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DENSITIES OF MEASURES ON THE REAL LINE

PERTTI MATTILA

1. Introduction. Suppose that p is an outer measure on the real line R such
that u(R)=0 and all Borel sets are u measurable. Let 4: (0, =)~ (0, «) be a non-
decreasing function with lim, ,/(r)=0. These assumptions on p and h will be
made throughout the whole paper. The upper and lower h-densities of u at a€R
are defined by

D(u, a) = lin}‘soup ula—r, a+rl/h(2r),

D(u, a) = lim‘ionfu[a—r, a+rl/h(2r).

If they are equal, their common value is called the A-density of u at a, and it is denoted
by D(u, a). We shall also consider one-sided densities of u. The upper and lower
right h-densities of p are defined by

D*(u, a) = lim sup u[a, a +r)/h(r),
D*(y, a) = liminf ula, a+rl/h(r).

The upper and lower left h-densities D~(u, a) and D~(u, a) are defined similarly as
the upper and lower limits of the ratios pu[a—r, al/a(r). The results of this paper
are usually stated and proved for right densities, but their obvious analogues hold
for left densities as well.

The main results are Theorems 8 and 11. They state that if u satisfies certain
homogeneity conditions in terms of A-densities, then it is absolutely continuous
with respect to the Lebesgue measure L. More precisely, u is absolutely continuous
if either 0<D(u, a)<o for p ae. a€R or 0<D+(u,a)=D+(u, a)<o for pu
a.e. a€R. These results characterize absolutely continuous measures of R through
their density properties.

In Corollaries 9 and 13 to Theorems 8 and 11 we obtain results on the densities
of measures which are singular with respect to the Lebesgue measure. Similar results
for s-dimensional Hausdorff measures, 0<s<1, have been proved by Besicovitch
in [1] and [2].
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2. Remarks. (1) The results of this paper are false if lim, ,/(r)>0 as the
example where p is a Dirac measure shows.

(2) In the following proofs we shall usually have the situation where some of
the densities defined in Introduction is finite u a.e. This always implies that p{a}=0
for all a€cR.

3. Lemma. Let ACR. If for every a€A thereis r=0 suchthat (a,a+r)C A,
then A is a Borel set.

Proof. Let A, be the set of all a€[—n, n] " A for which sup {r: (a, a+r)CA}>
1/n. Then A=\J,_, 4,. Define

b, =supA,, a,=inf[b;—1/n, b]n A4,,
bk = sup ('_ bt} bk—l—'l/n] N An’ ay = inf[bk_l/n’ bk] N Ana

k=2, ..., m, where the process terminates when (—eo, b,—1/n]n A,=0. For each
k, I,=[b,—1/n, b1 0 4, is an interval with end points g, and b,, and A4,={J;_, L.
It follows that A4 is a Borel set.

4, Theorem. The densities D(u, ), D(u, ), D*(u, ), D*(u, ), D=(u, ),
D~(u, ) are Borel functions.

Proof. We prove, for example, that D+(u, ) is a Borel function. We first show
that given O<r=<woo, f: a—pla, a+r)] is a Borel function. Express the interior of

the set {a: f(a)=<} as Uj_,I;, where Ij’s are open disjoint intervals and set

A=R\UClI,.
j=1
Let a€R, acA such that f(a)<o. Then, by the definition of A, there is b€(a, a+r)
such that f(b)<oo. Hence pula, b+rl=oa+f(b)<- and

liszupf(c) = ligl,u[a, c+r]=f(a) <a.

Therefore we can find s=>0 such that f(c)<a for c€(a, a+s). By Lemma 3 the
set {a€A: f(a)<a} is then a Borel set. Hence f|A4 is a Borel function. Since f(a) <<
for at most countably many a€R\ A4, f iR\A is also a Borel function. Thus fis a
Borel function.

Since h is non-decreasing, the set D consisting of all points of discontinuity
of & and of all positive rational numbers is countable. If =0 and r¢ D, then for any
e>0 there is s€D such that r<s<r+e¢ and pla, a+rl/h(r)=ula, a+sl/h(s)+e.
Hence

D*(u,a) = lin}'soup ula, a+rl/h(r),
reD

from which the assertion follows.
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If ECR the restriction measure uLE is defined by (uLE)(4)=u(En A) for
ACR.

5. Theorem. If ECR is a Borel set and D(u, a)<o for p a.e. acE or
D+*(u, ay<eo for u a.e. a€E, then

D(uL(R\E),a) =D*(uL(R\E),a) =0 for p a.e. a€E.

Proof. We prove the theorem under the assumption D+(u,a)<< for u a..
acE. The case D(u, a)<oo can be handled similarly. For n=1,2, ... let

E,= {acE: pla,a+r] = nh(r) for 0 <r = 1/n}.

Then p(ENUZ_, E,)=0. The assumption D*(u,a)<e for u a.e. a€E implies
that u{a}=0 forall acE; therefore u almost all of E, can be covered with countably
many open intervals each of finite y-measure. Let I be one such interval and F a
closed subset of InE,. To prove that D(uL(R\E), a)=0 for pu a.e. a€E, it is
then sufficient to show that D(uL(R\E), a)=0 for u a.e. a€F, since any Borel
set of finite measure can be approximated from within by a closed subset (see, for
example [3, 2.2.2 (1)]).
To do this, let ¢=0 and denote

A, = {a€F: D(uL(R\E), a) > &}.

By [3, 2.2.2(1)] there exists a closed set CCINE such that p((INE)\C)<e®.
For each a€A,, there is O<r(a)<1/2n such that [a—r(a), a+r(@))cI\C and
p(la—r(a), a+r(@)]\E)>¢h(2r(a)). By Besicovitch covering theorem [3, 2.8.14] we
can find a sequence (a;, r,)=(a;, r(a;)) of such pairs such that 4,c 52, [a;—r;, a;+7]
and at most k of the intervals [a;—r;, a;+r;] may have a point in common,
where k is an absolute constant. Letting b,=min [q;,—r;, a,+r] N F, we have

p(a;—r;, a;+r] 0 A) = plb;, b;+2r;] = nh(2ry).
We obtain

p(d) = 3 p(a;—ri, a;+r]nA) =n 3 h(2ry)
=1 i=1

< (nfe) g (a1, a;+rINE) = (kn/e) p(INC)NE) < kne,

and
u{a€ E: D* (uL(R\E), a) > 0} = lim u(4) = 0.

To show that D*(uL(R\E), a)=0 for p a.e. a€ E, we may proceed as above, but
this time applying the Besicovitch covering theorem to intervals [a—r(a)/2, a+r(a)/2]
such that p([a, a+r(a)]\E)>¢eh(r(a)). This completes the proof.

6. Corollary. If ECR is a Borel set and D(u,a)<o for u a.e. acE or
D*(u,a)<e> for p ae. acE, then D(uLE,a)=D(u,a), D(uLE, a)=D(y, a),
D+(uLE, a)=D*(u, a), D*(uLE, a)=D*(u, a) for p ae. acE.
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7. Theorem. D(u, a)=D*(u, a)=D~(u, @)=2D(u, a) for u a.e. acR.

Proof. To prove the inequality D(u, @)=D*(u, a), denote E,={a: D*(u, a)=t}
for O0<t<o. Fix t and let ¢=0. For n=1,2, ..., set

E,,={a€E: pla,a+r] = (t+e)h(r) for 0 <r < 1/n}n[—n,n].

Then u(E, )<< and E,=lJ,_, E,,. Let F be a closed subset of E,,. By Theo-
rem 5, D(uL(R\F),a)=0 for u a.e. acF. Take such a point a and let O<r,=
1/2n be such that

ula—r,a+r\F)=¢eh(2r) for 0<r<r,.
Let O<r<r, and b=min[a—r,a]n F. Then
ula—r,a+r] = u(fa—r, a+r]\F)+ulb, b+2r] = (t+2e) h(2r),

whence D(u, @)=t+2e. By [3, 2.2.2(1)] this implies that D(u, a)=t+2¢ for u
a.e. acE, ,. Since this holds for all e=0 and n=1,2,..., we obtain

ula: D¥(u,a)=t,D(u,a)>1} =0
for 0<t<-oo. Since {a: D(u, a)>D+(u, a)} is the union of the sets
{a: D*(u,a) = t, D(u, a) >t}

when ¢ runs through the positive rational numbers, we obtain D(u, a)=D*(u, a)
for p a.e. acR.

To prove the inequality D*(u, a)=2D(u, a), denote E,={a: D(u,a)=t} for
O<t<o. Fix ¢t and let ¢=0. Let n be a positive integer and F a closed subset of

E, ,={acE;: pla—r,a+r] = (t+e)hQ2r) for 0 <r < 1/n}n[—n,n].

Suppose that a€ F and D+(uL(R\F), a)=0. By Theorem 5 this is true for u a.e.
acF. Then there is O<ry=1/n such that u([a, a+r]\F)<eh(r) for O<r<r,.
Let O<r<r,. If there is b¢[a+r/2,a+r]N F, then

ula, a+rl = ula—r/2, a+r/2]+u[b—r/2, b+r/2] = 2(t+&e) h(¥).

Otherwise [a+r/2,a+r]C[a, a+r]\F, and the same inequality follows. Hence
D+(u,a)=2(t+¢). The proof can be completed as in the first part.
To prove the inequality D~(u, @)=D*(u, a), let

E ,={a:D*(p,a)=t<s=D"(u, a)}

for 0<t<s<<o and let 0<e<(s—1)/3. Let n be a positive integer and F a closed
subset of

E,.,={ackE,,: pla,a+r] = (t+e)h(r) for 0 <r < 1/n} N [—n,n].
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Suppose that a€ F and D~ (uL(R\F), a)=0, which again holds for u a.e. acF.
Then there is O<r<1/n such that

p(la—r, a]\F) < eh(r), pla—r, a] > (s—&) h(r).
Let b=min[a—r,aln F. Then

(t+8e)h(r) = pulb, a] = pla—r, a]—p(la—r, A\ F)

and s—it<3s.

> (s—2e)h(n),

This contradicts with the choice of ¢, and it follows that u(F)=0.
By a similar argument as in the first part of the proof, we obtain D~(u, a)=D*(y, a)
for p a.e. a€R.
The opposite inequality is proved in the same way, and the theorem follows.
We say that u is absolutely continuous if L'(4)=0 implies p(4)=0, and
that p is singular if there is a set EC R such that L'(E)=0 and p(R\E)=0

8. Theorem. If D*(u,a)<o and D*(u,a)=0 for p ae. a€R, then p is
absolutely continuous.

Proof. Using [3, 2.2.2 (1)] we find 0<d<1, O<ry<e and a closed set FCR
such that u(F)=0 and

dh(r) = ula,a+r]=h(@)/d for O<r<r,, ackF.

Making r, smaller if necessary, we use Theorem 5 to obtain a€F such that

u(a, a+r]\F) = (d®8)h(r) for

Let r,>0, 0< 3%

i, r;<s<r,. Choose a positive integer m such that
s<m J¥_ r,<2s. Then there are points a; ;€F, i=1

O<r<r,.

.k, j=1, ..., m, such that
l[a,a+sInFc Ula,;, a;, ;47
iJ

Then
ahs) = o, a+s] = plla, a+ SN+ 3 o a7
= UDRE +nld) 3 10 < @2he+(25](a Zn)) Zhe,
and
m

3 ) = @) s

Take now O<r<ry/4 and ry/2=s<r,. Write

(a9 a+s)\\F = U (ai9 ai+ri)’
i=1
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where the intervals (q;, a;+r,) are disjoint and r;=r,=.... Suppose that r,=r
and let k be the largest integer such that r,=r. Since g,€ F for all i, we have

d 2 W) = 2 ulas, a7 = u(la, at+sSINF) < (d8)h(s).
Combining this with (1) we get
(@) h(s) 2 rfs < (@) h(s)

and
k

2 r<s/2.

i=1

Define b;=a, b;=min[b;_,+r,a+s]nF, j=2,...,n, where the process stops
when a+s<b;+r or [b;+r,a+s]n F=0. Then (a,a+s)\Uf=1(ai,ai+ri)C
Ui_.[b;, b;42r], since r,<r for i=k. Hence

s2=11 [(a, a+s)\.LkJ (a;, ai+r,-)] = 2nr,

and n=s/4r. This is true also if r,<r. Thus we have

h(:)d = pla, ats] = 3 ulbi, b1l = ndh() = sdh()/ar,
which gives -
h(r) = 4rh(9/(d*s) = (Sh(r)/(d2ry)r.

Since this holds for all O<r<ry/4, the assertion follows from the assumption
D*(u, a)<e for u a.e. acR.

9. Corollary. If u is singular and D+(u,a)<e for pu a.e. acR, then
D+(u,a)=0 for u a.e. acR.

Proof. If this is not true, there exists a Borel set EC R such that p(E)=>0
and D*(u, a)=0 for acE. By Corollary 6, D+(uLE, a)=0 for p a.e. acE, and
Theorem 8 implies that uLE is absolutely continuous. This is impossible, since p,
and hence uL E, is singular.

10. Theorem. If ECR and D+(u,a)=0 for p ae. a€E, then (with the
agreement that 0:oco=co)

D(u,a) = (lim¢soup h(r)/h(2r))D(y, a) for p a.e. a€E.
This can be proved with the help of Theorem 5 by the same method as Theorem 5
in [1]. We omit the details.

11. Theorem. If O0<D(u,a)<o> for p a.e. a€R, then u is absolutely con-
tinuous.
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Proof. Suppose u is not absolutely continuous. Then there is a Borel set EC R
such that p(E)=0 and pLE is singular. Hence by Corollary 6 we may assume that
p is singular. To simplify the notation, we write g(r)=h(2r).

If limsup,,,g(r)/g(2r)<1, we derive a contradiction from 7, 9 and 10. There-
fore we assume that there is a sequence r,40 such that lim,, _ g(r)/gr)=1.
Setting E,={x€E: 1/k=D(u, x)=k} for k=1,2, ..., we fix k such that u(E,)=0.
Let 0<e<1/k. We use the notation B(x, r)=[x—r, x+r]. There are 1/k=A=k,
O0<ry<<o and a closed set FCE such that pu(F)=0 and

(A—e)g(r) = uB(x,r) = (A+¢e)g(r) for x€F, 0<r=r,.
By Theorem 5 there are x€F and i such that 2r,=ry, gr)=(1+¢)g(r) and

p(B(x, r)\F) < eg(r).
Then
1(B(x, 2ry)\B(x, 1)) = uB(x, 2r;)— uB(x, r)

= (A+8)gQ2r)—(A—ag(r) = (1 +e)(A+e)—(2—2)g(r) < B+k)eg(r).

Denote
a=min[x—r;, x]nF, b=max[x,x+r]nF,

¢ =max|[a, (a+b)2]n F, d=min[(a+Db)/2,b] N F,
r=b—a, s=c—a, t=b—d.
We may assume, without loss of generality, that ¢=s. Then

B(a, r—1t) n B(b, r—s) < (B(x, r)\F) u{c, d},
whence
w(B(a, r—1t) " B(b, r—s)) = eg(r;)
and
p(B(a, r—1) U B(b, r—s)) = uB(a, r—t)+uB(b, r—s)

—u(Bla, r=1) N B(b, r—s)) = A—8)g(r—)+ (A —)g(r—s)—eg(ry)-

On the other hand

(B(a, r—1) v B(b, r—s))\B(a, ) < (B(x, )\F) U (B(x, 2r)\B(x, 7)),
whence

u(Ba, r—1) L B(b, r—s)) = pB(a, r)+u((B(a, r—1) L B(b, r—)\B(a, 1))
= (A+e)gr)+@d+k)eg(ry.

Since r—s=r—t, we obtain combining the above inequalities

2(A—e)g(r—s) = —e)(g(r—9)+g(r—1) = A+e)g(N+(5+k)eg(r).
From the inclusion

B(a, )\B(c, r—s) < (B(x, r)\F) v (B(x, 2r)\B(x, 1))
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we deduce
(A—e)g(r) = uB(a, r) = pB(c, r—s)+u(B(a, )\B(c, r—5))

= (A+eg(r—s)+@+k)eg(r).
Hence
2(A—¢)g(r—s)

= (A+e’(A—e)7'g(r—9)+(@+k)e(A+e)(A—e) g (r) +(S+k)eg(r).
Since r/2=r—s, 1/k=A=k and k does not depend on ¢ (whereas A may), we obtain
g(r/2) = o(e)g(ry),

where o(g)—~0 as ¢,0. Finally, we use the inclusion B(x, r,) » FC B(a, s) U B(b, t)
and the inequalities s=r/2, t=r/2 to obtain

(A—2¢)g(r) = uB(x, r)—p(B(x, "i)\F) =uBx,r)n F)
= uB(a, s)+uB(b, 1) = (A+e)g(s)+(A+)g(?)

=2(A+e)g(r/2) = 2(A+e)o(e)g(ry),
and
1/k—2e = 1—2e =2(A+¢)o(e) = 2(k+¢&)o(e),

which gives a contradiction when ¢}0.

12. Corollary. If 0<D(u, )<= for pa.e. a€R, then the limit [=lim,,, h(r)/r
exists, 0<l<oo, and

p(4) =1 [D(u,x)dL'x
A
Sfor all L* measurable sets AC R.

Proof. Since u is absolutely continuous, there exists an L! integrable function f
such that 0<f(x)<< for p a.e. x€R and u(A)=fA fdL* for all L' measurable
sets AC R. By Lebesgue’s theorem

li{gly[x—r, x+7r]/2r) = f(x) for L' a.e. x€R.

Thus
h(r) _ plx—r/2, x+71/2] h(r) fx)
r r A=, xt3 D X 7O
and
J(x) =1D(u, x)
for u a.e. x€R.

13. Corollary. If p is singular and 0<D(u, a)<e<> for p a.e. a€R, then
D(u,a)<D(u, a) for u ae. acR.

14. Remark. It follows as in the proof of 12 that if u is absolutely continuous,
then 0<D*(u, @)=D+(u,a)=D(u, a)<o for p a.e. a€R with A(r)=r. Thus
the sufficient conditions in Theorems 8 and 11 are also in a sense necessary.
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15. Remark. To generalize Theorem 11 to the Euclidean n-space R" is an
interesting and difficult problem. A reasonable conjecture seems to be the following:

If ¢ is an outer measure over R" such that Borel sets are ¢ measurable and
O<lim,, g @{y: [x—y|=r}/h(r)<e for ¢ ae. x€R", then there exist a positive
integer m and a countably (H™, m) rectifiable (see [3, 3.2.14]) set EC R" such that
¢ is absolutely continuous with respect to H™LE. Here H™ is the m-dimensional
Hausdorff measure.

This conjecture is true by the results of Marstrand [4] and Moore [5] in the
case where h(r)=r° for some O<s<2. Then it follows that m=s=1. For s=2
the question is open.
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