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DENSITIES OF MEASURES ON THE REAL LINE

PERTTI MATTILA

1. Introduction. Suppose that p is an outer measure on the real line lt such

that p(A)>0 and all Borel sets are p measurable. Let h: (0, -)*(0, -) be a non-
decreasing function with lim,*o h(r):O. These assumptions on ;r and å will be

made throughout the whole paper. The upper and lower h-densilies of p at a(R
are defined by

DQr, a): limslrP Pfa-r, a+rllhQr),

2@, a): lim tnf p[a -r, a*r]lh(2r).

If they are equal, their common value is called the h-density of p at a, andit is denoted

by D(p, a). We shall also consider one-sided densities of p. The upper and lower
right h-densities of p are defined by

D* (p, a) : limsoup ttla, a+r)lh(r),

D+ (p, a) - lim irf pla, a+r)lh(r).

The upper and lower left h-densities D- (p, a) and D- 0t, c) are defined similarly as

the upper and lower limits of the ratios pla-r, allh(r). The results of this paper

are usually stated and proved for right densities, but their obvious analogues hold
for left densities as well.

The main results are Theorems8 and 11. They state that if p satisfies certain
homogeneity conditions in terms of å-densities, then it is absolutely continuous
with respect to the Lebesgue measure 11. More precisely, p is absolutely continuous
if either 0<D(1t,a)-.* for p a.e. a€R or 0=D*(p,a)=D+(p,a)<.* for p
a.e. a€R. These results characterize absolutely continuous measures of R through
their density properties.

In Corollaries 9 and 13 to Theorems 8 and 11 we obtain resultsonthedensities
of measures which are singular with respect to the Lebesgue measure. Similar results
for s-dimensional Hausdorffmeasures, 0<s<1, have been proved by Besicovitch
in [] and [2].
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2. Remarks. (1) The results of this paper are false if lim,roh(r)=0 as the

example where p is a Dirac measure shows.
(2) In the following proofs we shall usually have the situation where some of

the densities defined in Introduction is finite pr a.e. This always implies that p{a}:O
for all a€R.

3. Lemrna. Let AcR. If for euery a€A there l's r>0 suchthat (a,a*r)cA,
thm A is a Borel set.

Proof. LetA^bethesetof all a(l-n,nloA forwhich sup{r: (a,a+r)cA}=
lln. Then A:U|=rA,. Define

b, : sap Ao, at : inf lbt-lfn, brl o An,

är : sup (- *, b*-t- I f nf a An, a* : inf fb*- I f n, bo] n A,,

k:2,...,m, where the process terminates when (-*,bx-llnlnA,:fi. For each

k, Iy:lbo-lln, brln l, is an interval with end points ao and bo, and A,:UT=r,Io.
It follows lhat A is a Borel set.

4. Theorem. The densities D(p, ), D(p, ), Dn(p, ), D*j4 ), D-(p, ),

D-@, ) are Borel functions.

Proof. We prove, for example, that D+(p, ) is a Borel function. We first show

that given 0</<-, f; a*pla,a*r] is a Borel function. Express the interior of
the set {a: f(a):-\ as UI=r {, where lis are open disjoint intervals and set

,4: R\r] ctrr.
j:t

Let a€R, a(A sachthat f(a)<* Then, bythe definition of A,thereis b((a, a*r)
such that f(b)=-. Hence pla,b+rl=a*f(b)<- a14

limsup/(c) <-lim pla, sarl: f (a) <. a.

Therefore we can find s>0 such that f(c)<a for c((a, a*s). By Lemma 3 the

set {aQA: f(a)<u) is then a Borel set. Hence flA is a Borel function. Since/(a)<-
for at most countably many a€R-\,4,"f1Å\r4 is also a Borel function. Thus/is a

Borel function.
Since å is non-decreasing, the set D consisting of all points of discontinuity

of handof allpositiverationalnumbersiscountable. If r>0 andr$D, thenforany
e>0 there is s€D such that r<s<r*e and pla,airllh(r)=pfa,a*sllh(s)1-e.
Hence

.D* (p, a) : limslp pfa, a*rllh(r),
r€D

from which the assertion follows.
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If ,EcÄ the restriction measure pLE is defined by (pLE)(A):p(EaA) for
AcR.

5. Theorem. If EcR is a Borel set and DQt,a)-* for 1t a.e. a€E or
D+Qt, a1=- for p a.e. aQE, then

D(p L (lR\E), o) : D+ (p L (R\E), a) : o for p a.e. aC E.

Proof. We prove the theorem under the assumption D+(p,a)-.* for p a.e.

a(E. The case D(pt, a)=.- can be handled similarly. For n:1,2, ... let

E,: {a(E: pfa,a+r)= nh(r) for 0 = r = lln).

Then p(ElUI=rE):0. The assumption D+(p,a)-.- for p a.e. a(.8 implies
that pta):O for all aQE; therefore p almost all of Encan be covered with countably
many open intervals each of finite p-measure. Let 1be one such interval and F a
closed subset of In 8,. To prove that D(pL(R\E),a):0 for p a.e. a€E, itis
then sufficient to show that D(1IL(Å\E), a):0 for trt a.e. aQF, since any Borel
set of finite measure can be approximated from within by a closed subset (see, for
example 13, 2.2.2 (l)1).

To do this, let e =0 and denote

A": {aeF: D(pL(R\E),a) = e}.

By [3, 2.2.2(l)l there exists a closed set Cc^E such that p((\E)\C)=s,.
For each aQA", there is Q<r(a)<ll2n suchthat la-r(a),a*r(a)lcl\C and
p(la-r(a), a+r(a)l\E) =eh(2r(a)). By Besicovitch covering theorem [3, 2.8.14] we
canfindasequence (a;, r):(ai,r(a,)) of suchpairssuchthat A"cUTrlar-rr,a,*r,)
and at most k of the intervals far-rr, ar-frrf may have a point in common,
where k is an absolute constant. Letting å;:min la,-ri, ar*r,f n,F, we have

p(lai-ti, ai*r;] n A,) = Flbi, bi*2r,7 = nh(2rr).
We obtain

p(A,) = ai*r;] n Ar) =";i:1
2 u(la,-ri,
i:L

h(2r)

and

= (nle) 
ått(lat-ri, ai*rJ\E) = (knle) tt((ryc)\E) = kne,

p{o( E: D* QrL(A\E'), ,) = 0} : 
Tfr, tt(A,) - 0.

To show tnat D+(y,L(R\,8), a):0 for p a.e. a(E, we may proceed as above, but
this time applying the Besicovitch covering theorem to intervals la-r(a)|2, a+r(a)12)
such that p(la,a+r(a)l\f)=eå(r(a)). fnis completes the proof.

6. Corollary. If EcR is a Borel set and D(p,a)-.- for p a.e. a(E or
D+Qt,a)=* for p a.e. a(8, then D(ryLE,a):D(p,a), D@LE,a):D(p,a),
D+QILE, a):D+(p, a), D*QrLE, a):2+(p, a) for p a.e. a(E.
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7. Theorem. D(p,a)=D+(p,a):D-Qt,a)=ZD1p,a) for p a.e. a(R.

Proof. To prove the inequality D(p, a)=fi+Qt, a), denote E,:{a: D+(p, a1=yy
for 0<l<-. Fix r and let e >0. For n:1,2,..., set

Et,n: {a(Er: pfa,a*r)=(t+e)h(r) for 0< r<lln\al-n,n).

Then p(Er,,)=- and 4:Ui"=, Er,,. Let Fbe a closed subset of 8,,,. By Theo-
rem5, D(pL(R\f),a):0 for p a.e. a€F. Take such a point a and let 0<ro=
ll2n be such that

p(la-r,a*rl\,F) = ehQr) for 0< r < ro.

Let 0<r<16 and å:minfa-r, a] n -F. Then

Fla - r, a * rl = 
p (La - r, a * rl\F) * p lb, b I 2rl = (t + 2e) h Qr),

whence D(p,a1=7a2t. By [3,2.2-2(l)l this implies that DQt,a1=1a2e for p
a.e. a(Er,r. Since this holds for all e>0 and n:1,2,..., we obtain

p{a: D+ (p, a) = t, D(p, a) = /} : 0

for 0<r<-. Since {a: D(p, a)=D+Qt, a)} is the union of the sets

{a: D+(p, a) = t, Dfu' a) > t\

when I runs through the positive rational numbers, we obtain D(p,a)=D+Qt,a1
for p a.e. aQR.

To prove the inequality D+(p,a)=2D(p,a), denote Er:{a: D(p,a)<t\ for
0<r<-. Fix r and let e>0. Letnbe a positive integer and F a closed subset of

Er,n: {a€ Er: pla-r', a*rl3 (t+e)h(2r) for 0 < r -. lln} nf-n, n'1.

Suppose that a(F and D+(ptL(.R\f), a):0. By Theorem 5 this is true for pr a.e.

a€F. Then there is O<ro=lfn such that p([a,a*r]\F)<eh(r) fe1 Q<r<r6.
Let O<r<ro. If there is b(la*r|2, a*rln fl then

pfa, a * 4 = pla - r I 2, a * r I 21 * plb - r I 2, b -f r I 21 = 2 (t + e) h (r).

Otherwise la*rl2,a*rfcla, a+/]\4 and the same inequality follows. Hence
D+1p, a)=20+e). the proof can be completed as in the first part.

To prove the inequality D-(p, a)=D+Qt, a), let

E,,, : {a: D* (p, a) = t -. s = D- (p, a)\

for O<r<s<- ård let O<e<(s-t)13. Let nbe a positive integer and F a closed
subset of

Es,t.n: {a€E",r: pfa, a*rl= (t+e)h(r) for 0 < r = llnl al-n,nl.
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Suppose that a(F and D-(pL(A\F), a):0, which again holds for p a.e. a€F.
Then there is 0<r<1/z such that

p(la-r, a]\F) =. e,h(r), pla-r, al > (s-e)å(r).

Let å:min fa-r, afn F. Then

(t+e)h(r) 4 p[b, al > pla-r, a]- p(la - r, al\F) > (s-2e)h(r),

and s-l<3e. This contradicts with the choice of e, and it follows that p(F):Q.
By a similar argument as in the first part of the proof, we obtain D-(p, a)=D*(p, a)

for p a.e. a(R.
The opposite inequality is proved in the same way, and the theorem follows.
We say that p is absolutely continuous if L|(A):O implies F(A):O, and

that 1t is singular if there is a set .Ec,R such that L1(E):0 and p(Ä\E):O.

8. Theorem. If D*Qt,a)=* and D+Qt,a)>O for p, a.e. a(R, then p, is

absolutely continuous.

Proof. Using13,2.2.2 (1)l we find 0<d<1, 0<ro=- and a closed set ,FcR
such that p(F)>0 and

dh(r) = pla, a*rl = h(r)ld for 0 < r - ro, aC F.

Making ro smaller if necessary, we use Theorem 5 to obtain c(F such that

p([a, a*r\F) = (d3l8)h(r) for 0 < r < ro.

Let /;=0, 0= Z!=rri<Jr<ro. Choose a positive integer m such that
s=m )!=rti-2s. Then there are points ar,i(F, i: l, ... , k, j:1, ..., ffi, such that

fa, a+ s] n.Fc Ula,,i, a1,i*ril.

Then

dh(s) = 1tla, a*sl = p(la, o+§l\.F) + Z pfai, j, ai, j+ ri)

= (dlz) h (s) +(mld)

kk
Z h(r,) = (d'14)h(') Z r,lt.
i:1 i:1

Take now 0<r<r0f4 and rol2=s<l,0. Write

åt(,,)= (cu2)/,(s).(ri( d å,,)) å h(rt),

and

(1)

i:1
(a, a+s)\F (ar, ai*r1),
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where the intervals (ai,a,*r,) are disjoint and rr>rr>.... Suppose that rr>r
and let k be the largest integer such that ro >r. Since a,e F for all l, we have

kk
d ) h(r) = Z p[ai, ai*r] = 

p(lq, atsl\,F) <. (dslS)h(s).
i:l i:l

Combining this with (1) we get

@sla)h g) * r,1, < (dB l8)h(s)
i:L

and

§ r, = sl2.
i:1

Define b1:a, br:llrrinfbr-..lr,a*s]n F, j:2,...,n, where the process stops
when a*s<br*r or lbr+r, a*sf o F:fi. Then (a, a*s)\ g!=r{a» ar*rr)c
[Ji=, [år, bi+2r], since r,=r for i>k. Hence

sl2 =- Lr(«r, o+rlfÖ @,, a1+r,)) = 2nr,

and n>sf4r. This is true also if rr<r. Thus we have

h(s)ld > pfa, a*sl = .Z- ulbt, bi+r1= n dh(r) > sdh(r)14r,

which gives

h (r) = 4rh (s) I @2 s) = (8h (r ) I @, ro)) r.

since this holds for all o<r<.4f!, the assertion follows from the assumption
D+(p, a)-.* for p a.e. a€R.

9. Corollary. If p is singular and D+(p,a1=- for p a.e. a€R, then

D*(p, a):0 for p a.e. a€R.

Proof. lf this is not true, there exists a Borel set .Ec.R such that p(E)>O
and D+(p,a)=O for a(E. By Corollary6, D*QrLE,a)>O for p,a.e. a(8, and
Theorem 8 implies that plz' is absolutely continuous. This is impossible, since p,
and hence pLE, is singular.

10. Theorem. If EcR and D+(p,a):O for p a.e. q<8, then (with the
agreement that 0.*:*)

2Qr, a) = (limspp h(r)lh(2r))D(p, a) for p a.e. a€E.

This can be proved with the help of Theorem 5 by the same method as Theorem 5
in []. We omit the details.

11. Theorem. If O<D(p,a)=* for p a.e. aeR, then p is absolutely con-
tinuous.
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Proof. Suppose trr is not absolutely continuous. Then there is a Borel set EcÅ
such that p(E)>O and ltLE is singular. Hence by Corollary6 we may assume that

p is singular. To simplify the notation, we write S?):h(2r).
If lim supr+' SO)l S(2r)-1, we derive a contradiction from 7, 9 and 10. There-

fore we assnme that there is a sequence r,10 such that lim;*- g(r)lgQr):1.
Setting Eo:{xQE: llk=D(p,x)=k} for k:|,2,..., wefixksuch that p(Ev)>O.

fs1 Q<5<l lk. We use the notation B(x,r):lx-r,x*rf. There are llk=l=k,
0<ro<- and a closed set FcE such that p(F)>O and

Q.-e)s(r)= pB(x, r) = (,l+e)g(r) for x(F, 0< r = ro.

By Theorem 5 there are x(F and i such that 2rr=ro, gQ,r,)=(lf e)g(r) and

p(B(x,r)\r) = es(r).
Then

p(B(x,2r,)\-B(x, r)) : PB(x,2r)- PB(x, r)

= (L + e) s (2r ) - Q. - e) s O,; = ((1 + €) (,1 + e) - (l - r)g (.) = (3 + k) eg (r).

Denote
o : min lx-rr, xl n F, b : max fx, x*rf, a F,

c : rnaxla, (a+b)lll a F, d : minl(a+b)12, bl n F,

r : b-a., s: c-a, t : b-d.

We may assume, without loss of generality, that l=s. Then

B(a, r-t) n B(b, r-s) c (B(x, r)\,F) v {c, d\,
whence

p(B(a, r-t) a,B(b, r-s)) = eg(ri)
and

p(B(a, r-t) v B(b, r-s)) : pB(a, r-t)* pB(b, r-s)

- p(B (a, r - t) o B (b,, - t)) = ()' - e) g(r - t)* (2 - e)g(r - s) - eg(r;).

On the other hand

(n@, r-t) v B(b, r-s))\.B(a, r) c (B(x, r)\r) v (B(x,2r,)\B(x, r,)),

whence

p(B(a, r-t) v.B(b, r-s)) = pB(a, r)+ p((B(a, r-t) v B(b, r-s))\B(a, r))

< ()" * e) g (r) + (4 + k) e s (r ).

Since r-s< r-t, we obtain combining the above inequalities

2Q. - e) g(r -s) = (,i - exg (r - s) + g (r - t)) = (,t + e)g (r) + (s + k) eg(r)'

From the inclusion

,B(a, r)\B(c, r-s) c(n6, r)\r) v (,4(x,2r)\.8(x, r))

59
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we deduce

Q,-e)g(r) 4 pB(a, r) = 
pB(c, r-s)+p(.B(a, r)\B(c, r-s))

= (,1 *e)g(r - s) + (4+ k)eg(rJ.
Hence

2().- e)g(r - s)

= (). + e)2 (). -e) -rs (r - s) 1 (4 + k) e (l + e) (,1 - e) -lg (rr) + (5 + k) eg (r).

Since rf2=r-s, lf k=),=k and fr does not depend on e (whereas )" may), we obtain

g(r12) 
= o(e)g(r),

where o(e)*0 as e10. Finally, we use the inclusion B(x, rr) a FcB(a, s) u,B(å, t)
and the inequalities s=r12, t<rl2 to obtain

(A-2e)g(r,) = pB(x, r,)- p(B(x, r)\r) : p(B(x, r) n r)
= pB(a, s)+pB(b,l) = (,1+e)g(9+(,l+s)g(r)

= 2( +e)s(rI2) = 2().+e)o(t)g(r),
and

llk-2e = ).-2e = 2(1l-e)o(e) =- 2(k+e)o(e),

which gives a contradiction when e10.

12. Corollary. If O=D(p, a)<.* for p a.e. a€R, then the limit l:lim,+rh(r)lr
exists, O<l<a, afid

p(A): , 
,[o*, 

x)dLLx

for all LL measurable sets AcR.

Proof. Since p is absolutely continuous, there exists an 11 integrable function/
such that 0</(x)<- for pa.e. x€Å and p(A):lefdLt for all Z1 measurable
sets ,4cR. By Lebesgue's theorem

lly ulx-r, x+4lQr) : I(x) for Lr a.e. x€ Å.

Thus

h(r) : plx-rl2,x*rl2l . hO l@) 
,r r ptx-rpfr+rlz1 - r;ö:ö as rro'

and

l@) : ID(P, x)
for p a.e. x(Å.

13. Corollary- If p is singular and O<D(p,a)<.* for trt a.e. a€R, then
p@,a)<D(p,,a) for p a.e. aQR.

14. Remark. It follows as in the proof of 12 that if p is absolutely continuous,
then 0<D+(p,a):D*(p,a):D(p,a)<* for p, a.e. a€.R with h(r):y. Thus
the sufficient conditions in Theorems 8 and 11 are also in a sense necessary.
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15. Remark. To generalize Theorem 11 to the Euclidean n-space R' is an
interesting and difficult problem. A reasonable conjecture seems to be the following:

If g is an outer measure over ,R' such that Borel sets are E measurable and

O<lim,*o (p{y: lx-yl=r}lh(r)<.* for E a.e. x€R', then there exist a positive
integer m and a countably (H^,m) rectifiable (see [3, 3.2.14D set ,EcRn such that
g is absolutely continuous with respect to H^LE. Here H^ is the zz-dimensional
Hausdorff measure.

This conjecture is true by the results of Marstrand [4] and Moore [5] in the
case where h(r):1" for some 0<s<2. Then it follows that m:s:I. For s>2
the question is open.
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