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ON LINEAR RELATIONS
IN AN INDEFINITE INNER PRODUCT SPACE

PEKKA SORJONEN

Introduction

In 1961 R. Arens [2] initiated a study of linear relations, i.e. subspaces of HD9,
where $ is a Hilbert space. Since then there has been a growing interest in this sub-
ject; see for instance C. Bennewitz [4], E. A. Coddington [6—9], A. Dijksma and
H. S. V. de Snoo [11], H. Langer and B. Textorius [18], A. Pleijel [19].

Some of these authors have used this theory mainly in studying differential
equations which lead to linear relations in a Hilbert space.

On the other hand, there are some recent publications studying differential
equations with an indefinite weight function which lead to symmetric operators
in an indefinite inner product space; see F. V. Atkinson, W. N. Everitt and K. S. Ong
[3], K. Daho and H. Langer [10] and H. Langer [17].

In this context a question arises: Can the theory of linear relations in a Hilbert
space be extended to a corresponding theory in an indefinite inner product space?
This paper tries to answer this question. In another publication we shall apply this
theory to study cannonical differential equations with an indefinite weight function.

Chapter 1 summarizes the basic definitions and results of the theory of indefinite
inner product spaces mainly because our terminology differs from that used by
J. Bognér in [5], which is our main reference in indefinite inner product spaces.

Chapter 2 starts the study of linear relations in an indefinite inner product
space: Section 2 contains a detailed investigation of reducing a linear relation to
an operator; some of these results may be new also in the Hilbert space case. Sec-
tion 3 represents a linear relation in a Krein space as a linear relation with a similar
structure in a Hilbert space perturbed by an operator; these results extend the
known facts of the operator case. In Section 4 we study the Cayley transforma-
tion. In Section 5 we generalize the notion of the operator matrix to linear rela-
tions.

Chapter 3 analyzes dissipative and maximal dissipative linear relations mostly
along the lines of [11]. Some of these results seem to be new also in the operator case;
compare with [15].
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In Chapter 4 we give a detailed investigation of the basic properties of symmetric
linear relations mostly in a Pontrjagin space. Eigenvalues and points of regular type
are studied in Section 1. With the help of the relation matrix we characterize in
Section 2 self-adjoint extensions of a symmetric linear relation in a Pontrjagin space.
Section 3 introduces the deficiency spaces and the defects numbers.

1. Indefinite inner product spaces

1.1. Geometry. An (indefinite, non-degenerate) inner product space $ is a (com-
plex) vector space with a non-degenerate hermitean sesquilinear form [-]|-]. An
element f€$ (a subspace 2cC9) is said to be positive/non-negative/neutral/non-
positive/negative if [ f|f]1=0/=0/=0/=0/<0 (for all f€L\{0}).

Two vectors f, g€$ (subspaces £,IMcC$H) are called orthogonal, written
fLg (LM, if [flg]=0 (for all f€L, geIM). For a subspace LCH we define
2L:={fe$|fL L} and call it the orthogonal companion of £ in §. Theset L0:=L2 L+
is the isotropic part of &. If £°32{0}, the subspace £ is called degenerate.

Following [2] we define the closure € of a subspace £ to be 2+ +. The subspace
€ is called closed if =2 and dense if €=$.

1.2. Operators. We use the following notations with a (linear) operator T: D(T)
is the domain, R(T) the range and N(T) the null space of T.

Let T be an operator in an inner product space §. T'is dissipative if Im [Tf|f]=0
for all fe®D(T); T is symmetric if Im[Tf|f]=0 or equivalently [Tf|gl=[f|Tg]
for all f, g€®D(T). Let K be another inner product space and T an operator from
$ into K. T is called contractive if [Tf|Tf1=[f|f] for all feD(T), and isometric
if [Tf|Tf1=[f]f] or equivalently [Tf|Tg]=[f|g] for all f, g€ D(T). An isometric
operator 7 in $ is unitary if D(T)=R(T)=9H. An orthogonal projector is a sym-
metric operator 7T in $ with the properties D(7)=9 and T?=T.

If T'is a densely defined operator from § into K, then one can define the adjoint
T+ of T: D(T+) is the set of all those vectors g€ K for which there exists a vector
h€$ such that [Tf|g]=[f]h] for all feD(T), and then T*g:=h. A densely
defined operator T in $ is called self-adjoint if T+=T.

1.3. Fundamental decompositions. Let $ be an inner product space. It is said
to be decomposable if it can be represented in the form

(L. H=9.:[+19-,

where $,/$9_ is a positive/negative subspace. Here the symbol [+] denotes a direct
and orthogonal sum. Every decomposition of this type is called a fundamental
decomposition of $. The decomposition (1.1) induces so-called fundamental projectors
P, and P_: P, fi=f,, where f=f, +f_€9 with f,€9H . The corresponding
Jundamental symmetry J:=P,_—P_ is then self-adjoint and unitary.
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With the help of a fundamental symmetry J one can define J-inner product
(-1+):
(1.2 (flg) =[Iflgl (f, g€,

which is positive definite, i.e. § is a pre-Hilbert space with respect to the form (- |-).
For the corresponding norm, the so-called J-norm, || -|: f—(f|f)** we have

(1.3) gl = fllgl (f, g€ 9).

When necessary, we use the prefix J to denote a property which is defined using a
J-inner product instead of an indefinite inner product. Thus we can speak about
J-symmetric operators etc. Especially, J-adjoint is denoted by % instead of +.

1.4. Krein spaces and Pontrjagin spaces. If a decomposable inner product space
$ has a decomposition (1.1) such that $_ (resp. H_) is a Hilbert space with respect
to the form [-|-] (—[-]|-]), it is called a Krein space. In this case $ is a Hilbert
space with respect to every J-inner product and the J-norms are all equivalent. All
topological notions in a Krein space are to be understood to refer to this J-norm
topology. As the J-norm closure of a subspace € is given by 2+, our earlier ter-
minology is consistent with the agreement just made. Note that a closed subspace
Q is ortho-complemented, i.e. L4+2+=9, if and only if € itself is a Krein space.

A Krein space $ with a fundamental decomposition (1.1) is called a Pontrjagin
space (with x negative squares) or a r,-space if dim _ =x. In a Pontrjagin space a
closed subspace is ortho-complemented if and only if it is non-degenerate.

1.5. Product spaces. Let § and K& be inner product spaces. The product space
HDK equipped with the usual linear structure and with the inner product

[(f, DI(h, B)] = [fIM]+[glk] ((f; &), (h, k)€ HDK)

is also an inner product space.

Proposition 1.1. 1° If © and | are decomposable with decompositions (1.1)
and K=K [+]IK_, then HBK is also decomposable and has a fundamental decom-
position!

HER =9, DR, [F]H-BK_.

2° If § and K are Krein spaces, then DK is also a Krein space.
3° If $is a n,-space and K is a .. -space, then HDK is a Pontrjagin space with
#+3’ negative squares.

The proof is clear from the definitions.

! The symbol + means the algebraic sum in the product space.
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2. Linear relations

2.1. Preliminaries. Throughout this chapter ®, $ and R are inner product
spaces.

A linear relation from $ into K is a subspace T of the product space HDORK;
if R=$9, T is said to be a linear relation in 9. A linear relation is closed if it is a
closed subspace. We recall the following definitions and notations for linear rela-
tions T and S from § into & and R from G into $:

D) = {fe€D|(f, g)€T for some g€ K},
R(T) = {ge K|(f, €T for some f€H},
R(T) = {fe€H|(f, 0T},
T(f) = {g€ KI(f, 9€T} (f€D(D)),
T :={(g NeKDH|(f, €T},
zT:= {(f, zg) € DBKRI|(f, €T} (z€C = complex numbers),
S+T:={f, g+ k)€ HDK|(f, 9)€S, (f, )T},
SR = SoR = {(f, € GOK|(f, g€ R, (g k)€ S for some g€ H},
T+ = {(k, HEKDH|[f|h] = [g|k] for all (f, g)€T}.

The only new definition here compared to the Hilbert space case (see [6] and [11])
is the adjoint, which has been formed with respect to the (indefinite) inner product.
But because this inner product gives a duality, our definition of the adjoint is a
particular case from [2].

The basic algebraic properties of linear relations are given in [2]; we list here
only the following facts about the adjoint:

T+ isclosed, T=T+T,
ScT implies THtc S+,
(T)* =zT* (z€C),
(T=H*r=anH,

N(TH) =RT)L, TH0) =DT)*.

If we identify an operator T from $ into & with its graph in HDRK, it is easily
seen that a linear relation 7 is an operator iff (if and only if) 7(0)={0}. Note that
two relations S and T with D(S)=D(7) and S(0)=T7(0) are equal iff ScT.

As in the case of linear operators the following linear relations 7 in § are of
interest:
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(i) dissipative linear relations, i.e. Im[g|f]=0 for all (f, g)€T;

(ii) symmetric linear relations, i.e. Im[g|f]1=0 for all (f, g)€T or equiv-
alently TcT+;

(iii) self-adjoint linear relations, i.e. T=T"7;

(iv) contractive linear relations, i.e. [g|g]=[f|f] for all (f,g€T;

(v) isometric linear relations, i.e. [g|gl=[f|f] for all (f, 9)¢€T;

(vi) unitary linear relations, i.e. T is isometric and D(T)=R(T)=9.

One can define in the usual way a maximal dissipative linear relation etc. Of
course the definitions (iv) and (v) can be extended to linear relations from $ into K.

If the space $ is a Hilbert space, the last three linear relations are not interesting
as relations because they are all operators, but this is not the case in a general
inner product space: Arens [2] has proved that a linear relation 7 is isometric iff
T-1c T+, which implies T(0)cR(T)° for an isometric relation 7. Hence in our
case, where the inner product spaces are supposed to be non-degenerate, all unitary
relations are operators. On the other hand, an isometric relation is not necessarily
an operator. A simple counter-example is given by the relation 7:={0}® £, where
2:{0} is a neutral subspace in a Pontrjagin space.

We shall need the following result, which is known in the Hilbert space case
and also for densely defined operators in a Krein space; see [5].

Proposition 2.1. Let T be a closed linear relation from a Krein space $ into
a Krein space K. Then R(T) is closed iff R(T ™) is closed.

Proof. It is enough to prove that R(T+) is closed if R(T) is closed, because
the converse follows from T=T+*. On the other hand, R(T) is closed (in ) iff
SBR(T)=T +H® {0} is closed (in HOK), and R(T*) is closed iff T+ (HD {0+
is closed. So it is more than enough to prove the identity

TL4+St=(TnS)*

for linear relations 7 and S, for which the sum T+ S is closed. If one uses the
duality given by the inner product and the Hahn—Banach theorem, this result
follows by a light modification of the proof of the corresponding fact in a Banach
space; see [14], Lemma IV-4.9.

Let T be a linear relation in $. Every z€C for which (f, zf)€T with some
f#0 is called an eigenvalue of T; the corresponding vectors f are eigenvectors
belonging to the eigenvalue z. The set of all eigenvalues of 7 is denoted by ¢,(7).
If for some z€C the relation (T—zI)~! is an everywhere defined operator, then z
belongs to the resolvent set o(T) of T.(Here and in the following / denotes the identity
operator or the corresponding linear relation.) The spectrum o (T) of T is the com-
plement of ¢(7T) in C.

To be able to put some later results in a concise form we introduce the notion
of a point of regular type. For this let 7" be a linear relation in a Krein space $.
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A complex number z is called a point of regular type of the relation T if there exists
a constant c¢:=c(z)=0 such that |g—zf|=cl| f] for all (f, g€T. The set of
all points of regular type of T is denoted by r(T).

Theorem 2.2. Let T be a linear relation in a Krein space . Then

(i) (T—zI)™Y is a continuous operator iff zer(T); in this case |(T—zI)7|=
c(2)7Y;

(i) if R(T—zI) is closed for one z€r(T), then T is closed;

(iii) r(T) is open.
If in addition T is closed, then for all z€r(T)

(iv) R(T—zI) is closed;

W) R(T—z)=N(T+—zD)*;

i) R(T+—-zD=9.

Proof. (i) and (iii) can be proved in the same way as in the operator case; see
e.g. [1], Nr. 100. With a light modification of the proof of Theorem 3.1 in [11] we
get the other claims.

2.2. Reduction to an operator. A useful method of studying linear relations is
to reduce them to operators. To do this we need first some facts about the (purely)
multi-valued part T, :={(0,g)€T} of a linear relation T.

Proposition 2.3. If T is a linear relation from 9 into &, then
() T.={0}oT(0);
@ii) D(T.)={0}, R(T.)=T(0);
(i) (T)*=90TO0)*, (T.)*=TO)*&H;
(iv) TO)=D(T*)*, DDM=T*©0)*;
(v) T, is closed|ortho-complemented iff T(0) is closed|ortho-complemented;
(vi) T.. is non-degenerate iff T(0) is non-degenerate iff T n (T.,)* is anoperator.
If in addition =9, then
(vil) T, is symmetric;
(viii) (T—zI)_=T,., z€C.

Proof. (i)—(iv) and (vii)—(viii) are obvious from the corresponding Hilbert
space results; see [6] and [11]. (v) and (vi) follow from (i), (iii) and from the easily
verifiable identities

(To)t+ ={0}eT(0)*+,

(T.)° = {0}&T(0)° = {0}&(T ~ (T..)4) ().

Theorem 2.4. Let T be a linear relation from $ into & with ortho-complemented
T..Then T,:=Tn(T.)* isan operator with D(T)=D(T) and R(T)T(0)*, and

@.1) T=T,[+]T..
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Furthermore,
(1) T is closed if (iff, in case H and K are Krein spaces) T is closed;
(i) Ty is ortho-complemented iff T is ortho-complemented;
(i) R(T)=R(TY[+]1T(0).

Proof. As T_ is ortho-complemented, it is non-degenerate, and hence T is
an operator according to Proposition 2.3. The decomposition (2.1) is a consequence
of the decomposition H®K=T_[+]1(T..)*. The relations concerning the domain
and the range as well as (i)—(iii) follows from (2.1) and Proposition 2.3. The “iff”
in (i) follows from [16], Lemma 5.1.

As to the uniqueness of the decomposition given above we have

Proposition 2.5. Let T be a linear relation from $ into & and S an operator
Jrom § into K such that T=S[+]T... Then S=T; iff T., is non-degenerate.

Proof. 1° If S=T,, then every (0,k)€(T.)° belongs to Tn(T ) =T,=S
so that k€.S(0)={0}; hence T, is non-degenerate.

2° Let T., be non-degenerate. As SCTn(T.)*=T,, itis enough to prove
that every (f,g)€T,(cT) belongs to S. We have (f,g)=(f, Sf)+(0, k) with
k€T(0); hence

[k]11 = [g=Sfll1 = [(f, &—(f, SN, )]

for all /1€ T(0), because S1 T, and T, 1 T . This means that k€ T(0) n T(0)* = {0}
(by Proposition 2.3), but then (f, g)=(f, Sf)€S.

The preceeding theorem gives a reduction of a linear relation T in $ to the
operator Ty in §, but usually & is too “large”. The following result tells us when
T, is an operator in T(0)*.

Proposition 2.6. Let T be a linear relation in § with ortho-complemented T, .
If R(T,—z)cTO)*+ for one zeC\{0}, then D(T,)c=T(O)*. Conversely, if
D(TYcT0)*, then R(T,—zI)cT(0)* for all z€C.

Proof. For all f€D(T,), gcT(0) and z€C\ {0} we have

[flgl = =27 [(Ts—zD) f1¢gl,

from which the result follows.
Next we shall study how much information is retained by this reduction to an
operator.

Theorem 2.7. Let T be a linear relation in § such that T., is ortho-comple-
mented and D(T)c T(0)*-. Regard T, as an operator in T(0)* and let z€C. Then
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() T—z2l=(T,—zD[+1T..;
(i) R(T—z2)=R(T,—zD[+]1T(0);
(iii) R(T,—zI) is closed if (iff, in a Krein space) R(T—zI) is closed;
(iv) R(T,—zI) is ortho-complemented iff R(T—zI) is ortho-complemented;
W) W(T—z)=N(T,—zl);
~i) 0,(T)=0,(T,) and for z§c,(T) the relation (T,—zI)™! is an operator, and
(T—zI)~ = (T,—zI) 7 [+101)»
where Or, denotes the zero operator in T ).
In addition let  be a Krein space. Then
(vil) r(T)=r(Ty) in case T(0O)CH, for a fundamental decomposition 1.1

of 55;
(viii) o(T)=0(T,) in case T is closed.

The proof is mostly a direct calculation.
The following results show that we can use this reduction to investigate all
the interesting linear relations.

Lemma 2.8. Let T be a dissipative linear relation in $. Then D(T)C T(0)*.

Proof. Let fe®(T) and keT(0) be arbitrary and let g€7(f). Then
zk+g € T(0)+g = T(f) for all z€C. Hence (f,zk-+g)€T and so

0 = Im (z[k|f])+Im [g|f].

Thus —Im (z[k|f]) is bounded above with the non-negative constant Im [glf]
for all z€C, but this is possible only if [k|f]=0, ie. T(0) LD(T).

Theorem 2.9. Let T be a linear relation in § such that T., is ortho-comple-
mented. Then

() T is a dissipative relation iff T, is a dissipative operator in T(0)*;

(i) T is a symmetric relation iff T, is a symmetric operator in T(0)*;

(ili) T is a self-adjoint relation iff T, is a densely defined self-adjoint operator
in TO)*;

(iv) T is a contractive relation iff T(0) is non-positive and T is a contractive
operator;

(V) T is an isometric relation iff T is an isometric operator.

Proof. (i) If T, is a dissipative operator in T(0)*, then
Im [g|f] = Im [T, f +k|f] = Im [T, fI /T =0

for all (f,9)=(f, T.f)+(0,k)€ T=T,[+]1T... Conversely, if T is a dissipative
relation, it is clear that 7, is a dissipative operator in 7'(0)* (see Lemma 2.8).
(i) Suppose that T, is symmetric in 7(0)*. Then

T,c(Ty)*, T.c(Te)*, T,cTO0)0H=(Ts)"
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(see Proposition 2.3). These together imply that T=T,[+]T., is symmetric. The
other half follows from (i) and the fact T, T.

(iii) If T is self-adjoint, then T, is symmetric by (ii) and D(TY)=D(T)=D(T)
is dense in T(0)* by Proposition 2.3. Hence the adjoint of T exists as an operator
in the space T(0)* and T,c(T)*. For all heD((T)*) and (T,f+k,geT=
T,[+]T.. one obtains

[T f+k|h] = [T, f|h] = [f|(T)™h],

and so (h, (T)+*h)€T+=T. This implies h¢D(T)=D(Ty), ie. (T)*=T;.
Conversely, if T, is a self-adjoint operator in 7(0)*, then T<T* by (ii).
Furthermore, we have

(T f+k|h] = [f]1]
for all (b, DET and (f,T,f+k)E€T,[+]T... Especially for k=0,
[T f1h] = [f]la),

where [=1,+1, € T(0)[4+17(0)*; hence heD((T)*) and (T)*h=T;h=I,. This
means that (h, I)=(h, Th+1) isin T [+17.=T.
(iv) If T is a contractive relation, then

[T f+ kI T, f+k] = [f1f]

for all f€D(T)=D(T,), ke T(0). By choosing k=0 or f=0 we get the result.
The converse follows similarly.

(v) Let T be an isometric relation. Then we can replace in the proof of (iv)
the inequality with the equality. This shows that T is isometric and 7'(0) is neutral.
But T, is non-degenerate and hence 7'(0) must be {0} by Proposition 2.3.

Note that as 7(0), and with it also 7'(0)*, is ortho-complemented, T(0)* is
a Krein space/a Pontrjagin space if $ is a Krein space/a Pontrjagin space.

2.3. Reduction to a relation in a Hilbert space. In the previous section we
reduced a linear relation T in § to an operator. Here we are going to show another
reduction, which is more usable in the Krein space case.

Theorem 2.10. Let T be a linear relation in a Krein space § such that D(T)D$H_
for a fundamental decomposition (1.1) of 9. Let J be the corresponding fundamental
symmetry. Define

(2.2) S =TI = {(f, 9|(Jf, €T}
Then S is a linear relation in  with D(S)=D(T), S0)=T(0) and
(23) T =S+2TP_,

where P_ is the fundamental projector belonging to (1.1). Furthermore,
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(i) S is closed iff T is closed;

(ii) T'is dissipative/maximal dissipative/symmetric/maximal symmetric/self-adjoint
iff S is J-dissipative/maximal J-dissipative|J-symmetric/maximal J-symmetric|J-self-
adjoint.

Proof. Since D(T)>H_ and J2=] it follows that D(S)=D(T) and S(0)=T(0).
Let us prove (2.3). Every (f,g)€S+2TP_ is of the form (h, k+1I), where
(Jh, k), QP_h,)€T; then

(f, &) = (h, k+1) = (Jh, k)+(2P_h, )€ T.

Conversely, if (f,g)€T, then 2P_f, Jf¢D(T). Hence (RP_f,1)cT or (f, )€
2TP_ for some /€9 and (Jf,k)ET or (f,k)€S for some kc$. These rela-
tions imply (f, k+0)=(f,k)+QP_f,1)éT and further (0,g—k—0)=(f,g)—
(L k+DeT. So (Jf, g—D)=(f, k)+(0,g—k—I) is in T or (f,g—I) is in S.
Putting these facts together we see that (f, g)=(f; (g—D+!) is in S+2TP_.

(i) follows from the facts that J is continuous and T=SJ. (ii) is a direct calcula-
tion, which uses relation (1.2) and the basic properties of the fundamental sym-
metry J.

In case S_(=T.) is J-ortho-complemented, i.e. closed, we can go a step
further using Theorem 2.4 and reduce T to the operator S,:

T = (So(+)S=)+2TP_;

here (+) means a sum which is orthogonal with respect to a J-inner product. We
can put this decomposition in a more usable form:

Theorem 2.11. Let T be a linear relation in a Krein space © such that T_ is
closed and D(T)DH_ for a fundamental decomposition (1.1) of $ with the funda-
mental symmetry J:=P,—P_. Define S:=TJ, Sg:=Sn(S_) and A:= -2S.P_.
Then
2.3) T=S+4, T,=S,+4.

Furthermore, parts (i) and (ii) of Theorem 2.10 remain true.

Proof. We verify the first identity in (2.3"); the second follows similarly. All
other claims are obvious in the light of Theorem 2.10. Let ( f,g)€ T. Then (Jf,g)€S=
Ss(+)S.. and so (Jf, g9)=(h, S;h)+(0, k) with k€ S(0). Because h=Jf and
J—I=-2P_, we get

g=S,((J-D+I)f+k = Af+S,f+k.

Hence (f, g) = (f, (Sof+k)+A4f) with (f, S,f+k)€S,(+)S. =S and so
(f,8)€S+A4.
Conversely, let (f, g)€S+4; then (f, g)=(h, S;h+k+Ah) with k€S(0). In
this case
g=S8,f-28P_f+k = S, Jf+k,
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which implies that the vector (Jf; g)=(Jf, SsJf)+(0, k) is in S,(+)S.=S, ie.
(f,®¢T.

Note that this theorem gives us (at least theoretically) the possibility to use the
perturbation theory in studying a linear relation 7'in a Krein space: T can be regarded
as the corresponding Hilbert space relation S perturbed by the operator 4.

2.4. The Cayley transformation. Following [11] we define for z€C the Cayley
transform C,(T) of a linear relation T in $ by

C.(T) = {(s—, g—ZNI(f, 9T}

and the inverse transform F,(T) of T by

F(T) = {(g—f, 28— ZNI(f, )€ T}.

Then C,(T) and F,(T) are linear relations in $ with D (C.(T))=R(T—-2zI),
D(F,(1))=R(T—1I) and R(C.(T))=R(T—ZD), R(F,(T))=R(T—zI). For future
use we quote the following result from [11]:

Lemma 2.12. Let T and S be linear relations in § and z€C\R. Then
(i) T=C.(F.(T))=F.(C.();
(i) Tc S iff C.(T)cC,(S) iff F(T)CF,(S);
(iiiy C_.(T)=C.(=T), F_.(T)=—F.(T);
(iv) C,(T)=C, (1), F(D)=F.(T™Y;
W) CAT*=C,(T)*, E(TH=F,(T)*;
i) C,(T+ S)=C,(T)+C,(S), F.(T+ S)=F,(T)+ F,(S) and the sums are
direct iff the sum T+ S is direct;
(vi)) C,(T)(©)=R(T—zI), F.(T)(0)=N(T—-1);
(viii) 3D(T)=9{(CZ(T)—I)=iR(Fz(T)—zI);
(ix) ‘R(T)=SR(CZ(T)—Zz'll)zﬂi(Fz(T)—ZI);
x) T(0)=ER(CZ(T)—I)=9t(F,(T)—zI);
(xi) in case $ is a Krein space, T is closed iff C,(T) is closed iff F,(T) is closed.

Let z be a non-real complex number. We define a mapping c, in the extended
complex plane C:=C U {=} as follows:

w—2)(w—2)"1 if weC\{z},
(2.4 c(W) = it w=z,
1, if w=c.

We agree to say that o is an eigenvalue of a linear relation T if 0€0,(T7Y), ie.
T is not an operator. Then the spectral mapping theorem is true (compare with [2]
and [18]):
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Proposition 2.13. Let T be a linear relation in $ and z€ C\R. Then
c.(o(T)) = o(C,(T)).
Moreover, eigenvalues correspond to eigenvalues.
The proof is clear if one uses Lemma 2.12 and the relation
2.5) R(CAT)—c,(W)I) = R(T—zI), weC.

We denote by C, (C_) the open upper (lower) half-plane of the complex plane
C. As to the Hilbert space case of the following two results, see [11].

Theorem 2.14. Let T be a linear relation in $.
() If T is dissipative, then C,(T) is contractive for all z€C_ and an operator
Sor all zeC\o,(T).
(i) If T is symmetric, then C,(T) is isometric for all z€C and an operator
Jor all zeC\o,(T).
(iii) If' © is a Krein space and T is self-adjoint, then C,(T) is a unitary operator
Jor all z€o(T).

Proof. The identity
le—zf1g—2f1-[g—Zf|g—2f]1 = —4(Im 2)[g|f]
for all (f,g)€T and Lemma 2.12 imply (i) and (ii).

Because R(T—zl)=9H and N(T—zl)={0} in (iii), we have, by Proposition 2.1,
D(C(T)=R(T—z)=9 and

R(C.(T)) = RT—2I) = R(T—zI)*) = R((T—zI)*)* -
= N(T—-z)*+ = 9H;

hence C,(T) is unitary by (ii).
The most remarkable fact here is that the Cayley transform is not always an
operator as in the Hilbert space case. Theorem 2.14 has the following converse.

Theorem 2.15. Let T be a linear relation in $.

(i) If T is contractive, then F,(T) is dissipative for all z€C_.
(ii) If T is isometric, then F,(T) is symmetric for all z€C.
(iii) If T is unitary, then F,(T) is self-adjoint for all z€C\R.

Proof. The identity

Im [zg —Zf|g—f] = (Im z)([g|g] - [f] f])
for all (f, g)€T implies (i) and (ii). (iii) follows from (ii) and from the facts
R(F,T)—z)=D(T)=$=R(T) = R(F,(T)—zI)
for all zeC\R; see Lemma 2.12.
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2.5. The relation matrix. In this section we suppose that § is a Krein space.
Let T be a linear relation in $. Extending the notion of the operator matrix we say
that T is represented by the relation matrix

[T+ + T-y

(2.6) T.. T_.

with respect to the fundamental decomposition (1.1) of § if T , is a relation from
9, into H, and
2.7 T=T+++T-)+(Ty-+T-).

The basic properties of a relation matrix are given by the following result:

Theorem 2.16. Let T be a linear relation in a Krein space $ such that
D(T)>H_ for a fundamental decomposition (1.1) of §. Define

T,y =P, (T (9,.09) ={(f. P9 D, ©9.|(f, €T},
T_, =P (Tn(H-09) = {(f, PLEH_©9.|(f, €T},
T,_:=P_(Tn(9:89) ={(f, P-9€H.®H_I(f, 9)€T},
T__:=P_(Tn(9-09)={f, P-9)eH-05_|(f, €T},

where P, are the fundamental projectors belonging to (1.1). Then T is represented
by the relation matrix (2.6), whose components are given by (2.8). Furthermore,
0 DT, )=DT,)=D(M)nH,, DI_H=DT-)=9H_,
(i) P,TO0)=T,, (0)=T_,0), P_.TO0)=T,_(0)=T__(0);
(iii) for every (f,g)€T there exist f,€9H,., g,€9 and 1€T(0) such that
f=fi+f-, g=g.+g-+1 and
(f+,Prgs)€T1y, (f-,Pyg)eT_y,
(f+a P—~g+)€T+—’ (f—,P—g—)E T——;
(V) T=(Ty 4 +T )+(T-+T_).
If in addition T(0) is closed and T(0)C S, , then
v) (T++)s:(Ts)++ and T++(O)=T(0)’
i) (T_)s=(T)_, and T_,(0)=T(0);
(vii) T, _ is an operator and T, _=(Ty),_;
(viil) T__ is an operator and T__=(T,)__.

2.8)

Proof. (i) and (ii) are obvious from the definitions. (iii) follows easily if one
defines f,:=P, f (€¢D(T)), chooses g, €$ such that (f,,g,), (f-,g-)€T, and
puts '=g—g, —g_.

The verifications of (2.7) and (iv) are direct computations, which use (i)—(iii)
and which can be split into the following parts: T=P , T+P_T, P, T=T, +T_,
and similarly for P_T, Tn(H . ®H)=T, +T,_ andsimilarly for Tn(H-D9H),
and finally T=Tn (9, B9+ TN (H_-DY).
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If in addition T'(0) is closed and in $_, then T is ortho-complemented and
T,=Tn(T.)* an operator (see Proposition 2.3 and Theorem 2.4). From (i) it fol-
lows that T, ,(0)=7_,(0)=T(0) as well as that 7, _ and T__ are operators.
From the identities

T)s+ =P, (Ts N9+ 6955)) =P, (Tﬂ (G EBT(O)J')),
Ti)s=Tri 0 [((T+ +)oo)"‘ a 5+]
= [P (T S+ 8] N[$: BT O n$.)]

we see that (7)), ,c(T,,),. Furthermore, they are both operators with the same
domain D(T)n$H,; thus (7)), =(T, ). (vi)—(viii) are proved similarly.

3. Dissipative and maximal dissipative relations

3.1. Dissipative relations. Almost all the properties of a dissipative linear rela-
tion T in a Hilbert space are based on the inequality

3.1 lg—21 = Am2)||f]

for all (f, g)€T, i.e. C_cr(T); see[11] (note that our definition of dissipativeness
differs from that in [11]). In a general inner product space this inequality is not
necessarily true even in the case of operators. In order to get an analogous but
weaker form of this result we suppose that our space is a Pontrjagin space.

Theorem 3.1. Let T be a dissipative linear relation in a Pontrjagin space $
such that T(0) is closed and D(T)D$H_ for a fundamental decomposition (1.1) of 9.
Then there exists a constant c¢r=0 such that

(3.2) lg—zfll = Amz—cq) | f]l
Jor all (f,9¢€T, ie. zer(T) for all zeC_ with ImZ=>cy.

Proof. According to Theorem 2.11 we can write T=S+4 with S:=7J and
A:=—-25P_. As R(P_)=$H_ is finite-dimensional the operator 4 is bounded;
we put cr:=|4]. (Only here we need the assumption that § is a Pontrjagin space.)
The operator A+icpI is J-dissipative; indeed, for all feD(4) we have

Im (Af +icr f1£) = Im (Af | /) +er | £
=~ Af1F1+ 141 1£12 = o.

As S is J-dissipative it follows that S—(Rez)I is also J-dissipative. In this case
the relation
T—(Rez—icr)I = (S—(Rez)I)+(A+icp I)
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is also J-dissipative as a sum of two J-dissipative relations. So we can use the inequal-
ity (3.1) to get
lg—2f1Ifl =Im(g—2f|f)
=Im(g—(Re z—icy) f|f)+Im (Re z—icy —z) || f||2
= (mz—cp)|f]?

for all (f, g €T; hence the result.

The next result gives a sufficient condition for a dissipative linear relation to
have dissipative extensions with a given eigenvalue. Later we shall show the converse
for symmetric linear relations.

Theorem 3.2. Let T be a dissipative linear relation in an inner product space
9 and let z€C.

() If R(T—zD)* contains a non-zero vector f such that (Im z)[ f| f1=0, then
T has a dissipative extension T’ in the original space with z€a,(T");

@) if R(T—zI)* contains a non-zero vector f such that (Im z)[ f] f1=0, then
T has a dissipative extension T’ in a larger space §’ with z€c,(T") and at least one
eigenvector does not belong to §.

Proof. We can follow the proof given in the operator case; see [5]. In case (i)
we define T":=(T, (f, zf)), where the symbol {..) denotes the subspace spanned
by the set {..}. Then T"DT, z€0,(T’) and a direct calculation suffices to show
that T is dissipative. In case (ii) we take an element e which does not belong to $
and define 9" :=($, e) with the inner product [-]|-]":

0 for g€9,
TS PR
g=e
Then the relation

T’ = (T, (f+e, z(f+e)))

meets our requirements.

3.2. Maximal dissipative relations. The most interesting extension of a dissipa-
tive linear relation in the original space is the maximal one. The following results
give some information about maximal dissipative linear relations; for the Hilbert
space case see [11].

Theorem 3.3. Let T be a maximal dissipative linear relation in a Krein space
9. Then

(i) T is closed;

(i) R(T—zD)* is positive if R(T—ZI) is non-degenerate for z¢C_.

Proof. (i) It is quite clear that the closure of T is a closed dissipative extension
of T; hence T=T. (ii) If there exists a non-positive vector fER(T—zI)*, then
V:={(C.(T), (0,f)) is a contractive extension of C,(T). So F,(V) is a dissipative
extension of T, which implies that F,(V)=T or V'=C,(T). Hence feR(C,(T))=
R(T—zI), but R(T—zI) is non-degenerate and so f=0.
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Theorem 3.4. Let T be a dissipative linear relation in a Pontrjagin space $
such that T(0) is closed and D(T)>$H_.

() If T is maximal, then R(T—zI)=$ for all z€C with ImZ>cy;

(i) if R(T—zN=9 for z¢C with Imz=>2cy, then T is maximal.

Proof. (i) According to the theorems 2.10 and 2.11 we can write T=S+4,
where S is a maximal J-dissipative linear relation and 4 is a bounded operator
with [ A]=cr. Especially (S—zI)~! is an everywhere defined bounded operator
with the norm =1/Imz for z€C_; see (3.1) and Theorem 2.2. If Im Z>cy, then

4] = er <Imz = 1/|(S—z)7Y,

and therefore the operator I+A4(S—zI)~! has an everywhere defined bounded
inverse. In this case

T—zl = (S—z)+A = (I+ A(S—zI)"")(S—zI)
” (T—zD)™t = (S—z) Y (I+A(S—z)") 1,

but the operator on the right side is everywhere defined and so R(T —zI)=9.

(i) Asin (i) T=S+4, where S is J-dissipative. Furthermore, by the assump-
tion and by the theorems 2.2 and 3.1 the operator (T—zI)~! is everywhere defined
and |(T—zI)~|=1/(ImZ—cy). Butthen ||A4]=c;<Im Z—cr=1/|(T—z)~Y|, and
hence we can proceed as in (i) to get

(S=2l) = (T— )1 (I~ A(T— D)),

which implies R(S—zl)=$%. From [11] it follows now that S is maximal J-dissipa-
tive and so T is maximal by Theorem 2.11.

Corollary 3.5. Let T, $ and z be as in Theorem 3.4, part (i). Then z¢€o(T)
and |R@)|=(ImZ—cp)™ for the resolvent R(z):=(T—zI)~' of T.

4. Symmetric linear relations

4.1. Eigenvalues, points of regular type. Since every symmetric linear relation
T is dissipative, we know from Theorem 3.1 (under the other assumptions made
there) that all z€C with Im Z>c¢; and (for reasons of symmetry) with ImzZ<—e¢y
are points of regular type of 7. However, by using better results of the perturba-
tion theory we can improve this. To do so we first examine the eigenvalues of T.

Theorem 4.1. Let T be a symmetric linear relation in an inner product space $.
Then
(i) N(T—zI) and N(T—wl) are orthogonal for z, wea,(T), z#W,
(i) R(T—zI) is neutral for z€o,(T)\R.
In addition, let $ be a r,-space and let T, be ortho-complemented. Then
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(iii) the number of the eigenvalues of T belonging to C . (resp., C_) is at most x;
(iv) o (T)\R=0,(T)\R is symmetric with respect to R for self-adjoint T.

Proof. (i) If feR(T—zI) and geN(T—wl), then (f,zf), (g, wg)€T and so
0 = [zf |g]—[fIwg]l = (z—W)[f]g].

(ii) follows immediately from (i). (iii)—(iv) are direct consequences of the theorems
2.7 and 2.9 and of the fact that the corresponding results are valid for operators;
see [5]. Note that T(0)* is also a m,.-space with »"=s.

We can now prove the converse of Theorem 3.2 for symmetric linear relations.

Theorem 4.2. Let T be a symmetric linear relation in an inner product space
9 and let z€C\R.

(i) R(T—zI)* contains a non-zero neutral vector iff T has a symmetric extension
T’ in the original space with z€a,(T").

(i) R(T—zZD)* contains a non-zero negative vector iff T has a symmetric extension
T’ in a larger space &', which includes $ as an ortho-complemented subspace with
$* positive in 9, such that z€0,(T") and at least one eigenvector does not belong

to 9.

Proof. The other halves of (i) and (ii) follow as in the proof of Theorem 3.2.
To show the converse of (i) we take an eigenvector / belonging to z€0,(T”). Then h
is neutral by Theorem 4.1 and belongs to R(T—zI)*. Indeed, since (h, zh)€ T’ and
T’ is symmetric we have

[g—Zf|h] = [g|h]—[f|zh] = O

for all (f,g)€eTcT'.

For the converse of (ii) we denote by P the orthogonal projector of $" onto
$ and let h¢$H be an eigenvector belonging to z€ag,(T"). Then

0 = [h| k] = [Ph| Ph]+[(I—P)h|(I— P)h]

and (I—P)he$H* is positive; hence Ph is negative. Furthermore, it belongs to

R(T—zI)*, because
[g—Zf| Ph] = [g|h]—-Lf|zh] = O

for all (f,g)eTcT . ,

We remark that if the space $ in Theorem 4.2 is a Pontrjagin space, then (ii)
in Theorem 4.2 can be given the following form: R(T—zI)* contains a non-zero
negative vector iff T has a regular symmetric extension 7” with z€c,(T’) and at
least one corresponding eigenvector does not belong to $. Here a regular extension
means an extension which is defined in a Pontrjagin space ' >9 with the same
number of negative squares as in the original space $. This remark follows from
the facts that then $* is positive and $ is ortho-complemented in ’; see [5].

Corollary 4.3. Let T be a symmetric linear relation in a Pontrjagin space $
and let z€ C\R. The subspace R(T—ZI)* is positive iff T does not have any regular
symmetric extension T’ with z€a,(T").
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Theorem 4.4. Let T be a closed symmetric linear relation in a Pontrjagin space
9 such that D(T)DH_ for a fundamental decomposition (1.1) of §. Then all non-real
points z§0,(T) are points of regular type of T.

Proof. By Theorem 2.11 we have T,=S;+4, where S; is a closed J-symmetric
operator and A:=—-2S,P_. As R(P_)=9H_ is finite-dimensional the operator
A is Sg-completely continuous and then by [13], Theorem 9.4, all non-real z¢ o,(T)=
0,(T) are points of regular type for S,+A4=7T,. Theorem 2.7 then implies the
result.

4.2. The relation matrix. The relation matrices introduced in Section 2.5 are
useful especially in the study of symmetric linear relations and their extensions. As
to the operator case, see [5] and [15].

Theorem 4.5. Let T be a closed symmetric linear relation in a Krein space $
with D(T)D9H_ and let (2.6) with the components (2.8) be a relation matrix of T.
Then

(i) T, , is a closed J-symmetric linear relation in L+ with T, (0)=T(0),

(i) T__ is a continuous J-self-adjoint operator in $_;

(iiiy T__ is a closed linear relation from H_ into $ + with T__(0)=T(0), the
operator part (T__), is continuous and the J-adjoint (T_ )" is an operator;

(iv) T, _ is a continuous operator which admits a continuous closure H: with the
domain D(T) N9, and in addition T,_c —(T_,)* and 1T, _I=1(T_ )l

(v) T is self-adjoint in § iff T, is J-self-adjoint in $ 4+ in this case f_:
_(T_ +)*-

Proof. Because T(0) is closed and

TO)CTHO)=D(T)" < (H)" =94,
we can use Theorem 2.16.
() If (f,8), (h,k)€T, ., then they are of the form

(f9g):(f!P+l) Wlth f65+* (f,l)ETy
(h, k) = (h, P, m) with he$®,, (h,m)eT.

Furthermore, according to Section 1.3 the J-inner product (+|-) in $ + is equal to
the inner product [-|-]. So we have

&l —(flk) = [P, 1|h]—[f| P, m]
= [l|h]—[fIm] =0,
since T is symmetric. Thus 7', , is J-symmetric in $ +- The closedness of T, , fol-
lows in the same way as the closedness of 7 _ + 5 see (iii).
(ii) In a similar manner as in (i) it can be seen that 7_ _ is J-symmetric. Further-
more, (T__)*(0)=D(T__)*"’={0} and so (T__)* is an operator. But then T__
must be J-self-adjoint and continuous.
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(iii) As T_,(0)=T(0), the subspace (T_,)., is ortho-complemented by Prop-
osition 2.3 and so we have the decomposition 7T_, =(T_)[+1(T_,).. In addi-
tion, (T_,)*(0)=D(T_,)={0}, ie. (T_,)" is an operator. Let us prove that

T_, is closed. We can write
T_, =Tn(9-09)-T-_,

because TN (H_®H)=T_,+T__ and T__ is an everywhere defined operator.
Let (f,, g,) be a sequence in T_, converging to ( £,8€9-09,. Then (f,,8)=
(fo, ka—T__f) with (f,,k,)€T. The convergence of the sequencies (f,) and
(g, and the continuity of T__ imply that k,=g,+T-_ f, converges to some
k€$. Then (f,,k)~(f,k)ETN(H-®H) and especially fe€D(T__). So we get

(frw gn) = (frn kn_T—-—fn) g (fs k_T——f)9

ie. (f,9)=(f,k—T__f)eT_.. Thus T_, is closed and by Theorem 2.4 (T_ )
is also closed. Being defined everywhere in $_ the operator (T_,), is continuous.
(iv) If (f,P_g)€T,_ and (h, P k)€T__, then

(P_g|m)—(f|=P.+ k) =—[g|h]+[f]k] =0,

because T is symmetric. Hence T, _C —(7T_ +)* and so by (iii) 7, _ is an operator.
To prove the continuity of T, _ take an arbitrary vector fED(T,_). Then
T,_fe9_=D(T_,) and so (T._f,8)€T_, forsome g€H, . This element has
the decomposition

(T+-f, g)=(T+_f,(T_+)ST+_f-|-k)
with k€T(0). As T,_c—(T_,)" and T(0)LD(T,_), we have
IT, - fI*=(T+-fIT+-f) = l(flg)}
= |(fI(T- )T - ) = 1T- DT - fIIS

which implies |7, _|=(T_,)ll. The properties of the extension_f": are obvious.

(v) Suppose that T is self-adjoint. We should prove the inclusion (T, )'c
T, .. For this, let (h,k)€(T, +)* be arbitrary. If we can find a vector gEH -
such that (b, k+g)eT+=T, then (h k)=(h, P_(k+g)), ie (hk)€T, . Using
(i), Proposition 2.3 and (iv) we get

D((T+ 1)) = DT+ 1))~ = T4+ (0)- =T(0)-
=DM 9. =D(T,-)

(here the orthogonal companions are in $,). By choosing g:=T,_h one can,
with the help of (i), (iv) and Theorem 2.16, verify that (h, k+g)eT+ as we wanted.

Suppose that 7, is J-self-adjoint in $,. We should prove T+cT. Take
an arbitrary (h, k)€ T+. Using the assumption, (iv) and some calculations we see
that (b, P k)isin T, +T_,. Similarly (h, P_k) is seen to be in T,_+7__.
By (2.7) the element (%, k) is then in 7.
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Finally we show that T,_=—(7T_,)* in case T is self-adjoint. By (iv) it is
enough to prove the inclusion D((7T_,)*)c T(0)* nH +- As above we get

D((T-1)*) = DT 1))+t = T_, (0)L = T(0)L.

Theorem 4.6. Let T be a closed symmetric linear relation in a Pontrjagin space
S with D(T)DH_ and with the relation matrix (2.6) defined by (2.8). A linear rela-
tion T' is a regular self-adjoint extension of T iff it is represented by the relation matrix

. ++{0}®T;+(0)
@1 [—(T_ Doar, ) T-

where T, is a J-self-adjoint extension of T it

Proof. 1° Suppose that 7’ is a regular self-adjoint extension of 7. Then T~
is a self-adjoint relation in a Pontrjagin space $’>$, which has as many negative
squares as §), and 7" can be represented by the relation matrix

[T L T +]
T,_ T._1’
where the components are defined as in (2.8). Furthermore, by Theorem 4.5 T ,
is J-self-adjoint in $’, >$H, and T, = —(T.,)*. Note that $’ has a fundamental
decomposition $'=§’ [+19" with $, 59, and $ =$_; the corresponding
fundamental projectors are denoted by P .
We show first that 7, is an extension of T, . For this let (f, €T, ,

P (T (H,99) be arbitrary. Then f€$H, and (f, ) =(f, P, k) for some k
such that (f,k)€TCT’. As Pl |,=P,, we get

(f, 8 = (£, PL ) EP,(T' (9, ®9)) = T, 4,
ie. T, T,

As above, it can be seen that T_,cT’ , T, cT,_ and T-_cT’_
Furthermore, T__ and T’ _ are operators defined throughout in $_=$’; hence
T__=T’_

Let us prove the identity 77 =T__ + {0} 7T, (0). From Theorem 2.16 and
from above we get the inclusion :) Furthermore, it is easy to see that the linear
relations on the left and right side of the desired identity have the same domain
$_ and their multi-valued parts are equal. These facts imply the equation we wanted.

Finally, we must show 77, _=—(T__)* |t ,), where the adjoint is taken in
the extension space. A little calculation gives

(T2, = (T- ) (T5, O @)
=T- 0T )99-) =T s

On the other hand, 7/ _=—(T’,)*, and putting these together one gets the desired
result.
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2° Suppose 77, is a J-self-adjoint extension of 7", in a Hilbert space $’,
extending $, . Then the space $":=9’, H_ equipped with the usual linear and
inner product structure is a w,-space with a fundamental decomposition

“4.2) 9 = 9L [+]9-.
We should show that the linear relation 7 defined via the relation matrix (4.1) is
a self-adjoint extension of 7.

We verify first that —(7__,)*|o(r,,) is an operator extension of T,_. As
D(T_,)=9H_ wesee that (T_,)* is an operator. Let f€D(T,_); then (k|f)=
—(h|T,_f) for all (h,k)eT_, by Theorem 2.16. This means (f, —T,_f)€
(T_))* ie. T,_c—(T_,)*. Furthermore, D(T,_ )=D(T,,)cD(T,,), and
so we get the desired result.

To prove the inclusion 7cT’, let (f, g)€T be arbitrary. Then by Theorem

2.16 g=g,+g, and
(f9 gl) = (fls g11)+(f2a g12)’

(f g2) = (f1> g21) +(f2, g20)

with (fl’gll)ET-i-+CT-,l—+, (.f2’g12)€T_+s (ﬁ,g21)€T+_c—(T_+)*]D(T,H) and
(f2, 822)€T__; hence

(f, 9= ga1tg) (T +T- +)+("(T— +)*IQ(T'+ +)‘i‘T— —) cT.
In order to show the symmetry of 7’, we decompose an arbitrary (f, g)€T’
analogously to get
[glf1= (gulfD)+ (gl f) —(gulfo) — (g22lf>)
= (f1lg1) — (falgar) + (f1]212) — (f2|g22)
= [flgl;
ie. T’ is symmetric. Here we have used the following facts: 77 (T, )",

(f2s g12)€T—+5 (f1s _g21)€—(T_+)* and T__c(T-_)*

Finally, we must show the inclusion 7'+ cT’. For this we need the identity
D(T, D)=D(T. )*»a,,), for which in turn we need the fact that D((T”,)*)
is closed. To prove that fact, one can argue as in the proof of Theorem 4.5 to show
that [|(T_ )" fII=I(T_, )l fl, ie. (T_,)" is continuous, which is enough. Then

D((T-)*) = D((T-2)")+ = T_.(0)* = T(O)* > T"(0)* > D(T%),
from which the identity mentioned above follows.

Let P} be the fundamental projectors belonging to the decomposition (4.2)
~ and take an arbitrary (h, k)€T’+. Then a little calculation shows that (h, P, k)€
T, +T_, and analogously (h, P.)€—(T_ o, +T-—, ie. (hKkET.
This completes the proof.

Corollary 4.7. Every closed symmetric linear relation T in a Pontrjagin space
9 with D(T)D9H_ admits regular self-adjoint extensions.

We can put the previous theorem in a perturbational form.
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Theorem 4.8. Let T and § be as in Theorem 4.6. Every regular self-adjoint
extension T" of T is of the form T’ =S’ + A, where S’ is a J-self-adjoint linear relation
and A is a continuous operator with ||A|=cr.

Proof. From Theorem 4.6 we know that T is represented by the relation matrix
(4.1). Define §":=T, , +T__; as T, and T__ are J-self-adjoint it is easy to see
that S’ has the same property. Let

A=—T- D)o, T (T-1)s-

Then A is an operator with D(A4)=D(T").
To prove the continuity of 4, let f€D(T) be arbitrary. Then

Af =—(T- +)*f1+(T— +)sf2
with fieD(T,,) and f£L€D(T_,). This implies

I4f12 = I(T- - D* fll2+ (T - ) foll®
= (7= DPAAIP+ L)
= [(T- 211

(see the proof of the preceding theorem). So we must prove that [(T_, )=
2||S,P_||=:cr (for the definition of S, see Theorem 2.11). With Theorem 2.16
and a little calculation we derive

(T-+)s = (Ts)—+ = (SsJ)—+ = P+SsJ|55-C_P+SsP-—a

which implies the desired inequality.

Finally, to verify that 7=S"+A4 one can proceed as follows: With the help
of the relation matrix of 7” it is seen that T S’+A. Furthermore, D(S")=
D(TH)=D(4A) and T’(0)=(S"+A4)(0). These facts together imply the result.

Corollary 4.9. Let T and $ be as in Theorem 4.6 and let T’ be an arbitrary
regular self-adjoint extension of T. Then
() o(T)cCr:={z€C| Im z|=cg};
(i) [(T"—zD Y =(Imz—cy)™* for z¢Cy;
(iii) R(T—zD)* is positive for z¢Cr.

For the proof, see Corollary 3.5 and Corollary 4.3.

4.3. The deficiency spaces. Let 7 be a relation in an inner product space $.
Define N,:=N,(T):=R(T—zI)* and M,:=M_(T):={(h, k)T +|k=zh} for z€C;
the latter is called a deficiency space of T in [11]. In studying these spaces we restrict
ourselves to Pontrjagin spaces.

Theorem 4.10. Let T be a closed symmetric linear relation in a Pontrjagin
space © with D(T)DH_ for a fundamental decomposition (1.1) of §. Then
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() M, is a continuous operator with D(M,)=R(M,)=N, for all zeC\R;
(i) M, and N, are Hilbert spaces with respect to [+|-] for all z¢Cy;
(iii) dim M, =dim N, is constant for all z€C £ \0,(T) and similarly for all
z€C_\o,(T);
(iv) T*=T+M,+M, for all z4Cy.

Proof. (i) is obvious and (ii) follows from Corollary 4.9. Clearly dim M,=
dim N, =dim R(T—z[)'*), and the constancy of this dimension follows from
Theorem 4.4 as in the case of Hilbert space operators; see [1], Nr. 100. (iv) is a
direct calculation.

The cardinal number n, :=n_(T):=dim M (T) for z¢C +\0,(T) is called
the upper defect number of T similarly n_:=n_(T):=dim M,(T) for zeC_\o,(T)
is called the lower defect number of T. The previous results show that 7 is maximal
symmetric/self-adjoint iff n, =0 or n_=0/n, =n_=0.

A mapping U: 99 is called a conjugation if U2=I and [Uf|Ugl=[g|f]
for all £, g€$. A linear relation T in $ is said to be real with respect to the con-
jugation U, if (f,g)€T implies (Uf, Ug)€T. A useful criteria for the equality
n,_=mu_ is given by the following result:

Theorem 4.11. Let T and § be as in Theorem 4.10. If T is real with respect to
a conjugation, then the defect numbers of T are equal.

As the spaces 9, with a=>c; are Hilbert spaces, we can use the proof given
for the Hilbert space operators; see e.g. [12], Theorem XII.4.18.

As in the Hilbert space case, the sums in (iv) of Theorem 4.10 are orthogonal
for ze{i, —i}, but it can very well happen here that +icCy. In order to get
orthogonal sums also in this case, we need to modify the inner product:

Theorem 4.12. Let T and $ be as in Theorem 4.10 and let a=cy. Define
[(fs DI(h, K], := a®[f|h]+[g|k]
Sor all (f,g), (h,k)eT+. Then T+ is a n,-space with the inner product |- |-1, and
TF=T[+]s Miu[+1+ M _,.

The proof follows the same lines as in the operator case; see [20].
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