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DISTORTION THEOREMS
FOR QUASIREGULAR MAPPINGS

RUTH MINIOWITZ

1. Introduction

In this paper we formulate distortion theorems for quasiregular mappings
(qr) in B", n=2. These theorems hold for every point x€B" and are of particular
interest for points x near the boundary dB", unlike distortion theorems of local
character; cf. [11].

We first consider non-vanishing qr mappings of bounded degree in Theorem 1,
and prove as a consequence a theorem for non-vanishing and locally quasiconformal
mappings in B". This theorem is valid for »=3, but not for n=2. Afterwards we
present a theorem for qr mappings in B" which omit certain sets, with applications
to quasiconformal and qr maps of spherically mean 1-valent.

2. Notation and terminology

Notation and terminology are in general as in [5]; in particular, for x€R"
we write x= >7_ x;e;, where e;,...,e, are the coordinate unit vectors in R"
For a€R® and r=0 we denote B"(a,r)={x€R": |x—a|<r}, B"(r)=B"(0,r),
B"=B"(1), S" (a, R)=0B"(a,r), S"*(r)=0B"(r) and S" '=9B". The closure
cl 4, the boundary 04 and the complement (4 of a set 4 in R" are taken through-
out with respect to R*. When writing f: D—R", we assume throughout that D is a
domain in R", fis continuous and n=2. If AcD, y¢R" and BCR", we define
the following multiplicity (possibly infinite) functions:

N, f, A) = card {f~(y) n 4}
N(B, f, A) = ggg Ny, f, 4)

N(f, 4) = NR, f, 4)
N(f) = N(R', f, D).

The Lebesgue measure of a set 4C R" will be written as m,(A4).
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Let I be a family of non-constant paths in R". The modulus of I' is defined as

M) =inf [o"dm,,
R'I

where the inf is taken over all admissible functions g, i.e. non-negative real-valued
Borel functions ¢ in R" with

fgdszl
v

for all rectifiable y€r.
For a family of paths lying in a sphere S=S""'(x, r), the n-modulus with
respect to S is defined as

M3(I) = inf [ g"dH""?,
S

where H""! is the normalized (n— 1)-dimensional Hausdorff measure, and the inf
is taken over all admissible functions g.

I'(4, B, D) denotes the family of all paths which connect 4 and B in D. The
modulus of a ring domain, i.e. a domain RCR" such that [R has exactly two con-
nected components D, and D,, is defined as

1/(n—1)
@.1) mod R = ( On-1 ]

M(T(D,, D, R)) ’

where w,_,=m,_,(S"1).

3. Quasiregular mappings

A mapping f: D—R" is said to be quasiregular (qr) if either f is a constant,
or else has the following properties:
(i) fis ACL* (i.e., it is locally absolutely continuous on almost all line segments
parallel to the coordinate axes, and its partial derivatives belong to L7 (D)).
(ii) There exists a constant K=1 such that

If’x)|"= KJ(x, f) ae. in D.

Here f’=(df;/0x,); ;—, is the formal derivative of f, and |f’(x)| denotes the
supremum norm of the linear operator f’(x) and J(x,f)=detf’(x). A mapping
f: D—~R" is said to be quasiconformal (qc) if f is qr and injective. We denote by
K;(f), Ko(f) and K(f), respectively, the inner, outer, and maximal dilatation of f;
see [5].
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4. A lower bound for the modulus of the Grétzsch ring domain

Lemma 1. (Anderson, G. D.) Let R;; ,(r) denote the Grétzsch ring whose com-
plementary components are [[(B") and the line segment

E={xcB":0=x,=r<1,x;,=0, 1=j=n-1}.
Then
4.1 D, {log[(1+7)/(1—r)]+8log 2}/ = mod Rg, ,(r),
where
Y(@n—1) 2
D, = ( Dy -1 ] f (sin t)(z-—n)/(n—l)dt_

Op—2 0
For n=2, the following better estimate holds:
2
@.1y 2 Dlog (4(1+7)/(1 )| < mod Rg,»(0).
Proof. From [1, Theorem 2] and [1, Proof to Corollary 1] one can obtain:
1\Vo=1 (7 K']l/(n-l)
mod Ro, ) = 2. () (%)

where K and K’ are the complete elliptic integrals

K=K = [ [A-A)(1—ke)]2dr, K =K(K),

k=[1“/1__z

1/2
- ] and K = (1—k»U2,

According to [4, Section 2.1], if we denote

n K(K)
-Z'-K(k) - ,u(c),

then using (2.7) and (2.10) in [4] we obtain:

([ Vl—rz—(l——r))m) 1 [1+r 27y2 ]

pll—- <——-1O . pr— .
r 4 1—r (1+n)(1—y1=r?)

It is easy to see that

1 r2

— = — =2,

2 (1+n(1=Y1-r)

A

4

Thus we get:
mod Rg ,(r) = D, [log (1 +7)/(1—r))+8 log 2] -,
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For n=2, according to [4, Section 2.2] we have:

[mod Rg, ,(r)] - [modRG 2(i+:]] = -";;

therefore, using inequality (2.10) in [4, Section 2.3] we obtain (4.1)".
The author wishes to thank Prof. G. Anderson for his remarks that yield
the final form of Lemma I.

5. Distortion theorems for quasiregular mappings of bounded degree
and for locally quasiconformal mappings in B", n =3

In this section we apply Rickman’s method [9] for finding a lower bound for
the modulus of a certain family of paths in terms of multiplicity. With that bound
and Lemma 1, we shall get a distortion lemma, Lemma 2. An immediate consequence
is a distortion theorem, Theorem 1, for qr mappings of bounded degree. Another
consequence valid for #=3 but not for n=2, is a distortion theorem for locally qc
mappings, Theorem 2.

Lemma 2. Let f: B"~R"\{0} be a K-quasiregular mapping. For x€B", let
A, ={yeR:|fO == /@) if [fO] =]/

={erR:fMI =y =1fO} if [fx) =[O
Also, let Ny=sup, ¢, N(»,f, B"). Then

and

SO (1—r # _
(5.1) D)= @i = o) =,
where
A =2%
and

B =2 K ()N
For n=2, the following better estimate holds:

s (1 —r 32K (SINS 16 3 32K,(f)NE
5.1y @27 S (DT <o) < gy s (LED)EEO,

Proof. Let x bea pointin B” and let R;=|f(0)|, R,=|f(x)| and E= {tx:0=¢=1}.
Suppose R,>R;; if R;=R,, the argument is similar. For R€[R,, R,] choose a

point y€fEn S" '(R). If Rickman’s path construction [9, Theorem 3.1] is used,
there exists a family I'p of paths y: [0, #,]—~S""*(R) such that for any &€(0, 1 —|x]),

a) y(0) =y if yerly,

b) ME(Ty) = Ay

~ RN(y.f, B"(1—¢)

n+1,
)
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where

/2
d" 23n 1 (f (sm t) (n—2)/(n-1) dt]

¢) Every y€I'y has a lift y* which startsat f~*(y) nE and meets S""*(1 —e¢).
Denote I'y={y*: y=,("), y€l'g}, and define

F=U{FR:R1§R§R2}, F*=U{F§:R1§R§R2}.

Integration with respect to R yields:

2
d, drR  d, R
M(F)E/ N£+1_E_= N;+1 IOg—je—l%'
Ry

I'=f(I*) and I'*cI=I(E, S"*(1—e¢), B*(1—¢)); hence, see [8],

(5.2 M(T) = K, (/) M) = K (f) M(D).
Since x—x/(1—e&) maps cl B"(1—e¢) conformally onto cl B", we have in view of

Lemma 1

(5.3) MT) = Dy Yw,-)  log {2°(A—e+n)/(1—e=1)}], r=lx].

If one lets ¢—0, (5.2) and (5.3) yield:

[d,/N3* ] log (Ro/Ry) = K;(f) (D~ w,-) 7" [log {2°(1 + n)/(1—n)}],

and therefore

@I =504 (1.

To find the lower bound, we take hof, where & is a composition of two inversions,
the first in the sphere S"~* and the second in the plane x,=0. The mapping /of
is qr with K;(ho f)=K;(f), as h is conformal, and /of: B"—~R"™\ {0} satisfies
the conditions of the theorem. Thus

M, hof) = max|hof ()] = AlhofO)] (12’

Since f#0, M(r, hof)=1/m(r,f), where m(r,f)=min__,|f(z)|, and we have
the lower bound. For n=2 we use the estimate for n=2 in Lemma 1 and ob-
tain (5.1)".
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Remarks.

(1) Note that N, may be finite for some x’s and infinite for others. The lemma is
meaningful for x’s with N, <o,

(i) The constants 4 and f in Lemma 2 are probably not the best possible.
An immediate consequence of Lemma 2 is

Theorem 1. Letf: B"-~R"\ {0} be a K-quasiregular mapping with N=N(f)< .
Then

PO~ ) = 1)1

1+r]
, F=lx],

where
A =28

and
ﬁ — 23n_1K1(f)Nn+1-

For n=2 we can get the estimate (5.1)" with N, =N.

Remark. For n=2 and K=1, the theorem reduces to a result on analytic
functions which is weaker than the classical result; cf. [3, Theorem 5.1].

Lemma 3. Suppose n=3. Let f: B">R" be a local homeomorphism and
K-quasiregular and for rc(0,1) let N(r)=N(f, B”(r)). Then

Var J"
NF) =C(@r,n K §(———— >
0= Com B =56 0a-n
where =y (n, K) is the universal radius of injectivity for locally K-qc mappings
in B", and C(r,n, K) is a constant which depends only on r, n, and K.

Proof. If n=3 and f: B"~R" is a K-quasiregular local homeomorphism, then
fis injective in a ball B"(y (n, K)), where Y =y (n, K) is a positive number depend-
ing only on 7 and K. The existence of ¥ is asserted in [7, 2.3] and an estimate is found
in [10]. It then follows that for every x€B" the mapping f|B"(x, - (1—|x|)) is
injective. Hence N(r) is less than the number of cubes with main diagonal 2y - (1 —r),
needed to cover B"(r), and is also less than the given upper bound.

Remark. The upper bound for N(r) presented in Lemma 3 is not the best
one. A better estimate, but harder to write out, can be achieved by use of balls of
constant hyperbolic radius.

Theorem 2. Suppose n=3. Let f: B">~R'\{0} be a K-quasiregular local
homeomorphism. Then

79( v9(r)
62 17@1-2750 (L™ = ) = ) -27om0 (L2177, 1y
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where

93n—1 (V;)n(n +1)
Y= W’

and Y=y (n, K) is the universal radius of injectivity for locally K-qc mappings in B",

1 +r)n(n+l)
I—r )

and g = [

Proof. From Lemma 3, it follows that for O<r<1

N(I;r) = ( 1:0;1((11:;) )n‘

Fix x€B" with |x|=r<1 and let F: B"~R"\ {0} be defined as F(z)=/(((1+r)/2)z)
for zeB". Then f(x)=F((2/(1+r))x) for |x|<(14r)/2. F satisfies the conditions
of Lemma 2 with N, =C((1+r)/2, n, K). Hence, for |x|=r we have the sought
estimate.

Remarks.

(i) Lemma 3 is false for n=2, as can be seen from the sequence ", k=1,2, ... .

(i) Since any function of the form f(z)=¢*®, where g(z) is analytic and g’(z)=0
for |z|<1, satisfies the conditions of Theorem 2, and since any such function
may have an arbitrary growth it follows that Theorem 2 is false for n=2.

(iii) When this paper was completed S. Rickman pointed out that the following
theorem can be proved.

Theorem. Let f: B"~R"\{0} be K-quasiregular and a local homeomorphism.
Let x¢B", |x|=r and suppose that |f(x)|>=|f(0)|. Then

1 = /) S
Em,K) 7 { (A—perore=n | = Ty = £ B e\ myomm—n )
where E(n, K) is a positive constant which depends only on n and K.

Proof. We let «; and a, be paths as in [9, Remark 4.11], «;: [0, 1]-R" such
that o (0)=/(0), o;(1)=0 and o]0, 1]ccl B"(|f(0)]), ap: [0, 1)>R" such that
#2(0)=f(x), aa(t) > oo, t—>1, and o,[0, N[B"(|f(x)]). Let o} and o} be maximal
liftings of o, and o, starting at 0 and x, respectively. Let I'=TI"(of, «}, B(s)\cl B(r)),
s=(1+r)/2. Then

M(I) = c,log (s/r), see [11,10.12], M(fT) = w,_,/{log [|fX)|/|fO)}""1;
see [11, 7.5].
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Using [5, 3.2] we obtain:

M(I') = Ko (f)N(s) M (ST),
and therefore

{log [IfM/IF O}~ = [4(n, K)N(s)]/log (/7).

Since log (s/r)=(1—r)/4 when r is near 1, we obtain by Lemma3 N(s)=
B(n, K)/(1—s5)""; hence

{log[|f)/IF O}~ = D(n, K)/(1—r)"*,

and therefore

@l _ .
Fo = o e { g

It is also clear that there are in Lemma 2 N, for which a better estimate than
(5.1) can be obtained by this direct method.
The author wishes to thank Prof. S. Rickman for his remarks.

6. A distortion theorem for quasiregular mappings which omit certain sets

Theorem 3. Let f: B">R"\E be a K-quasiregular mapping, EC R" satisfying
EnS"Y(R)#0 for every R=0. Then

111(1)_1(11]< _ ( _lﬁ) _
©.1) o ) 2@l = roc|=). r=k.
where

a=2"1K,(f) and C =2%.
For n=2, the following better estimate holds:

1—r

1+r

1+7 )2K,<f)

J < 1760l < 7)1
I—r

62) 1f©)]-4-20 L r=hl

Proof. Suppose first that n=3. Fix x€B" with |x|=r<I1, and let x*¢B"
be such that |x|=|x*| and that |f(x*)|=M(,f)=max__,|f(z)|. Denote the line
segment between the origin and x* by I. Then f(I) is a curve in cl B*(M (r, f)) con-
necting f(x*) and £(0). Let A=clB"(M(r, ))\NB"(If(0))), F=fU)nA and I'=
I'(E, F, A). Using [12, 10.12] we find:

(6.3) C,log {M(r, N/IfO)]} = M),
where
/2 1—n
C,=w,_5-2'7" (f (sin £)~»—2/-1 dt] .

0
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I” majorizes the family I” of all paths which connect Fand dfB"in A; hence M(I")=
M(I) [12,6.4]. Foreach §€rI’, there exists a path y: [0, 1)~B" such that y(0)€],
y(t)—~0B" as t—~1 and f(y)C7; see [7, Theorem 3.12]. Let I'={y: $¢I}. Then
fT<TI, and [12, 6.4] we obtain:

MI")=MJT)= M(T) = K, (f)M().
This, in conjunction with (6.3) and Lemma 1, yields:
Cylog{M(r, HI|fO)} = Kr(f){D ™ /ewn-1} " [log {(1 +7)/(1-7)}+81og 2],

and consequently

e, ) = 172 (122);
where
a = 2""1Ki(f).
Hence
64) el = 1o)-2 (11,

We obtain the lower bound from (6.4) as in Lemma 2, by considering hof. For
n=2, we repeat the same construction using (4.1)" instead of (4.1) to estimate M (I).
We find

2 log (MG, )1 7O} = = Ky ()log {401 +9/(1 =)

and conclude in the same way as for =3, and get (6.2).

Remark. For n=2 and K=1 asimilar result was obtained by other methods;
cf. [3, Theorem 4.17].

7. A distortion theorem for non-vanishing qc mappings or spherically mean
1-valent qr mappings

Suppose f: G—~R" is sense-preserving, discrete and open; every x€D has
arbitrarily small normal ngighbourhoods U (i.e. domains U with clUcG, foU=0fU
and Un f~(f(x))={x}) with connected complement in R" [5, 2.9].

The local topological index of f at a point x€G, denoted i(x,f), may be
defined as

(7.1) i(x, f) = N(f, U),
where U is any normal neighbourhood for x [5, Theorem 2.12]. Define
(7.2 n(y, f,G)= 2 ikxf),

x€f-1()
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that is, n(y, f, G) counts the number of roots of the equation f(x)=y in G with
their multiplicity.

Definition. Let f: G—~R" be a sense-preserving, discrete and open mapping;
fis said to be spherically mean p-valent (p=0) if

(7.3) p(R)=pR,G,f) = —ln_T f n(y, f,G)dA(y) = p
@,—1 R" ™! onst-yr)

for every 0<R<woo, where dA is an element of spherical measure of S" '(R).
For n=2 and analytic functions, this definition coincides with circumferentially
mean p-valent [3, p. 94].

Theorem 4. Let f: B"~R" be open, discrete and sense-preserving and spher-
ically mean 1-valent. Then there exists a number 1=I.€[0, <] with the following
properties:

() If R<l and y€B"(R), then n(y,f, B")=1.
() If R=I, there exists yx€S" “(R) such that n(yg,f, B")=0. If, in addition,
fis qr, then l<eo.

Proof. Denote n(y)=n(y,f, B"). We shall show first that the set {y: n())=M}
is open for every finite number M. If n(y,)=M, there exists a finite number of
points x,, ..., x,€B" such that f(x;)=y,, i(x;,f)=n;, j=1,2,...,q and 2 =M.
Let U;(r) denote the x;-component of f~1(B"(y,, r)), j=1,2,...,q. Then there
exists 6=>0 such that U;=U;(d), j=1,2,...,q are normal neighbourhoods of
X1, ...» X, TESPectively. Now for y€B"(y,, J),

i(x,f)=n; and 2> i(x,f):Zq'nsz.
xef-1yNU, x€f71» j=1
Therefore the set {y: n(y»)=M} is open.

Suppose n(a)=1, a¢ S *(R). Then n(y)=2 in some neighbourhood of a
relative to S"~'(R). Since fis spherically mean 1-valent, it follows that n(y)<1 for
some points y€ S" *(R). Therefore, if n(y)=1 for all y€S" *(R), then n(y)=1
for all yeS" 1(R).

Suppose n(y)=1 for all y€S" *(R). Then fmaps E=f"1(S"!(R)) homeo-
morphically onto $"~*(R). Let D denote the bounded component of R"™\ E. Then
fD=B"(R), since fB"CR", and fOD=fE=S""*(R)=JfD. Hence D is a normal
domain; so N(»,f, D)=const for yéccl B"(R), whereby n(y)=1 for every
yecl B*(R). Let I={R=0: n(y)=1 for all y¢ S""*(R)}; then, in view of the open-
ness of {y: n(y)=1} and the last argument, / is either void or else an open interval.
Thus (i) and (ii) hold for /=sup I when I#0, and /=0 otherwise.

If fis qr, then n(y)=1 for every y€B"(/), and thus f is qc. It follows that
I<+ o, because otherwise the inverse function /1, that is qc, should map R" on B",
contradicting Liouville’s theorem for qc mappings [6].
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Remark. If f is analytic and circumferentially mean 1-valent, the theorem re-
duces to a known result; see [3, Lemma 5.2].

Corollary 1. Let f: B"~R"\{0} be K-quasiconformal or K-quasiregular and
spherically mean 1-valent. Then

1+r]°‘_ r = x|
l_r 5 - )

|f(0)] (l—r]“< _ [
@.5) T ) = = role
where o« and C are the same as in Theorem 3.

For n=2, we can get:

< 4=2K1(P) [%JZK'U)< If ()| < If(©0)

1f(0)

< 42K1(D) [ﬂ)ﬂ(’m.
1—r
Proof. The property [0 implies /=0 by Theorem 4; hence all conditions
of Theorem 3 are satisfied, and the assertion follows from the latter.

Remarks.

(i) For gqc mappings Corollary 1 is better than Theorem 1 with N=1.

(i1) Gehring proved (see [12, 18.1]) distortion theorems for qc mappings in general
domains in terms of the distortion function 9% (r). Corollary 1 yields an explicit
form of 9% (r) in certain cases.

(iii) The constants C and « in Corollary 1 are probably not the best possible.

Acknowledgement. This paper is part of a D. Sc. thesis written under the
supervision of Professor U. Srebro and submitted to the Senate of the Technion-
Israel Institute of Technology in Mathematics 1978. The author wishes to thank
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