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ON THE GREATEST PRIME FACTORS
OF DECOMPOSABLE FORMS AT INTEGER POINTS

x. cyönv

1. Introduction

Let f€Zlx, yl be a binary form and assume that among the linear factors in
thefactorization of/at least three are distinct. Mahler [12] proved that P(f(x,y))*-
if X:max(lxl, lyl)*- with x, y(2, (x,-/):1, where P(n) denotes the greatest
prime factor of n. Mahler's work was generalized by Parry [14]. For irreducible
forms/Coates [4] improved Mahler's result by showing that if a:114, then for any
coprime integers x, y

P(f (*,1,)) - cr(log log X)", X > Xr,

where cr>0 and Xr>Q depend only on f and can be given explicitly. SprindZuk
[211,122) established (1) with a:l for all such forms of degree at least 5 and for
so-called non-exceptional forms of degree 4. Kotov [11] generalized SprindZuk's
result to binary forms with algebraic integer coefficients. shorey, van der Poorten,
Tijdeman and schinzel [20] proved that if f(Zlx,yl has at least three distinct
linear factors in its factorization and a:1, then (1) holds for any x,yeZ with
(x,y):d, where d is a fixed positive integer.

Schlickewei [7], [18] proved that for a large class of norm forms F(Zlxr, ..., x^)
in m>2 variables and for X:(xr, ..., x.)(Z- with relatively prime components,
P(r(x»*- as l*l:ma* (1rr1, ..., lr.l)*-. For index forms F(Zlxr, ..., x-)
Trelina [24] showed that

P(f(x» = cz(loglog lxllogloglog lxl)1/2, lxl = &.
Independently, for discriminant forms and index forms F(Zlxr,.-.,x^7

@ r(r(x) > crloglog lxl, lxl = Xr,

have been established by Papp and the author [8]. Here x(Z* with (xr, ... , x^):l
and cr, cs, Xz, X, are effectively computable positive numbers depending only on ,F.

Recently the author [10] proved (2) for a wide class of irreducible norm forms.F(x)
in m>2 variables (including all binary forms). In [8] and [10] our estimates are
established for forms F(x)(Zr,lxr,...,x-l at integer points x(Zi,, where Z,
denotes t}te ring of integers of an arbitrary but fixed algebraic number field Z.
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In this paper we give a common generalization of our results mentioned above

and compute an explicit value of the constant corresponding to cr. Our main result

implies the above-quoted theorems of SprindZuk l2ll, l»L Kotov [11], Shorey,

van der Poorten, Tijdeman and Schinzel [20J, Trelinal24], Gyöty and Papp [8] and

Gy6ry [10].

2. Results

Before we state our tleorem, we establish our notation and introduce some

definitions.
A system I of n>2 linear forms 4(x),...,Ln(x) in x:(xr,..',x.) with

algebraic coefficients will be called triangularly connected or, more briefly,

Å-connected (cf. [7]) if for any distinct i, j with l=i, i=n there is a sequence

Li:L1r, ..., Li,:Lj in I such that for each u with I <tt=u-|, L,-, Lr.,, haue

a tneår combination witJr non-zero algebraic coefficients which belongs to 9.
If in particular m:2, then every system I whrch contains at least three pairwise

non-proportional linear forms is /-connected.
Throughout the paper, Z will denote a flxed algebraic number field of degree

/= 1 with ring of integers Zr, and U, will be the group of units in Z. We denote by

ar(«) the number of distinct prime ideal divisors p of a non-zero integer a in L and

by 9(a) the greatest of thenorms N(p) of these prime ideals. For o(€Ua wetake
3(a):1 and ar(a):0.

lf F (x1, ..., x^)(Z afxr, ..., x*7 is a form it m>2 variables, then F(xr, .'., x*)
and F(exr,...,ex*) have the same prime ideal decomposition for any x:
(xr, ..., x)€Zf and e€ (IL. ltwill be useful to introduce the notation lxl defined by1)

l*i : #,i.-ax(lexrl, ..., luÅ), m z 2,

where x:(xr,...,x^)e.Zt solli can be effectively determined and clearly

(3) Nr/ - l{ = max (lr,l, ... , Lr,D

for arLy xezf, where N-maxl< i=m(lN,o(r,)l). Further,

special case L:Q. lxi coincides with l*i.
Our main result is the following

The orem. Let ,F(*) - F(xt) . .. , x^)(Z r[xr, .. . , x^f be

of degree n>3 in m>2 uariables with splittins fi,eld G ouer

lG: IÅ:f. Suppose that the linear factors Zr (x), .. . , L,(x)

it is clear that in the

decomposable form
and let [G: Q7-9,
the factorization of

a

L,
in

1) lyi denotes the maximum absolute value of the conjugates of an algebraic number 7.
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F form a Å-connected system and that there is no O*x(L- for which Z;(x):0,
j:1,...,n. Let d be a positiue integer. Then there exists an effectiuely computable
number Xo depending only on F, d and L, such that

(4) (13/+1)slog(s*l)+(s+ t)tog9 = loglog lxl
and

(s) s = ((t3[+r;l)-,(toslosl-xD"

for any xeZi with N((xr, ...,x*))=-d qnd H>-X4, where g:g(F'(x)),
s:ar(f(x)), 9:P" and P is the maximal rational prime for which (F(x), p)+1.

It is easily seen that under the conditions and notations of the theorern we
have I <a€1,

(4') (13/+1)slog(s*1)+(c+l)logQ > loglogN
and

e > ((t:/+ 1) 4-"(109 los n)'
for any x(Zi with N((rr, ...,x^))=d and ly':rn&Xr=,=.(llfrro(x)l)>Nr. For
small values of s the estimates (4) and (4') arc obviously much better than (5) and (5').

our theorem has several consequences. we first mention an application to
diophantine equations. Let -F(x) and d be as in the theorem and let §, nr,...,n,
be flxed non-zero algebraic integers in I. Consider the equation

(6) .F(x) : Bnl... nit

in x(Zi, z!,...,2r€Z with ,(rr,.. ,x^))=d and zr,...,Zr=0. Then (4) gives

max(lxl, s^a*rG)) <. Q

for all solutions x,2t,...,2, of (6), where cis an effectively computable number2)
depending only on F, d,9(fin1... n), a(8n1... x,) andl. This result can be regarded
as a p-adic analogue of our Theorem I in [7]. (In [7] it is not assumed F€Zalx);
however, in the applications of Theorem I of [7] F(Zrlxl is always supposed. Thus
this is not an essential restriction.)

The following corollary enables us to obtain some information about the arith-
metical structure of those algebraic integers of .L which can be represented by a
decomposable form of the above type.

Corollary l. Suppose F(xr,...,x^) and d are as in the Theorem. Let F be
any algebraic integer in L represented by F(xr,...,x^), where x',...,x^€2, with
N((xr, ..., x-))=d. Then

(t3f + 1) o(r) tros (*@)+ 1)+(g+ 1) los s(F) = log tog tr(7)

2) We could easily obtain an explicit expression for C by computing each constant in the
proof of our theorem. Added in proof: ln my paper ,,Explicit upper bounds for the solutions of
some diophantine equations" (to appear) I explicitty evaluated C in terms of each constant,
(generalizing many earlier efective results on norm form, discriminant form and index form
equations).
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and

(8)

(e)

where

s(F) = ((t 3f + 1) /)-r log log N

if N:lN1q(Dl=Nr, where N2is an effectiuely computable positioe nurnber depend-
ing only on d, L and the form F(xr, ..., x*\.

Our Corollary I generulizes and improves SprindZuk's theorems 1221,[23)con-
cerning rational integers represented by a binary form fQZ[x, y].

Corollary 2. Let F(x)QZtLxr, ..., x^l be a decomposahleform with the prop-
erties specified in the Theorem. Let d and A be positioe numbers with d>l and
A<llk*l). Then there exists an effectiuely computable number Xu depending only
on F, d, L and A such that if

g(F(x)) = llog lxD', x€Zi, Irt = x,
md N((xr, ..., x*))=d, then

ar(r(x))=rn@.
rog log log Fq'

c4:(1 - A(s+ 1))/(t3f+r).

Let f(Z{xl be a polynomial with at least three distinct roots. Since lfjlr/=
max (iEl, le 1) for arry x(21 and e( (Ia, oltt estimates (4), (5), (7), (8) and (9)
remain obviously valid for O(f(*)) and a(f(x)) with lxl instead of lxl, where
x€Zr. and @l=Xr. We remark that for polynomials /(x) with rational integer
coefficients Shorey and Tijdeman [19] obtained a much better result than our Corol-
lary2; they proved ar(/(x)>>(loglog lxl)/(logloglog lxl) under the condition
P(/(x))=exp ((log log lxl)1), where A is any positive number. As an immediate
consequence of this result they derived a good lower bound for maxl=;= , f (7@+i)).

As a consequence of our theorem we obtain the following generalization and
improvement, respectively, of the theorems of Coates [4], SprindZuk l2ll, [22], Kotov
[11] and Shorey, van der Poorten, Tijdeman and Schinzel [20] on the maximal prime
factors of binary forms.

Corollary 3. Let f(x,y)eZrlx,!) be a binaryform wilh splittingfield G oaer
L and suppose that among the linear factors in the factorization of f at least three are
distinctg). Let lG: Q7:g, lG: Ll:f and d>1. Then there exists an effectiuely
computable positiue number X, depending only on d, L and the form f(x, y) such that

for all pairs x,y(21 with N((x,y))=d and (1:yyliae€trtmax(,eJ, @7=X.,,
(4) and (5) hold, where 9:9(f(*,y)), s:a(f(x,y)),9:P" and P is the maximal
rational prime with (f(x,y), F)*1.

8) In other words/has at least three pairwise nonproportional linear factors in its factorization.
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It follows from (5') that

(10) s(f(*,y)) > cu(loglog N)'

for all x,y€21. with (x,y):1 and N:rr&x11lr,o(x)1, lN"ro(y)l)=1vr, where

cr:((l3fil)l)-'. Forirreducibleforms f(Zrlx,yJ of degree >5 (10)wasearlier
proved by Kotov [1].

An important special case of Corollary 3 is when f(x,y):(x-ary)...(x-uny),
where cr, ...,a,€Za and at least three of them are distinct. This special case of
Corollary 3 can be used to obtain an effective result on the diophantine equation

azq:.f(x,y) (cf. [20J, pp. 63-65).

Corollary 4. Let K be an extension of degree n=3 of L and let F(x):
aoN*,"(x1*azxz* ... *u-x^)€Zrlxr, ..., xml be a norm form in m>2 oariables such

that lL(u,): Ll:ni=3,i:2,...,m, ond fl2...t7^:n. Thenwiththenotations of the

Theorem we haue $) and (5).

Corollary 4 implies Corollary 2 of [10] and Theorem 3 of Kotov [ 1].

Corollary 5. Let Kbe as in CorollaryL. Let dL,...,a^ be m>-2 algebraic

integers in K with K:L(ur,...,a^) and suppose that l, d.,...,q,m are linearly

independent ouer L. Let F(x) denote the discriminant form Discr6rl (arx1* ...*u^x^).
Under the notations of the Theorem, for ,F(x) (a) and (5) hold.

Corollary 5 improves Corollary I of our paper [8].
Let again K be an extension of degree n>3 of L and let G be the smallest

normal extension of Z containing K. Write [G: Ql:g and. lG:- L]:7. Consider

an order O of the field extension KIL (i.e. a subring of Z*containing Zrthat has

the full dimension n as a Zr-modtle) and suppose that O has a relative integral

basis l, ilL, ..., dn-1 over Z. (Such an integral basis exists for a number of orders of
KIL; see e.C. [27, [3] and [8].) Then we have (cf. [8D

(1 1)

Discr*rr(arxr*... *ocn-1x,-r) : [Ind*rr(arxr* ... *4,-rxo-r)fzDxtr.(l,dt, ... ,dn-t),

where 1(x):Ind5rr(arx1* ...*dn-rxn-1)€.Zrfxr, ..., x,-rf is a decomposable form
of degree n(n-l)12. It is called the index form of the basis l, dr,...,a,n-, of
O over L.

In the special case L:Q Trelina l24l obtained lower bounds for P(I(x)).
Corollary I and Theorem 3 in our paper [8], established independently of Trelina,
give lower bounds for 9(I(x)) in the above general case. As a consequence of Corol-
Iary 5 we obtain the following generalization and improvement of the estimates of
Trelina l24l and Györy and Papp [8].
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Corollary 6. Let L, K, d and I(x) be defined as aboue. Then there exists an
effectiuely computable positiue number XB depending only on I(x), d, L and
Ds"(l,c"r, ... ,dn-r) such that (4) and(S)holdfor anyxe ZL-L with N((xr, ... ,x,-r))=d
and g-l=X* where g:g(I(x)), s:a(I(x)D*p(1,ar,...,d,_r)), g:p, and p
is the maximal rational prime with (I(x), P\*1.

The proofofour theorem depends on two deep theorems, due to van der Poor-
ten and Loxton [6] and van der Poorten [15], which are essentially sharp inequalities
on linear forms in the complex and in the p-adic case.

3. Proofofthe Theorem

We first show that we can make certain assumptions without loss of generality.
By using a well-known argument we can easily see that there exist algebraic integers
e2,...,a^in L such that F(1,ar,...,a-)+0 (see e.g. l3),p.77). It suffi.ces to prove
the theorem for I(xr, arxl*x2,...,a^xr-lx^), where the coefficient of x! is non-
zero. Hence we may suppose that

F(x) : aoLr(x) -.-L,(x)

with 0*ar(21 and

Li(x): xr|a2ix2i-...*d*jx-, i : l, ...,11,

where a;;€G, 2<i=m, l=j<n. Writing ulr:aoa, for i>2 and 4i:ao for
i:1, we have uir(Zo for each i and j. We shall prove our theorem for

.f(x) : a[-l.F(x) : 17 ti{r),
J:L

where Zj(x):a|rxr*...*a!-rx-. This will imply at once the assertion of the theo-
rem for F(x).

We suppose that there are r, real and 2r, complex conjugate fields to G and
that they are chosen in the usual manner:if 0 is in G, then 0(') is real for l<i=r,
and TG+i-N for rr*l<i<rr{rr. Put r:rt+rz-L. It is well-known that
there exist fundamental units 4r,...,4r in G and constants co, c, such that

llog l4pll=c. for l<h=r, l=i=g and Ro>c, where -Ro d.enotes the regulator
of G. Here, and below, c6, c7, ... will denote effectively computable positive num-
bers which depend only on F(x), L and (some of them) on d.

Let xr, ..., x* be any m-tuple of algebraic integers in I with ff((rr, ..., n.))=
d. Prut

(12)

and

(1 3)

§i:alixt+...aakixo,, i - l, ...sfis

(/(*)) : (§t... §,) - pi'... P3',



On the greatest prime factors of decomposable forms at integer points

where pr, ..., ps are distinct prime ideals h L. lf Xnis sufficiently large and 1xl=Xn,
then Theorem I of [7] implies s= 0 and P> l. Let Tr, . . . , S, be all distinct prime

idealsinGlyingabove pr,...,P,. Clearly l<sl Applyingnowtheuniquefactoriza'
tion theorem to (13) we get in Zo

(14) (f;) : !Pf'r... SI,r, i : l, ..., tt,

where the (Jq are non-negative rational integers. Denote by ho the class number of
G and write (Iyi:hsuti*ro, with 0<ror-7o. We have F'i,":Qru) with some

h,€Ze . Then from (14) we see that

(l s)

where (X) - Tl'i

(fr ) - (x)(t r)",, .-. (t ,)"" ,

'" TI" ancl

t,Norcjdl = Pnho, lNorc(X)l = Pnhct.

e.g. [1], p. 188), we may choose F* andSo, following a well-known argument (see

x; such that

(16) llog lp[')ll = calogP, llog lr]Dll = caslogP, i:1, "',8,
and, by (15), we have

0i : eiXiltll, ... ltf"r, i : l, ... , tt,
for some unit e, of G.

Pat 9 : {L:r, ... , L,}. Sy hypothesis there are two forms it 9, say Li and L!r,

such that irL!r(x)-l),rL:r(*)eg with non-zero algebraic numbers 1r, lr.Suppose,
lbr convenience, that

7, L!r(x) + ).rLi (x) +,iuZj (x) : I
with 7r),rAr+0. Further, we may assume that År, ).2, )'s€Zc and max (17J, llrl, lÄi)=
cr. We obtain now

(17) )"r1L+7z1z+1sfrs:0.

Put ok:rrur:n tt.1r, and uiq:uxq- or, for q -1, 2, 3 and

suppose without loss of generality that U-maxk, quiq:ulrr.
4t, ...,4, are fundamental units, we can write

k- 1, .. ., t. We may
and uis,:Q. Since

erlez: pr4lr...4!;, erllr: prrlln ... r1!,2,

wheregr,q2arerootsof unityinGand wLt,...>wrl,w!2,...,wrz arerationalinte-
gers. With the notation

(18) §r: oöq,

and w.',t: wre:O,

(1 e)

o - ts[t!, ... tt?r, ör: XqQq4Yr, ... eY"n ltlrn ... ttii,

Qe:l we get from (17)

A- - 
):'ö=' 

-, - 
l:tlt * 0-

Äsö t Äsö s

347
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We are now going to derive an upper bound for ä:max(U,W), wherc
W:maxi,,lwrrl. First suppose that croslogP. U=H with a sufficiently large c.o.
We may assume that U>crrslogP with a sufficientlylarge crr, for otherwise (21)
immediately follows. We see from (19) that

- > ordsrl > (J- crrslogP > crr(J =A#p,
Further, bV (19) we have

(20) n : - ^1.:1:' 4y,, ...r7!,zpfiz-uiz ... pliz-uta-;.

Applying now Theorem 4 of van der Poorten [15] to 21, we obtain by (16)

(21) H < cru(c6s)r2(r+sr)+28 Ps(log Pyr++.

Suppose now that croslog P.a<H. Assume, for convenience, that W:lwrrl.
From (18) we conclude

wr, log lry{') I + ... f wrr log l4{tr 1 
: log lä{,)l -log lxf,) r- 3 "rrlog lp[,) |

for each conjugate with i:1,...,t. So for some å we must have

w = c,,(ltos lä{,,11+ lloe lx{n)ll* 7 "'r._ltos 
lplr,lD.

Thus, by (16) we obtain

llog läfåt||= crrw-c* slogP-cro(IslogP 1c^H,
provided that cro is sufficiently large. Further, by (16) and (18) we have

log lN67q(ä1)l = log lN61q0h)l+U. ZloelNorcfuo)l< crr(JslogP.

Hence we get for some z
(22) tog läfnr1 <-czsH.

Formulae (16) and (18) imply

(23) b,l#hl = .**,r- t) log ffi = c,u(Islogp < ! n.

We now omit the superscript (m).It then follows from Q2) and (23) that

logl,'ll = -+ ,.
Write 4o:-1. By taking the principal values of the logarithms we obtain from
(19) and (18)

(24) o=lrost-ffi|

: lå wi2tosli+ * @i,-ul,)logpo-ro r(-#)l = ,-'*t'*'*'1',
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where ä*:(cru(rltl1))*1 and wo, is a rational integer satisfying

lwrrl s (r-tt*l)H.

We can now apply Theorem 3 of van der Poorten and Loxton [16] to Q4) and
obtain

(25) H < cr,,(crss)10(r+s/)+38(logP)s/+3.

So (21) and (25) imply

Q6) H < czs(caos)12(r+§/)+31P4(logP)§/+a

and, by (16), (18) and (26), we have

(27) 15n 1 = exp {cu s log P * crrH * css äs log P} <

= exp {crn(cro5)12(r+s71132P0(logP)"t+u} : Tr, Q : 1,2,3.

Consider now any f; with 3=-j=n. By the assumption made on Li,...,L;
there is a sequence §z:frir,..., §i,:fri such that for each u with l<u<u-l

)'i.P i.+ 1i.* rP i* * r* 1r.,,*rfii,,,,r : 0

holdswithsome non-zero 7i., 1i.,,,Ä,,,.*r€Zo satisfying max1l,1r,l, la."*1, la."**ll=
cru. Further, we may assume u=n. We can see in the same way as above that

(28) §t: oör, frz: 06z

and

(29) fri,: ouöu,r., §r.*r: ouöu,iu*,

fot u:l, ...,u- l, where 6r,r,,öu,i,*r€Zc with

(30) ,jTgr_,(l4r"l, l4r"*ll = r,

and ou:Sutrtlru...114t" with units ,9,€G and non-negativerational integers atu, ..., etu.

It follows from (28) and (29) that

(31) §i : §i" : oeil{ i
with

Qi : 6z 
ulf' 

uu,r.,, and 
'l', 

: '11' ö',r,,'

Write ry'r:ry'a:l and *r:Ul ,", j:1,2.1, i, 
"fruJjf,u,

(32) max (lr4.l, lhD = ri, j : l, ... , n.

We recall that o:sslti,...tt?. Denote by pl,- the highest power of po with
bu=a1, that divides at least one of the rltr,...,{n. By taking norms we see that

br = crulogTr, k : l, ..., t.
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Putting

bil : min (ao,by*L), d*: at -bt, k : l, ..., t,
and

xi : pli ... pli cilti,
we get

(33) fii : Sp!, ... p!,r j, i : l, ..., tI,
where .9:e, is a unit and ri arc algebraic integers in G satisfying

(34) lz,.l = exp {crrs log P lo ETr} : Tr.

Further, by (13) we have

(35) pi,... p3" : (h... fr,): ((5p1,... pl)'\...r,).

Letk, l<k<s, be an arbitrary but fixed subsoript, and let S denote an arbitrary
prime ideal in G lying above pp. If S'ullpo, e1 does not depend on the choice of S.
Moreover, S divides only one of the pr, ...,11t. We shall now follow an argument

used in the proof of Theorem 1 of [5] (cf. the deduction (36)+(al) of t5l). Let yybe
the greatest rational integer for which

(36) o,io (roro-o ro*(,4r,), ,orr) > nh.yoer

holds for each !F with Slpo, wherc hl denotes the class number of I. From (35)

it follows that yo>O. By the definition of the;,0 there is a $, lying above po, such

that

(37)

Since (34) implies

we get from (36) and (37)

(38) 0= or,ex-nhty,e*5 crtlogTr.

If now $ is an arbitrary prime ideal in G lying above po and pl(pr), then (35),
(36) and (38) give

(39) O = drordp 1to-hay1,€k€ caslogTr.

Let now pårlr...pfraI':(z), where x(Zr., and choose ( in such a way that

(40) plt... p!,:2a(.

In view of (39) ( is an algebraic integer in G and

(41) lNcrcG)l < exp {co.s logPlogTr\.

nltrUo*r)eo> min (roro-ords (,4rr) , ,oro).

ords {,grr,) currogr,,
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It follows from (33) and (40) that

a : S" €ntt .., tr(21.

Further, Lemma 3 of [6] together with (34) and (41) imply that there is a unit 0r€Z
and an a'(.Zr, such that

c»:01a,
and

(42) 1af 1 = exp {crrslogPlogTr}.
Thus by (34) and (42) we have

(43) lq-i,g(l < exp{crsslogPlogfr}.

Finally, writing (i:|r'\ki we get

(44) fii : |p(r, j : l, ...,n,
and, by (34) afi (43),

(45) l(r.l = .rp {cnn s log P lo gTr) : Tr.

By hypothesis there is no 0#x(L- for which lj(x):O, j:1,...,n. Con-
sequently, the only solution in Z of the system of equations

(46) Lj(x): f1, j:1,...,n,
is the x:(xr,...,x*) considered above. Since f(x)la[ is a product of irreducible
norm forms over z, (46) contains all conjugates of each equation over L. Following
now an argument of the proof of Lemma 2 of l7l, we can easily see that(46) has no
other solutions in the complex field. So m=nf, and by Cramer's rule we have

(47) xi:lrx,tJv, i : l, ...,rn,

where v, vrQZ6, !1, ...ryil are not all zero,

(48) lil= rnu

and, by (45),

(49) lvrl = couTr, i : l, ... , m.

In view of (af we obtain in 26

lNorc(x)]1ff((rr, ..., rJ): lN67q(v)|rr((xr, ..., x).
Hence, by (48),

(50) lNua@)l = lil67a(v)l1ttd = cor.

Thus we can write 0rx:0;7x' with a :urut lr(L and an algebraic integer x,(L
satisfying

(51) l7l= cn .
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It follows now from (47) that

x! : |rxr= %'yrl\t, i : 1, ...,m,
and this implies

xit : N61a(xi) : Nnp@'v)lNs1a(v), i : l, ... ,m'

By the inequality Q$ of [7] we have

l* V = 1-N o olxiill ar=ffi 1' 
-' = 1xt' f IT' -'rr,

whence, by (48), (49), (51), (45), (34) and Q7) we obtain

(52) ,T,g- l7l < casTs,< exp {cro(cur5)r2(r+s.1;434P'(logP)s/+?}.

From (52) we deduce

(53) log log Ix I = log cuo + (l 2(r + sfl + 34) log (c51s) * g log P + (sf +7) log log P.

If Xn is sufficiently large, then P is also sufficiently large and s>(logP)3//(ar+r'
implies

los c'o + (12 (r + y) + 34) I og c ur* (t2r *34) log G + 1) + (.s/+ 7) log log P

= k-+) s rog (s* r).

On the other hand, for s=(og P)sf/(tt+r1 we have

log cuo + (12 (r + sfl + 3a) bg c s* (l2r* 34) log (s + 1) + (s/+ 7) log log P < log P.

Hence (53) gives

(s4) log log lxl = (r t7+ j) s rog (s + 1) + (s + l) log P,

whence (4) follows.
By prime number theory wecanchoose X* such that even z(P)<(l*6)PllogP

holds wirh ö:U(2Q6f+1)). Then s=ln(P)=(l+ö)lPllogP and thus

(5s) (w.|)slog(s*l)*(s+t) toeP=(t3f+t)tP.

Finally, in consequence of (54), (55) and 0:P' we obtain (5).

In order to prove (4') and (5') it suffices to observe that (53) and (3) imply

log log ,l[ < log (lcuJ +(12(r+.s/)+:+1log (cu.s)* g loe P+(sl*7) log log P.

If N is sufficiently large, we get (4') and (5') in the same way as we deduced (4) and
(5) from (53).
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4. Proofs of the Corollaries

Proof of Corollary 1. Let e be aunit in I such that lll:pu* (61, ..., lrr-D.
Then

(56) N:lNuq(F)l:ln,o1rtr"))l = c,,lx['.

Therefore, for sufficiently large N, (4) implies (7), but only with log log N-log(2ln)
in place of log log N. Following the argument applied at the end of the above proof,
we obtain (7) and (8) from (53) and (56).

Proof of Corollary 2. Suppose

o(r(x)) - ,, log log lxl
- 
log log log lxl

for some x(Zf with lE>Xs and N((x1,...,x^))=d. Then by our theorem
we have

loglog lxl < (13/+ l)a,(r(x)) log (ro(r(x))+ l)+(s+ t)toss(F(x))

= 
(13f + l)co log log lxl + A(s+ l) log logl{,

provided that Xu is sufficiently large. Since (l3f+l)co+A(S+t):1, wehavearrived
at a contradiction and thus (9) is proved.

Proof of Corollary 3. By assumption there are at least three pairwise non-
proportional linear factors in the factorization

f (x, y) : .ll (ui1x1*ai2y).

Consequently, the linear factors ailx+ai2y, i:1, ...,n, form a /-connected system
and the system of equations

a;rxlarry :0, i : l, ...,n,

has no non-trivial solution x, y in Z. So the assertion of Corollary 3 follows at once
from our theorem.

Proof of Corollary a. F$) can be written in the form

'F(x) : o, ,i. @r*o$»*r+ ." 1.u§)x^),

where a!1, ...,"y' denote the conjugates of a, over Z. As we showed in [7] (see

also [9]), the conjugates xr+a[')xzl ...*allx^ of xr*urx2*...*a.-x- over .L

form a /-connected system. Further, by virtue of the assumption lL(ar): L1...

lL(a*): L):n, the only solution of the system of equations

xr*a$i)x2* ... *afi)x- : g, i : 1, ..', n,
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in Z is x1-...:x^:0. So our theorem implies the required assertion.

Proof of Corollary 5. Let Z(x):arx1*...*d*x* and Iet ZG)(*),...,Ifr)(x)
be the coqiugates of Z(x) over Z. Put

/,;(x) : l,{;r (v)-tti) (x).

In proving Theorem a in fil we showed that

r(x) : Discr"/. (erx1* ... *d^x-): (- 1)ä(r-1) t' Ii lri!),ilj,

satisfies all conditions made in our theorem. Thus (4) and (5) clearly follow.

Proof of Corollary 6. If X, is sufficiently large and iii=X' by Corollary 5 and
(11) we have 9(D(x)):9(I(x)), where D(x):Discr6,a(arx1* ...idn-rxn-.,). Thus

Corollary 5 proves tb.e assertion of Corollary 6.
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