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1. Introduction

1.1. This paper is a continuation to [13] and [14]. Our main interest
is centered on the branch set B, of a quasiregular mapping f: G — R".
In Section 2 we consider the case B; = 0, which means that f is a local
homeomorphism. Section 3 deals with the properties of fB; in the case
By # @ . For example, we show that A, ,(fB;) > 0 and consider the
case where f has an essential isolated singularity. In Section 4 we present
relations between the local degree i(x,f) and the dilatation K(f). In
Section 5 we improve some results of [13] concerning the linear dilatations.

1.2. Notation and terminology. We shall use the same notation and
terminology as in [13] and [14]. All point sets are assumed to lie in the
compactified n-space E" = R"U { oo} . Throughout the paper we assume
n = 2. The notation f:G— R" or f:G— R includes the assumptions
that @ is a domain in R® or R", respectively, and that f is continuous.
If A4 is a segment of line and if ~: 4 — B" is a path, we let |x| denote
the locus ~4 of «. More generally, if ¢ = Xm0, is a singular 1-chain,
then |¢| = U lo;|. The inner product of two vectors x,y is written
as (x| y)-

2. Local homeomorphisms

2.1. In this section we show that a K-quasiregular local homeomorphism
of the unit ball B",n = 3, is homeomorphic in a smaller ball B"(r),
where r depends only on n and K. This result is applied to give a suf-
ficient condition for the equicontinuity of a family of K-quasiregular local
homeomorphisms.

We need some topological results on local homeomorphisms. A set
Q c R is said to be relatively locally connected if every point of @ has
arbitrarily small neighborhoods U such that U N @ is connected.

2.2. Lemma. Suppose that f:G—R" is a local homeomorphism, that
Q is a simply connected and locally pathwise connected set in B*, and that
P is a component of fQ such that Pc G. Then f maps P homeo-
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morphically onto Q . If, in addition, Q is relatively locally connected, f maps
P homeomorphically onto Q .

Proof. In order to prove the first statement of the theorem, it suffices
to show that f defines a covering mapping of P onto @ [9,p.91]. If
xy € P, every path in @ starting at f(z,) may be uniquely lifted to a path
i P starting at 2, Hence fP = . Let y €@, andlet PN f(y) =
{1, ...,2;}. Choose disjoint neighborhoods U, of z; such that U, c ¢
and f is injective in each U, Then F = P\ (U;U---U U,) is com-
pact, and y € fF. Choose a neighborhood V of y such that @ NV is
connected and V c (NfU,)\ fF. Then PN f1V has exactly k& com-
ponents D, ,...,D,, oneineach U, and f maps D, homeomorphically
onto @ N V. Thus f defines a covering mapping P — @ .

Assume now that @ is relatively locally connected. We must show
that an arbitrary point y € @ has exactly one pre-image in P. Choose
a sequence V; D V,D--- of ncighborhoods of y such that V,N@
is connected for all j and N V; = {y} . It is casy to see that Pnjfiy) =

Qlﬁj where A; = PN f71V,. Since f defines a homeomorphism P — @,

Mevery A4; is connected. Hence A, 04,0 is a nested sequence of
compact connected sets, which implies that PN f-1(y) is non-empty
and connected. Since f-(y) is discrete, PN f(y) consists of exactly
one point.

2.3 Theorem. If n =3 and if f:B*— R" isa K-quasiregular local
homeomorphism, then f is injective in a ball B*(yp(n , K)), where yp(n , K)
is a positive number depending only on n and K .

Proof. We may assume that f(0) = 0. As in [13]. we let U(0.f r)
denote the component of f~1B"(r) which contains the origin. Let #, be
the least upper bound of all positive numbers » such that T(0.f,») c B".
Fix » €(0,r,), and set I* =1*0,f,r), L*¥ = L*0.f,r) (for notation,
see [13,4.1]). By 2.2, f maps U(0,f,r) homeomorphically onto B*(r).
Thus f is injective in B"({*). Hence it suffices to find a lower bound
for I*.

Tet 1=10,f,1*), and suppose I <r. Then A =U®0,f,r)\
U0,f,1) isaring, and f maps 4 K-quasiconformally onto the spherical
ring B*(r) \ B"(l). Since both boundary components of A meet the
sphere S"~'(I*), it follows from a well-known estimate [26, 11.7] that
cap 4 = a, > 0, where @, depends only on n. Thus

a, = cap A < K cap fA = Ko,_, (log (r/l))'~".
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This gives an inequality
(2.4) rfll < x(n, K),

which is true also in the case r = [

We shall now make use of a method of Zori¢ [28] and Agard-Marden [1].
Choose x, € U0, f,7) such that x| = L*, and set y, = f(x) . Then
Yol =7 . For t€(r,r+1) and for ¢ € (0, 7] let

Ct,p)=1{y|ly—1v =1, — ylyo) > rt cos ¢} .

Thus C(f, ¢) is a spherical cap (possibly a punctured sphere), which is
symmetric with respect to the line segment J = {sy,| —I/r <s <0}
and meets J at z, = (r — t)y,/r . Let 2z be the unique pointin U(0, f, r)
NfYz), and let C*(,q¢) be the z-component of fC(t,¢). Let ¢
be the least upper bound of all ¢ € (0, ] such that f maps C*(t, ¢) homeo-
morphically onto CO(t, ¢). We show that C*(¢, ¢,) meets S~ Y(L*) for
every t€ (r,r -+ 1). Suppose that this is false. Then C*(¢, ¢,) c B"(L¥)
for some ¢. By 2.2, f maps C%(¢,¢,) homeomorphically onto Cit, ) -
Note that for n = 2, the proof breaks down here, since C(t, z) is then
not relatively locally connected. By [28, Remark 1, p. 422] or by Corollary
3.8, f is injective in a neighborhood of C*(t, ¢,) . In view of the definition
of ¢, this implies ¢, =z, which means that C*(t, ¢,) is a topological
sphere. The bounded component D of CC*(t, ¢,) is contained in B*(L*) .
Since ofD c 8" Yy, ,t) . fD = B*(y,,t). Thus D is a component of
f1B"y, ,t). By 2.2, f maps D homeomorphically onto B (y, , t) . Since
2¥€DNTO,f,r) and since B(y,,t) N B*(r) is connected, it follows
from [28, Remark 2, p. 422] that f is injective in DU U(0,f,r). Since
Yo € fD , thisimplies that 2y € D, which isimpossible, because D c B"(L*) .
Thus C*(t, @) meets S"~'(L*) forall t € (r,r +1).

Set V=UC({t,qp) and V*=UC*t,q), where the unions are
taken over t € (r,r -~ 1). Arguing as in [28, p. 425] we see that V* and V
are domains and that f maps ¥* homeomorphically onto V. For ecch
t € (r,r -+ 1) choose a point af € C*(t,q,) N S""HL*). Let I'(t) b2 the
family of all paths joining =z and z* in C*(t,¢,), and set I'= U I'(t).
Since [2f] < I*,

(2.5) M) < w,_, (log (L*/I¥))'~".
On the other hand, a well-known modulus estimate [26, 10.12] yields
(2.6) M(fT) = b, log (1 + 1),

where the positive constant b, dependsonlyon n. Since M(fI') = KM(I'),
we obtain from (2.4), (2.5), and (2.6) an inequality I* = L*yp(n , K), where
p(n,K)> 0 dependsonlyon n and K. Since L* —1 as r-—r, this
proves the theorem.
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2.7. Corollary. Suppose that »n =3, that f:G —R* is o K-quasi-
reqular mapping and that xy € G\ B;. Then f isinjective in the ball B"(x, . r)
where v = y(n , K)d(v, , B;U 0G).

2.8. Corollary. (Theorem of Zoric [28]) If n =3 and if f:R"— R"
1 a quasiregular local homeomorphism, then f is a homeomorphism.

2.9 Theorem. Suppose that ¢ is a domain in B, n =3, that K = 1.
and that > 0. If W is a family of K-quasimeromorphic local homeo-
morphisms f: G — R such that every f€ TV omils two points a;, beR”
with q(a;, by) = r, then W is equicontinuous. Here q is the spherical metric
[14, 3.10].

Proof. For f €11 let T be a Mobius transformation such that Ty(b;) = oc.
By 2.7, every point in ¢ has a neighborhood in which every Tyof. and
hence f, is injective. The theorem follows from the corresponding result
for quasiconformal mappings [26, 19.2].

2.10. Corollary. If W is a family of K-quasimeromorphic local homeo-
morphisms of a domain G C R*,n =3, and if every f€ W omits two fived
points in R", then W is equicontinuous.

2.11. Remaik. The results 2.3, 2.7, 2.8, 2.9, and 2.10 fail to be true
for m = 2. The mappings f(z) = ¢* serve as a counterexample in every
case.

2.12. Path families and quasimeromorphic local homeomorphisms. Sup-
pose that f:G — R is quasimeromorphic and that I" is a path family
in @. In [13] we conjectured that

(2.13) M(fI') = Ky(f)M(T) .

We shall now prove this inequality for local homeomorphisms. This result
is needed in Section 3.

2.14. Lemma. If f: G — B" is a quasimeromorphic local homeomorphism
and if I' is a path family in G, then (2.13) is true.

Proof. Since the family of all paths through a given point is of modulus
zero, we may assume that oo € ¢¢ and <o € fG. We cover G with a count-
able number of domains U; such that U;c G and such that f defines
a homeomorphism f;: U, — fU,. Set ¢, = fr'. Let I'* be the family
of all paths y € I' such that foy islocally rectifiable. Let I'; be the family
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of all paths y € I'* which have a closed subpath § such that |f| C U,
and such that ¢, is not absolutely continuous on feopB. By Fuglede’s
theorem [26, 28.2] M(fI) = 0. Setting Iy = I"* \ (U I) we thus have
M(fIy) = M(fI'). Hence it suffices to show that

M(fTy) = Ki(f)M(I') .

Let E be the set of all 2 €@ such that f is differentiable at « and
J(,f)> 0. Then E is a Borel set and m(G ™\ E) = 0. Suppose that
o € F(I'). Define o:G— R' by

o(x) = o(@)/I(f'(x)) for x €X,
o(x) = w© for €GN\ L.
Then o is a Borel function. Next define o' : R* — R by

o'(y) = sup o(z) for y €fG',

x € f1(y)
o'(y) =0 for y €CfG+ .
Then
(2.15) o' (y) = o(g:(y) = olg:(y) Ly , 9:)

for y €U, where L(y,g) = lim sup gy + %) — gi(y)|/'% ), cf. [13, p. 16].
We shall show that o € F(fI}).
Since

W' > 1 = Ul €fUelg) > 1

for all ¢> 0, o’ is a Borel function. Suppose that y € I, Let e > 0, and
let y :[a,b]— G be a closed subpath of y such that

fgds>1—e.

Ve

Divide [a,b] into non-overlapping subintervals [a,.a), ..., [@_1, @]
such that each y; = y|[a;_;, @] is a path in some U7, Then (2.15) and
a transformation formula [26, 5.3] imply

[ eas= [ etanrw gy = [ ots.
ferj ferj ]
Summing over j yields

f@’dsgf@'dsg/gds>l~e.
fove Ve

Sfor
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Since & was arbitrary, this implies

fg'dsgl.

for
Hence o' € F(fI7). We thus obtain the inequality

(2.16) M(fl,) < f o™"dm .

Choose an increasing sequence of Borel functions 0 : B* — R' such
that either 0 = g;(y) = o'(y) or 0< 0/(y) <o'(y) for all y€R* and
such that o;(y) —o'(y) for all y €R". Let A; be the set of all 2 € such
that o;(f(x)) = o(x). From the definition of o’ it follows that f4; = fG.
In other words, N(y,f, 4;) =1 for all y€fG. Using a transformation
formula in [16, Theorem 3, p. 364] we obtain

f odm = f o) Ny, f , A)dm(y)

- f o @) , fdm(a)

= K,(f) / gdm .

Letting j — oo and using (2.16) we obtain

M(/Iy) < Ky(f) f gdm |

This proves (2.13).

3. Properties of fB;,

First we prove a relation between Hausdorff measure and simple con-
nectedness. This is used to show that A, _,( JB;) > 0 for a discrete and
open mapping f:G — R" with By @. Next we examine the behavior
of a quasimeromorphic mapping f with an isolated essential singularity.
We prove that the set of asymptotic values and CfG are contained in the
closure of fB;. We also give an outline of a proof for Iversen’s theorem
which states that CfG is contained in the set of asymptotic values. In the
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rest of the section we consider for n = 3 the case where fB; is contained
in a tamely embedded arc.

3.1. Lemma. Let T c R* be a 2-dimensional plane and let A c R"
be such that A, _,(A) = 0. Then m(4 + T) = 0.

Proof. 1t is sufficient to show that m(4 + Q) = 0 whenever Q@ c T
is a closed square. Let ¢ > 0. Denote by A the length of a side of Q. Choose
a covering of A by balls B, = B"(x;,r;) suchthat r, <1 and 2" ? < ¢.

Then 4 + @ c U (B; + Q). On the other hand,
m(B -+ Q) = (k -4 27",»)22"—27';"2 < (h + 2)22n—2r7i1_2

3

hence
md + Q) < Im(B; - Q) < (h - 2)°2" %,

and the lemma follows.

3.2. Lemma. Let A c R* be such that A,_,(4) =0, and let E c R*
be a set which has a countable covering by 2-dimensional planes Ty, T, , . ..
Then (B 4+ y)N A= O for almost every y € R".

Proof. Denote H ={y€R"|(E + y)N 4 # O}. If y €H, there exists
z € B suchthat z -y € 4. Hence y €4 — z, andso y €4 — E. Thisyields
HcAd—-FEcU(4—1T,. Since 3.1 implies m(4 — T,) = 0, we have
m(H) = 0. The lemma is proved.

The mnext result is perhaps well-known, but the authors have been
unable to find it in literature.

3.3. Lemma. Let G c R" be a simply connected domain and let A be
closed in G such that A, ,(A) = 0. Then G\ A s simply connected.

Proof. Suppose that y:I— G\ 4,1 =[01], is a path with 9(0) =
y(1) = a,. By assumption there exists a homotopy % : 12— G such that
h(O,t) = (), h(1,t) = h(s,0) = h(s, 1) = x, forall (s,t) €I Let 7 be
a triangulation of I? and let h;:I*— (G be a simplicial approximation
of & with respect to 7. Then hy(l.1) = hy(s,0) = Iy(s, 1) =z, for
(s,1) €I% Set py(t) = hy(0 , ¢). If the triangulation 7 is sufficiently dense,
then (s, 1) > sy(t) + (1 — 8)y,(t) defines a homotopy y ~ y, in G\ 4. By
3.2 there exists y € R* such that |y| << min (d(2, 12, 3G) , d(Iy,], 3(G \ 4)))
and (b I* +y)N A =. Thus we obtain the following homotopies in
G\ A :y =~y +y defined by (s, t)r>9(t) + sy and 9, +y =, +y



10 Ann. Acad. Sci. Fennicae A 1. 488

defined by (s,)+>hy(s,t) + y. This implies y ~ay+y in G\ 4.
and the lemma follows.

3.4. Theorem. Let f:G— R" be discrete and open. If B;+# O, then
A, _a(fB)) > 0.

Proof. If n = 2, the theorem is trivial. Suppose n = 3. Let « € B,
and pick r > 0 such that U = U(x, f,r) is a normal neighborhood of .
The mapping f|U as a pseudo-coverirg map in the sense of Church and
Hemmingsen [4, p. 529]. Hence [4, Corollary 5.2] implies that B*(f(x) , r) \.
J(B;N U) is not simply connected. Since f(B,N U) isclosedin B"(f(x), ),
Lemma 3.3 yields A4, _,(fB;) > 0.

3.5 Remark. It has been conjectured [3, p. 368] that if f:G — R" is
discrete and open, then either B;= @ or dim B;=n — 2. For n =3
this has been proved by Trohiméuk [25]; for n = 4 this is an open question.
Since dim By = dim fB; [4, 2.2] and since dim 4 = k implies A,(4) > 0
[10, p. 104], Theorem 3.4 is a weaker result.

3.6. We next study the set fB; in the case where f has an essential
isolated singularity. For terminology, see [14, 4.2]. It turns out that there
are striking differences between the cases n =2 and n = 3.

We prove first some topological lemmas. Suppose that f:G — R" is
sense-preserving, discrete, and open. If C' is a set such that ¢ ¢ & and
if y €R", then the set A = f3(y) N C is finite, and we set

v€A
(cf. Martio [12, 3.5]). Moreover, we set M*(f,C) =sup M(y.f,C) over
y € R". Then N(f,C) < M*(f, C). Furthermore, coverirg C' with a finite
number of normal domains D,,...,D, we see that M*(f,C) =
Zulf, D) < .

3.7. Lemma. Suppose that f:G — R" is sense-preserving, discrete, and
open, and that F is a compact set in G. Then there is a neighborhood U of
F such that U c G and M*(f,U) = M*(f, F).

Proof. Suppose that the lemma is not true. Set k = M*(f, F). Foreach
positive integer j, we can find a point y; € R* and a finite set A4; c fy)
such that d(x,F) <1/j for x€4; and such that Xi(x,f) =k 41
over z €4;. Passing to a subsequence we may assume that card 4; = &
is independent of j. Moreover, we may assume that A; ={aj,...,a}}
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such that every sequence a',ay ,... converges to a point ay € F. It fol-
lows that f(ay) =y, = limy;. Let b,,...,b, be the distinct points in
{aj ,...,at}, andlet @, = {mlay =b,}, 1 =r = s. Choose disjoint normal

neighborhoods U, of b,, 1 =7 = s. Then thereis j such that y; €fU; N
.N fU, andsuch that o €U, forall m €@, and 1 =r =s. Weobtain

Bz M., F) = iz‘(b, D=3l U =

Zs (v .f,U,) zgg ;i(x,f)§k+1,

This contradiction proves the lemma.

3.8. Corollary. (Zori¢ [28, p. 422]) Suppose that f:G —R" is a local
homeomorphism and that F is a compact set in G such that f|F is injective.
Then f is injective in some neighborhood of F.

3.9. Lemma. Suppose that f:G — R" is a discrete open mapping and
that U 1s a normal domain of f such that fU s relatively locally connected
(see 2.1). If y €f(dU \\ By), then

N(y.f,oU\ B) = N(f. aU " B) — N(f, 3U) = N(f, U).

Proof. We may assume that [ is sense-preserving. Let y €f(0U \ B)
and let ay,...,2, be the points of f=(y)N (36U \ By) = f(y) N U.
Thus k= N(y,f,dU \. B;). Choose disjoint neighborhoods U, of ua;
such that f|U; is injective,.and choose then a neighborhood ¥V of y such
that V c N fU; and such that VN fU = D is connected. By [13, 2.6],
f maps every component C' of U N f1D onto D. Hence y €fC, which
implies that the components of U N f~1D are the domains C; = U, N f1D.
Choose 3, € D. Using [13, 2.12] we obtain

N, U) = plon /> U) =3 s o] C) = k= Ny . f, 8U\ B)
< N(f,3U N\ B) = N(f, L) .

It remains to show that N(f, oU) < N(f, U). Pick z € 9fU such that
N(z,f,oU)=N(f,U) =h. Let {a;,...,x}=f)NoU =f1)NT
Choose disjoint neighborhoods U; of a;, set F = U \ (U,U...U U,
and choose then a neighborhood V of z such that VN fF =0 and
such that VN fU = D is connected. Then each U; contains a compo-
nent C; of UN f1D, and fC;,= D. Hence every point z; €D has at
least & pre-imagesin U. Thus N(f, U) = N(z,,f,U) =k = N(f, dU).
The lemma is proved.
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3.10. Lemma. (cf. Agard-Marden [1, 3.A]) Suppose that f:G —R" is
light, that A c fG, and that s: A — G is a continuous section of f, that is.
fos=1id. If A is relatively locally connected at a point y € A (see 2.1), then
the cluster set C(s,y) ts either a compact connected set in 0G or consists of
a single point in G.

Proof. Choose a basic system U;D U, D ... of neighborhoods of y
such that the sets D; = U;N 4 are connected. Then the sets sD, are

connected, which implies that C(s,y) = ﬂs—Dj is a compact connected
set in G. If 2€GNC(s,y), then f(x) =y by the continuity of f.
Thus G N C(s,y) cfy). Since f~l(y) is totally disconnected, either
GNC(s,y) =0 or GNC(s,y) =C(s,y) consists of a single point.

3.11. Path lifting. The path lifting problem for light open mappings
has been considered by Stoilow [23, p. 354], [24, p. 109], Whyburn [27,
p. 186], Floyd [5, p. 574], and by us [13, 2.7]. We remark that our result
[13, 2.7] is a direct corollary of Flovd’s theorem, which was unfortunately
overlooked in [13]. We shall now give the global version of this result.

Let f:G—R" be a mapping, let f:[a,b) — R" be a path, and let
%o €f((a)). We say that a path o :[a,c)— G is a maximal lifting of p
starting at v, if:

(1) «fa) = x,.

(2) foax=plla,c).

(3) If ¢ < ¢ =0, then there does not exist a path «':[a,¢') -G

such that &« = oa'[[a,¢) and for' = plla,c).

Similarly, we define the maximal lifting of a path j:(a,b]— R"
terminating at a point x, € f~1(5(0)) .

If B:[a,b)—R" is a path and if C ¢ R", we say that f(t) —C as
t — b if the spherical distance q(p(t),C) — 0 .

3.12. Lemma. Suppose that f:G — R" is light and open, that x, €,
and that B:[a,b) —R" is a path such that B(a) = f(x,) and such that
either lim f((t) exists, or [(t)—0fG as t—b. Then p has a maximal

t->b
lifting o :[a,¢) =G . If x(l)—>x,€G as t —c, then ¢ =b and f(x;) =
lim f(¢) . Otherwise «(t)— 090G as t—>c. If f is discrete and if the local

t—>b
degree i(x(t) ,f) is constant for t €[a ,c), then « isthe only maximal lifting
of B starting at xy .

Proof. Let P be the set of all pairs (x,c¢) such that ¢ <¢ <b and
o [a,c)— G is a path satisfying the conditions (1) and (2) in 3.11. From
[13, 2.7] it follows that P == @ . Define an ordering in P as follows:
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(x,¢) = (x',¢) if ¢ =¢ and & =a'|[a,c). By Zorn's lemma it is easy
to see that P contains a maximal element (x,c¢). Then « is a maximal
lifting of f starting at «, .

Suppose that «(t) —a; €G as t—c. Since f is continuous, f(¢) =
f(x®) = f(z;) . If ¢ < b, we canuse [13, 2.7] to construct a lifting («", ¢’) >
(x,c). Hence ¢ =5.

Next assume that «(f) does not tend to a point a; €G as t —c. We
must show that «(f) — 0G'. Suppose that this is not true. Then there is
a compact set F c G and a sequence #; <<t, < ... suchthat ¢, €[a,c),
ti—c, and «ft) €F. We may assume that there is 2; € F such that
N(t) — 2. Since «(t) +> 2, there is a neighborhood U of x; and a se-
quence (s;) such that U c ¢, <s, << c¢ and «(s;) € U . We may assume

J —
that x(s)€U for s€[f,s). Let () be the continuum aoff,s]cU.

~J

Then z; € lim inf C; . By [8, 2101, p. 1017, lim sup C; = C is connected.
If p(t) tends to a point y as f—c . then fC = {y}. Since f is light,
(' ={z,;} . This is impossible, because each ; meets oU . Hence p(f)
has no limit as ¢#—c¢. By the hypothesis of the theorem, ¢ =0 and
p(t) — ofG as t — b . Hencethereis s << b suchthat p(t) € fF for t €(s, D).
On the other hand, f(¢) = f(x(t)) €fF . This contradiction shows that
At) = 0G as t—c.

Now suppose that f is discrete and that #(x(t),f) = k£ is constant
for t €[a, c) . We may assume that f is sense-preserving. Let ' :[a , ¢’) — G
be another maximal lifting of f starting at z,. Suppose that « # «'.
Then E ={t ~(t)=a'(f)} = 0. Set r=infF. Since ¢« ¢ £, K is an
open set in (¢ ,c¢). Hence »¢E . (Choose a normal neighborhood V of
x(v) = &'(v) . Then there is t€(r.¢) such that x(t) €V, A’'(() €V and
x(t) == &/(f) . Then

k=pu(f,V)=2{ilx./) «€0f130)} = i) . f) +
Ww)y.N=k=ix'0) . f).
This contradiction completes the proof of the lemma.
3.13. Definition. If f:G — R" is a mapping. a point z € R* is said

to be an asymptotic value of f at a boundary point b € 0G if thereis a path
A :[0,1) — ¢ such that x({) —b and f(;{f)) —z as t—1.

3.14. Theorem. Suppose that b is an essential isolated singularity
of @ quasimeromorphic mapping f:G —R* ., n = 3. If z is an asymplotic
value of f at b, then z€f(B,N U) for every neighborhood U of b .

Proof. Assume that there is a neighborhood U of b such that z does
not belong to the closure of f(B;N U). Using the methods of Zori¢ [28]
and Agard-Marden [1] we show that this leads to a contradiction.
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We may assume that b = 0==z. Pick ry> 0 such that B"(r) c
UN (GU{0}) andsuchthat S"(ry) N f1(0) = O . Set U, = B"(r,) \ {0}
and g =f|U,. Choose 7" > 0 such that B"(+') does not meet fS"1(,)
UgB,. Since 0 is an asymptotic value, there is a path «:[0,1) — U,
such that «(t) —0 and f(f) = f(x(f)) =0 as ¢—1. We may assume
that 0 < [B(f)] <+ forall t€(0,1). Thus |x|C U, \ B,. For 0 <t <1
and 0 < ¢ =& we define the spherical caps

Clt,g) ={y€R"| |y = Bt) . (y | B(t)) > ly[>cos ¢} .

Let C*(t, @) be the «(f)-component of ¢g-1C(¢,¢), and let ¢, be the
least upper bound of all ¢ € (0, =] such that g maps C*(¢,¢) homeo-
morphically onto C(t,¢). Set C(t) = C(t,q,). C*(t) = C*(t, ¢,) . Then
g defines a homeomorphism ¢, : C*(t) — C(t) . We show that for almost
every r€(0,¢"), |f(t)] = r implies 0 ¢ C*(t) .

If 0€C*(t), it follows from Lemma 3.10 that there is a point v, € C(t)
such that ¢ '(y) — 0 as y —y, in O(t) . Let I'(t) be the family of all paths
which join f(¢) and y, in C(t), andlet I'*(t) = ¢;'['(t) and I'* = U I'*(¢)
over all ¢ such that 0 €0*(t). Since all paths of I™* converge to 0, M (I™*) = 0.
By 2.14, this implies M(g/™) = 0. On the other hand, a well-known
modulus estimate [26, 10.2] vields

dr
M(gl'*) = ba o

E

where b, > 0 depends only on »n and where E = {|f(t)| | 0 €C*(t)} .
Hence m,(K) = 0.

Let T={t|0=<t<1,p(t)|€E}. If t€T, then C*(t)c U, . B,.
From Lemma 2.2 it follows that f maps C*(f) homeomorphically onto
C(t). By 3.8, f is injective in a neighborhocd of C*(t). This is possible
only if ¢, =z . Hence for every t€T , C*(t) = C'*(t,x) is a topological
sphere in Uy ™\ B,, and f maps C*() homeomorphically onto C(t) =
S*=1(|B(t)]) . Let D(t) be the bounded component of CC*(t). Let T, =
{teT |0€D(t)} . We divide the rest of the proof into two cases, according
as 1 belongs to T, or not.

Case 1. 1 €T, . We choose an increasing sequence of numbers t; €Ty such
that ¢, —1. Let r, = |8(t;)] and D, = D(t) . Passing to a subsequence
we may assume that 7., <r;. Since «(f)— 0, we may also assume that
D;.yc D;. Let A; be the spherical ring B"(r,) \ B"(r;). Since g is
injective in a neighborhood of 8D, , there is a component A* of ¢g714;
such that 04* D 8D,. Since 9D;N A* =@ and since A, NgB, =
0,4 cU,\B,. By 22, f maps A* homeomorphically onto 4, .
Hence there is a section s;: 4; — A of f. Moreover, s; =s, | 4; for
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k> j. Hence we obtain a section s: B(ry) \ {0} — U, "\ B,. By 3.10,
we can extend s to a continuous mapping § of B"(ry). This is possible
only if §(0) = 0, which implies that 0 is a removable singularity of f.
We remark that hitherto our proof is not essentially different form that
in Agard-Marden [1].

Case 2. 1¢T,. We can find apath & : [—1,1) — R" such that &(—1)€aU,,
AM—=1,1)c Uy,5|[0,1) =«, and B(t) = f(&(t)) # 0 for t€[—-1,1). By
assumption, there is 6,0 =0 <1, such that [6,1)N T,=0. We
choose an increasing sequence of points ¢ € 7N [0, 1) suchthat (1) ; -1,
(2) Bt <r = |B()| for t€(, 1), (3) |B() >, for t€[—1,4].
As above, we set D; = D(t;) . There are two subeaseQ () D;c D, , for
all j, (b)D,ND;,, =0 forsome j.

Suppose that (a) is true. For j> 1 let A; be the spherical ring

)\ B(r;) . As in the case 1 we conclude that there is a component A
of g—lA such that f maps AF homeomorphically onto 4; and such that
oD, c aA* Since «(t; , 1) € CD] LAF e DN Dy . Ploceedmg as before
we obtaln a section s :B"(ry) \\ {0}—> Uo\ B, of f. Now the cluster
set C(s, 0) is a non-degenerate continuum in U This is in contradiction
with 3.10.

Suppose next that (b) is true. We first observe that x(§ . 1) C CDj .

Set u; , = sup {t |«(f; . {) € CD;.,} . Choose aneighborhood U;., of 9D
suchthat flU. 18 m]ectlve Smce Bt , 1) € BYri) » 9(Usa nch, +1) c
B(r;.1) . Hence there exists v, = max{t It <t < Uit s ,ﬁ | = 7.1} -

By defmltlon v, €T . Since v, > ¢ and since «(t,,,1) N g8 (r;,,) =
g =a(—1, tj) N g=18"(r;.,) , it follows that D) c €(D; U D;,,) . Hence
v, = sup {t |a(t;, ) € CD(vy)} > t;. As above, there exists v, = max{f |
<t<w, |[)’( )l =7,,,} and we have D(»,) c C(D;U D, ;U D(»y)). By
contmulng this process we find an infinite number of components C*(v,) of

g 18" Y(r;,,) with v; € (t; , v;,,) . Hence there exists a limit point v €(f; 1)
of the set {v;|¢=1,2,...}. Every neighborhood of «(v) interseets
infinitely many components of ¢g=28"~(r;_,) . This is a contradiction because
f is a local homeomorphism at «(v) . The theorem is proved.

3.15. Theorem. Suppose that n = 3 and that b is an essential isolated
singularity of a quasimeromorphic mapping f: G — R*. Then CfG c fB;.

Proof. Suppose that y € CfG \—jﬁ» . We may assume that b =0 =1y.
Choose 7,> 0 such that B"(r,) c G U{0} and set U, = B"(ry) \ {0}.
Next choose 7' > 0 such that B"(r') N (fB;U fS"Y(ry)) = @ . By [14, 4.4],
cap CfU, = 0. Hence we can find a cap C of S*1(') andaset C*c U,
such that f maps C* homeomorphically onto C. For each y€C let y, :
(0, 1]— R" be the linear path y,(t) = ty. Let y; be the (unique) maxi-
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mal lifting of y,, terminating in C*. This means that »J : (r,, 1] — U,
is a path such that 0=<r <1,p5(1)€0%,fop* =y |(r,,1], and
Vi) =0 as ¢{— 7, . We show that r, = 0 for almost every y €C'. Let
B, ={y€C |r, > 1/i} . It suffices to show that m, ,(E,) = 0. Set I, =
{v} |y€E;} . Since all paths of I, converge to 0, M(I) =0 . By 2.14,
this implies M (fI’) = 0. On the other hand, fI; minorizes the family 1
of all segments « :[1/i,1]—R",«/() =ty,y€E,. Consequently, a
well-known formula [26, 7.7] yields

M(fTI) = M(4) = r"'="m,_,(E))(log i) .

Thus m,_,(E;) = 0.

Choose y €C suchthat r, = 0. If ¢ — 0, then () — 0 and f(y}()) =
Yy(£) = 0. Thus 0 is an asymptotic value of f at 0. By 3.14, this is
a contradiction.

3.16. Corollary. If n =3 and if f: G — R" is a quasiregular mapping
which has an essential isolated singularity, then IB; is unbounded.

3.17. Corollary. If n =3 and if b is an essential isolated singularity
of a quasiregular mapping f: G — R", then b€ B,.

3.18. Remarks. Corollary 3.17 is a special case of a theorem of Agard
and Marden [1]. See also Zori¢ [29].

We shall indicate briefly how the proof of 3.15 can be modified so as
to yield an n-dimensional version of Iversen’s theorem: If b is an essential
isolated singularity of a quasimeromorphic mapping f: G — R*, then every
pownt in CfG is an asymptotic value of f. The lifting of y_ isnot necessarily
unique, but we can use 3.12 to find a maximal lifting /\’ converging to 0.
The proof of the inequality M(fI) < KM(I) can be based on the idea
of the proof of 2.14 together with [13, 7.10].

3.19. The structure of fB;. Suppose that a quasimeromorphic mapping
f:G—R" has an isolated essential singularity and that y€CfG'. By
Theorem 3.15. every neighborhood U of y meets JB;. We shall now
study, for n = 3, the structure of the set U N JB;. Zori¢ [28] has given
an example of a quasiregular mapping f: R3 — R3 which has an essential
singularity at oo and for which CfR® = {0, cc}. In this example fB,
consists of four rays starting from 0. It is easy to modify this example
so that fB, consists of three rays starting from 0. We shall show that
the number of the rays cannot be reduced to two.

We first give a factorization lemma, which is due to Church and Hem-
mingsen [4]. Let (r, @ ,2) be the cylindrical coordinates in R". Thus
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r=0,p€ER (mod 27),2€R"2, and &, =rcosg,x, =7rsing, (3, ..., &)
= z. For every non-zero integer &, we define the winding mapping g, : R*
—R" by gr,¢,z)=(r.kg.2). If k> 0,9, is quasiregular with
Ki(g) =k, Ko(ge) = L.

3.20. Lemma. Suppose that f: G — R" is discrete and open, that x, € B,
and that f(z,) = 0. Suppose also that x, has a neighborhood V such that
(BN V) iscontained in the (n—2)-dimensional subspace Z = {y € R" |y, =
Yy = 0} . Then there is a neighborhood U = U(x,, f,r) of x, andahomeo-
morphism h of U onto a ball B*r) suchthat f|U =g, oh k=1i(xy,[).

Proof. Choose > 0 such that U = U(x,,f,r) is a normal neighbor-
hood of xy and Uc V. Set g=f U. Since f defines a k-to-one
covering mapping of U . g7lgB, onto B"(r)\ ¢B, . B"(r) "\ ¢9B, is not
simply connected (cf. [4, 5.2]). Since gB, € Z, this implies gB, = Z N B"(r) .
The lemma follows from [4, 4.1].

3.21. Definition. A set 4 c R* is said to be a quasiconformal p-ball
if there is a neighborhood [ of 4 and a quasiconformal mapping g of U
such that g4 = Br . If p = 1.4 is called a quasiconformal arc.

3.22. Theorem. Suppose that L is an isolated essential singularily of
a quasimeromorphic mapping f:G —R® and that y €CfG . Then V N fBy
is mot contained in « quasiconformal arc for any neighborhood V of y.

Proof. The idea of the proof is much similar to that used in Zori¢ [28],
[29], Agard-Marden [1], and in the proofs of 2.3 and 3.14. We shall there-
fore omit some details. We may assume that b = 0 = y . Suppose that
VN fB, is contained in a quasiconformal arc for some neighborhood
V of 0. We may assume that VN fBcZ = {x€R® |2, =z, = 0}.
Fix 7, > 0 such that B3(r) c U {0}, and set Uy = B3(r)) \ {0},9 =
f1U,. By 3.15, there is " % 0 such that 1'e;€gB,, B3 (|r'))c V and
B3(r']) N fS%(r,) = @ . We may assume that i/ > 0. Choose x,€g7(r'¢;)
N B,. By 3.20, g is topologically equivalent to a winding mapping g
in a neighborhood of x,. Let p:(0,:']— R* be the path p(t) = fe; .
Using 3.12 we choose a maximal lifting x:(6,]— G of f terminating
at x,. From 3.20 it follows that for every t€(d,7'] g is topologically
equivalent to ¢, in some neighborhood of «(f). Furthermore, it follows
from 3.12 that «(f) — 0U, as ¢ — ¢, which is possible only if «(f) —0.

For 0 <r <7 — 9 consider the cap

Cir,q) ={y€R?' y—desl =r,y;> 0+ rcosg¢g},
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0 <o =mn. Let C*r, ¢) be the component of g-1C(r, ¢) which contains
a(6 + 7). Let ¢, be the least upper bound of all ¢ € (0, x] such that
C*(r , ) is homeomorphic to C(r, ¢), and such that f defines a k-to-one
covering mapping of C*(r, @)\ la] onto CO@r,q¢) |8]. Let E =
{r€,r —8)|0€C*(r, ). Using similar path family estimates as in
the proof of 3.14 and applying 2.14 we see that m,(E) = 0. It is not dif-
ficult to see that if » € (0,7 — ) \ K, then ¢, = x,C*(r,¢,) isatopo-
logical ~2-sphere, and the mapping C*(r,q,)—C(r,q,) = S2(dey, 1)
is topologically equivalent to ¢,]S%. Choose a sequence r; > r, > ... such
that », € (0,7 —0) \ E and r,— 0. If 6 > 0. we choose r, < 6. Let D,
be the bounded component of CC*(r,, ¢,) - Then D, c B¥r,), and
each 0D, separates the points x, and 0. Passing to a subsequence we
may assume that one of the following cases occurs: (1) 0 €D, , c D, for
all 7 or (2) xy€D;,c D, , forall 7.

Suppose that (1) is true. We first show that 4, = D, D,., is a nor-
mal domain. Suppose that this is not true. Then 4, N f-1f94, = 0. Let @
be a component of this set. From 3.7 it follows that there is a neighborhood
U of 04, such that M*(f,U) = k. Hence U N Q = O, which implies
that ¢ is compact. From [27, (7.5), p. 148] it follows that fQ = S; =
S2(0es , 7;) where j =4 or ¢ + 1. Suppose firstthat 6 = 0. Let 8;: (0, r;]
— R® be the path f(t) = te;. By 3.12, f; has a maximal lifting «; : (¢; , 7]
— G terminating at a point z; €Q . Moreover, a(f) — 0 as t —¢;. Hence
there is ¢, €(c;,r;) such that «t,) €0D; ,. If j =i -+ 1, thisis clearly
impossible. If j =14, then t, =r,,, and «,(f) is the unique point in
oD; 1 N f(r; 1e5) . Hence o|[r;.,,r] and «|[r.,,r;] are both liftings
of Bl[r..,, 7] starting at «(r,.,). Since i(x(¢),f) is constant, it follows
from the last statement of 3.12 that «(t) = ~,(f) for ¢ €[r,_,, 7], which is
impossible. Next assume that 6 > 0. Welet 5/ : (0,6 — 7] — B3 be the
path f(t) = te, . Choose a maximal lifting &/ : (¢; , & — r;] —> G of B termi-
nating at a point in @ . Then «;(t) —0 as { —¢; . Hence there is ¢, € (] ,
6 —7;) such that zx;(té) € 9D, ,. This is clearly impossible in both cases
j=1 ard j=1+4 1. We have proved that A4, is a normal domain.

Let I'; be the family of all paths joining the boundary components
of 4; in A4;. Lemma 3.9 yields N(f,A4,) = N(f,34;,) = k. Using
[13, 3.2 and 5.9] we obtain

Sm(Dy)) = (1) = kK(f)M(fT) = 4mkK(f) log

Hence d(D;)—0 as i— oo. Thus f(D;, . {0}) c B3r;), which is a
contradiction by [14, 4.6].
Suppose next that (2) is true. As above, we see that the ring 4; =
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D, D, is a normal domain. Using similar path family estimates we
obtain

m(Dy)*\} . o
<b3 UA ) = M(I) < kK()M(fT}) = 4akK(f) (log 7)

As ¢ — oo, this gives a contradiction. The theorem is proved.

3.23. Remark. The function f(z) = ¢ shows that none of the results
3.14, 3.15, 3.16, 3.17, 3.22 is true for n = 2.

3.24. Tamely embedded branch set image. Now we shall study the case
where fB; is a tamely embedded (n—2)-manifold. From the theorem of
Church and Hemmingsen (Lemma 3.20 above) it follows that B, is also
tamely embedded and that f islocally topologically equivalent to a winding
mapping g, . If f is quasiregular, we can go a bit further.

3.25. Theorem. Let f: G — R" be quasiregular and let xy € B;. Suppose
that there is @ meighborhood U of x, such that f(U N By) is contained in
a quasiconformal (n—2)-ball. Then there exists a neighborhood V of x,
and quasiconformal mappings hy:V —B" hy: B"— V' c fU such that
fIV =hyog,ohy, where k = i(x,,f). Inparticular, BNV isa quasicon-
formal (n—2)-ball. \

Proof. There is a neighborhood V' of f(z,) and a quasiconformal
mapping ¢ : V' — B" such that V' < fU,g(f(x,)) =0, and gf(U N By)
cZ = {x€R"|x =z, = 0}. By 3.20, there is a neighborhood V of z,
and a homeomorphism %, : V — B"(r) suchthat gof V =g,ck, . Setting
hy(x) = ky(x)/r and hy(y) = g~ (ry) wehave f|V = hyc g, = h,. It remains
to show that %, is quasiconformal. Every point w € B" *\ Z has a neigh-
borhood W suchthat ¢ = f|hT'W isinjective. Since A" 1 = g1 o hyo g,
W, k7' is locally K-quasiconformal in B* \ Z, where K = K(f)K(h,)
K(g,) . Since A, (Z) =0, it follows from [6, p. 380] or [26, 35.1] that
k7', and hence kb, is quasiconformal.

3.26. We shall next study the case n = 3 in more detail. A bounded
arc J c R is said to have bounded oscillation [11, p. 107] if there is a
constant @ < co such that |x;—a,] = a lo;—a;] holds for successive
points 2, , 2, , 2, of J. We shall show that if fB; is a tamely embedded
arc, then both B, and fB; are arcs with locally bounded oscillation.
In particular, if they are piecewise smooth arcs, no zero angles can occur.
For example, fB; cannot be the set {x € B3|xy = 0,2, =20, |0, = xy} .
We first need a modulus estimate.
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3.27. Lemma. Suppose that F < R" is connected and that « : [0, 1] — CF
is @ loop which is not homotopically trivial in CF . Let I' be the family of
all paths which join x| and F . Then M(I') = ¢, > 0 where ¢, depends
only on n .

Proof. Choose @ € A and b € F such that |a—b| = d(|x|, F) =s.
If s =0, the spheres S"%(a,f) meet both |x| and F for sufficiently
small ¢, and M(I') = o by [26,10.12]. If s > 0, we set x, = (¢ +b)/2 .
Since « is not homotopically trivial in CF , x| contains a point in
S"a ,s)\ B"(b,s). Since CB"(b,s) is simply connected, F contains
a point in S"7b,s) ™\ B'(a,s). Hence the sphere S8"(z,,t) meets
both |x| and F whenever s/2 <t < s\/3/2. Hence [26, 10.12] yields
M(I) = b,log V3 .

3.28. The linking number. We also need the notion of a linking number,
see e.g. Spanier [22, p. 361]. If the orientation of R3 is fixed, the linking
number 1lk(y,z) is an integer, defined for 1-dimensional singular cycles
Y,z in R such that » N 'z = 0. We recall some properties of the
linking number.

(1) Ik(y,2) = 1k(z . ).

(2) Ik(y ,2) + Ik(y',2) = Ik(y + ¢, 2).

3) If y~y in Clz, then Ik(y,z)=1k(y',z). In particular,
Ik(y ,2z) = 0 if y boundsin Clz!.

(4) If y represents a line in R3 and if z represents an orthogonal
circle with center in ly|, then lk(y,z) = 1.

(5) The linking number is invariant under sense-preserving homeo-
morphisms.

3.29. Lemma. Let k =2, let g,:R>— R? be the winding mapping
9:r 9, 2) = (r,kp,z), and let Z be the line {te; 't € R'}. Suppose that
—l<ae<b<c<l, andthat E,F areopen arcs such that E joins bey
and @ point P € 82 Z in B>\ Z, and such that F joins ae; and ce,
in BB\ ZN E. Then g;i'F contains a loop which is not homotopically
trivial in B3 g 'E .

Proof. Let h:R?— R? be the rotation h(r,¢,z) = (r, ¢ -+ 2a/k,2).
Fix a component E, of g;'E anda component F, of ¢.'F . Let (ry, ¢y » %)
be the unique point in £, N S2. We choose injective singular 1-simplexes
G, Ty, 0,7 such that oy = Ey, [5| = Fy, [o] ={(ry, ¢, 2) gy = ¢ =
®o + 2afk}, |v] = (Z "\ {te;|a <t <c})U{ow}, and choose the orienta-
tions so that the chains 7, = 6, + 0 — ho, and w, = 7, + 7 are cycles.
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For 0 <j =k—1 we define the cycles y = hy; , and w; = hw;_,.
Then y = Xy, represents the circle r =1,,z =2z,. Since w, is in the
obvious sense homotopic to Z U {o} in Cly|, it follows from (3) and
(4) in 3.28 that lk(y,w,) = -+ 1. On the other hand, 3.28 (5) implies
k(yy . w) = lk(yy_;,wp) for 1 =j=k—1. Hence

k—1 k—1

.Z) k(yy , wy) = Zolk(yf swo) = 1k(y , wy) = = 1.
i= i=

This implies

k—1

Ik(yy , w; — wy) = £ 1 — klk(y, , wg) = 0.
=)

J

Hence there is j such that 1k(y, , w;—w,) 7 0. On the other hand, w;—wy =
hity—1, represents a Jordan curve J c gi ' F . By 3.28(3), w;—w,~~ 0 in
Cly,] D B*\ gi'E . Hence J is not homotopically trivial in B3\ ¢;'E .

3.30. Theorem. Let f:G — R3 be a quasiregular mapping, let « € B,
and suppose that there exist a neighborhood U of x and a homeomorphism
g :fU — B® such that g(f(x)) =0 and gf(B;N U) = B'. Then there is a
neighborhood V of = such that V O B, and f(V N B;) are Jordan arcs
with bounded oscillation.

Proof. We first show that f(7W N B;) has bounded oscillation for some
neighborhood TV of a. By 3.20, there exist 7, > 0 and a homeomorphism
hoof U = T(x,gof,r) onto B3r) suchthat gof| Uy =g,oh, where
k =i(x,f). Choose t>0 such that B3(f(x),2f) c fU;. Next choose
r > 0 such that U(f(x),q,r)c B¥f(x).t). Set W =U(x,gof,r) and
J=B,NW. We claim that J' = fJ has bounded oscillation. Suppose
that this is not the case. Then there is for every m > 1 a triple 1, ¥, ¥3
of successive points of J' such that [y,—y, > m |;—y;. Choose an
open arc E c f(U; \ B;) \\ By , ly1—y.') which joins y, and a point
P €afU;. Next choose an open arc F C B¥f(x),t) N Byy, h—ys!)
N\ f(B;N U,) which joins y, and y;. Let I' be the family of all paths
joining U, Nf1F and oU,Uf~'E in U,. Since f| U, is topologically
equivalent to g, , it follows from Lemma 3.29 that there is a loop « in
U, NfF which is not homotopically trivial in U, \ fE. Since I'
minorizes the family of all paths joining |x| and 0U; U (U N fE),
3.27 implies M(I') =¢; > 0. On the other hand, M(fI') = 4z/(log m)%.
By [13, 3.2], we have M(I') = kKy(f)M(fI") . Thus cy(log m)? = 4akKo(f) .
Letting m — oo yields a contradiction. Thus J" has bounded oscillation.

Choose now s> 0 such that V =U(x,gof,s)cB¥x,u) and
B3x,2u) c W for some %. We claim that the arc J, = B;N V has
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bounded oscillation. If not, there is for every m > 1 a triple ;, 2, , 2,
of successive points of J; such that |v;—x,| > m |2;—a5] . We may assume
that |f(xy)—f(x)] = |f(xy)—f(25)! . Let , be the end point of J such
that z,, 2,2, are successive points of J. Let «; be the open subarc
of J, with end points x; and z,, and let &, be the open subarc of J
with end points a, and ;. Let I' be the family of all paths which join «,
and o, in W. If |@;—a,| <f<<|x;—a,|, the sphere S%(z;,!) meets

both «; and «,. Hence [26, 10.12] implies

[, —,|
|0y — 5]

M(I') = by log = bylogm .

We next derive an upper bound for M(fI"). By the first part of the proof,
there exists a constant @ such that [z;—z,] < a |7,—2;] for successive
points 2, ,2,,2, of J'. Set p, = fx;, and suppose y, € ;,% = 1,2. Then
0 = |flx)—f(@)| = [f()—[f(x5)| = [f(@a) —pl + |f(@s) =] = 2a |y, —w] -
Hence d(p,, ;) = 6/2a . Define ¢: B3 — R' by setting o(z) = 2a/d for
z € f,+B%/2a) and o(z) = 0 elsewhere. Then ¢ € F(fI") . Since |y,—f(z;)]
= ad,9(z) = 0 whenever [z—f(x;)] = ad+d6/2a . Hence

M(fl') < f o*dm = 80,a3(a+1/2a)3 .

By [13,3.2], we again have JM(I') < kK,(f)M(fI"), which gives the
contradiction as m — oo . The theorem is proved.

3.31. Remark. If a planar arc has bounded oscillation, it is a quasi-
conformal arc (Rickman [20], cf. also [11, p.104]). The corresponding
result in R3 is not true, because there exist wild arcs with bounded oscilla-
tion. The authors do not know whether a tame arc with bounded oscillation
must be quasiconformal.

4. Bounds for the local degree

4.1. It has been conjectured that for » = 3 the local degree i(z, f) is
bounded by a constant which depends onlyon n and K(f). This was dis-
proved by Rickman [21] who constructed quasiregular mappings f: R3 — R3
such that ¢(0,f) was arbitrarily large while K(f) was bounded by a
universal constant. In this example, whose n-dimensional version will be
given in 4.9, B; consisted of a family of rays starting from the origin,
and the local degree on B, was 2, 3, or 4, except at the origin. In this
section we show that this example is typical in two respects: (1) i(z,f)
cannot be large at every point of By. (2) If i(x,,f) is large, then By
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must lie on »every side» of x,. We also show that a quasiregular mapping
is a local homeomorphism or constant if its dilatation is sufficiently close
to 1. We close with some counterexamples.

4.2. Theorem. Let n =3 and let f:G — R* be a non-constant quasi-
regular mapping. Then either By = @ or

/

n n—1
infi(x,f) < (n—Q) K, (f) = 9K ,(f) .

xEBf \

Proof. Since A, _5(fB;) > 0 by 3.4, the theorem follows directly from
Martio [12, 6.8].

4.3. Lemma. Let f:G — R" be a non-constant quasiregular mapping
and let xy € G . Then there are r > 0 and C > 0 suchthat for x € B"(x, , 7)

f@) =) £ C lw—w, "
where i = (i(zo , f)/ KA/

Proof. This was proved in Martio [12, 6.1] although the formulation
was less general.

4.4. Theorem. Suppose that n = 3, that f: G — R" is K-quasiregular,
and that A is an open cone in G\ B, with vertex at x, € G and angle « .
Then i(z,y,f) = C where C dependson n,K , and «.

Proof. Performing auxiliary similarity mappings we may assume, in view
of Lemma 4.3, that (1)a, =0 = f(z,). (2) 1 = {z] 2/ cosx < a; < 1},
(3) if z €4, then |[f(x)] = |x|* where p" ! =1i(x,,f)/K. By 2.7, f is
injective in the ball B, = B"(te; , ty(n , K)sinw), 0 <t = 1/2. Let J, be
the segment {se; |at <s <1t} where @ =1—3y(n,K)sina. Then
E, = (B,,J) is a condenser, and cap E, depends only on = .

Pick ¢, € (0, 1/2] suchthat f~1(0) N B"(2f,) = {0}. If 0 < ¢ <¢,, then
fE, is a rirglike condenser, and CfB, contains 0 and oo . Setting g(t) =
|f(te;)| and using a well-known modulus estimate [26, 10.12] yield

g(1)
g(at)

where b, > 0 depends only on = . Since K cap E, = cap fE,, we obtain
an inequality

cap fE, = b, log
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where €, dependson n and K . Since this holds for all ¢ € (0,¢,], we
obtain by iteration

g(ty) = Cglaty) = Ciglaty) = ... = Cigla'ty) .

On the other hand, g(t) < ¢, which implies g(f,) = Cia™t . Letting k— oo
yields Cya* = 1. Thus

The theorem is proved.

4.5. Lemma. Suppose that f,: G — R" is a sequence of sense-preserving
discrete open mappings which converge to a discrete open mapping f: G — R"
uniformly on every compact part of G . Then i(xy,f) = lim sup i(x, , f;) for
every x, € G . I

Proof. Choose > 0 such that D = (xo ,f.r) is a normal neigh-
borhood of x, with respect to f. Then i(x,,f) = u(y,,f,D), where
Yo = f(x,) . Since f; — f uniformly on D, thereis j, such that |fi(@) —f(2)]
<r/2 for j =j, and x €D . By [16, Theorem 6, p.131] this implies
w(fi(xo) 5 fi s D) = wlyy , f» D) = i(xy, f) for j =j,. On the othe1 hmd
wfi(@o) s f;» D) = iz, f;) over x € DN f(fi(xy) . Thus u(fi(xy),f;, D
= (%, f;) , and the lemma follows.

4.6. Theorem. For every n =3 there is K > 1 such that every non-
constant K-quasiregular mapping f: G — R* 1is a local homeomorphism.

Proof. Suppose thatv the theorem is not true for some n = 3. Then there
exists a sequence of non-constant K -quasiregular mappings f;: G; — R"
such that Kj —1 and ij # @ for all j. We may assume that Kj <2
forall j. By 4.2, there is z; € ij such that i(z;, f)) = 18 . From [13, 4.5]
it follows that H(z;,f;) < C where C depends only on . By [13, 2.9],
Ulz;, fj,r) is a normal neighborhood of a; for sufficiently small .
Performirg auxiliary similarity mappings we may assume that (i) a; =
0 = f(z;) , (i) U(0 f] ,7) is a normal neighborhood of 0 for 0 <<r =<1,
(i) I*(0, f;, 1) =1, L0, f;, 1) < CLO , f;,t) for 0 <t = 1. Observe
that (iii) implies B” c G

Since f,B"c B*, it follows from [14, 3.17] that the restrictions ¢; =
fi | B form a normal family. Passing to a subsequence, we may therefore
assume that g; — ¢ uniformly on every compact part of B". By Resetnjak
[19, p. 664], g:B"— R is l-quasiregular. A 1-quasiregular mapping is
either constant or a Mobius transformation. This was proved by Resetnjak
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in [18], but it follows also easily from the corresponding result for quasi-
conformal mappings (Gehring [6, p. 388], Resetnjak [17]) and from the
condition dim B; =< n—2. Since 0 € Bf , it follows from 4.5 that g can-

not be a homeomorphism. Hence g is constant. Since ¢;(0) = 0,g(x) = 0
for all = € B™.

Set & =10,f,1). Since L(0,f;,1)=1,(iv) implies L, =1/C.
Let E; be the condenser (U(0,f;,1). U j} ,1;/2)) . Then fE; =
(B'(l;) , B"(L;/2)), and cap f;l; = o, (log 2)'=". Since L*0,f;,}) =1,
we obtain the estimate cap B; = o, ;(log (/)™ where IF =
l* 0,f;,1j2). Since E; is a normal condenser of f;, we have by [13, 6.2]

cap B, = K;N(f;, E;) cap fE; = 360,_,(log 2)1=".

Combining the above inequalities yields 7 < C; <1 where ) depends
only on n. For each j thereis a; € 2U(0,f;,[;/2) such that |a| = I .
Then |g;(a;)! = [;/2 = 1/2C', which contradicts the fact that g; — 0 uni-
formly on B"(C' ) The theorem is proved.

4.7. Remark. Theorem 4.6 does not give any explicit bound for K .
We conjecture that f is a local homeomorphism if K,(f) <2. If B,
contains a rectifiable are, this is true by Martio [12, 6.6]. However, B; need
not contain any rectifiable arc. To see this, let J be a quasiconformal
curve in R2 such that J contains no rectifiable arc [11, p. 109], and let
g : B2 — R? be a quasiconformal mapping which maps J ontoaline L. By
Ahlfors [2], ¢ can be extended to a quasiconformal mapping g* : B® — R3.
If h:R?— R® is a winding mapping with B, = L, then f=hog* is
a quasimeromorphic mapping with B, = .J .

4.8. Examples. For completeness we first construct an example of
a quasiregular mapping of R" onto R",n =2, which is in the special
case n = 3 given in [21]. It shows that the local index has no upper bound
in terms of the maximal dilatation and the dimension = .

4.9. Let k be a positive even integer and set @; = {v € R"| |2;] < 1}.
Given an integer 7,1 <¢ <n, let J; be the set of multi-indices j =
(Jys.--5Js) such that j, is —k or %k and j, is some of the numbers
—k,...,—1,0,1,...,k—1 for m=i. For j€J, let C; be the
(n—1)-dimensional cube {x € R |j./k < @, < (j.+1)/k if m #1,2, =
gk} . Let 0, be the set of sequences D = (D', ..., D"') where D"
is some C; and where D’ is a p-dimensional face of the (p--1)-dimen-
sional cube DP*' p=1,...,2—2. For D€, let T(D) be the n-
dimensional simplex whose vertices are the vertices y(D') and z(D!) of
DY, the centers xz(DP) of DP,p=2,...,n—1, and the origin. Denote
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by T'(D) the (n—1)-dimensional simplex whose vertices are the vertices
of T(D) except the origin. We fix one such sequence D, € ¥, such that
y(Dy) = e, and z(Dg) = e,/k-+en .
We define a function g of the vertices of the cubes C; by setting
for w= (uy,...,un)
f(u) = en if ku, — ... — ku, iseven,
fu) = e /k+en if kug -~ ... = ku, isodd.

Tor D€, let gp: R*— R" be the affine homcomorphism which maps
T(D) onto T(Dy) such that gp(y(D")) = p(y(DY) . gp((DY)) = B(:(DY) .
go(@( D) = 2(DY) , . . ., gpla(D™Y) = a(D™) , gp(0) = 0.

Next we define a quasiconformal mapping of the cone E(D,) onto the
halfspace H", = {x € R" |, > 0}, wherefor D€, E(D) ={x€R"| v =
tz,2€T'(D),t>0}. Set Y ={x€R" x,=1}. Let v€Y and r >0
be such that U = B"(v,7)N Y is the maximal (rn—1)-dimensional ball
contained in 7"(D,) . Let A be the radial projection of V = U + (e,—v)
into S*1, ie. A(z) =z2/|z|. Let a«,0 <<« << /2, be the angle between
the a,-axis X, and the line segments [0.,z2], z €S (e,,r)N Y. We
define a mapping w of the cone W ={vr€R" »=352,2€V ,s>0}
ofangle « onto H" asfollows. For « € IV " X, weset w(x) = w(t,a’,¥)
= (¢"P* 2’ , a0/2x) where we have used spherical coordinates such that
t = |v|, 2" = Pux/|P.x| where P, is the orthogonal projection onto
0H", , and ¥ is the angle between the x,-axis and the line segment [0, 2] .
For x € W N X, weset w(x) = 2, ¢, . The required quasiconformal mapp-
ing h:E(D)) — H" isthen obtained by setting k(x) = w(ti(y(z)+e.—v)),
where x =1tz,2 € T'(D,),t > 0, and where y is the radial projection
of T"(D,) onto U .

Now we define a mapping ¢ of the union U E(D) over all sequences
D €Y, by setting (@) = sp(h(gp(x))) for « € E(D) where s, is the
identity mapping if g, is sense-preserving and the reflection in 0H" if
gp 1s sense-reversing. The mapping ¢ can finally be extended continuously
to a mapping f, : R*— R*. It is left to the reader to show that f, is quasi-
regular and that K(f,) has an upper bound which depends only on = and
not on k. On the other hand, ¢(0,f,) — = as k— = . We observe here
also that f,00Q, = 0B".

4.10. By slightly modifying the mappings f, in +.9 for different &
we can construct a quasimeromorphic mapping f with the property
sup i(x, f) = oo as follows. For every positive integer ¢ we set k, =
2. 311 ,

a9
N il i NC 4 . ai-2
Oq(l) = 37" — Z 43 €n .

-2
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and @, = 0O x € R"| v, <1}. Then the cubes @, are disjoint and
F‘I = _1 n Q_q_l is a face of @,. For every ¢ we first define mappings
u, of @, by

N RO if ¢ is odd.
) = vl(@z(fkq(@q_l(.r)))) if ¢ is even,

where fkq is defined in 4.9, o, is the reflection in S"', and v, is the
reflection in 0H" . We first observe that those (» —1)-dimensional simplexes
O,T"(D) and @q+1T’(ﬁ) ,DE€ S’Skq ,De S/J,fq+l (see 4.9), that are in F,
coincide pairwise. We define a mapping z,: F,— F, by letting z,(x) be
the point in  #;)y(%,(x)) which lies in 6,7"(D) if 2 € 6,I'(D) and if
D€ %kq . Then y(x) = a if « belongs to the boundary of some simplex
61'(D),D € ibkq. We shall modify the mappings «, so that the new
mappings coincide pairwise in the sets F,. To this end, we set for ¢ > 1
and w €@,

Ut gr ((@—) tFa) —a)+a,) if (e—z)/t-+x, €F,, and

u,(x) = 0=t=1,
u,(x) elsewhere,

where x, = 0,(0) is the center of ¢, . The mappings #, | | @, are quasimero-
morphlc and  w, and wu,. c01n01de in F_. Fm‘rhermm e, the maximal
dilatation of wu, | @, has an upper bound w hlch depends only on n . The
qua&meromorphxc mappmg fy: Gy — R, Gy = int (U Q ), defined by
fo(x) = u,(x) for z € @, N Gy, has the required property sup i(v, fo) = .

4.11. As a final example we shall exhibit a discrete and open mapping
f:G—R",n =3, which is not topologically equivalent to any quasi-
regular mapping. Given a positive integer p, we define a mapping ¢, of
the cylinder C = {x € R" | xj-+a} < 2} onto itzelf in cylinder coordmates
(see 3.19) by

[ (r, (1+4p)(g—a/4) a4, 2) if 2/4 = ¢ < 3a/4,
zp(r b5 R) =3 . . . _
l(r,(p,z) if 0 ¢ <a4dor 37/4 < ¢ < 2n.

Let «, be the translation w«,(x) = x+2(p—1)e, . We set
= Ux»,C
p=1
and define f:G — R* by f(x) = ocp(fp(a;l(;u))) for x €x,0. Then f isa

sense-preserving, discrete, and open mapping with the property i(z,f) =
p+1 in the set L,={x €R"|a; = 2p.x, = 0}. Suppose that there



28 Ann. Acad. Sci. Fennicae A.T. 488

are homeomorphisms ¢; and g2 such that A =g¢g,0fog, i
regular mapping. Then %, =k | g5’ (x 0) is quasiregular and K(h,
On the other hand,
mfi(x, h,) =p+1.
=€y,
This gives by 4.2 a contradiction as p — o .

In the plane the situation is different. Given a discrete open mapping
f:G— R?, there exists by Stoilow’s theorem [24, p. 120] an analytic
function ¢ and a homeomorphism ¢ such that f= ¢ og. The following
question remains open: Let » =3, let f:G — R"* be a discrete open
mapping, and let D be a subdomain in ¢ such that Dc G. Is f|D
topologically equivalent to a quasiregular mapping?

5. The linear dilatations

5.1. Upper bound for H*(x,f). It was proved in [13] that for a non-
constant quasiregular mapping f:G — R* both H(x,f) and H*(zx,f)
have upper bounds which depend on K(f),n, and i(x,f). The result
for H*(z,f) will now be sharpened to the extent that the upper bound
does not depend on i(z, f) . This does not hold for H(x,f).

5.2. Theorem. Let f: G — R" be a non-constant K-quasireqular mapping
and let x € G . Then

H*(x,f) = C*n, K)
where C*(n , K) depends only on n and K .

Proof. For >0 set U=U(x,f,r),l*=101%a,f,r),L*=

L¥x,f,r),l=lx,f,1*), L=Lx,f,L*),U;,=Ulx,f,l), and U, =
x,f,L). There exists 7, > 0 such that U, is a normal neighborhood
of « for 0 <7 = r,. Fix suchr. We may assume that { <+ < L. Then
(U,0) and (U,,U) are ringlike condensers [13, 5.2]. Furthermore,
oU, and U meet S"(z,l*), and 0U and oU,; meet S"x, L*).
Therefore we have cap (U, U)) , cap (U, U) = @, , where a, > 0 depends
only on n. By [13, 6.2] we have
N\l—n
cap (U, U) = Ko(f)iw o |log 7]

(5.3) ‘

cap (U, 0) = Kolfyite , o (108
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On the other hand, we have by [12, 5.13, 5.15]
/ L\ 1—n
(5.4) K (f) cap (U, U) = i(x, f) cap (fU,,fU) = i(x, flo.4 (k)g 7) :

We also have

s\ 1-—n

(5.5) cap (U, U) = o, (log F)

From (5.3) we get

// n—1 / L Py \n—1
o) = (1o 10 ) = 2 Kot o

Then the inequalities (5.4) and (5.5) imply

1 L* 1=n - n
W, 1 ( 0g B = 21K (N EKo(f)
Hence
L* [ (o, K2 .
B I R

The theorem is proved.

5.6. Example. Let f,:G,— R" be the quasimeromorphic mapping
defined in 4.9. If we compose f, with a stretching 7, %(x) = 2¢; + ... +
x, 16, 1+Kxe,, K>1, then g=fio |y G, 1s a quasimeromorphic
mapping with the property sup H(x,g) = .

Addendum

When this manuscript was completed, two papers appeared partially
overlapping with our work. Goldstein [7] obtains results related to 3.16.
We have not been able to follow all details of his proofs. Poleckii [15]
proves the path family inequality (2.13) for arbitrary quasiregular mappings
and obtains results similar to 3.3 and 4.2.

We have also received a preprint of Goldstein which contains a result
similar to Theorem 4.6.
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