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RINGS OF FUNCTIONS IN LIPSCHITZ TOPOLOGY

JOUNI LUUKKAINEN

Introduction

Let X and Y be metric spaces with metrics d and d’, respectively. A map f: X—Y
is Lipschitz if there is L=0 such that d’(f(x),f(»))=Ld(x,y) for all x,ycX.
The smallest such L is the Lipschitz constant lip f of f. These notions make sense
also for pseudometric spaces. If each point of X has a neighborhood on which f is
Lipschitz, f is locally Lipschitz (LIP). If f is bijective and both fand f~* are Lipschitz
(resp. LIP), f is a Lipschitz homeomorphism (resp. lipeomorphism). See [14] for a
more comprehensive treatment of Lipschitz topology.

This paper is concerned with real-valued Lipschitz and LIP functions on metric
spaces. Theorem 1.2 characterizes the pairs (Lip (X),lip) and (L(X), lip|L(X)),
where Lip (X) and L(X) are the sets of all Lipschitz functions and all bounded
Lipschitz functions, respectively, on X and where lip is the function f—lipf on
Lip (X). In Section 2 we investigate how homomorphisms of rings L(X) are related
to maps of metric spaces. In particular, we show in 2.23 that L(X) and L(Y) are
isomorphic if and only if the completions of X and Y are LS homeomorphic in the
sense of 2.14; this generalizes a result due to Sherbert [20]. Section 3 is devoted to
the rings /(X) and I*(X) of all LIP functions and all bounded LIP functions, respec-
tively, on X. In 3.5 a new proof is given for Su’s theorem [24, 6.4’] that X and Y are
lipeomorphic if and only if /(X) and /(Y) are isomorphic. A similar result holds for
1*(X). In 3.11 we study relations between X and a natural topology on /(X). We
also consider ideals of /(X) and /*(X). In the last section we study ideals in and
characterize homomorphisms of the rings /,(X) and /,,(X) of all LIP functions on a
locally compact metric space X vanishing at infinity or with compact support,
respectively, and obtain analogues of Su’s theorem.

We will often use McShane’s theorem [15, Theorem 1] stating that if AC X,
then every Lipschitz f: A—R has an extension f: X—R with lip f=lipf. If
f,g: X—-R are Lipschitz and % is either max (f, g) or min (f, g), then liph=
max (lip f, lipg). Thus, if f in McShane’s theorem is bounded, f can be chosen
to be bounded with the sup norm | fl|..=|f]..
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1. A characterization of the set of Lipschitz functions

1.1. The characterization of (Lip (X), lip) in 1.2 is based on the identity f(x)=
SUp, ¢ x (f(y)—(lipf)d(x,y)), valid for all f€Lip(X) and x€X (cf. below).
We denote m(S)={f€R5 fbounded} if S is a set and sometimes lip, f=lipf if
SeLip (X). If Sis a set, KC RS, and max (f, g)€K for all f, g€K, we say that
K is max-closed.

1.2. Theorem. Let S be a nonvoid set, let AC RS (resp. Acm(S)) and let
p: A—[0, ). Then there is a metric ¢ on S such that A=Lip (S, @) (resp. A=L(S, 0))
and p(f)=lip,f for every fcA if and only if the following six conditions are sat-
isfied, where A,={fcA|p(f)=t} and A,(x)={f€A,|f(x)=0} for t=0 and x€S:

(1) If feA and t€R, then tf€A and p(tf)=|t|p(f).

(2) If f€A and t€R, then f+t€A and p(f+t)=p(f).

Q) If f,gcA and h=max (f,g), then h€A and p(h)=max (p(f),p(g)).

4 If KcA is max-closed and nonvoid, M=sup {p(g)|g€K}<<, and
f=sup K<eo (resp. fis bounded), then fc¢A and p(f)=M.

(5) There is x,€S with sup {f(x)|f€A,(xo)}<e= for every x€S.

(6) A separates points of S or, if card S=1, is nonvoid.
The metric ¢ is uniquely given by

(1.3) o(x,y) = sup {|f()—f()||fe 41}, x, yeS.

Proof. We consider the case of bounded functions only, because the case of
not necessarily bounded functions is similar and simpler. Let ¢ be a metric on S
and let 4=L(S, 0) and p=lip,|A4. It is easy to see that the conditions (1), ..., (5)
hold and that x, can be chosen arbitrarily. If x, y€ S and f(z) = min (o(x, z), o(x, )
z€ S, then fcA; and |f(x)—f(»)|=0(x,y). Thus (6) is satisfied and, if e(x, y)
is the right-hand side of (1.3), e=g. Since obviously e=p, (1.3) follows.

Now we consider Acm(S) and p: A—[0, ) satisfying (1), ..., (6). Since
A;#0 by (6) and (1), one can define a function g¢: SXS—[0, ] by (1.3). Let
x, y€8. If feA,, then g=f—f(xo)€4;1(xo) by (2) and [g(x)—g(»)|=|f(x)—f(Y)].
Thus ¢(x, y)=sup {Ig(x)_g(J’)||g€A1(xo)}- Since  —A;(x)C A1(x,) by (1), this
and (5) imply ¢(x, y)<<o. Therefore ¢ is a pseudometric on S. If x=y, there is,
by (6) and (1), feA4; with f(x)#f(»), whence o(x,y)=]|f(x)—f(y)|=0. Thus ¢
is a metric.

Let f€A4. Weshow that lip, f=p(f). Letfirst p(f)=0. If r=0, then p(tf)=
tp(f)=0, whence tfc€A4,, and thus ¢|f(x)—f(»)|=¢(x,y) for all x, y€S. This
implies that f is constant and lip, f=0=p(f). If p(f)=1, then |f(x)—f())|=
o(x,y) for all x,ycS, which implies lip,f=1=p(f). The general case now
follows from (1).

The following facts are needed. If f€m(S) is constant, then, g being any ele-
ment of 4, f=0g+f€A4 and p(f)=0p(g)=0 by (1) and (2). If =0 and f, g€ 4,,
then min (f, g)€4, by (1) and (3).
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Next we show that if a€S, t=0, and A(x)=g(x,a) for each x€S, then
f=min (h, t)€A,. First, we have as above h=sup 4,(a). Thus, if

K = {min (g, t)|g€4,(a)},

then Kc A4,, f=sup K, and K is max-closed since 4,(a) is so. Hence f€A, by (4).

Finally, let f€L(S, ¢) and M=lip,f. Then K={g€Ay|g=f} is max-closed.
Using an idea due to the proof of [15, Theorem 1], we define g,€m(S) for each
y€S by g,(x)=f(y)—min(Mo(x,y), 2| fl.); then g,(x)=f(x)=g.(x) and
8,€Ay. Thus f=sup K, and hence fcA, by (4). This proves that A=L(S, o)
and p=lip,|4. O

1.4. Remarks. 1) The uniqueness of the metric ¢ in 1.2 is a well-known fact
[19, p. 81].

2) We obtain a similar result for pseudometric spaces (S, g¢) by replacing (6)
in 1.2 by the condition A 0.

3) It is easy to see that the key condition (4) in 1.2 could be replaced by the
condition that 4, is closed in RS (resp. m(S)) with respect to the topology of point-
wise convergence. It is not hard to show that (4) could also be replaced by the follow-
ing condition: There is x;€S such that if KcCA;(x;) is max-closed and nonvoid
and f=sup K is finite (resp. bounded), then f€A4;. In (2) we could fix =1, and
in (1) and (2) we could replace the equality by the inequality =.

1.5. Examples. In 1.2 all the six conditions of each of the two characteriza-
tions are essential. We show this by constructing for every i€{l,...,6} a non-
void set S, a set Acm(S) and a function p: A—[0, =) with the following two
properties.

(a) If 1=j=6 and j#1, then () holds. Here we do not assume f to be bounded
in (5).

(b) Let ¢ be a metric on S. Then, if 756, it is not true that p=lip,|4, or, if
i=6, A=L(S, ¢) (and thus A=Lip (S, g)).

Let I=[0, 1]JcR.

i=1: S=1I, A=Lip (I), p(f)=(ip/)*.
i=2: §={0, 1}, A=R%, p(f)=|f(0)>—f(1)}*[".

i=3: S=1I, A=Lip ), p(f)=|f0)—f(D)|+1lipf. If f,g€A are defined by
fx)=1-2x—1] and g(x)=x, then p(f)=p(g)=2<3=p(max (f,g)); thus (b)
holds.

i=4: Let S=1 Let A4 consist of all functions f: /—R such that there are a
division 0=fy<#<...<t,=1 of I and numbers g, by€R, 1=k=n, for which
fllte—1, 8] is given by x—a x+b, or x—aqx*+b,, | =k=n. Itis easy to see that
p(f)=max {|ak|[1§k§n} is well-defined. We prove (b). Define f€4 by f(x)=2x?
if x=4"! and by f(x)=8"1! otherwise; then p(f)=2. Let K={g€A|g piecewise-
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linear, g=f,p(g)=1}; then K is max-closed. Since the derivative f’(x)=1 if
x=4"1, itis easy to see that f=sup K. Thus, if (b) does not hold, p(f)=1, which
is a contradiction.

i=5: S={0,1}, A=R5, p=0.
i=6: S={0, 1}, A={f|f: S—R constant}, p=0 (or S={0}, 4=0, p=0).

1.6. Example. Let S be a nonvoid set and w: SXS—[0, «). We define
A=Lip (S, w) and p=lip, as if w were a metric. Then it is easy to see that (4, p)
has the properties (1), ..., (5) of 1.2 (the case of not necessarily bounded functions)
and that A=0. Thus by 1.4.2 there is a pseudometric ¢ on S such that Lip (S, w)=
Lip (S, ¢) and lip,=lip,. Johnson [9, 1.2] proved directly the corresponding
result for bounded real- or complex-valued functions. The pseudometric ¢ is the
greatest pseudometric on S with ¢=w.

1.7. Four functors. We define four maps P,, P*, L,, and L* from the category
E, of nonvoid sets and surjections into the category E of sets and maps as follows.
If S is a nonvoid set, we let P,(S)=P*(S) be the set of all pseudometrics on S
and L,(S)=L*(S) the set of all pairs (4, p) with 0=ACRS and p: A—~[0, =)
satisfying the conditions (1), ..., (5) of 1.2 (in the case of not necessarily bounded
functions). By 1.4.2 there is a canonical bijection Jg: P, (S)—~L,(S).

Let S and T be nonvoid sets and let ¢: S—7T be a surjection. We define maps
P.(9): Pi(S)=P,(T), P*(¢): P*(T)>P*(S), Lyu(p): L (S)~Ly(T), and
L*(@): L*(T)—~L*(S) as follows. If g€P,(S), welet P, (¢)(o)(x,y) for x,yeT
be the infimum of the sums >7_, o(¢~'(f;,_y), @ ~1(1})) where n=1, ty, ..., 1,€T,
ty=x, and t,=y. If o€ P*(T), weset P*(p)(0)(x,»)=0(p(x), p(y)) for x, y€S.
If (4,p)EL,(S), we define L, (@)(4, p)=(4.,p,) by setting A,={f€RT|fpeA}
and p,(f)=p(fp) for f€A,. If (4, p)eL*(T), we define L*(¢)(4,p)=(4",p")
by setting A*={fp|fcA} and p*(fp)=p(f) for f€A; since ¢ is surjective, p*
is well-defined. Note that P, (¢) and P*(¢) do not generally map metrics into metrics.

1.8. Theorem. The maps P, and L, are covariant functors and the maps P*
and L* are contravariant functors E,—~E. The family of the bijections Jg defines
natural equivalences P,—L, and P*—L*. If ¢ is a surjection, then P,(¢)P*(p)=id
and L, (p)L*(p)=id.

Proof. The proof is a straightforward verification. If 1.4.2 is assumed, the
natural equivalence of P, and L, also follows from [12, 1.9—1.11]. O

1.9. Finally we give a version of 1.2 for S a topological space. We say that
AC RS separates points from closed setsif, whenever FC S is closed and x€ S\ F,
there is f€A with f(x)¢ f(_F). Let C(S) be the set of all real-valued continuous
functions on S. It is easy to see that a metric ¢ on S is compatible with the topology
of S if and only if Lip (S, 0)cC(S) and Lip (S, ¢) separates points from
closed sets.
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1.10. Theorem. Let S be a nonvoid topological space, let AC RS and let
p: A—[0, «). Then there is a compatible metric ¢ on S such that A=Lip (S, o)
and p=lip, if and only if the conditions (1), (2), (3), and (6) in 1.2 as well as the Sfollow-
ing four are satisfied:

(4a) Let Kc A, be max-closed and nonvoid, let f=sup K be finite and con-
tinuous, and suppose that if FC S is compact and ¢=0, there is g€K with g(x)>
f(x)—e for each x€F. Then f€A,.

(5a) There are x,€S and a dense set D S with sup {f(x)|f€ A (xo)}<e for
every x€D.

(7) There is x,€S with A,(x,) equicontinuous.

(8) A separates points from closed sets.

Proof. We prove only the sufficiency. Since by (7) and (2) 4, is equicontinuous,
(5a) implies (5). Let Kc A, be max-closed and nonvoid and let f=sup K<-<e.
Then f€K in the topology of pointwise convergence. Since K is equicontinuous,
this implies that f is continuous. If FC S is compact and &£>0, it is easy to find
g€K with g(x)=f(x)—e for each x€F. Thus f€A, by (4a), whence (4) holds.
Now 1.2 gives a metric ¢ on S such that 4=Lip (S, ¢) and p=lip,. Since
AcCC(S), by (8) ¢ is compatible. O

1.11. Remarks. 1) Theorem 1.10 has obvious modifications for the cases of
bounded functions, of compatible pseudometrics, and of continuous pseudometrics.

2) We can replace (4a) in 1.10 by the condition that A4, is closed in C(S) with
respect to the topology of compact convergence. If S is connected, then (7) implies
(5), and hence (5a) can be omitted. If S is compact, (8) can be omitted and (4a) can
be replaced by the following condition: If a sequence g,€4;, g =g:=..., CONVerges
uniformly to f€C(S), then f€A4;.

2. Rings of Lipschitz functions

2.1. In this section we study the rings L(X), but as an application we also obtain
the result that X and Y are Lipschitz homeomorphic if and only if there is a homeo-
morphism of Lip (X) onto Lip (Y) in the topologies of pointwise convergence (or
compact convergence) that defines an isomorphism of Z(X) onto L(Y) (this follows
from 2.27). The set Lip (X) itself is a ring only if X is bounded or equivalently
Lip (X)=L(X). By homomorphism we always mean ring homomorphism (homo-
morphisms of rings with unity are not assumed to carry unity to unity).

2.2. Lemma. Let A be an algebra over R (with or without unity and possibly
nonassociative) and let ¢: A—~R be a ring homomorphism. Then ¢ is linear.

Proof. Let x€A and t€R. If ¢(x)#0, define a1 R—R by a(s)=¢(sx)/p(x).
Then o is a nonzero ring homomorphism, whence the identity [6, 0.22]. Thus ¢ (tx)=
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to(x). If @(x)=0, then ¢(tx)=0=1t¢p(x), because otherwise 0 and hence by
the above @ (x)=t"1e(tx)=0. O

2.3. Function rings. This paragraph is preliminary. The carrier space A° of
a ring A is the set of all nonzero homomorphisms ¢: 4—~R with the weakest
topology in which every function £: @—¢(x), x€A, on this set is continuous.

Let S be a set and let A be a subring of RS which contains constants and is
inverse-closed, i.e., if f€A with [f|=e for some £=0, then 1/f€A. If f€A and
@€A°, then, because ¢ is linear by 2.2, it is easy to see that ¢@(f)€ f(—S—); hence
lo(f)I=Ifl.. provided that fis bounded.

Let 4 be a subring of C(X) that is completely regular, i.e., if FC X is closed
and x€X\F, there is fcA4 with f|F=0 and f(x)=0. It is easy to see that if
one defines ¢,€A4° for x€X by ¢.(f)=f(x), then x—¢, is a topological embedd-
ing of X into A°. Therefore we may consider X as a subspace of 4° and f as a con-
tinuous extension of f€A4 to A° Let C*(X)=C(X)nm(X). Suppose now that
AcCC*(X) and that 4 contains constants and is inverse-closed. Then [¢|=1 for
each @€A4° if we consider 4 with the sup norm. Thus it can be proved as in [13,
Theorem 19B and Corollary 19D] that A° is a HausdorfT compactification of X.

Let 4 and B be rings with unities 1 and 1. Then every homomorphism T: 4B
with T(1)=1" induces a continuous map 7°: B°~A4° by T°(¢)=¢T. Let P and
Q be sets. Then every map ¢: P—Q induces a homomorphism ¢: R%2—~R? by
t’'(f)=ft, and t’(1)=1; we denote by ¢’ also all homomorphisms that ¢’ defines
between subrings.

2.4. The ring L(X) is in fact an algebra, with the constant function 1 as unity,
and by 2.2 the homomorphisms L(X)—L(Y) are algebra homomorphisms. Sher-
bert [20] studied the algebra L(X, C) over C of all bounded complex-valued Lipschitz
functions on X. Since L(X, C) is inverse-closed, ¢(L(X))cR if ¢: L(X,C)~C
is an algebra homomorphism. This implies that every algebra homomorphism
T: L(X, C)~L(Y, C) defines a homomorphism Ty: L(X)—~L(Y). Themap T—T,
is a bijection of the set of all algebra homomorphisms L(X, C)—~L(Y, C) onto the
set of all homomorphisms L(X)—~L(Y). Thus in studying homomorphisms the
real and complex cases are not essentially different.

2.5. The carrier space sX=L(X)° of L(X) is a Hausdorff compactification
of X, because L(X) is a completely regular, inverse-closed subalgebra of C*(X).
With the norm

(2.6) 1A= 11l +1ip f

L(X)is a Banach algebra, and [1]|=1 if X=0. By 2.3 sX lies on the unit sphere of
the dual L(X)* of L(X). This gives a metric 6=2 on sX. The carrier space topology
of sX is weaker than the metric topology.
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2.7. Sherbert considered the (complex) carrier space X of the Banach algebra
L(X, C); 2.5 is a real analogue of the corresponding points of [20]. By 2.4 ¢g=
@|L(X) belongs to sX for each ¢€X and @—¢, is a bijection X—sX. This
bijection is an equivalence of the compactifications X and sX of X and it is an iso-
metry. The nontrivial inequality in [ —yll=log—¥ill, ¢, ¥€Z, follows from
the fact that if f€L(X,C) and (p—y¥)(f)ER, then (p—¥)(=(p—y)(Ref)
and [[Ref|=]fI.

Next we investigate properties of sX.

2.8. Let X be the completion of X. The inclusion map j: X—~X induces an
isometric isomorphism j’: L(X)—~L(X) (cf. [20, p. 1387]), and then ;°: sX—>sX
is a homeomorphism (in the carrier space topologies) as well as an isometry and
keeps the points of X fixed. Thus we may identify sX and sX both as compactifica-
tions of X and as metric spaces. Then Xc X¥csX.

In the following theorem we generalize this result.

2.9. Theorem. Let ACX. Then the compactifications sA and ACsX of A are
equivalent. The equivalence o: sA-A is given by «(¢)(f)=¢(f|A), p€sA, fEL(X),
and o is an isometry.

Proof. The formula of « defines obviously a continuous map o: s4—~sX with
lipa=1. In fact, if j: A—X is the inclusion map, the homomorphism j": L(X)—~
L(A4) induces «. If f€L(A), there is g€L(X) with gld=f and |gl=IfI.
This implies that « is an isometric embedding. Clearly «{4=id. We conclude that
o is a homeomorphism of s4 onto 4. [J

2.10. Lemma. If A and B are disjoint closed subsets of sX, there is fe€L(X)
such that flA=0, f|B=1, and 0=f=1.

Proof. Choose gc€C(sX) with gld=—1 and g|B=2. Since {f]feL(X)}
is a point-separating subring of C(sX) containing constants, by the Stone—Weierstrass
theorem there is #€L(X) such that |h—g||_=1. Define f=min (max (k,0), 1). O

2.11. Corollary. Two subsets A and B of X have disjoint closures in sX if and
only if d(A, B)=0.

Proof. The following conditions are consecutively equivalent: d(4, B)=0;
there is feL(X) with f]4=0 and f|B=1; there is fEL(X) with f|A=0 and
fIB=1; and, by 2.10, A~ B=0. The closures are taken in sX. O

2.12. Lemma. A point of sX belongs to X if and only if it has a countable neigh-
borhood base.

Proof. We may assume that ¥=X. If x€sX\ X has a countable neighborhood
base, there is a sequence (x,) in X converging to x. Since X is complete and no sub-
sequence of (x,) converges in X, the subset {x;, X,, ...} of X is not totally bounded,
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and thus there is a subsequence (y;) of (x,) with inf,_; d(y;, y;)>0. Now the fact
lim y,; _;=x=Ilim y,; contradicts 2.11. The proof is completed by the fact that if a
dense subspace of a regular space is first countable at a point x, then the whole space
is first countable at x; cf. [6, 9.7]. O

2.13. Remark. Lemma 2.10 is an improvement of [20, Corollary 4.3]. Corol-
lary 2.11 shows that sX is the Samuel—Smirnov compactification of X defined in
[22] for every separated proximity space. The equivalence of the two compactifica-
tions in 2.9 holds more generally for separated proximity spaces [22, Proof of Theo-
rem 15]. Lemma 2.12 is the same as [23, Theorem 7], a corollary of a more general
result.

2.14. Definition. A map f: X—Y is Lipschitz in the small (abbreviated LS)
if there are =0 and L=0 such that d’(f(x),f(y))=Ld(x, y) for all x, y€X with
d(x, y)<e. If fis a bijection and both fand f~! are LS, then fis an LS /omeomor-
phism. Two metrics d;, d, on a set S are LS equivalent if id: (S, d))—(S, d,) is an
LS homeomorphism.

2.15. Every Lipschitz map is LS. Every bounded LS map is Lipschitz. Every
LS map is LIP and uniformly continuous. The composition of two LS maps is LS.
The bounded metrics d/(1+d) and min (d, 1) are LS equivalent to d. It follows
that f: Y—X is LS if and only if f: Y—~(X, d/(1+d)) is Lipschitz.

2.16. Lemma. The metrics d and o|X on X are LS equivalent. In fact,
di(l+d)=c|X=d.

Proof. The definition of o at once implies o/X=d. Let x,y€X and define
fEL(X) by f(z)=min (d(z, ), d(x, »))/(1+d(x, ). Then, since |f|=1, o(x, y)=
) —f()=d(x, p)(1 +d(x, ). O

In the next theorem we characterize the homomorphisms T: L(X)—L(Y) for
arbitrary metric spaces X and Y.

2.17. Theorem. Let T: L(X)—~L(Y) be a homomorphism. Then there are a
unique set ECY with d'(E,YNE)=0 (if E#£0=Y\E) and a unique Lipschitz
map t: E—~sX such that

J(t®) if x<E
@.18) T(HE = {0 i T E

Conversely, if E and t are as above, then (2.18) defines a homomorphism T: L(X)—
L(Y).

Proof. Let T: L(X)—~L(Y) be a homomorphism. Let E=T(1)"1(1). Since
T(1)[YNE=0, we have d’'(E, YNE)=0 and T(f)|[YNE=0 for each feL(X).
Let Ty: L(X)—~L(E) be the homomorphism f—T(f)|E; then T, is linear and
T,(1)=1. Hence T, induces a map 7,: sE-sX. We consider L(X) and L(E) as
Banach algebras with the norm (2.6). Then one can prove as in the proof of [13,

(fe L(X)).
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Theorem 24B] that 7; is continuous. Therefore 7; has a bounded linear dual map
T}: L(E)*~L(X)*. Thus T, =T;|sE is Lipschitz. Since the inclusion mapj: E—~sE
is also Lipschitz (2.16), t=T,j: E—~sX is Lipschitz. The formula (2.18) is easy to
verify. The uniqueness result is trivial.

Conversely, let E and ¢ be given. If fcL(X), we define T(f): Y—R by (2.18).
Since obviously feéL(sX) (cf. [20, Theorem 4.1]), we have fr¢L(E) and hence
T(f)EL(Y). Evidently T: L(X)—~L(Y) is a homomorphism. [

2.19. Corollary. If X is compact, every homomorphism T: L(X)—~L(Y) with
T(1)=1 is induced by a unigue Lipschitz map t: Y—~X, and conversely.

Proof. Since sX=2X, this follows from 2.17 and 2.16.
2.20. Corollary. A map t: Y~X is LS if and only if t'(L(X))cL(Y).
Proof. 2.17 and 2.16. [

2.21. Corollary. Two metrics d, and d, on a set S are LS equivalent if and
only if L(S,d)=L(S,d,). O

2.22. Theorem. Let t: Y—>X be LS and t': L(X)—~L(Y) the induced homo-
morphism. Then t’ is injective if and only if t(Y) is dense in X, and t’ is surjective if
and only if t is injective and t~': t(Y)—Y is LS.

Proof. The first part follows from the fact that L(X) is a completely regular
subset of C(X). To prove the second part, let A=¢(Y), let #;: Y—-A be the LS
map defined by ¢ and let j: 4—~X be the inclusion map. Then ¢’ is the composite
of jt L(X)~L(A) and t;: L(4)~L(Y). We first assume that #, is an LS homeo-
morphism; then #; is an isomorphism. Hence, since j is surjective, ¢’ is so. We now
assume that ¢ is surjective. Since L(Y) separates points of Y, #, is bijective. Since
t; is surjective and by the above also injective, #; is an isomorphism. Obviously
17" induces (7;)~1. Hence #;*is LS by 2.20. [

2.23. Theorem. Two complete metric spaces X and Y are LS homeomorphic
if and only if the rings L(X) and L(Y) are isomorphic. Every LS homeomorphism
induces an isomorphism and every isomorphism is induced by a unique LS homeo-
morphism.

Proof. Let T: L(X)-~L(Y) be an isomorphism. Then T induces a homeo-
morphism 7°: sY—sX. By 2.12 T° defines a homeomorphism ¢: Y—X. Then
T=t" and T~ '=(r~'). Hence by 2.20 ¢ is an LS homeomorphism. The converse
result is obvious. [

2.24. Remark. Lemma 2.16 sharpens [20, Corollary 3.7] and its proof is sim-
pler; if d is bounded, it is the same as [20, Proposition 3.4]. For compact X and Y,
2.19 and 2.22 cover precisely [20, Theorem 5.1], and thus 2.23 in this case follows
from [20, Theorem 5.1] (see also [20, Corollary 5.2]). For bounded d; and d,, 2.21
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coincides with [20, Corollary 3.5]. Fraser [5, 2.4] proved 2.21 more generally for
pseudometrics.

2.25. Remark. The following properties of @¢€sX are equivalent: (1) @€X;
(2) ¢ is continuous in the topology of pointwise convergence of L(X); (3) ¢ is con-
tinuous in the topology of compact convergence of L(X). The implications (1)=(2)=
(3) are trivial and (3)=(1) follows from 2.10. It is now easy to see that if we con-
sider L(X) and L(Y) in 2.17 with the topology of pointwise convergence (or com-
pact convergence), then T is continuous if and only if 7 is an LS map E—~X (in this
case we may replace fin (2.18) by f ). Thus a map T: L(X)—~L(Y) is a homeo-
morphic isomorphism if and only if 7=t¢" where ¢: Y—X is an LS homeomor-
phism. The similar results [3, 3.4, 3.5, and Corollary of 3.5] seem to be erroneous
(let a=p=id; then the induced map ¢: Y—~X is LS, but not necessarily Lip-
schitz).

2.26. Lemma. The following properties of a map t: X—~Y are equivalent:
(1) t is Lipschitz.
(2) If Zis a metric space and f: Y~Z is Lipschitz, then ft is Lipschitz.

(3) '(Lip ()< Lip (X).

Proof. Trivially, (1)=(2)=(3). To prove (3)=(1), we define a linear map
T=t": Lip (Y)~Lip (X) and introduce a norm | f||=max (| f(b)|, lip f) on Lip (Y),
where beY is fixed (we may assume Y3#0), and a similar norm on Lip (X). Then
Lip (X) and Lip (Y) are Banach spaces and in them convergence implies pointwise
convergence. Since 7 is continuous if we consider Lip (X) and Lip (Y) with the
topology of pointwise convergence, T is continuous by the closed graph theorem.
Let x, y€ X and define /¢ Lip (Y) by f(z)=d'(z, t () —d'(b, 1()) Then d’(t(x), 1(y)) =
IT(f)x)—T(f)(»)|. Since | fII=1, we obtain lipt=|T|. O

Lemma 2.26 implies the analogue [12, 5.4] of 2.21.

2.27. Theorem. Consider Lip (X) and Lip (Y) with the topology of pointwise
convergence (or compact convergence). Let T: Lip (X)—Lip (Y) be continuous and
let T define a homomorphism L(X)—L(Y). Then there are a unique set ECY with
d’(E, YNE)=0 and a unique Lipschitz map t: E~X such that

ftx) if x€E

(2.28) T(f)(x) = {0 i xeysg UELPO)

Conversely, if E=Y and t is as above, then (2.28) defines a map T having the above
properties.

Proof. Let T be given. Then by 2.25 there are a unique set ECY with
d’(E, YNE)=0 and a unique map ¢: E-X such that (2.28) holds for every f€L(X).
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Let fcLip (X). Since the sequence (max (min (f,n), —n)) in L(X) converges to
f and since T is continuous, (2.28) holds also for this f. Since then ft=T(f)|E
is Lipschitz, 2.26 implies that ¢ is Lipschitz. The proof of the converse part is
omitted. 0O

3. Rings of LIP functions

3.1. In this section we consider the rings /(X) and /*(X). These have been
studied by Su [24] and Scanlon [17]; by the following lemma Su’s L -mappings,
which are defined by the property (2) of the Lemma, are precisely the LIP maps.

3.2. Lemma. The following properties of a map f: X—Y are equivalent:

(1) fis LIP.

(2) fIK is Lipschitz for each compact subset K of X.

(3) If x€X, then sup,d’(f(y,), f(z,,))/d( Vs Zg)<oo for all sequences (y,) and
(z,) in X with y,~x, z,~X, and y,#z, for each n.

@) If Z is a metric space and g: Y—~Z is LIP, then gf is LIP.

) f(LY))I(X).

Proof. The implications (1)=(2)=(3)=(1) are easy to verify; in [17, 2.1] these
are proved for Y=R. In (3) the condition for x is equivalent to the condition that
fis Lipschitz on some neighborhood of x. It is trivial that (1)=(4)=(5). In [24, 5.4']
it is proved that (5) implies (2), but we repeat the proof here. Let KX be compact.
Then g(f|K)=(gf)|Ke€L(K) for each g€L(f(K)), where Z€L(Y) denotes an
extension of g. Thus f|K is Lipschitz by 2.20. 0O

3.3. Lemma. /I(X)°=0vX.

Proof. Here vX is the Hewitt realcompactification of X [6, 8.8]. Since /(X) is
a completely regular subring of C(X), we may treat X as a subspace of C(X)° and
of I(X)° asin 2.3; then C(X)°=0vX by [6, 11.8]. We define the m-topology on C(X)
by taking as a neighborhood base at g all sets { f | | f—g!éu}, where ucC(X) is
positive; then C(X) is a topological ring [6, 2N.1] and /(X) is dense in C(X) by
[14, 5.18]. Let @€l(X)°. Since /(X) is inverse-closed, ¢ is continuous. Hence ¢
has by uniform continuity a unique continuous extension «(¢) to C(X), and
a(p)EC(X)°. Since C(X)° is equicontinuous and /(X) is dense in C(X), it is easy
to see that a: I/(X)°—~ C(X)° is a continuous bijection with a=1(p)=¢ |[/(X). Since
ot is trivially continuous, « is a homeomorphism. Finally, «|X=id. 0O

3.4. Remark. By 3.3 the L -realcompact metric spaces X defined in [24, 4.3
and 5.11] by /(X)°=X are precisely the realcompact metric spaces. Let C*(M)
be the ring of all real-valued C* functions on a paracompact Hausdorff C* manifold
M (second countability not assumed), k=1, ..., o. It is proved in [11, Satz 3] as
in 3.3 that C*¥(M)°=M if and only if M is realcompact. The proof of 3.3 shows
that C*¥(M)°=vM even if M is not realcompact.
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3.5. Theorem. (Su) Two metric spaces X and Y are lipeomorphic if and only if
I(X) and I(Y) are isomorphic. More precisely, every isomorphism is induced by a
unique lipeomorphism, and conversely.

Proof. Every lipeomorphism ¢: Y—X induces clearly an isomorphism
t’: I(X)~I(Y). Conversely, every isomorphism 7: I(X)—/(Y) is of this form by
[24, 6.4’], since T is linear by 2.2 and hence satisfies the additional condition of Su
to leave all constant functions unchanged. Another proof is as follows. Since T
induces a homeomorphism 7°: /(Y)°~I(X)° and since X={xcvX|{x}is a G, -set}
by [6, 9.7] and similarly for ¥, by 3.3 r=T°|Y is a homeomorphism Y—~X with
T=¢’. Then ¢t is a lipeomorphism by 3.2. [

3.6. Corollary. Two metric spaces X and Y are Lipschitz homeomorphic if
and only if there is an isomorphism of 1(X) onto [(Y) that carries Lip (X) onto Lip (Y).

Proof. 3.5 and 2.26. O
3.7. Lemma. I"(X)°=pX, where BX is the Stone—Cech compactification of X.

Proof. As in 3.3, we may consider X as a subspace of C*(X)° and of /*(X)°,
and then C*(X)°=pX [6, 11.9]. The proof is now completed as in 3.3, but instead
of the m-topology the sup norm topology suffices. [J

3.8. Theorem. Two metric spaces X and Y are lipeomorphic if and only if
I*(X) and I*(Y) are isomorphic. More precisely, every isomorphism is induced by a
unique lipeomorphism, and conversely.

Proof. This follows from 3.7 and 3.2 because X={x¢BX|{x} is a G,-set}
6,97, O

3.9. Corollary. Two metric spaces X and Y are LS homeomorphic if and only
if there is an isomorphism of I*(X) onto 1*(Y) that carries L(X) onto L(Y).

Proof. 3.8 and 2.20. O

3.10. Definition. Let the seminorm py on /(X) be defined for each compact
set KCX by px(f)=|/fIK|.+lip (f|K). The I-topology on I(X) is defined by
taking as a neighborhood base at g all sets { f|px(f—g)<e}, where KCX is com-
pact and ¢=0.

3.11. Theorem. In the I-topology I(X) is a complete Hausdorff multiplicatively-
convex topological algebra. The I-topology is given by a norm if and only if X is com-
pact, and then by py, i.e., (2.6). The space I(X) is metrizable if and only if X is locally
compact and separable, and it is separable if and only if X is discrete and card X=
card R.

Proof. Since the I-topology is defined by the seminorms pg and pg(fg)=
Pk (f)pk(g), we conclude that /(X) is a locally convex topological algebra and
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indeed a multiplicatively-convex one. Clearly /(X) is Hausdorff. If X is compact,
obviously p, defines the /-topology.

To prove the completeness, let & be a Cauchy filter in /(X). If KC X is compact,
the sets {f|K|f€F}, FEZ, in the Banach space L(K) form a Cauchy filter base,
which hence converges to a function fx€L(K). We define f: X—R by f(x)=
f{x}(x). Then f|K=f; for every compact KCX, and therefore f¢/(X) by 3.2.
Obviously & —f.

The characterizations of normability and metrizability of /(X) can be proved
as the corresponding results for the topology of compact convergence on C(S),
S a topological space, in [1, Theorem 13] and [1, Theorems 7 and 8], respectively.

Suppose that X is not discrete. Then there is a nondiscrete compact set KC X.
By [10, Theorem 1] the Banach space L(K) contains a linear subspace isomorphic
to m(N), where N is the set of positive integers, and is thus nonseparable. This
implies that for each sequence ( f,) in /(X) there is g€/(X) with inf, px(f,—g)=0,
i.e., [(X) is not separable.

We now suppose that X is discrete. Then /(X)=R* and the /-topology is the
topology of pointwise convergence. Hence by [4, VIIL.7.2 (3)] /(X) is separable if
and only if card X=card R. [

3.12. Finally we prove some results on ideals of /(X)) and /*(X) by using results
on ideals of C(S) and C*(S), where S is a completely regular Hausdor(T space,
and the approximation theorem [14, 5.18]. By ideal we mean proper ideal. If 4 is a
commutative ring with unity, let M (A) be the set of all maximal ideals in 4 considered
with the topology in which F={MEM(A)|M>NF} for every FcM(A)
(cf. [6, TM]). If f€C(S), we denote Z(f)=f"10). If feC*(S), we let f* be
the unique continuous extension of f to SS.

We consider C(S) with the m-topology and C*(S) with the sup norm. The
topology on the ring /(X) induced by C(X) is intrinsic, because for every positive
u€C(X) there is an invertible element v of /(X) with v*=u. Also the sup norm
on /*(X) can be defined intrinsically. Since /(X) and [*(X) are inverse-closed,
the closure of every ideal is an ideal and hence every maximal ideal is closed. This
is also true of C(S) and C*(S); cf. [6, 2M and 2N]. If 4 is either C(X), C*(X),
I(X) or I*(X), we let I(4) denote the set of all closed ideals in A; then
M(A)CI(A).

3.13. Theorem. The maps n: I(C(X))~I(I(X)), I-InI(X), and n*: I(C*(X))~
I(I* (X)), I=InI*(X), are bijections.

Proof. We first consider n. Since /(X) is a dense subring of the topological
ring C(X), one can define a map u: I(/(X))~I(C(X)) by u(I)=I. Clearly, nu=id.
In order to prove pun=id, we show that if 7 is an ideal in C(X), then ICIn I(X).
Let f€l and let ucC(X) be positive. By [6, 70.3] there is g€ C(X) such that
lg—fI=u and clyx Z(g) is a neighborhood of clzy Z(f) in BX. Since by [14, 5.18]
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there is h€I(X) such that |h—g|=u and Z(h)DZ(g), we may assume g¢cl(X).
Since g€l by [6, 70.1 and 70.2], feInI(X).

We now consider n*. As above one can define a map u*: I(/*(X))~1(C*(X))
by u*(I)=I; then =*p*=id. Let I be an ideal in C*(X) and let f€I and &=0.
Since k—k? is an isomorphism of C*(X) onto C(BX), by [6, 40.2] there is g€ C*(X)
such that ||g—f|..<e and Z(g”) is a neighborhood of Z(f*) in fX. Since there is
hel*(X) such that |h—g||..<e and Z((H)>Z(g), we may assume g¢cl/*(X).
Since g¢l by [6, 40.1], feInI*(X). This implies p*n*=id. O

3.14. Corollary. The sets M?={fcl(X)|pcclyx Z(f)}, p€PX, are the max-
imal ideals in 1(X), and p—~M? is a homeomorphism of BX onto M(I(X)). An ideal
in I(X) is closed in the m-topology if and only if it is an intersection of maximal ideals.

Proof. Since win 3.13 preserves inclusion, it is easy to see that = defines a homeo-
morphism M (C(X))—~M(I(X)). The Corollary now follows from the similar char-
acterizations of M(C (X)) and of the closed ideals in C(X) given in [6, 7.3 and 7.11]
and [6, 7Q.2], respectively. [

3.15. Corollary. The sets M*?={fcI*(X)|f*(p)=0}, pcBX, are the max-
imal ideals in 1*(X), and p—~M*? is a homeomorphism of BX onto M(I*(X)). An
ideal in 1*(X) is closed in the sup norm if and only if it is an intersection of maximal
ideals.

Proof. Since n* in 3.13 defines a homeomorphism M (C*(X))~M(I*(X)), the
Corollary follows from the similar characterizations of M(C*(X)) and of the closed
ideals in C*(X) given in [6, 7.2 and 7.10] and [6, 40.4], respectively. O

3.16. Remark. Our methods in 3.13, 3.14, and 3.15 also apply to the ring
Ck(M) (see 3.4) and its subring C¥(M)nm(M). The first part of 3.14 and the
second part of 3.14 and 3.15 also follow from [2, 2.6 and 3.1] and [21, Theorem 1],
respectively.

4. Rings of LIP functions on locally compact metric spaces

4.1. In this section X and Y are locally compact metric spaces. We study the
rings /,(X) and /;,y(X). A continuous map is proper if the inverse image of every
compact set is compact.

4.2. Lemma. If Uis aneighborhood of a compact subset K of X, there is f€ 1y, (X)
such that fIK=1, flX\U=0, and 0=f=1. O

4.3. Theorem. Let A be either Iy(X) or lyy(X) with the sup norm. Then the
closed ideals in A are the sets Iz={f€A|f|E=0}, where E is a nonvoid closed sub-
set of X, determined uniquely by Iy. The maximal ideals are I,=Iy, x€X. An
ideal is closed if and only if it is an intersection of maximal ideals.
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Proof. The last assertion follows from the others. The first assertion can be
proved by aid of 4.2 precisely as the corresponding fact in [7, C.30] for the Banach
algebra C,y(S, C) of all complex-valued continuous functions on a locally compact
Hausdorff space S vanishing at infinity. The ideals /I, are maximal because A/I,
is isomorphic to R.

Let 7 be an ideal in /yz(X). Then IcI, for some x€X, because otherwise
Io1,(X), as the proof of [7, C.30] shows. Thus I=1, if I is maximal.

Let 7 be a maximal ideal in 4=/,(X). To prove that I=I, for some x€X,
we assume the contrary case and show modifying the proof for C,(S, C) in
[8, 20.52 (d)] that this leads to a contradiction. Since I I, foreach x€X, Il (X) as
above. If the ring B=A/I is a field, let f be a function in A4 such that f+17 is the
unity of B. There is g€ly(X) with | f—gll.<1 as follows from 4.2; then
h=fl1l—f+g¢€A and f=h—hf+hg. Since h—hfcl and hgcl,(X)CI, this
implies fel, a contradiction. Thus all products in B are zero; cf. [16, 3.1.1]. Let
feA. Byl[4, X1.7.3] there are disjoint open subsets U and V of X suchthat X=U U V,
U is separable, and f|V'=0. There is a positive continuous function ¢ on U vanish-
ing at infinity. By [14, 5.4] one may assume that ¢ is LIP. We define /€4 by ¢|U=¢
and Y|V=0. Then g=(f+|f|+¥)"* and h=(f|+¥)'* belong to A, and
f=g*—h?. This implies that I=A, a contradiction. O

4.4. Corollary. Let A be either I,(X) or lyy(X). Then A°=X.

Proof. 1t follows from 4.2 that x— ¢, is a topological embedding of X into A4°.
If @€A°, then, since ¢ is linear, the ring A/ker ¢ is isomorphic to R, and hence
ker ¢ is a maximal ideal. Thus by 4.3 there is x€X with ker ¢ =ker ¢,, whence
p=¢,. O

Corollary 4.4 also follows from [16, 3.2.8].

4.5. Lemma. Let t: Y—~X and t'(I(X))<Iy(Y). Then t is a proper LIP map.

Proof. Since ly(X) is a completely regular subset of C(X), ¢ is continuous.
If KCX is compact, there is f€/,(X) with f|K=1, and then 7~1(K) is compact
as a closed subset of the compact set (f#)~*(1). Thus ¢ is proper. Let x€Y and
choose a neighborhood U of x such that K= t(_(j) is compact. If f€L(K), there
are g€L(X) and h€ly(X) with g|K=f and h|K=1; then f=gh€l,y(X) and
fIK=f, whence f(t|U)=(ft)|U is LIP. Thus ¢|U, and hence also ¢, is LIP
by 3.2. O

4.6. Theorem. Let T: lpo(X)—~1lpo(Y) be a homomorphism. Then there are
a unique open subset E of Y and a unique proper LIP map t: E~X such that

t ] €E
@47 T(f)(x)={£( *) s (el

Conversely, if E and t are as above, then (4.7) defines a homomorphism T: lyy(X)—~
loo(Y).
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Proof. Let T be given. Then E={xcY|T(f)(x)#0 for some f€l,(X)} is
open, and by 4.4 there is a map ¢: E—~X such that (4.7) holds. If f€l,(X) and
e>0, then {x€E||f(t(x)|=e}={x€Y||T(f)(x)|=¢} is compact, whence f1€/,(E)
(in fact, fr€lpy(E)). Thus ¢ is a proper LIP map by 4.5. The rest of the proof is
omitted. [

4.8. Corollary. Two locally compact metric spaces X and Y are lipeomorphic
if and only if l,(X) and 1,,(Y) are isomorphic. [

4.9. Theorem. Theorem 4.6 holds if I, is replaced by “l,” and ““open” by
“open and closed’’.

Proof. 1t is clear that if ECY is open and closed and ¢: £—~X is LIP and
proper, then (4.7) where f¢l,(X) defines a homomorphism T: /o(X)—~/,(Y). Con-
versely, let T: [,(X)—I,(Y) be a homomorphism. Then the proof of 4.6 shows
that there are a unique open subset E of Y and a unique proper LIP map ¢: E—~X
such that (4.7) holds for all fel,(X). We complete the proof by showing that E
is closed. Assume the contrary case. Then there are x€ Y\ E and a sequence (x,)
in E with x,—x. Since ¢ is proper, the sequence y,=?(x,) in X tends to infinity.
One may assume that y,>y, if m>n. Then it is easy to construct f€/,(X) such
that f(y,) =d’(x,, x)* foreveryn. But |T(f)(x,)—T(f)(X)|/d"(x,, \)=d"(x,, x)7,
which contradicts the fact that T(f) is LIP. O

4.10. Corollary. Two locally compact metric spaces X and Y are lipeomorphic
if and only if 1,(X) and I,(Y) are isomorphic. [

4.11. Remarks. 1) We did not use the local compactness of Y in 4.5, 4.6
or 4.9. However, if one gives up this assumption, then, nevertheless, Y in 4.5 and E
in 4.6 and 4.9 are always locally compact.

2) The results of this section still hold if the category of locally compact metric
spaces and LIP maps is replaced either by the category of locally compact Haus-
dorff spaces and continuous maps or by the category of C* manifolds (in the sense
of 3.4) and C* maps. The only exception is that E in 4.9 in the case of
Co(S) (=Cy(S, C) " RS) need not be closed. The proofs are similar. The charac-
terizations of homomorphisms seem to be new results; I know only the result
[18, Zusatz 1] in this direction. The characterizations of isomorphisms are known.
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