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CAPACITY AND MEASURE DENSITIES

O. MARTIO

1. Introduction

Let h:[0, ©)—[0, =) be a measure function, i.e. i is continuous, strictly
increasing, 4(0)=0, and lim,__ A(z)=<, and let

t— oo
H,(4) = inf{ Sh(r): UB'(xi,r) :A}
be the A-(outer)measure of AC R". The upper h-measure density of 4 at x¢R" is

O,(x, A) = }_1_?(} Hy (A~ B"(x, r))/h(r).

Assume that 1<p=n and that C is a closed set in R". For x¢R"
cap, (x, C) = @ r?=" cap, (B"(x, 2r), B"(x, r) n C)

defines the upper p-capacity density of C at x. Here cap, on the right hand side is
the ordinary variational p-capacity of a condenser.

The purpose of this note is to compare ©,(x, C) and cap, (x, C) for various
h and p. Among other things we show that cap, (x, C)=0 implies ©,(x, C)=0
for h(r)=r*, where a=n—p. As a byproduct some measure theoretic properties
of sets C which satisfy cap, (x, C)=0 for all x€C are given. Observe that such a
set C need not be of zero p-capacity.

We shall mainly employ the method due to Ju. G. ReSetnjak, cf. [7, 8]. There is
an extensive literature on measure theoretic properties of sets of zero p-capacity,
see e.g. [1], [6], [7, 8], and [10].

2. Preliminary results

2.1. Notation. The open ball centered at x€R" with radius r>=0 is denoted
by B"(x,r). We abbreviate B"(r)=B"(0,r) and S" '(r)=0B"(r). The Lebesgue
measure in R" is denoted by m and Q,=m(B"(1)). We let w,_; denote the (n—1)-
measure of S"7*(1). For p=1, L? is the class of all p-integrable functions in R"
with the norm | |,.
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If ACR" is open, then C;(A) means the set of continuously differentiable real
valued functions with compact support in 4. For u€Cy(A), Vu=(0u, ..., d,u)
is the gradient of u. Each u has the representation, cf. [7, Lemma 3],

2.2) u(x) = wl Vuy)- (x—y)

— 2 dm(y).
R g

If 4 is open in R" and Cc A4 is compact, then the pair (4, C) is called a con-
denser and its p-capacity, 1<p=n, is defined by

cap, (4, C) =u€viyr(1£ o f}Vu{"dm
’ A

where W(4, C) is the set of all non-negative functions u€Cy(A4) with u(x)>1
for all x€C. Note that for x¢R" and O<r,<r,

wn—l((rg— rg)/lq)lﬁp’ pE (1, n)

2.3) cap, (B"(x, r5), B"(x, rl)) = {a) _l(ln (rz/rl))l‘” = 2

where g=(p—n)/(p—1). The following subadditivity result for capacities is well-
known:

2.4. Lemma. Suppose that (4, C) is a condenser. If (4;,C,), i=1,2,..., is
a sequence of condensers such that ADA; and OC,DC, then

capp (Aa C) = Z Capp (Aia Cl)
If Cis closed in R", x€R", and r=0 we let
cap, (x, C, r) = r»~" cap, (B"(x, 2r), B"(x,r) n C).

The set C is of zero p-capacity, abbreviated cap, C=0, if for all compact sets
C’'cC, cap, (4, C’)=0 for all open ADC".

If & is a measure function, then in addition to the measure H, defined in the
introduction we use the 4-Hausdorff measure

Hj (A) = lim inf {3 h(r): VB"(x;, 1) DA, r; =t}
for AcCR". For h(r)=r* a=0, this defines the usual a-dimensional Hausdorff
measure on all Borel sets in R" and
dimy A =inf {« > 0: H;(4) =0, h(r) =}
denotes the Hausdorff dimension of A4.

2.5. Preliminary lemmas. The first two lemmas are well-known. .
Suppose that / is a measure function and that ¢ is a finite measure in R" defined
on all Borel sets. For x¢R" and r=0 write a(x, r)=cr(B"(x, r)).
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2.6. Lemma. (Cf. [3, pp. 196—204].) If A=0 and
A, ={x€R": 6(x,r) = h(r)/A for all r= 0},
then H,(R'\A;)=c,Ac(R"), where c,=0 depends only on n.

2.7. Lemma. [7, Lemma 4] If F: (0, <)—~R is decreasing, absolutely con-
tinuous on compact subintervals, and lim,__ F(r)=0, lim,_, F(r)=co, then

JSE(x=yDdo) =— [ F'(Do(x,r)dr.
R™ 0

In order to estimate the upper A-measure density an interpolation lemma of
type [7, Lemma 6] is needed:

2.8. Lemma. Suppose that u€LP?, p>1, is non-negative and that u|[}B"(r,)=0.
Then for all o=0

o

#,({xe & 0 = @amve (L [higpirim dr ey, )} = e,
0

where
o) = [u@)|x—y[="dm(y)
Rn

and c, is the constant of Lemma 2.6.
Proof. For x€R", r=0, and non-negative measurable w we let

Ow, x,r) = f wdm.
B"(x,r)

By Holder’s inequality
2.9 Ou, x, r) = QL YVpprr=mrQ(uP, x, r)l®,
On the other hand
(2.10) O, x,r) = Q= Yerg="/?|u]],
since u|[B"(ry)=0.

If AcR" is measurable we let

a(4) = fu dm.
4

Now o(R") << since the support of u is compact. Setting F(r)=r'"" r=0,
Lemma 2.7 implies

@.11) v@) = [u@)x—yP~"dm = [ F(jx—y|) do(y)
R™ R™

=(n—1) fQ(u, x, )r~"dr
0

— (n—1) f°Q(u, X, r)r“"dr—l—(n-—l)po(u, X, Pyr—"dr.
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Now by (2.9)
(2.12) f O, x, ryr~"dr = QL-1r f oW, x, )/rr—ir gdr
0 0
and by (2.10)
(2.13) [ QG x, yr="dr = Q) Vergrie [ lull,r="dr
Q}l—llp
- 5" ull,-

Suppose that a=0 and let
B, = {x€R": Q(?, x,r) = h(r)[«?}.
Define o(4)= f 4uPdm if ACR" is a Borel set and apply Lemma 2.6:

H,(R™\B,) = ¢,0?d(R") = c,a” |[u]}.
If x¢B,, then by (2.12)

ry o
(2.14) [ Q, x, ryr="dr = Qi~ra=t [ h()Pr-rirdr
0 0
and hence by (2.11), (2.13), and (2.14) for x€B,
—1 fo
v(x) = K= Qi-Ur [nTl f h(r)l/l’r“””’dr+ré‘"“’l]ullp].
0

This gives {x€R": v(x)>K}c R"\ B, and the result follows.

3. Upper bounds for measure densities

Suppose that C is a closed set in R* and x€R". If /i is a measure function and

r=>0, then we let
@h(x) C9 r) = Hh(En(x’ r) N C)/h(r)

3.1. Theorem. If pc(l,n] and
2r
(3.2) [ h@VPeipdr = Ar®PIh(r)YP
0

for some A=0 and all re(0, ry), then
O0,(x,C,r) = ccap,(x,C,r), re(0,ro.

Here the constant ¢ depends only on n, p, and A.
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Proof. We may assume that x=0, and since @,(0,C,r)=1 for all r=0,
we may also assume
3.3) cap, (0, C,r) < K = wf_, Q2,7 72"~%
for all r€(0, ro]. Set

2r
1) = [ k@Y dr,
0

Let ¢>0 and choose weW(B"(2r), B"'(r)n C) such that

(3.4) cap, (B"(2r), B'(N n C) = f \Vw|Pdm—¢
and

(3.5) [ IVwr dm < Ki"=».

By (2.2)

w(x) = ;% [ Ix—y[7" VW) (x—y) dm(y)
= o4y [ =y [Vw @) dm(y).
Now apply Lemma 2.8 with u=|Vw|/w,-, and r,=2r. The inequality (3.5) gives
QLY Q) P ul|, = QL VP QI (K Pt = 1)2 < 1,

hence we may choose «=0 such that

Qi"'l/l’ [_n_(x__l I(r) +(2]‘)1‘”/p”u”p] = 1.
Lemma 2.8 yields

H,(B"(rn nC) =c,|ul? n—1)I(r) ]”

[Q,l.“"l—(zr)l_"/"”ll|lp
= ¢, 22 Q2 Y w7 (n—1)PI(r)? (cap, (B"(2r), B"(r) n C) +¢)

where the inequality (3.5) has also been used. By the assumption (3.2), I(r)=
Art™"P p(1)V? and thus

H,(B"(r) n C)/h(r) = cr?="(cap, (B"(2r), B"(r) n C) +¢)
where c¢=¢,2" Q2 ' ? (n—1)?4”. Letting ¢—~0 gives the required result.

3.6. Corollary. Suppose that h satisfies the condition (3.2). If cap,(x, C)=0,
then O,(x, C)=0.

3.7. Corollary. If l<p=n and cap,(x,C)=0, then 0O,(x,C)=0 for
h(r)=r* and a=n—p.

Proof. Let h(r)=r*, a=n—p. In view of Corollary 3.6 it suffices to show that
h satisfies the condition (3.2). An easy calculation shows that this is true for all
r=>0 with A=p(a—n-+p)~12e-"+nir,

3.8. Theorem. Suppose that CCR" is closed and 1<p=n. If cap,(x, Cj=0
for all xeC, then dimy C=n—p.
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Proof. If a=n—p, then for h(r)=r* Corollary 3.7 gives @,(x, C)=0 for
all xeC. By [2, 2.10.19 (2)], H,(C)=0. This shows dimy C=« and the result
follows.

3.9. Remarks. (a) It is well-known, see e.g. [6, p. 136] and [8, Corollary 2],
that cap, C=0 implies dimy C=n—p.

(b) Especially for p=n it is interesting to know if the condition (3.2) would
allow measure functions / increasing more sharply at 0 than /& (r)=¢* for any «=0.
Unfortunately, for p€(1,n] the condition (3.2) always implies that /(r)=crf for
some =0 and ¢=0 forall re(0, ro]. To prove this choose an integer i,=2 such
that 27%¢€(0, r]. Then for i=i,

9-i+1

(3.10) ARQTHP2Ie=D = [ R (p)Vrgrip dr
0

=

(2P 2U=Dnip =] — 37 (2=iy/p Qitnlp—D=nip,

Jj=i

s

J

Assume first that pe(1,n). Fix >0 and then an integer k=2 such that
n)k'>’AD4’k: alld

(3.11) 2B/ 4 — Dk(n/p=1)=nip_
Now for all i=i,
(3.12) h(2717k) = 27Ph(27Y)

since otherwise
hQ Y= hQ " Y =...=hQ=2"FpQ27)
and thus
S h(z—j)llpzj(n/p—l)—n/p - z—ﬁ/ph(z—i)l/p i2+'k 2it/p—1)—n/p

=i i=i

= 2-Blr) (z—i)l/p 2li+k)(n/p=1)—n/p,

But this combined with (3.10) and (3.11) gives a contradiction.

If p=n, fix >0 and an integer k=2 so that iyk=i,+k and A<2"F"-1f,
Then it can be shown similarly that (3.12) holds.

To finish the proof let r¢(0,27%*]. Choose i such that r&(27i7% 27% and
then m=i, sothat mk=i<i+1=(m+1)k. Since iyk=i,+k it follows from (3.12)
by induction that

h(z—jk) = 2—ﬁ(j—io+l)h(2—i0)’ =g, ip+1, ...
Hence
h(}")k = h(z—mk)k = 2—/}(m——io+1)kh(2-io)k
— 2pi0kh(2—io)k2—ﬂ(m+1)k = 2/3iokh(2—io)k .

This gives the required result.
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4. Lower bounds for measure densities

Here we only consider measure functions 4 of well-known type.
4.1. Theorem. Let
h(ry=r""? for pe(l,n), r=0, and
=(In(1/p)*=" for p=n and 0<r=<1j2.
If C is a closed set in R*, then
cap, (x,C,r) = cO,(x,C, )

SJor all r=0 if pe(l,n) and for re(0, 1/2) if p=n. The constant c depends only
on n and p.

Proof. We may assume x=0. Consider first the case 1<p<n. Fix r=0
and choose a covering B"(x;, r;) of the set B"(r)nC where x,€B"(r). Assume
2r;<r for all i. Now by Lemma 2.4 and by (2.3)

4.2) cap, (0, C, r) = r»~"cap, (B"(2r), B"(r) n C)

= rp—” 2 Capp (Bn(xia T), E"(xia ri) N C)
i=1

= ¢ S0P =117 = e (1= 27917 3 (r iy
i=1 i=1
where ¢;=w,_14""", g=(n—p)/(p—1), and the inequality 2r,<r is used in the
last step. Thus

cap, (0, C,r) = ¢ > h(r)/h(r).

If 2r,=r for some i, then, since cap,(0, C, r)§a),,_1((1 —2“1)/q)"”, the result is
obvious.
In the case p=n the estimate (4.2) can be written in the form

In ri]I‘”
Inr

cap, (0, C,r)=c D [:

when the conditions r<1/2 and 2r,<r are used for the inequality (In (r/r))" =
a(=Inr)"'(~Inr)'™" ¢=(In2)"'2'"" and c=w,_;c;. This yields the con-
clusion as above.

4.3. Corollary. Suppose 1<p=n and let h be as in Theorem 4.1. If C<R"
is a closed set, then ©,(x, C)=0 implies cap, (x, C)=0.

4.4. Remark. It is well-known, see e.g. [6, Theorem 7.2] or [10], that if 4 is
as in Theorem 4.1, then H;(C)<eo gives cap, C=0.
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4.5. Corollary. If C is a closed set in R* and cap, (x, C)=0 for all x¢C,
then cap, C=0 for q€(l,p).

Proof. By Theorem 3.8 dimy C=n—p. Consequently H, (C)=0 for h(r)=r*
a>n—p. By Remark 4.4 cap, C=0 for g&(l, p).

4.6. Corollary. Suppose that 1<p=n. If C is a closed set in R" such that
cap, C=0 and cap,(x,C)=0 for all x€C, then dimy C=n—p. Moreover,
H} (C)=ee, h(ry=r""".

Proof. The case p=n has been handled by Theorem 3.8. If a=n—p=0 and
if H}(C)<ee, h(r)=r? then by Remark 4.4 cap, C=0. Consequently, dim, C=
n—p and the opposite inequality follows from Theorem 3.8.

4.7. Example. Here we construct for p=n a compact set CCR" such that
cap, C=0 but cap, (x, C)=0 for all x€R". In fact we shall show that even the
condition M (x, C)<e- for all x¢C holds. The condition M(x, C)<ee, cf. [4]
and [5], means that there exists a non-degenerate continuum KcC[Cu {x} such
that x€K and the n-modulus of the curve family joining K and C is finite. By [5,
Theorem 3.1] M(x, C)<oo implies cap, (x, C)=0. A set of this type is of func-
tion theoretic interest, see [11].

To this end let k€(1,2) and define I/=exp (—k"/®~P), i=0,1,.... Fix i,
such that 4yn 1 <l for i=i, and write ;=1 ,i=0,1,.... Let 4, be a closed
interval of length /, and set E,=4,X... X4, (n times). Denote by F; the union of
two closed intervals 47 and 42 of length /; lying in 4, and containing both ends of
d,. Set E;=F;X...X F, and carry out the same operations in the intervals 4} and
A% using I, instead of /;. Four intervals AL, i=1,2,3,4, are obtained. Let their
union be F, and set E,=F,X...X F,. This process can be continued and define
C=, E;. Each set E consists of 2" closed cubes Qf, j=1, ..., 2", with sides
of length /;.

The set C is of positive n-capacity since

oo

> oni/=n) | /i) <=,

i=

cf. [6, Theorem 7.4 and the following Remark]. For relations between the capacity
used in [6] and the variational capacity used in this paper see [8, Theorems 6.1
and 6.2].

Next we consider the condition M(xy, C)<<e. Fix x,€C. For each i=1
choose a cube Q, in the collection {Q} such that x,€Q;. Now it is easy to construct
a continuum K, ,CQ; consisting of line segments L,, L,, L, in the plane
T={x€R": x;=(xy);, j=3,...,n} and such that L, joins the midpoint of a face
of TnQ, to the center of TN Q;, L, is a part of a similar segment and L, is per-
pendicular to L, and joins the midpoint of a face of T'n Q,,; to the endpoint of L,.

Now d(K; 15 Qi \Qiy0) =l/4 and d(K;, ), Qi+2) =l ,,/4 where 0v=0x-1nU; 0.
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Set K=J;7, K;.1U {xo}. Then after a suitable selection of the continua K; ,, K
is a non-degenerate continuum with x,€K.

If E and F are closed sets in R" we denote by 4 (F, F) the family of all paths
joining these sets in R". For properties of the n-modulus M (4(E, F)) of the path
family 4 (E, F) we refer to [9].

It remains to show M (A (K, C))<oo. By [9, Theorem 6.2] for each i=1

@9 MKy O) = MAK 0+ (4 (K, U @0\0)))

= M(A(Koss, Q;+2))+j'§+: M(4(Kis 1, ONO))

and we estimate each term separately.
Fix 1=j=i. Now K,,,CQ; and (Q)\Q)) N B"(xo, [;_1/2)=0,
thus

(4.9) M(4(Kir1, ONQ)) = @, 1 (In[(1;-/2/(1:Vn/2)]) ™"
— wn_lk—n(io +1) [1 — JMio+D/L-n) | V;_kn(j—l—i)/(n—n]l*" = c kM
where ¢; depends only on #, k, and i,.
If j=i+1, then because of the quasi-invariance of the n-modulus under bi-

Lipschitz mappings, see [9], it is easy to see that there is ¢;>0 depending only on
n such that

(4.10) M(A(K;11, Q11\Qi+1) = s M(A(B"(I;41), S"71 (1))
= c;a)n_l(ln (li/li+1))1_" = k™

and ¢, depends on the same constants as c;.
As above the estimate

4.11) M(A(K; 41, Qi) = s M(A(B"(Ligo), S"1(1i11)) = ¢k =0+

is obtained where c¢; depends on the same constants as ¢;.
Finally, the inequalities (4.8)—(4.11) yield

M(A(K, C)) = é M(A(K;11, ©))

(1A

2 esk™"0FD ey k™ (i 1) e k™)
i=1

=(aqtete) Z(E+D)k™ <.
i=1
This shows that M (x,, C)<-co.
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