) −

(
Σ1(Z) log Z − Σ1(x) log x −

∫ Z

x

Σ1(t)t
−1dt

))

= a4 + O(ω(x)) + O

(∫ ∞

x

ω(t)t−1dt

)

where a4 = limZ→∞ Σ4(Z) is a constant. Since
∫ ∞

x
ω(t)t−1dt � ∑∞

i=0 ω(2ix) �
ω(x), we have Σ4(x) = a4 + O(ω(x)). Similarly Σ5(x) = a5 + O(ω(x)) and Σ6(x) =
a6 + O(ω(x)).

Remark 4.9. Differentiating the series (4.6) and (4.7) with respect to s would give us
the generating functions related to the sums Σi, when i = 4, 5, 6. These generating
functions have no zeros nor poles at s = 0, so when Perron’s formula is used the
pole, coming from the term s−1, gives the constant main terms a4, a5 and a6.

In the dyadic sums on the left in (4.5), the contribution of the constants a4, a5

and a6 cancels out, and since from these main terms only the one coming from Σ4

is multiplied by log X, the contribution of the B-part in (4.4) is

constant · log X + constant + O(ω(X)).

since the extra logarithmic functions can be embedded into the term ω(X).
Let us then consider the C-part. We start by studying the sums

Σ7(x, k) =
∑

2�α<x

µ(α)

α
A3(α, k), Σ8(x, k) =

∑
2�α<x

µ(α)

α
A4(α, k),

and Σ9(x, k) =
∑

2�α<x

µ(α)

α
A3(α, k) log α,

where A3(α, k) and A4(α, k) are as in Lemma 3.14. Let e = (α, k), then by the
proof of Lemma 3.14

A3(α, k) = A
∏
p|αk

p

p + 2

∏
pa||k
p�α

(
1 +

3

p
+

2

p(p − 1)
− p + 1

pa+1(p − 1)

)

= A

∏
p|α

p
p+2

∏
p|k

p
p+2∏

p|e
p

p+2

∏
pa||k

(
1 + 3

p
+ 2

p(p−1)
− p+1

pa+1(p−1)

)
∏

pa||k
p|e

(
1 + 3

p
+ 2

p(p−1)
− p+1

pa+1(p−1)

)

= A
∏
p|α

p

p + 2

∏
pa||k

(
1 + p+1

(p+2)(p−1)

(
1 − 1

pa

))
∏

p|e
pa||k

(
1 + p+1

(p+2)(p−1)

(
1 − 1

pa

)) ,
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where A is a constant. Hence

Σ7(x, k) = A
∑
e|k

∏
pa||k

(
1 + p+1

(p+2)(p−1)

(
1 − 1

pa

))
∏

p|e
pa||k

(
1 + p+1

(p+2)(p−1)

(
1 − 1

pa

)) ∑
2�α<x

(α,k)=e

µ(α)

α

∏
p|α

p

p + 2

= A
∑
e|k

µ(e)

∏
pa||k

(
1 + p+1

(p+2)(p−1)

(
1 − 1

pa

))
∏

p|e
pa||k

(
p + 2 + p+1

p−1

(
1 − 1

pa

)) ∑
2�α<x/e
(α,k)=1

µ(α)

α

∏
p|α

p

p + 2
.

The generating function related to the remaining α-sum is

1

ζ(s + 1)

∏
p

(
1 + O

(
1

pσ+2

)) ∏
p|k

(
1 + O

(
1

pσ+1

))
.

When Perron’s formula is applied this generating function acts like 1/ζ(s+1). Since
the products over the divisors of k are O(d(k)),

Σ7(x, k) �
∑
e|k

ω(1 + x/e)d(k) � ω(2 + x/k)d2(k).

However, Σ7(x, k) is of constant size in mean over k, like A3(α, k) (see Remark 3.16).
Similar arguments holds for A4(α, k). By definition A4(α, k) is

A3(α, k)


1

2

∑
pa‖k
p�2α

log p


3p + 1 − 1

pa

(
2p(a + 1) + 3 − 2a+1

p

)
p(p − 1)

(
p2 + 2p − 1 − p−1

pa

)

 + B + 2

∑
p|2αk

log p

p + 2


 ,

where B is a constant. Separating sums over α and k gives

A4(α, k) = A3(α, k)


∑

pa‖k
−

∑
p|e

pa‖k

+
∑
p|α

+
∑
p|k

−
∑
p|e

+ constant


 ,

where e = (α, k). For the sum over α, the only difference which appears compared
with the case of A3(α, k) is the sum with the extra factor

∑
q|α

q prime

log q
q+2

, but in this
case ∑

2�α<x

µ(α)

α

∏
p|α

p

p + 2

∑
q|α

log q

q + 2
= −

∑
q<x
q �=2

log q

(q + 2)2

∑
β<x/q

(β,2q)=1

µ(β)

β

∏
p|β

p

p + 2
.

The sum over β can be estimated by using the above ideas, and since the sum over
q converges rapidly, we get

Σ8(x, k) � ω(2 + x/k)d(k)2.
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By partial summation, we get

Σ9(x, k) =
∑
2�α

µ(α)A3(α, k) log α

α
+ O(ω(2 + x/k)d(k)2 log x)

=: c(k) + O(ω(2 + x/k)d(k)2 log x).

(4.10)

Hence
∑

2�α≤x

µ(α)

α
A(k, yX/α2, α) =Σ7(x, k)(log Xy + 1) + Σ8(x, k) − 2Σ9(x, k)

= − 2c(k) + O
(
ω (2 + x/k) d2(k)(log yX + 1)

)
.

(4.11)

Let us now consider the first sum in (4.5). Since also c(k) is of constant size in
mean over k, the contribution of the main term −2c(k) gives the term

−1

π

∫ X1/4

0

1√
y

∞∑
k=1

c(k)

k2

(
1 − cos

(
2πk2

y

)
+ sin

(
2πk2

y

))
dy

of the order O(log X), or a similar term where the sum over k is taken over odd
numbers.

The contribution of the error term of (4.11) is

∑
k≤X1/8

ω(X1/4/k)d2(k)

k2

(∫ k2

0

log yX + 1

y1/2
dy +

∫ X1/4

k2

log yX + 1

y1/2

(
k4

y2
+

k2

y

)
dy

)

+
∑

k>X1/8

ω(X1/4/k + 2)d2(k)

k2

∫ X1/4

0

log yX + 1

y1/2
dy

�
∑

k≤X1/8

ω(X1/4/k)d2(k) log(k2X)

k
+ X1/8 log X

∑
k>X1/8

ω(X1/4/k + 2)d2(k)

k2

�ω
(
X1/8

)
log2 X.

In the dyadic sums in the second terms of (4.5), the contribution of the constant
a9 cancels out, as in the B-part. Hence the contribution of the C-part in (4.4) is
a main term of order O(log X) plus an error term of order O(ω(X)). (The extra
logarithmic functions can be once more embedded into the term ω(X) by choosing
a suitable constant C.)

Hence, (4.4) is

(4.12) P ∗(X) + O(ω(X)),

where P ∗(X) � log X does not depend on X0.
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4.4. The mean square over primitive characters. By partial summation, it
is easy to see that the error term in (4.2) is O(X

2/5+ε
X

1/5−2ε
0 ). Choosing X0 =

X1/2ω(X)5/6 this and the error term from (4.3) and (4.12) give O(X1/2ω(X)1/6).
The exponent 1/6 can also be omitted by changing the constant C. Hence we have
proved the following theorem:

Theorem 4.13.∑∗

1<q≤X

L2(1, χq) = A∗X + P ∗(X)X1/2 + O
(
X1/2ω(X)

)
where A∗ is a constant, P ∗(X) � log X and ω(X) tends to zero as X tends to
infinity. A similar formula holds also when the summation is taken over fundamen-
tal discriminants −X ≤ q < 1 or over all fundamental discriminants |q| ≤ X.

Especially, for the mean square over odd positive fundamental discriminants we
have:

Theorem 4.14.∑∗

1<q≤X
q≡1 (4)
q �=�

L2(1, χq) = A∗X + P ∗(X)X1/2 + O
(
X1/2ω(X)

)
,

where

A∗ =
∑
2�α

µ(α)

α2

∑
(n,α)=1

d(n2)ϕ(n)

n3

is a constant,

P ∗(X) = B1 log X + B2 − c1C(X) − c2C
(odd)(X/4) − c3C

(odd)(X/8) � log X,

where the Bi and ci are constants and

ω(X) = exp(−C log3/5 X(log log X)−1/5),

with a suitable constant C. Here

C(x) =
1

π

∫ x1/4

0

1√
y

∞∑
k=1

c(k)

k2

(
1 − cos

(
2πk2

y

)
+ sin

(
2πk2

y

))
dy,

where

c(k) =
∑
2�α

µ(α)A3(α, k) log α

α
,

and A3(α, k) is as in Lemma 3.14. The function C(odd)(x) is similar except that the
sum over k is taken over odd numbers.

Corollary 4.15. If the Riemann hypothesis is true, then∑∗

1<q≤X

L2(1, χq) = A∗X + P ∗(X)X1/2 + O
(
X8/17+ε

)
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where A∗ and P ∗(X) are as in Theorem 4.14. A similar formula hold also for the
corresponding sum over negative discriminants.

Proof. The Riemann hypothesis is equivalent to the estimate

M(X) � X1/2+ε.

Assuming this, we see that the dominating error terms above are O(X
2/5+ε

X
1/5+ε
0 )

coming from the error term of Theorem 3.27, and O(XX
−3/2+ε
0 ) corresponding the

error term O(XX−1
0 ω(X0)). (The error term O(X3/8) corresponding the contribution

of the error term of (4.11) is clearly smaller.) Hence the assertion follows by choosing
X0 = X6/17. �

5. An application to algebraic number theory

We recall here basics of the ideal theory in quadratic fields as a preparation for
applications of Theorems 3.27 and 4.13 to the class numbers of imaginary quadratic
fields. More details can be found for example in [8].

5.1. Algebraic integers and ideal classes. A quadratic field Q(
√

D) is an ex-
tension over Q of degree two. All numbers of Q(

√
D) can be represented in the form

a + b
√

D, where the coefficients a and b are rational numbers. Rational integers in
Q(

√
D) are just the normal integers, and the integers of the field Q(

√
D) mean as

usual algebraic integers, that is, numbers which are roots of some monic polynomial
with rational integer coefficients.

The integers of the field Q(
√

D) form a ring O. Units of the field Q(
√

D) are
those integers which are invertible in O. In imaginary quadratic fields there are
only the trivial units ±1 when D < −4. In Q(

√−4) there are four units ±1,±i and
in Q(

√−3) six units ±1 and ±1±√−3
2

. In real quadratic fields there is a fundamental
unit η and all the other units are of the form ±ηn with n ∈ Z.

All integers in O can be represented in the form a+bρ, where a and b are rational
integers and

ρ =

{ √
D if D ≡ 2, 3 (mod 4),

1+
√

D
2

if D ≡ 1 (mod 4).

So {1, ρ} is the base of the ring O. Actually the same base generates the whole
field. With this base we can define the discriminant of the field

d = d(1, ρ) = det

(
1 ρ
1 ρ′

)2

=

{
D if D ≡ 1 (mod 4),
4D if D ≡ 2, 3 (mod 4),

where ρ′ is the conjugate of ρ.
For the ideals of O we can define an equivalence relation. Two ideals A and B

are said to be equivalent if they differ by a principal ideal, that is, if there exists a
principal ideal generated by an element a, such that

A = (a)B.
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This equivalence relation divides the ideals into equivalence classes. The number of
these classes is the class number h(d) of the field. Clearly this number is always at
least one and it can be shown that it is finite. The class number has a connection
to L-functions by the class number formula

h(d) =




√
d

2 ln η
L(1, χd) if d > 0,

w
√|d|
2π

L(1, χd) if d < 0,

where w is the number of units. The fundamental unit η is usually hard to determine,
but when d < −4 this formula is a practical device to calculate the number of classes.

These class number formulas and Theorem 4.13 give by partial summation the
following theorem:

Theorem 5.1. Letting −d run over negative fundamental discriminant, we have∑∗

1≤d≤X

h2(−d) = aX2 + b(X)X3/2 + O
(
X3/2ω(X)

)
,

where a is a constant, and b(X) is a function which can be made explicit and it
satisfies b(X) � log X, and ω(X) tends to zero when X tends to infinity.

Since the square divisors of D do not change the field Q(
√

D), the class number
h(d) of the field Q(

√
D) always refers to the fundamental discriminant d. However,

Theorem 3.27 can be applied to the mean square of the class number when confined
to the certain subrings of O.

5.2. Subrings On. Trivially the ring O contains Z as a subring. All other subrings
of O can be characterized as follows: A subring of O which does not consist only of
rational integers is a set of integers of O which are congruent to a rational integer
modulo some fixed positive rational integer n. This subring On is called an order.

As mentioned above, all integers were represented in the form a + bρ. Since the
integers in On must be congruent to some rational integer modulo n, they must
be in the set Z + nO. It can be shown that the numbers of On can be represented
in the form a + bnρ, so {1, nρ} is the base of On. Hence the discriminant of On is
d(1, nρ) = n2d. In this subring we define a similar equivalence relation and have a
similar structure of ideal classes as in O. The number of these classes h(n2d) is the
so-called relative class number.

Let us choose a unit η1 from the field Q(
√

D) as follows

η1 =




fundamental unit if d > 0,
−1 if d < −4,
i if d = −4,
1+i

√
3

2
if d = −3.
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The connection between the class number and the relative class number [8, p.217]
is

h(n2d) = h(d)λ(n)n
∏
p|n

(
1 − χd(p)

p

)
,

where λ(n) is the inverse of the smallest natural number ν such that ην
1 lies in On.

Especially for an imaginary quadratic field, λ(n) = 1 if d ≤ −4. Hence,

h(d) =

√|d|
π

L(1, χd),

where d ≤ −4 is a discriminant but not necessarily a fundamental one.
Now partial summation together with Theorem 3.27 gives the following result:

Theorem 5.2. Let h(−d) be a relative class number for a discriminant −d, then∑
1≤d≤X

h2(−d) = aX2 + b(X)X3/2 + O
(
X7/5+ε

)
,

where a is a constant, and b(X) is a function which can be made explicit and b(X) �
log2 X.

6. Concluding remarks

6.1. The mean square over a short interval. In [5] Chamizo and Iwaniec de-
duced the following mean value result over a short interval in the linear case:∑

X<q≤X+N
q≡ν (8)

L(1, χq) =
3ζ(2)

28ζ(3)
N + O

(
N7/8Xε + N2/3X1/32+ε

)
,

where 1 < N < X1/2. A similar mean square estimate over a short interval can be
deduced from Theorem 3.28, since

(6.1)
∑

X<q≤X+N
q≡1 (4)
q �=�

L2(1, χqα2) =
∑

1<q≤X+N
q≡1 (4)
q �=�

L2(1, χqα2) −
∑

1<q≤X
q≡1 (4)
q �=�

L2(1, χqα2)

where N ≤ X. Clearly the main term in (6.1) is A(α)N, and the error is O(X2/5+εαε).
However, the behaviour of the middle terms is not so obvious.

The possible middle terms in (6.1) are comprised of a B-part and a C-part,
where the B-part contains the terms with Bi(α), and the C-part is the sum of
the terms with Cα or C

(odd)
α . Let us apply Theorem 3.28, choosing Y = X(X +

N) in the first sum, and Y = X2 in second sum. This can be done since the
choice of Y could be done quite freely. Now it is easy to see that the B-part is
O(NX−1/2

∑3
i=1 Bi(α)(log X)3−i), since

log(X + N) − log X = log

(
1 +

N

X

)
= O

(
N

X

)
.
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The order of the C-part is the same as the order of

Cα (X + N,X(X + N)) (X + N)1/2 − Cα(X,X2)X1/2

� (
Cα(X + N,X(X + N)) − Cα(X,X2)

)
X1/2 + NX−1/2 log2 X.

(6.2)

Now the upper limit of integration is same in both terms Cα(X,X2) and Cα(X +
N,X(X + N)), and

A(k, t(X + N), α) − A(k, tX, α) = A3(α, k) log(1 + N/X) � NX−1 log log 3k.

Hence the order of (6.2) is O(NX−1/2 log2 X), and we have the following theorem:

Corollary 6.3. Let α < Xa for some positive constant a, and 1 < N ≤ X. Then∑
X<q≤X+N

q≡1 (4)
q �=�

L2(1, χqα2) = A(α)N + O
(
X2/5+εαε

)
+ O

(
NX−1/2 log2 X

)
.

6.2. Other moments. The method applied in this thesis to the mean square of
quadratic Dirichlet L-functions at 1 can be used also to obtain a similar formula in
the linear case. The only difference is that the function d(n) is missing. Instead of
Lemma 3.14 we can use the formula, which was mentioned in [9] with too optimistic
error term, ∑

n≤Y
(n,2α)=1

Gk2(n)√
n

=
2

3ζ(2)

∏
p|α

(
1 − 1

p + 1

)
Y + O

(
Y 1/2d(k)

)
,

which can be proved similarly. Hence we have an asymptotic formula for the sum
of L(1, χqα2) which is similar to Theorem 3.28, but where in Cα the multiplier
A(α, tX, k) is replaced by

2

3ζ(2)

∏
p|α

(
1 − 1

p + 1

)
.

However, this leads to a bigger error term than in (1.3) in the contents of the class
numbers.

It seems that the method itself could be used also to the fourth or higher moments.
However, in order to get sufficiently sharp estimates, that is, to get an error term
smaller than X1/2, we would need some estimates which are not known so far. For
example, an estimate for ∫ T

−T

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
2

dt

was used a few times while proving the lemmas. Studying the higher moments
would require the estimate∫ T

−T

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
2k

dt � T 1+ε,
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which is not known for k > 2, and even though this is known in the case of the
fourth moment, also a generalization of Jutila’s result (2.6) to the fourth moment
would be needed, since (2.7) is too weak over t.

References

[1] Armon, M. V.: Averages of real character sums. - J. Number Theory 77, 1999, 209–226.
[2] Berndt, B., R. Evans and L. Williams: Gauss and Jacobi sums. - John Wiley & Sons,

Inc., 1998.
[3] Brüdern, J.: Einführung in die analytische Zahlentheorie. - Springer Lehrbuch, Springer,

1995.
[4] Burgess, D. A.: The distribution of quadratic residues and non-residues. - Mathematika 4,

1957, 106–112.
[5] Chamizo, F. and H. Iwaniec: On the sphere problem. - Revista Mat. Iberoamericana 11,

1995, 417–429.
[6] Chamizo, F. and H. Iwaniec: On the Gauss mean-value formula for class number. - Nagoya

Math. J. 151, 1998, 199–208.
[7] Chowla, S.: Improvement of a theorem of Linnik and Walfisz. - Proc. London Math. Soc.

50, 1948, 423–429.
[8] Cohn, H.: Advanced number theory. - Dover Publications, 1980.
[9] Conrey, J. B., D. W. Farmer and K. Soundararajan: Transition mean values of real

characters. - J. Number Theory 82, 2000, 109–120.
[10] Dirichlet, G. L.: G. Lejeune Dirichlet’s Werke I. - Berlin Georg Reimer, 1889.
[11] Dirichlet, G. L.: Vorlesungen über Zahlentheorie. - Braunschweig Vieweg, 1879.
[12] Elliott, P. D. T. A.: On the size of L(1, χ). - J. Reine Angew. Math. 236, 1969, 26–36.
[13] Ford, K.: Vinogradov’s integral and the Riemann zeta fuction. - Proc. London Math. Soc.

85, 2002, 565–633.
[14] Ford, K.: Zero-free regions for the riemann zeta function. - Number theory for the Millenium

(edited by M. A. Bennett, B. C. Berndt, N. Boston et al.), volume II, A K Peters, Boston,
2002, 25–56.

[15] Goldfeld, D. and J. Hoffstein: Eisenstein series of 1
2 -integral weight and the mean value

of real Dirichlet L-series. - Invent. Math. 80, 1985, 185–208.
[16] Goldman, J. R.: The Queen of Mathematics. - A K Peters, 1998.
[17] Granville, A. and K. Soundararajan: The distribution of values of L(1, χd). - Geom.

Funct. Anal. 13, 2003, 992–1028.
[18] Heath-Brown, D. R.: A mean value estimate for real character sums. - Acta Arith. 72,

1995, 235–275.
[19] Ivić, A.: The Riemann Zeta-Function, Dover, 2003.
[20] Iwaniec, H. and E. Kowalski: Analytic Number Theory. - AMS, 2004.
[21] Jutila, M.: On character sums and class numbers. - J. Number Theory 5, 1973, 203–214.
[22] Jutila, M.: On sums of real characters. - Proc. Steklov Inst. Math. 132, 1973, 283–286.
[23] Jutila, M.: On mean values of L-functions and short character sums with real characters. -

Acta Arith. 26, 1975, 405–410.
[24] Jutila, M.: On the mean value of L(1

2 , χ) for real characters. - Analysis 1, 1980, 149–161.
[25] Littlewood, J. E.: On the class-number of the corpus P (

√
k). - Proc. London Math. Soc.

27, 1928, 358–372.
[26] Montgomery, H. L. and R. C. Vaughan: Extreme values of Dirichlet L-functions at 1. -

Number Theory in Progres (edited by K. Györy, H. Iwaniec and J. Urbanowicz), volume II,
Walter de Gruyter, 1999, 1039–1052.

[27] Paley, R. E. A. C.: A theorem on characters. - J. London Math. Soc. 7, 1932, 28–32.



50 HENRI VIRTANEN

[28] Prachar, K.: Primzahlverteilung. - Springer, 1957.
[29] Shields, A.: Lejeune Dirichlet and the birth of analytic number theory: 1837-1839. - Math.

Intelligencer 11, 1989, 7–11.
[30] Soundararajan, K.: Nonvanishing of quadratic Dirichlet L-function at s = 1

2 . - Ann. of
Math. 152, 2000, 447–488.

[31] Tenenbaum, G.: Introduction to analytic and probabilistic number theory. - Gambridge
Univ. Press, 1995.

[32] Titchmarsh, E. C.: The Theory of the Riemann Zeta-function. - second ed.(revised by D.
R. Heath-Brown), Oxford Univ. Press Inc., 1986.

[33] Vinogradov, I. M.: Improvement of the remainder term of some asymptotic formulas
(Russian). - Izv. Akad. Nauk. SSSR, Ser. Mat. 13, 1949, 97–110.

[34] Virtanen, H.: The mean fourth power of real character sums. - Acta Arith. 103, 2002,
249–257.

Department of Mathematics, FI-20014 University of Turku, Finland

E-mail address: henri.virtanen@utu.fi



ANNALES ACADEMIÆ SCIENTIARUM FENNICÆ
MATHEMATICA DISSERTATIONES

101. Sarkola, Eino, A unified approach to direct and inverse scattering for acoustic and
electromagnetic waves (95 pp.) 1995

102. Parkkonen, Jouni, Geometric complex analytic coordinates for deformation spaces of
Koebe groups (50 pp.) 1995

103. Lassas, Matti, Non-selfadjoint inverse spectral problems and their applications to ran-
dom bodies (108 pp.) 1995

104. Mikkonen, Pasi, On the Wolff potential and quasilinear elliptic equations involving mea-
sure (71 pp.) 1996

105. Zhao Ruhan, On a general family of function spaces (56 pp.) 1996
106. Ruuska, Vesa, Riemannian polarizations (38 pp.) 1996
107. Halko, Aapo, Negligible subsets of the generalized Baire space ωω1

1 (38 pp.) 1996
108. Elfving, Erik, The G-homotopy type of proper locally linear G-manifolds (50 pp.) 1996
109. Huovinen, Petri, Singular integrals and rectifiability of measures in the plane (63 pp.)

1997
110. Kankaanpää, Jouni, On Picard-type theorems and boundary behavior of quasiregular

mappings (38 pp.) 1997
111. Yong Lin, Menger curvature, singular integrals and analytic capacity (44 pp.) 1997
112. Remes, Marko, Hölder parametrizations of self-similar sets (68 pp.) 1998
113. Hämäläinen, Jyri, Spline collocation for the single layer heat equation (67 pp.) 1998
114. Malmivuori, Markku, Electric and magnetic Green’s functions for a smoothly layered

medium (76 pp.) 1998
115. Juutinen, Petri, Minimization problems for Lipschitz functions via viscosity solutions

(53 pp.) 1998
116. Wulan, Hasi, On some classes of meromorphic functions (57 pp.) 1998
117. Zhong, Xiao, On nonhomogeneous quasilinear elliptic equations (46 pp.) 1998
118. Rieppo, Jarkko, Differential fields and complex differential equations (41 pp.) 1998
119. Smolander, Pekka, Numerical approximation of bicanonical embedding (48 pp.) 1998
120. Wu Pengcheng, Oscillation theory of higher order differential equations in the complex

plane (55 pp.) 1999
121. Siltanen, Samuli, Electrical impedance tomography and Faddeev Green’s functions

(56 pp.) 1999
122. Heittokangas, Janne, On complex differential equations in the unit disc (54 pp.) 2000
123. Tossavainen, Timo, On the connectivity properties of the ρ-boundary of the unit ball

(38 pp.) 2000
124. Rättyä, Jouni, On some complex function spaces and classes (73 pp.) 2001
125. Rissanen, Juha, Wavelets on self-similar sets and the structure of the spaces M1,p(E,µ)

(46 pp.) 2002
126. Llorente, Marta, On the behaviour of the average dimension: sections, products and

intersection measures (47 pp.) 2002
127. Koskenoja, Mika, Pluripotential theory and capacity inequalities (49 pp.) 2002
128. Ekonen, Markku, Generalizations of the Beckenbach–Radó theorem (47 pp.) 2002
129. Korhonen, Risto, Meromorphic solutions of differential and difference equations with

deficiencies (91 pp.) 2002



130. Lasanen, Sari, Discretizations of generalized random variables with applications to in-
verse problems (64 pp.) 2002

131. Kallunki, Sari, Mappings of finite distortion: the metric definition (33 pp.) 2002
132. Heikkala, Ville, Inequalities for conformal capacity, modulus, and conformal invariants

(62 pp.) 2002
133. Silvennoinen, Heli, Meromorphic solutions of some composite functional equations (39

pp.) 2003
134. Hellsten, Alex, Diamonds on large cardinals (48 pp.) 2003
135. Tuominen, Heli, Orlicz–Sobolev spaces on metric measure spaces (86 pp.) 2004
136. Pere, Mikko, The eigenvalue problem of the p-Laplacian in metric spaces (25 pp.) 2004
137. Vogeler, Roger, Combinatorics of curves on Hurwitz surfaces (40 pp.) 2004
138. Kuusela, Mikko, Large deviations of zeroes and fixed points of random maps with

applications to equilibrium economics (51 pp.) 2004
139. Salo, Mikko, Inverse problems for nonsmooth first order perturbations of the Laplacian

(67 pp.) 2004
140. Lukkarinen, Mari, The Mellin transform of the square of Riemann’s zeta-function and

Atkinson’s formula (74 pp.) 2005
141. Korppi, Tuomas, Equivariant triangulations of differentiable and real-analytic manifolds

with a properly discontinuous action (96 pp.) 2005
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