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THE SUBLATTICE OF AN ORTHOGONAL PAIR
IN A MODULAR LATTICE

HERBERT GROSS and PAUL HAFNER

Introduction

We will be concerned with a modular lattice & together with an antitone mapping
1: £~ such that

) x=x1+ forall xcZ

The following rules are easily verified:

[9)) alll =gt
©)] x=y=xtl =yt
(©) (xv )t =xLtayt

If x=x*1 we call x closed; if x=y+ we write x| y.

Under the assumption that f1 g we shall construct the free modular lattice
¥(f,g) generated by ¥(f)u¥(g), where ¥°(f) is the orthostable lattice gen-
erated by f€%. 7(f, g) is a distributive lattice. We will also give some conditions
ensuring that ¥°(f, g) or a slight modification of ¥7(f, g) is orthostable. Certain
special cases are studied separately because of their importance in geometry.

The value of lattice theoretical computations such as given here rests on the
fact that they yield — in conjunction with certain general theorems proved in [3]
and [5] — strong results on the classification of subspaces in quadratic spaces,
normal bases, decomposition theorems. The role of the lattice theoretic part has
been described in detail in Section 3 of [5]. Further applications of this method are
given in [4]. Cf. also Remark 5 (iii) at the end.
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1. The lattice: general case

The | -stable lattice #°(f) generated by an element f€.% (modular with 1)
is given by the following diagram

(Fha gyt (fafhy

£ E.u

Let #(f) be the ideal generated in ¥~ (f) by f++; and let the filter generated
by f+ be denoted by Z(f). Note that ¥'(f)=S(f) v Z(f) and that F(f) is a
chain. Moreover, ¥°(f) is distributive.

Considering a second element g€% we prove:

Lemma 1. Assume that f1g. Then the lattice ¥'(f,g) generated in £ by
v (f)u¥ (g) is distributive.

Proof. By Theorem 6 of [6] and symmetry it suffices to verify that (bvbd')Ac=
(bAac)yv (B ac) for all b,b’€¥(f) and all c€¥7(g). Since f1lg we have
y=ft=gtl=x for all x€S(g), y€ZF(f). This and the symmetric fact is
expressed by

@) SNH=F(@, H@=7).

The only elements in ¥°(f) which are not join-irreducible are z;=f v (fA Vi
Zo=fV(f* A, zz=f v [, zg=f*++ v f+. For i=3,4 we obtain the distribu-
tivity of z; Ay using (5) and modularity. The same works for /=1,2 and y€%# (2)-
Finally (5) implies that y=f* Ay for y€J(g); therefore

Ay =[fVEAFDEIAfE Ay = (FAfDY Ay =(FAn VIEA DAY
Ay =[VEASLOIA LAy = fEAfriny = (A VIUEASED) AL
This takes care of the remaining cases, bearing in mind the distributive inequality.

Remark 1. Let & be given by the following diagram

where the broken lines indicate a relation =. The proof given above shows that the
free modular lattice generated by 2 is distributive.
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A situation involving & appears again in the construction of the 1 -stable lattice
generated by two elements f, g€, f1f, g1 g Here

I ={fagh £, (FAg)LL v (FAgh)tL, A agh v (frEagh), f1}
and
Fy={gt, fvegt, frrvegl, (ffagtH)t (ff At}

take the place of #(f) and Z(f) respectively. If 7, and & denote the analogous
sets with f and g interchanged, then clearly the orthostable lattice generated by f
and g must contain the sublattice generated by #1U f, 0 F VT, which by the proof
of Lemma 1 is distributive.

In what follows we construct the free modular lattice generated by 2. We will
however do it in the setup of #°(f) U ¥(g) and leave it to the reader to verify that
the result has general validity.

Thanks to the distributivity of ¥°(f, g) the lattice ¥; generated by J(f) v #(g)
is the join-closure of

J(f)u L@ ulxaylxeI(f), ye I ()}
As f1g we have

{(xAy|x€F(f), yeF(Q)} = {x AY|x€F(f), y€F(8)}:

where  Zy(F)={f A S, (f AfDLE, fAAfLL} and similarly for #o(g) (compare
the proof of Lemma 1). Therefore, we begin by forming the free modular lattice M
generated by the two chains #,(f), #o(g). M has 81(4)~2—2=68 elements ([1]
p. 66) and consists of all joins of elements out ot the following diagram

SN etag”
(Nom (gng
[N g A8t
EAQ

(intersections of lines represent meets of elements).

The next step is to form joins of elementsin M with f,g,f v g, f**, gttt fvegtt,
fLivg, ftLvgtt. This produces all elements of ¥; since any element x vy v m,
where x€4(f), y€F(g), meM is of the form X,V yovmy with xo€{fy /+1},
yo€{g, g++), my€ M. In an expression like fvxvyv Vx;Ay;, where x, x;€ 20(f),
¥y, ¥;€ #o(g) one can dispose of terms x; AY;= /. Thus we may assume that x, x;#
fAf*t and hence fv M=fv M, where M, is the free modular lattice generated
by the 2 chains {(fAfH)*H, fLAaft+) and f,(g). We obtain 71(314H)"1—-2=33
elements or 34 elements if we include f. The same kind of reasoning leads to the
following enumeration
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M: 68 elements; fv M: 34 elements (including f); gv M: 34 elements (includ-
ing g); fvgv M: 19elements (including fv g); f*+ v M: 4elements (includ-
ing f+4); g'+ v M: 4 elements (including g*+); fvgttv M: 3 elements
(including f'vg*+t); gv f++ v M: 3elements (including gv fL1); fLL vgtt:
1 element.

Altogether the free modular lattice generated by J(f)uF(g) has 170 elements.

The lattice 77 generated by the 2 chains #(f) and # (g) is the v -closure of
the elements which are depicted in the following diagram (intersections of lines
represent meets):

fu(gag)
fagt

Observe that the elements marked by circles are of the form fv x, Sfrtvx,
gVy, gt vy for xe{f*, f* nalacF (o)}, ye{g*, g* AbPEF(f)). Moreover, for

re{fL fAa(gngh)t, fAa(gtt agh)l),
se{gt, gt AUFASDL gL AL AL

rvs=Fvfiv(isvgll).

we have

As a consequence ¥; is the lattice generated by the two chains

{fAEvrh (A A D5 (A DY)
and
{gttvet, (gttaght, (gngh)t})

together with the 20 elements below the solid line in the diagram. The total number
of elements in 77 is therefore at most 68--20=288.

Finally we prove that ¥{uU¥; is a lattice by showing that x v y and xAy
are in ¥7 U ¥; whenever x€¥;, y€¥;. As for the joins it suffices to show that x vV yey
for xe¥; and y join-irreducible in %5, y=fL Agt. Since fL agt A (fLL vgti)=
(ffAfrH) v (gt Agtt) the only such y are £, f-1, g, gt+; for these, however, the
claim is obvious. Owing to distributivity we will now consider only those meets
x Ay for which x€¥7, y€7; are join-irreducible with x /1L v gltv (f*Agt)and
yESft Agt. This means that

x€{f*, fralgngh)t, LAt agt DL, ffagh, gt A(fEAfLYL,
gEA(fA )L, gt}
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and

yE {f; f-LJ-a g, gll}'
These verifications are easy.

We summarize:

Theorem 1. The free modular lattice generated by & has 258 elements.

2. The lattice: some special cases

We recall that f | g is assumed throughout. From this it follows that £+ A gti=
FEAfrLagt agtt. The following condition requires that fLtagtt is even
smaller:

© fraght = (FAfYEEAEAEDEE

Under this assumption

(M Y% =I(f)uI(@uixvylxes(f), ye S (@} V¥
where ¥ is the set containing the following 17 elements:

1 fng 10 fv(gaf+h)

2 (fagthvigasftt) 11 gv(fagth)

3 fJ__LAg_L_L 12 (f/\f']‘)\/(f’l‘l/\gll)

4 (fafvienghv(frtagth) 13 (gagh)v(frtagth)

5 fvgvflingtt 14 fv(friagtl)

6 faght 15 gv(f+tagtt)

T gnftt 16 fv(gngh)v(fttagtt)
8 (fafl)vegnftt 17 gv(fafv(fttagth).

9 (gngh)vingtt

To prove (7) note that by distributivity ¥; consists of joins u; vV up V 3 V ... V Uy, where
(@) weF(f)u F(g) or(b)uy;is ameet XAy of join-irreducible elements x€.5 (f),
y€F(g). From (6) and f1g we see that the joins of elements of type (b) form

the set
V= {ftingtst, (Frragv(gttnf), f+ing gt nf, fagh

Under the assumption (6) ¥; therefore has at most 63+17=80 elements.
Condition (6), which does not have any bearing on 77, can be obtained from

® frvgt=(FafHtvigngh)t

by applying L . Equation (8) has very strong consequences:
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Lemma 2. Assume that f1 g and that (8) holds. Then

) 1Ay V(iAY) =V IDAY:V yi)

SJor all y,,yi€F(f) and all y,,y,€F(g). In particular F(f)u F(g)u
{xAylxeF(f), yeF (9} v {ftvgt} is v-closed and hence a sublattice of %,
ie. itis ¥, card ¥;=36.

Proof. It is clear that = holds in (9). To obtain the converse inclusion we
consider the case y;=y; and y,=y, (the other cases being trivial). The right hand
side of (9) then becomes

VinYe = ViAn AlUAS)EV(gng) I =yiayan(frvegh)
= ([T Ay V(g AY) = (A vV (VIA Y.
This proves the lemma.

Theorem 2. Let & be a modular lattice with a Galois autoconnection | . If
f1lg and (6) holds then card ¥°(f,g)=168 and V'(f,g)=Y{u¥;, where ¥; is
given by (7) and V1 is generated by two chains. If instead of (6) one assumes (8), then
¥, is as before, ¥ is the product of 2 chains and card ¥"(f, g)=116.

Remark 2. The same considerations are valid in the case f1 f, g | g provided
(6) is replaced by

(10 fringtt =(fagh)tta(ga fH)L:
and (8) is replaced by

(1n frvgt =(frghtvignafi)t.
It is easily seen that

(12 frvegt=(frg)t

implies (8) if f1 g and also implies (11) if f1 f, g1 g.

3. Orthostability

We want to be sure that xt€¥7(f, g) for all xc¥°(f, g). Since (avb)t=
atAbt and ¥°(f,g) is a lattice we need only find the orthogonals of join-irre-
ducible elements. If x€7¥] is join-irreducible, then x€Z(f), or x€%(g), or
x=utAvt for some ucS(f), vEF(g). In the latter case xLt=(uvv)t: and
the following condition must be satisfied for x* to belong to ¥(f, g)

(13) (avb)tLecv¥(f,g forall acF(f), beF(g).

Another problem appears when we check orthogonals of elements in
Vo INE=([ASAN(GAEH)=(FAfD)EEA(gAgH)t L and therefore (fag)t=
[(SAfHEv(gagh)t]tE. Since (fAfH)Lv(gagl)t is the largest element of
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¥'(f, g), this lattice will have to be extended at the top end unless (fAfH)*v
(gngh)t is closed and (fAg)tt=(fAfH)tLA(gagt)tL. Postponing the
problem of such an extension at the moment we consider only x¢%¥; such that
x=>(fAfHrLA(gagh)tt, or x=fA fL, or x=gAagt. The join-irreducible ones
among them are elements of £ (f) or £ (g) or meets x=a'+ Ab++, where ac S (f),
be#(g). In the last case x+=(atvbt)tL. Thus, a further condition must be
satisfied:

(14) For a€#(f), b€#(g) such that at vbt<(fafH)tv(gagh)t the closure

of at v b! also belongs to ¥°(f, g).

The only join-irreducible elements of ¥; not yet considered are
faghtt, fa(gngh)tt, fag, gn(Faf)ts, gnftt.
To be able to deal with faglt and gaft+ we must require that

(15) (fagtHLL and (gafrH)L+ belong to ¥7(f,g) and are comparable to
(SASIEE A (gngh)t+.

The elements below (fA fH)L+A(gagh)++ make it necessary to extend ¥°(f, g)

at the top end; again we must require that

(16) the closures of elements = (fA fL)LL A(gagl)tL belongto ¥(f, ).

Assuming (16) one can add up to 6 elements at the top end of ¥°(f, g); the maximum

number of 6 is needed if (fAfH)L v (gagt)t is not closed, and all four elements
below (fAfH)tLA(gagt)tt are closed:

(EAQ )1

CEA(gaghitlty [ga(Ea f.'L)’u':Il
[gn (EALDMT

fi«(gAg*)“ ng (£A£L)J.J.]_L
TEAEH v (gagH)*+ 1+
We summarize the result as a theorem:

Theorem 3. ¥ (f, g) or a small extension of ¥ (f, g) is orthostable provided
the conditions (13), (14), (15), and (16) hold. The maximum number of elements in the
orthostable lattice is 264.

The conditions in Theorem 3 are satisfied in the following situation:
(16) closures of elements = (fA fL)LtL A(gAgl)tL belongto ¥(f, g).
(A7) (fagttt=(FAaftiagtt; (gaft)tt =fLia(gagh)tt;
(18) [fAfDrLv(gagh)titt =(fAf)Livgagh)tt v (ftiagtt);
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(19) the following are closed:
frivgtd, fAiv(gtagt), fArv(gngh)td, gtt v (fLafid),

grEV (FA LD
(20) the following are closed:
(FEASEDEV(@AghHE (FASD)E V(g Agth)E (fAfEH)t vi(gt Agth)h.

Remark 3. Note that the right hand side in (18) is closed provided (19) holds,
since it is the meet of f++v(gagt)LtL and glt+ v (fafHLL. Given (19), the
joins avb of closed elements acf(f), bcF(g) are closed, being meets of ele-
ments listed in (19).

To conclude this section we return to the special cases treated in Section 2
and consider the question of orthostability. As before, ¥ is taken care of by
assuming

(13) ¥(f,g) contains (avb)L+ forall acSs(f), be #(g).

The set of join-irreducible elements of ¥; which are not contained in £(f)u #(g)
is the set ¥~ as defined at the beginning of Section 2. If [¥"+] is the lattice generated
by ¥'t, then %,=7(f,g)u[¥ 1] is a lattice because 7'(f, g)=(fL+agtH)t=
(frvgh)tt by (6). If ¥; is to be | -stable we must have the elements of [¥ 1]+
in 7°(f, g); this will happen precisely when (¥ )+ c ¥". This proves

Lemma 3. Assume (6). Then, with the notation introduced above, ¥"(f, g) U [+ +]
is a lattice. This lattice is orthostable if and only if (av b)L+¢¥ (f, g) for all ac #(f),
bes(g) and
Q@1 FHLcv.

We now prove

Lemma 4. For all x¢ % with fr=x-=f*+vgl we have
22 [xtLv(gtt Afri)tt = (xLLv gti)LiafiL,

Proof. We have xtA(f*vgl)=xLAa(ffvglt)tt since both sides reduce
to x1 by the assumption of the lemma. By modularity the left hand side is equal to
v xtagh)=f*+v(xt Agt)tt; the right hand side equals [x++ v (f£+ AgtL)]L.
Taking orthogonals on both sides yields the asserted equality.

Remark 4. Obviously, if f* v gt is assumed closed, then by the above proof

(22) holds for all x€& with ff=x*.
The following lemma elaborates on the first condition ennunciated in Lemma 3:

Lemma 5. Assume that f | g satisfy (8) and the closedness condition

(23) frivgtt=(fvgtt
Then we have
24) Xttvxdl =(gvx)tt

Sfor all x,€7(f), x,€5(g).
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Proof. By (23)
it vttt = (xfLvag D)t a(fE Lt vgtl)y = (L vt AL vt

By distributivity and Lemma 4 therefore (x{+ v x5 )t +=(x{+ v (gtt A L))ty
gtt=x{tvgtl (the last equality by (6)). By a symmetric argumentation
(xit vt =(frtvxdt) so that (xftvxiH)ti=@itvgrHa(fHttyv
xgH)=xi+ v xiL by again using (6). Obviously, if in this proof f* v gt is assumed
closed then by Remark 4 we need not assume (8) in order to quote Lemma 4. In
other words, we have also proved the

Lemma 5. Assume that f1g has f*+vg*t and f+v gt closed. Then (24)
holds for all xy,x,€% with ffiagti=xit=f+L, fAlagtl=sxtt=gtt.
Another possibility to obtain (24) is to require (23) and condition
25) frivignagh)ti, gtiv(faft)LtL are closed;
for, simple calculations show that (23) and (25) imply closedness of all spaces
xi+ v x&t occuring in (24).
In order to satisfy (21) we may require condition

(26) fringtt =(fagtt
— which means that the lattice "+ of Lemma 3 reduces to {(f*vgt)t+} — or
27 frg fagtl, gnfti, (fagtt)v(gna f+i) are closed,

which means that the elements of ¥~ are closed so that | : ¥ — %L is a bijection.
Notice that (26) implies (6). We summarize:

Theorem 4. Let % be a modular lattice equipped with a Galois autoconnection
L. Assume that f, g€ satisfy f1g. Let ¥ (f, g) be the sublattice generated by
the set V" (f)v ¥'(g), where ¥'(f), ¥°(g) are the | -stable sublattices generated by
f and g respectively. In order that the | -stable lattice ¥°(f,g, 1) generated by
V(f)u ¥(g) (i.e the 1 -stable lattice generated by {f, g}) is finite and distributive
either of the following four conditions is sufficient: (26) & (23) & (25), (8) & (23) & (26),
6) & (23) & (25) & (27), (8) & (23) & (27). We then have ¥V'(f,g L)=7(f, v
{(ffvgh)tL} in the first two cases and

V(g D=7, u{(frve)tt, (fagtHta@afHt (fagtht,
@A DN A (gAg) T vIga (A, (fAg)t)

in the last two cases. Upper bounds for the cardinality of v°(f, g, L) in the four cases
listed are respectively 169, 117, 174, 122; they are attained in the “free” cases.

Theorem 5. Assume that f1g has f+*+vgtt and f*vg* closed. Then
(f*+, g++) is a modular and dual modular pair in the lattice &, | of all closed ele-
ments of &. If in addition (8) and (26) resp. (8) and (27) are assumed, then ¥"(f, g, 1)
is distributive and has at most 116 resp. 121 elements.
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Proof. By Remark 3 (f*+, g*++) is a modular pair in &,  ; in order to show
that it is a dual modular pair we have to prove that ((zAf*i)vgti)ti=
ZA(frLvgth)td for all z=gt+ in &, . Since f++vgtt is closed and &
is modular the right hand'side is (z A f++) v g*++. In order to show that this is closed
we quote Lemma 5’ with x,=g*+, x;=zAf*L1. Cardinalities for ¥ (f, g, 1)
follow from Theorem 4.

Remark 5. (i) See Theorem (33.4) in [7] for modular and dual modular pairs
in hermitean spaces. (ii) We have constructed sesquilinear spaces E with subspaces
F, G such that (23) & (26) & (8) resp. (23) & (27) & (8) is satisfied and such that all
117 resp. 122 elements of ¥°(F, G, 1) are different. (iii) Let E be a vector space
equipped with a non degenerate alternate form, dim E={&, and F, G subspaces
with FnG=(0), F*++G++ closed and F*-+G*=E. Brand [2] gave a recursive
construction for an orthogonal decomposition of E, E=E,® E,, such that FC E,,
GCE,. From this geometric result it follows readily that the lattice ¥"(F, G, 1)
is given by J(F) U £(G) U (FL(F) v J(G)) U F(F)u F(G) u(F(F) A F(G)), in partic-
ular ¥°(F, G, 1) is distributive and has 98 elements. The fruitfulness of the method
hinted at in Introduction is based on a reversal of steps: First ¥°(F, G, 1) is com-
puted, then the theorems of [3] are applied in order to conclude that E must split
in the manner indicated.
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