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1. Introduction

Some years ago, Nehari [7] found a remarkable connection between
the Schwarzian derivative
<wll>l 1 (wu)z
{w j = w/ 2 \w

and univalence. He showed that if f is analytic in the unit disk and
() {f, 2} <201 — 2772, 2l <1,

then f is univalent. Hille [3] showed that the constant 2 is best possible;
that is, for no k& > 2 does the condition

(2) [{f, 2} < B(1 — [2[%)73, le] <1,

imply univalence. On the other hand, every univalent function satisfies (2)
with k = 6, as Nehari showed, and this inequality is sharp for each fixed z.

More recently, Ahlfors and Weill [2] proved that if an analytic function
f satisfies (2) for some constant k < 2, then f has a quasiconformal
extension to the entire complex plane. In particular, f maps the unit
disk onto a Jordan domain; that is, onto the interior of a Jordan curve on
the Riemann sphere. The purpose of the present paper is to show that the
theorem of Ahlfors and Weill remains essentially true when the constant
k < 2 is replaced by a function of [z| which increases »slowly» to 2 as
lz| — 1. Specifically, our main result is as follows.

Theorem. ILet 2 be nondecreasing on the interval 0 <r <1, with
0 <A(r) <1l and

1 1
(3) 1 — ()~ 0<log1 -~ r) ’ ret
Let f be analytic in |z] <1, and let its Schwarzian derivative satisfy
4 o < <
( ) ) [ — (1 . |Z(2)2 ) < .

Then f is univalent in |z| <1 and has a homeomorphic extension to the
whole plane. The continuation is quasiconformal with the possible exception
of the unit circle [z| =1.
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Our proof involves no estimates of solutions to differential equations,
and it makes no appeal to Nehari’s theorem. We first construct a normal
family of quasiconformal mappings which are approximate extensions of
f (cf. Ahlfors [1]). The family is proved to be normal, and the desired
homeomorphic extension is obtained as a limit.

The growth condition (3) can be relaxed, as we point out at the end of
the paper.

2. Approximate quasiconformal extensions

The first step in the proof is to construct a certain quasiconformal
mapping of the extended plane onto itself which agrees with the function
f in agiven disk [z] <7 <<1.

Tet S(@z)={f, 2}, and let w; and w, be linearly independent
solutions to the differential equation

1
w+5Sw=0,

normalized so that w;(0) = w,(0) =0 and w;(0) = w,(0) = 1. Thus
(3) wy(2)wy(z) — wy(2)wi(z) = 1

for every z in the unit disk. The most general analytic function ¢ with
Schwarzian derivative S then has the form ¢ = T o (w,/w,), where T
is an arbitrary linear fractional mapping. Hence we may assume f = w,/w, .

The functions w; and w, are analytic in [2| << 1 and cannot vanish
simultaneously, by (5). This shows that w, has no zeros in {z] << 1, since
wy/w, is analytic. Thus f’ = [w,)]~? is finite and nonvanishing in z| << 1.
In particular, f is locally conformal in the open unit disk.

Now fix »,0<r<<1.In 2| > 2, define the function g = ¢,/¢,,
where

@i(z) = wi(C) + (2 — &) wi(Q), i=12,

and ¢ = 2/Z. It follows from (5) that ¢, and ¢, cannot vanish simulta-
neously. The function g has continuous first partial derivatives except
at the zeros (if any) of ¢, . In view of the relations

” "
Wy Wy — Wyw, =0
and

n ! ron

Wi W, — W1W,

[ SR
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a calculation gives

9:(2) = [e(2)]7®

and
1
g:(2) = — 5 [pa)] (2 (= — 0 S(D),

where ¢. = (. — igy) and g; = 3(¢= + 19y) 2 = @ + iy . Let p = g:/g
denote the complex dilatation of g. Then we have

[

) = — 5 (2P (2 — LFS()
1

— 5 (L0202 — |ZRS(E) -

Since 0 < r (12 — [{]3) <1 — |2, it follows from (4) that

(6) lu(z)] < A1) <1, 2l > 1.
For the Jacobian J = |g.|* — |g;]> we have
J(2) = lgo(2) [ (1 — (1)) » 2] > 2.

Thus the function ¢ is locally homeomorphic in |z| > 72, except perhaps
at the zeros of ¢,. But ¢ is locally homeomorphic at these points also,
since we can repeat the above calculations for the function 1/g. Hence g
is locally a quasiconformal mapping in [z] > 72.

Now define the function

f(Z), 2| <r

F(z) =
) {g(z>, 2] > 7.

By the definition of ¢ it is clear that F is continuous (with respect to
the spherical metric) in the whole extended plane. Since f is locally con-
formal in |z] < 1 and ¢ is locally quasiconformal in |z| > 7%, the func-
tion F has generalized L2-derivatives (see [6]). Consequently, F is a
generalized L2-solution to the Beltrami equation w; = uw,, where u(z) is
defined as above for |z] > and u(z) =0 for |z|] <r. From this it
follows ([6]) that F admits a representation

(7) F=Q°1P,

where o is a quasiconformal homeomorphism of the extended plane onto
itself and ¢ is a rational function.

We have observed that F is locally homeomorphic in [z| <7 and
in |z] > . In order to show that it is locally homeomorphic on [z2]| = r
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also, we intreduce the following lemma. Recall that an interior function
is a continuous light open mapping ([6]).

Lemma 1. Let C be an analytic arc passing through a point z, and
dividing a disk D centered at z, into the domains D; and D,. Let F
be an interior function in D and let f; be the restriction of F to D,
v=1,2. If f; is injective in a neighborhood of 2, and

(8) AO) =a+bE—z)+olz—z). b0,

as z -z, then F is homeomorphic at z,.

Proof. There is no loss of generality in supposing that (' is a segment
of the real axis and that z,=0,a =0, and b = 1. In view of Stoilow’s
theorem. there is a neighborhood V c D of z = 0 in which F has the
form

(9) F=hr,

where % is a homeomorphism and » is a positive integer. By hypothesis,
we may suppose that the restriction of F to ¥ N D, is an injection, and
that

Ifolz) — 2] < |=], z€EVND,.

In particular, Im {F(z)} <0 for z€ VN D,. Hence n =1 in (9), and
the restriction of F' to ¥V is a homeomorphism.

Remark. The assumption (8) is essential, as the counterexample
fi®) =z, folz) = 2%/Z shows, with C a segment —p <z <op.

If we apply the above lemma with f; =g¢, f, =f, we conclude that
the function F given by (7) is locally homeomorphic on |z] = r . Hence,
in (7), the rational function ¢ has no branch points in the finite plane. Tt
follows that ¢ is a linear fractional transformation. Thus F is a quasi-
conformal homeomorphism of the extended plane onto itself.

3. Equicontinuous families of mappings

Now choose an arbitrary sequence {r,} with 0 <7, <r., <1 and
rn—>1 as n— oo .Let F, be the quasiconformal mapping just constructed,
corresponding to r = r,, and let u, be the complex dilatation of F,.
Then pn(z) =0 for |2/ <7, and by (6),

(10) lun(2)] < A(rafl2]) 5 2l > rn.
For each fixed z, and for o> 0, let
27

dy
-Mn 5 == - .
(Q ZO) 6/ 1 — |,un(zo+ @eu?)l
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We shall make use of the following lemma.
Lemma 2. If A satisfies the condition (3), then for each z,,

Q2

do
11 - > (015 09, %), 0 << o <oy << 0,
(11) /QMn(Q,ZO) = (015 025 % 1 Q2

Q

where « is independent of % ,x(0y, 05,2) >0 for o <p,, and
(01, 09y 2g) — 00 if o, is fixed and o, — 0, or if g, is fixed and g, — oo .

Postponing the proof, let us show how Lemma 2 can be used to complete
the proof of the main theorem. If the sequence {F,} has the property (11)
given by the lemma, then as proved in [4] (see also [5]), {F.} is equiconti-
nuous with respect to the spherical metric at each point of the extended
complex plane . It therefore follows from Ascoli’s theorem that a sub-
sequence converges uniformly in 2 to a continuous function G . But it
is also shown in [4] that under the condition (11), the limit function G¢' must
be a homeomorphism of 2 onto itself. Furthermore, G satisfies the Bel-
trami equation w, = »w, in |z| > 1, where

p(z) = lim pn(2) = — % (322 (1 — [z 22 S(1/2)
for |z] > 1. Thus, by (4),
b(2)] < A(1/]z]) <1, 2l >1,

which shows that @ is locally quasiconformal in |z| > 1. Of course, it is
clear from the construction of F, that G(z) = f(z) for 2| << 1. Hence
G is the desired homeomorphic extension of f. In particular, f is uni-
valent in !z| << 1. This proves the theorem.

4. Proof of Lemma 2
The proof of Lemma 2 rests upon the following lemma.
Lemma 3. If A satisfies the condition (3), then for each z;,
(12) M (0, 7) = O(log 1/o), 0—0,

uniformly in n.
Proof of Lemma 3. Suppose first that |2,/ <1, and choose N such
that ry < |2y| < ry,1. Then for n =1,2,..., N, we have by (10)
lun(2)] < A(ra) < AI20]) 5 2] > 1,

while u.(z) =0 for |2| <7..For n» >N + 1, we have u.(z) =0 for
2] < rxy1. Thus M.(g,z) remains bounded, uniformly in n, as ¢—0.
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Next suppose |z)] > 1. Then

lun(2)] < 2(1/[2]) < A2[(1 + [z]) <1

if |2 — 2] <%(lz] — 1). This again shows that M.(p,2,) is uniformly
bounded as ¢ —0.

Finally, suppose |z,| = 1. Then in view of the rotational symmetry,
we may assume z, = 1.Fix 0,0 <o <1.If 0 <r,<1— g, we have
by (10) and (3)

Myo, 1) < "
1"(97 )—-1____1(1__0)

On the other hand, if 1 — p <7, <1, we have by (10)

<Cloglp.

Bn
dd
-Mn ) —_— T H
(13) (9”<2/1—Mwu+wﬂ)+“

0
where |1 4 ge?r| =7, and /2 < B, <z. If we set
v =14 0’| and u=cos?d={a®— (1 + 0*}/20,

the integral in (13) transforms to

1 du /0 1 L+ 1
/x/lizé{l_;.(rz/x)}_: +b/_ v

say, where

But

o -4
L —nViE e [
|

Aol
Sy AL— @) =Cloglle,

by (3) and the inequality
- 1
V14 <1— 0, 0<o<1l.

It remains now to estimate I, . If 1 — o <1, < V1— 0®, we have
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du 7

-LS{I*AWBA/thjﬁﬁzﬂ‘—MVTZEMA
J

n a( ! 2>1_1<01 1
sy —Al—gz¢)) =Cleglle.

On the other hand, if V1 — ¢ <r. <1, we find

Vit
1 " x dx

2 i |

n

Setting ¢ = r3/z, observing that y2 < ¢*, and assuming ¢* <3, we

therefore find
Il S § / . dt —
o) 1 — A()

where

RO |

%=(1-92)/\/1+9221—292, 0?

IA

1
Thus in view of (3), we have for ¢ < n

1

I, < g / log (1;) dt = O(o log 1/0) .

0 — t

— 252

This completes the proof of Lemma 3.
Proof of Lemma 2. It follows from Lemma 3 that the integral (11) is
estimated from below by

el

d
C/-—Q—’ 0<o<o<l,
olog 1/o

01

which tends to o as g, — 0. On the other hand, for each fixed z,, we
have

. 1
a2 + 0€7)] < z<§) <1
for all ¢ > R = || + 2. Thus for R < g, < g, < 0, the integral (11)
is not less than
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1 1
om {1 - Z(5>} log (0s/R) ,

which tends to o as g, — oo . This establishes Lemma 2 and hence com-
pletes the proof of the main theorem.

5. Generalizations

It is clear from the proof of Lemma 2 that the theorem will remain
true with a growth restriction on A weaker than (3). What is needed is
a condition of the form

1
(14) T = 0w),  r—1,

where g is a positive nondecreasing integrable function such that

1

do
15 S
(19) /Qw(l—e) oo

0

and such that

has the property

do
16 —_ = prmm—
(o) 0/ (0% ?

The condition (16) will hold if, for example,
p(r) = O((1L — )77,

although such a condition does not imply (15).

The question of the best possible growth condition (14) remains open.
It is of interest to find examples showing that the theorem fails without
some condition of this form.
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