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INJECTIVITY THEOREMS IN PLANE AND SPACE

O. MARTIO and J. SARVAS

1. Introduction

Let (X, d) be a metric space, B a set and .# some family of maps T: 4—X,
ACB.

1.1. Proposition. Suppose that f: X—B has the following M -approxima-
tion property: if Xy, X,€X, X{7#X,, then there is GCX and T: fG—~X, TE¢M,
such that x,, x,€G and

(1.2) d(Tof(x), x) < d(xy, x5)/2
for all x€G. Then f is injective.
To prove this suppose that f(x;)=f(x,), x;=x,. Then
d(xy, x5) = d(Tof(xy)), x;)+d{Tof(x5), X,)

= d(xy, x9)[2+d (x1, X2)[2 = d (X1, Xy)
is a contradiction.

In this paper we choose X to be a domain D in R", n=2, with a certain uni-
formity property and .# a subclass in the set GM (n) of all M6bius transformations
of R". It turns out that if f: D—R" satisfies one of the following conditions (a)—(d),
then f has the .#-approximation property with respect to an appropriate family
A GM(n) and thus, by 1.1, £ is injective:

(a) locally bi-Lipschitzian with a small Lipschitz constant,

(b) quasiregular and #=3 with a maximal dilatation near 1,

(¢) analytic with a sufficiently small Schwarzian norm in DCR?,

(d) an analytic function with the expression |f”(z)/f’(z)| small in DcC R2.

The case (a) generalizes a theorem of F. John [J], who was the first to prove
a non-trivial approximation result for bi-Lipschitz mappings in terms of rigid motions.
John’s method was generalized by Ju. Resetnjak [R] to cover GM (n) and the approxi-
mation of type (1.2). Especially (b) is essentially based on his work.

The class (c) gives a generalization of Ahlfors’ injectivity result [A], and (b)
can be regarded as a counterpart of his theorem in R", n=3. The class (d) has
been considered by Duren, Shapiro and Shields [DSS] and by Becker [B]. In the
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complex plane it is possible to use more direct methods than ReSetnjak’s result

to obtain .#-approximation results and hence injectivity theorems, e.g., we give

a new proof to Nehari’s injectivity theorem [N] without the best possible constant.
The paper is organized as follows: Chapter 2 is devoted to the study of so-called

uniform domains, especially uniform domains in R? are treated in detail. In Chap-

ter 3 the classes (a) and (b) are considered and Chapter 4 deals with (c) and (d).
Notation will be standard and generally as in [V].

2. Uniform domains

Two basic concepts, a John domain and a uniform domain are introduced.
We prove that uniform domains are invariant under quasiconformal (qc) mappings
of R". The last section is devoted to the study of uniform domains in R2. It is shown
that in R? each boundary component of a uniform domain is either a qc circle or
a point and especially a Jordan domain is uniform if and only if its boundary is a
qc circle.

2.1. John domains. Let 0<a=f<o. A domain DcCR" is called an (a, f§)-
John domain, denoted by D€J(a, f), if there is x,€D such that every x€D has
a rectifiable path y: [0, d]—D with arc length as parameter such that y(0)=x,
y(d)=x, and

(2.2) d=B,
2.3) dist (y (1), dD) = %t for all  £€[0, dJ.

The point X, is called a center of D. A domain D is called a John domain if D€J(x, )
for some o, B. The class of all John domains in R" is denoted by J.

2.4. Remarks. (a) John domains were introduced by F. John in his study [J]
of approximation of bi-Lipschitz mappings.
(b) If D€J(x, B), then diam (D)=28.
(¢) A convex domain D is a John domain is and only if it is bounded; in fact,
DeJ(a, B) if and only if there is xo€ D with B"(x,, a)CDC B"(x,, B).

2.5. A characterization of John domains. Since the image of a rectifiable path
under a qc mapping need not be rectifiable, it is useful to introduce a variant of the
definition which does not employ rectifiability.

Let %5 denote the class of all bounded domains D in R* with the following
property: there are 0<d6=1 and x,€D such that for every x€D there is a path
v: [0, 1D with y{0)=x, y(1)=x, and

2.6) ylo, 1< B (y(), —;—dist (v(0), oD))

for 0=¢=1. The subclass of those domains in ¥} satisfying (2.6) for a given J is
denoted by %5(9).
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27. Lemma. J(o, f)CBp(a/f) and if DECy(8) for some 6€(0,1], then
DeJ(l/p% @l), where I=diam (D) and @ =1 depends only on n and 8. Thus €p=J.

Proof. Suppose that DeJ(x, f). By 2.4 (b), D is bounded. Let x, be a center
of D. Fix x€D. Let y: [0,d]—~D be a path as in the definition of a John domain.
Define y,: [0, I]-D by 7,(t)=y(dt). For 0=s=¢t=1 we have

B

P @)= ()| =d(@t—s)=dt = - dist (y(d1), D) = gdist (71(2), OD).

Consequently, for d=a/f the path y, satisfies (2.6) and thus D€E%g(0).

To prove $zcJ is technically more difficult. Suppose that D€%5(0), 6€(0, 1].
Fix x€D. Let y: [0,1]-D be a path as in 2.5 with y(0)=x=7y(1)=x,. First we
construct a rectifiable path y;: [0, d]-D with arc length as parameter such that
71(0)=x, y(d)=x, and
(2.8) dist (y, (1), 0D) = 2-™5"t for t€]0, d].

To simplify the construction we perform a change of parameter in y. The mapping
f: 10, 1]1-0, 4],

f@®) = (1+0)(max [yp(s)—x|), [0, 1],

0=s=t

a=2maXg=s=; |7(s)—x|, defines a homeomorphism since we can clearly assume
y(s)#=x for s€(0,d,) for some 6,>0. Let o=y of~1: [0,a]-D. Now by (2.5
for every z€[0, 1]

%dist (y(»), oD) %Org?; ly(s)—x| = %f(t).

Hence the path o satisfies the inequalities

2.9 o(t)—x| =1,

(2.10) et = dist (o (r), dD), &= 5/4
for all ¢€]0, a].

Define a sequence #,=f,=...=0 inductively as follows. Put #z,=a, and if
t;€[0, a] is defined, let

tivq = inf {t€[0, ]]: lo(H)— 0o (2)] = e1,/2}.
Set x;=0(t), i=0,1,.... Observe that x;,, may coincide with x, whence x;.,=x

for all k=1,2,.... By (2.10) we have B"(x;,et;)cD for all i.
Next we show that there is an integer x=x(n, ¢) such that

1
@2.11) ik =5

Fix an integer . We use a packing argument. Suppose that

t; for k=zx and i=0,1, ...

t:>—1

J 2 i j:i+1,l+2, ...,i-l—k.
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Then x;#x, j=i+1,...,i+k, and x,¢B"(x;,et;/2) whenever i=j<I=i+k.
Therefore, the balls B;=B"(x;, ¢t;/4), i<j=i+k, are disjoint, and by (2.9)

B;c B"(x,2t;) for j=i+]1,..,i+k.

Thus if m refers to the Lebesgue measure in R" and Q,=m(B"),

i+
Q,2t)" = m(B"(x,2t)) = > m(B;) > kQ,(et,/8)".
Jj=i+1
This yields k<2*"¢™". We now obtain (2.11) by choosing the integer » in such a

way that
0=3x—21g " <],

Furthermore, (2.11) implies that #\ 0 and x;—>x as i—oo.

Define a path y,: [0, d]—D as the broken line joining x; to x;4,, i=0, 1, ...,
with arc length as parameter. We show that d<eo, i.e., y, is rectifiable, and that
y1(t)=7y,(d—1), t€[0, d], is the required path in (2.8).

Fix t€[0,d) and set y=y,(¢). Then y lies on the line segment joining x;,
and x; ., for some jy. Let /;=c> denote the length of y,|[t, d). We have by (2.11)

b 1 oo ((k+1)x—1 1 S i
§§ Xj+1— ;stj/ 2“2‘ ;( gx t,o+j)§—2-ak§)x2 t;, = exty,.
On the other hand, dist(y, 3D)§st,.°/2 by (2.10) since x; ,,€B"(x; , et; /2). Because
1, =0, we get

dist (y,9D) _ ety/2 _ 1 1 = p—ngn
I, = ext;,, 2% 2(Q2%e7"+1)

IIV

Thus [, =ext; =exty<eo, and since 275mgn=27"§" y, is the required path.
To complete the proof we observe that since D<%p, the domain D is bounded
and, consequently, in the above construction

a= 2012asx1 [y(s)—x| = 2 diam (D).
Thus if we let /=diam (D),

d = enty = exa = g(l +24ng=m) g = 2875 "],

On the other hand, the property D€%(8) implies that B=B"(x,, dl/2)c D.
Let now x€D be arbitrary. We may assume that x¢B. Let 7,;: [0,d]—-D
be the path constructed above. By (2.8)

dist (y, (1), 0D) = 2"t = 2-" 5" dt/d = 2~ 5"+ t/d;

thus for a=27%"§""1] B=25"§""] the domain D is in J(x, f). If we set p=2%"5""
the proof is complete.
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2.12. Uniform domains. Let O<a=f<o. A domain DCR" is called (x, §)-
uniform if for each pair x, y of points in D, x>y, there is GEJ(a|x—y|, B]x—y]|)
such that x, y¢GcD. The collection of all («, f)-uniform domains is denoted by
U(x, B). A domain DcCR" is called uniform, and written as DeU, if DeU(a, )
for some a, f.

2.13. Examples and remarks. (2) It is not difficult to see that B"(x, r)e U(1/2, VE/ 2)
and R'c¢U(1/2,e+1/2) for every &=0.
(b) A John domain need not be uniform, e.g.,
D = BN\{x€R": x, =0, x, = 0}
is a John domain but not uniform.
(c) Properties of convex sets imply: If DeJ is convex, then D€EU.

2.14. Quasiconformal invariance of uniform domain. Let DCR" be a domain
and f: D—R" a bi-Lipschitz mapping, i.e., for some L=1
x=yl/L = |f(x)—f)| = LIx—y|

for all x,yeD. It is easy to see that if D€J(x, B), then fDeJ(L 3w, LB). This
implies that if D is uniform, D is also uniform. However, simple examples show
that if f: D—~R" is qc and D uniform, then D need not be uniform. For instance,
take D=B" and map B" quasiconformally onto a domain D’ which has an out-
ward directed spire (see [GV, p. 56]) and it is easy to see that D’ is not uniform.
For n=2 the Koebe mapping f(z)=z/(1—z)* of B? gives a well-known example.
The next theorem shows that the situation is different if we consider qc mappings
of the whole R".

2.15. Theorem. Suppose that f: R"—~R", n=2, is a K-qc mapping and De U (2, p).
Then fDcU(e? 1/e), where €€(0, 1] depends only on n, K, a and p.

For the proof we need a fairly standard distortion argument.
2.16. Lemma. Let f be as above and ‘
l(x’f9 r) =] inf |f(y)_f(x)[’ L(x’f’ 7‘) :l sup If(y)_f(x)l

y—x|=r y—x|=r

If O<ri=ry<oo, then
@17) L(x, fy r)l(x, £, r1) = c(ryfr)* 7>,
where c<oo depends only on n and K.

Proof. First, reasoning as in [V, p. 79] we get
(2.18) L(x, f,n)]l(x, f,r) = ¢’ = c’(n, K).
Now, let O0<r,=r,<o. By (2.18)
(2.19) L(x, f, r)/l(x, f, 1) = c21(x, f, ry)/L(x, f, 1),
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and we may assume [(x, f, ro)>L(x, f, r1). Let I' be the family of all paths joining
S"(x, r;) and S"(x, ry) in B"(x, ry) and M (I') its n-modulus. Then

00-1 (08 (1(x. £, P)IL (e f, r))=" = M(T) = o M(D) = 2222 (log (/)

where ,_; is the (n—1)-measure of S”~. This combined with (2.19) gives (2.17).

2.20. Proof of Theorem 2.15. Suppose that D€ U(x, f) andlet x’, y'€fD, x #y’.
Put x=f"1(x") and y=f"1()"). Now there is G€J(x|x—y|, f]x—y|) such that
x,y§€GcD. We show that fGEJ(e2|x"—)|, |x"—y"|/e), where &€(0,1] depends
only on n, K, o« and S.

With =0/ Lemma 2.7 gives G€%,(5). We prove that fGE%y(c*), where
K’ =KY@®=Y and c€(0, 1] depends only on »n and K.

Let x,, 6 and y be as in (2.6) when D is replaced by G. It is sufficient to show that

@.21) (foDI0, 51 € B(fo3(6), 7 dist (for(s), 8G)

for every s€[0,1] with &’ =cd%. Fix s€[0,1]. Set d=dist(y(s),0G). Let ;=
I(y(s), £,d), Ly=L(y(s), f, d/8); for notation see Lemma 2.16. Because B"(y(s),d)C G
and [0, s]c B"(y(s), d/8) we get B'(foy(s), ,)CfG, and thus ; =dist (foy(s), fG),
and

(fop)l0, s] < B"(foy(s), Ly).
To obtain (2.21) we only need to show L,=1//6". But this follows from Lemma 2.16.
Thus fGEB5(0").

In view of the second claim in Lemma 2.7 it suffices to find an upper bound for
diam (fG) in terms of |x"—)’|. Since G€J(x|x—yl|, Blx—y|), diam G=2|x—y|B
by (2.4) (b). On the other hand, by Lemma 2.16,

diam (fG) = 2L(x, f, 2|x—y|B) = 2cl(x, f, |x—y]) = 2c|x'—)’|,
where ¢ depends on n, K and f. This completes the proof.

2.22. Remark. The proof for Theorem 2.15 shows that if f: R"—~R" is qc and
DcR" a John domain, then also fD is a John domain.

2.23. Uniform domains in R%. A Jordan curve C in R? is called a qc circle if
there is a qc mapping f: R2—~R? with fS'=C. Here we show, among other things,
that a Jordan domain in R? is uniform if and only if its boundary is a qc circle.
This gives a new characterization of qc circles.

2.24. Theorem. Suppose that DCR? is a uniform domain. Then each boundary
component of D in R? is either a point or a qc circle in R®
To prove Theorem 2.24 we first introduce a simple metric condition which is

sufficient to make a Jordan curve a qc circle.
A closed set ACR? is said to be of g-bounded distortion, 0<g=1, if for all
X€EANR? and r=>0 the disc B(x, gr) meets only the x-component of 4 N B3(x, r).
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2.25. Lemma. If a Jordan curve CCR® is of q-bounded distortion, then it is a
gc circle.

Proof. Suppose first that «€C. Let z;,z,, z;¢ R® be three points on C in
this order. If g|z; —z,|> |z, —z5|, then clearly C cannot have g-bounded distortion.
Consequently,

21— zo|/|z1— 23] = 1/q.
This is Ahlfors’ condition in [A, Theorem 1], which shows that C is a qc circle.

Next, suppose that CcR%. We may assume O<g=1/2. Again, by Ahlfors’
criterion [A, p. 295], C is a qc circle if

|21— 25| |23— 24 =
|z1— 23] |22~ z4]

(2.26)

for arbitrary four points z,€C such that z, and z, belong to different components
of C\({z;, zs}. We show that (2.26) holds for c=q*.

Let z;, i=1,2,3,4, be four points on C as above. Set a=|z;—z,|/|z;—zs|.
Suppose that «=>1/g% Now |z;—z,|=]|z;—z,|/q since otherwise C cannot be of
g-bounded distortion. But this gives

(2.27) |21z, = |z21—23l/q = |2:— 2,/(2q) < qlz1— 2.

On the other hand, if we set 7=|z; —z,|/|z,—z,| the inequality (2.27) yields

|21 — 24| + |24 — 25| = QIZ1“22H‘|Z4“22| -

t =
EAEA |2o— 2|

tg+1.

This gives t=1/(1—g)=2. Together with
1

2
25— z4| = |z3— 21|+ |2, — 2z, = 1‘4‘“7 |z3— z| §;IZI—23]

the inequality =2 implies (2.26) with c=4/g<1/q"
If B=|z;—z,|/|za—2z,|>1/g?% then the same reasoning gives c<1/g* in (2.26).
Finally, if «, f=1/g%, then (2.26) holds with c¢=1/¢*. This completes the proof.

2.28. Remark. Lemma 2.25 and the proof for Theorem 2.24 together with
Corollary 2.32 below show that a Jordan curve in R? is a qc circle if and only if it
is of g-bounded distortion for some g€(0, 1].

2.29. Lemma. If DCR? is a uniform domain, then each boundary component
of D in R? is either a point or a Jordan curve.

Proof. It is well-known (see e.g. [Ne, Theorem 16.3, p. 168]) that it suffices
to show that D is locally connected at each boundary point x€R2 This means
that each neighborhood U of x contains a neighborhood ¥ of x such that every
pair of points x;, x, in ¥’ N D can be joined in Un D. Let DeU(x, f). We may
assume f=1.
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Suppose first that x€dD n R% Let U be a neighborhood of x. Pick r=0 in
such a way that B2(x,r)cU. Set V=B%(x,r/(48+1)). Fix x;, x,€ V¥ n D. Since
DcU(a, ), thereis GEJ(a|x;—x,, Blx1—x,)) With x;, x,€GCD. Now diam G=
2B |x,—x,|. Hence for every ycG

r 2B2r ro
Y R Y ST I
and so GcUn D. Thus the points x;, x, can be joined in Un D.

Suppose that x=o€0D and let U be a neighborhood of <. Fix r=0 -in
such a way that R®\B2(r)cU. Set V=R B2(4rplo). Let x;, x,€ V n D. Pick G
as above. Then x; and x, can be joined in G by the composed path y;'y,, where y;
is the path joining x;, i=1, 2, to the center of G. If y; meets B2(r) at a point y;=
y:(#), i=1 or 2, then

ly—x| = [y—xi|+[x1—x] = 2Blx1— 2+ r

dist (y;, OD) = %ti = % =yl = %uxix— DE %<4rﬁ/oe—r)
= %(4rﬁ/a—ﬁr/o¢) = 3.

2.30. Remark. It is not difficult to show that for n=2 a uniform domain
is always b-locally connected; see [G, p. 567]. Thus [G, Lemma 5] gives the same
result as Theorem 2.24.

2.31. Proof of Theorem 2.24. Suppose that DcU(x, ) and let CCR® be a
boundary component of D. Then by Lemma 2.29 it is either a point or a Jordan
curve. Thus if C is a Jordan curve it suffices to show, in view of Lemma 2.25, that
C is of g-bounded distortion for some ¢€(0, 1].

Let g=min (o/(2+p), 1/(1+2p)). Suppose that C is not of g-bounded distor-
tion. Then there is x€C and r=0 such that B2%(x, gr) meets a component K;
of Cn B, B=B2(x,r), which is not the x-component K, of CnB. Let U; be the
component of Bn D which contains K; as a part of a boundary, i=1,2. There
are two possibilities: (a) U;=U,. Now it is easy to see that there are points
X1, Xo€ DNB2%(x, r) which can be joined in D only through B?(x, gr). (b) U;#Us,.
Pick x;€B2(x, qr) n U;, i=1, 2. If x; and x, are joined by a path y in D, then clearly
y meets [B2(x, r).

In both cases (a) and (b) there is a domain GEJ(a|x;—x,|, f|x;—Xa|) with
X1, X€GCD. Let y;: [0,d]—~G be the paths joining x; to the center x, of G. In
the case (a) one of the paths, say y,, meets B2(x, gr). Let y,(s)€B?*(x, qr). Then
s=r(l—q) and since B|x;—x,|=d, we have

-;—;-r(l —q) = %_Il_;%t% r(l—gq) < le—ldlizls = dist (y,(s), D) = gr,
which yields «(l1 —g)/f<g. This is a contradiction since g=a«/(x+f). In the case
(b), di=r(1—gq), i=1 or 2. Thus

r(l—q) = d; = Blx;—x,| < 2frg,
which gives 1—g<2Bq contradicting g=1/(1+2p). The proof is complete.
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2.32. Remarks. (a) The proof of Theorem 2.24 shows that every boundary

component of a domain D¢ U(x, f) in R%is of g-bounded distortion, where g depends
only on « and B.
(b) Theorem 2.24 should be compared with a theorem of Gehring [G, Theorem 6]:
Let DcR® be a domain with the following property. There is 6=0 such that
sup,¢p |Sp(2)| dist (z, 0D)*<6 implies that f is injective in D whenever f is analytic
in D. Here S, refers to the Schwarzian derivative of f'in D. Then every boundary
component of D is either a point or a K-qc circle, K depending only on §. This result
with Theorem 4.24 of Chapter 4 gives an alternative proof for Theorem 2.24.

Theorems 2.15 and 2.24 yield

2.33. Corollary. Let DCR? be a Jordan domain in R2. Then D is uniform if
and only if 0D is a qc circle.

3. Approximation and injectivity theorems in R"

An “inverse mapping” approximation theorem due to Ju. Resetnjak is presented.
Proposition 1.1 is then applied to obtain injectivity theorems for locally bi-Lipschitz
mappings in R", n=2, and for quasiregular mappings in R", n=3.

3.1. Approximation theorem of ReSetnjak. Let GM (n) be the set of all Mdbius
transformations T: R"—~R" and let .4 be a subset of GM (n). Suppose that f: D—~R",
DcR" a domain, is a continuous mapping with the following property: there are
numbers 1=0 and 0<g=1 such that for each B"(y, r)cD there exists LE# with

3.2 |Lof(x)—x| = Ar for x€B"(y,qr).
We then say that f has an .#(q, 1)-approximation property.

The theorem of ReSetnjak [R, Basic Lemma] can now be rephrased as follows.

3.3. Theorem. Suppose that DcJ(a, f) and 0<q=1. Thereis )y=0 depend-
ing only on «ff and q such that if 0<A=J, and if f: D~R" has the (g, })-
approximation property, then there exists TEM with
(3-4) \Tof(x)—x| = popA
Jor all xeD and p, depends only on off and q.

3.5. Remark. The proof of [R, Basic Lemma] can be used to show
g (1]2 1400 [ﬁ]z
“= 500\ g) K= 7 o)
3.6. Locally bi-Lipschitzian mappings. A mapping f: G—~R", G a domain in
R, n=2, is a locally L-bi-Lipschitz mapping if for every x,6G and L'>L there
is B"(x,, r)cG such that
YL = [fx)—fW/Ix—y| = L
for all x, y€ B"(x,, ), Xx#y.
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" F. John [J] has proved:

3.7. Theorem. Let f: B"(xy,r)—~R" be a locally L-bi-Lipschitz mapping 1=
L<2. Then there exist a rigid motion T: R"—~R" such that

|To f(x)—x| =c,r(L—1) for |x—x,| = gr,
where q=(1+(L—1)"?/(2—L))~! and c, depends only on n=2.

Theorem 3.3 can now be used to prove global approximation results in John
domains. In fact, a theorem of this type was proved by F. John; see [J, Theorem II].
However, he stated the approximation in the form | f(x)—T(x)|=u4, which makes
no difference to the form of Theorem 3.7 if T is a rigid motion.

In the next theorem we combine Theorems 3.3, 3.7 and Proposition 1.1.

3.8. Theorem. Let GCR", n=2, be an (v, f)-uniform domain and f: G—-R"
a locally L-bi-Lipschitz mapping. There is ¢=0 depending only on n, o and p such that
fis injective in G whenever 1=L=1+c.

Proof. Let 4 be the set of all rigid motions 7T: R"—~R", n=2. Suppose that
GeU(a, f). Write g=(1+¥2)"% Let %,>0 and p,>0 be the constants of Theo-
rem 3.3 depending on n, o/ and g defined above. Let c=min (1/2, (44, Bc,) 7%, Zo/Cy)s
where ¢, is the constant of Theorem 3.7.

Suppose that f: G—-R" is locally L-bi-Lipschitzian with 1=L=1+c. We
show that f satisfies the condition (1.2). Proposition (1.1) then implies that f is
injective.

First we observe that f satisfies the .#(g, A)-approximation property (3.2) with
A=c,c. This follows from Theorem 3.7 since

|To f(x)—x| = ¢,(L—Dr = c,cr = Ar

for |x—x,|=gr whenever B"(x,,r)CG.

Suppose now that x;, x,€G, x;7#x,. Since G is («, f)-uniform, there is
DeJ(a|x;—xs|, Blx;—x,) with x;, X, DCG. The mapping f|D has the .#(q, /)-
approximation property for A=/,; hence, by Theorem 3.3, there exists T€.# with

1 1
[Tof(x)—x| = poABx,—Xs| = pofcyc|xi—xa| = vy X1 — x| < _z'lxl_x2i'
This is (1.2) and the theorem follows.
3.9. Remark. F. John proved an injectivity theorem of type 3.8 for bounded

convex domains which are uniform by 2.13 (¢). However, his method was different
from ours.

3.10. Quasiregular mappings in R", n=3. A mapping f: G-R", GCR" a
domain, n=2, is called K-quasiregular if fis ACL" and

@3.11) If®I" = KJ(x, f)
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for a.e. x in G. The smallest K for which (3.11) is true is denoted by K(f). For the
theory of quasiregular mappings in R", n=3, we refer to [MRV 1—2].
As a counterpart of Theorem 3.7 we prove (see also [R, Lemma 3D

3.12. Theorem. Let f: B"(x,, r)—~R", n=3, be a non-constant K-quasiregular
mapping. There is a function 1,: [1, <)—~[0, =] and q,€(0,1) both depending only
on n such that
(3.13) AA(ONO as t—1, and
(3.14) there is T€GM (n), depending on f, such that

|To f(x)—x| = r1,(K)
for |x—xy|=q,r.

Proof. By [MRYV 2, Theorems 2.3 and 4.6] there are K,>1 and 0€(0, 1), both
depending only on 7, such that any non-constant K,-quasiregular mapping f: B"—>R"
is injective in B"(g). Let g=g,=¢/2. For such f define

A(f) = 2inf { sup |Tof(x)—x]: TeGM(n)}
Ix|=q

and let

oo, if K > Ko,

A (K) = { , .

sup{A(f): K(f)=K}, if 1=K=K,.
Clearly 2,(K))=4,(K,) if K;=K, and by Liouville’s theorem in R", n=3, 1,(1)=0.
We claim that

(3.15) %‘\‘Pl 2 (K) = 0.

Suppose that the limit in (3.15) is 4,>0. Then we can choose a sequence
Jit B"(2q)—~R", i=1,2, ..., of non-constant K;-qc mappings such that
(3.16) KN\1 and A(f)=1,/2=0 forall i.

Choose Mdbius transformations in such a way that 7o Siy)=y for ye{0, ge/2, ge}
and for all i where e€S"™" is fixed. By a normal family argument (see [V, Corollary
19.5 and Theorem 37.2]) we may assume that the sequence 7)o f; converges uni-
formly in B"(q) to a Md&bius transformation 7. Then 7T'(y) =y for yc{0, ge/2, ge}
and hence T is a rotation keeping the axis {te: t€R} fixed. This implies

5 HF) = sup T4 T 0 (0~ x| = sup |T(T-10T,0f,(x)—x)
Ix|=q Ix|=gq
= sup [T;ofi(x)—T(x)] >0 as i-c
Ix|=q
contradicting (3.16). This proves (3.15).

Now 4, defined above satisfies (3.13). To prove (3.14) let f: B"(xy, ¥)>R"
be as in the theorem. Put g(x)=f(x,+rx) for x€B". Then by the definition of
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2A,(K) there is T,€GM(n) such that |Tyog(x)—x|=1,(K) for |x|=q. Now for
|x|=q and T(y)=rTi(»)+x, we get

(/N |Tof (xo+rx)—(xo+rx)| = [Trof (xo+rx) +(1/r) %0 — (1/7) (%o + rX)]
= [Ty 0g(x)—x| = 2,(K).

This implies the inequality in (3.14).
As in Theorem 3.8 letting #=GM(n) Theorems 3.3, 3.12 and Proposition
1.1 yield

3.17. Theorem. Let G be an (a, B)-uniform domain in R", n=3. There is a
constant ¢=>0 depending only on n, o and B such that f is injective in G whenever
f: G—>R" is K-quasiregular and non-constant with 1=K=1+c.

3.18. Remarks. (a) In [S] Theorem 3.17 was proved, by a different method,
in the case G=B"(x,, r), n=3.
(b) For R? Nehari [N] proved: if f: B>~ R?is analytic and sup,,,_, [S;(z) (1 —|z[*)?|=
2, then f is injective. L. Ahlfors in [A] generalized this as follows: if f: G—~R? is
analytic and 0G is a qc circle, then there is d=0 such that fis injective in D when-
ever | S| =sup,cq |Sp(2)] dist (z, 0D)*=5. Now the result in [S] and Theorem 3.17
can be regarded as extension of the theorems of Nehari and Ahlfors, respectively,
to R", n=3, since the Schwarzian norm can be replaced in any domain GCR",
n=3, by log K(f) for a non-constant quasiregular mapping f: G—-R". Observe
that log K(f) and [|S;| enjoy the same fundamental property: they vanish if and
only if f=T|G for some T€GM (n).

4, Injectivity theorems in plane

4.1. In this chapter we apply Proposition 1.1 to plane analytic mappings to
get injectivity theorems similar to Theorem 3.17. Instead of the dilatation K(f)
we use f”/f’ and the Schwarzian derivative S,=(f"/f") —(1/2)(f"[f’)* as distor-
tion measures. For them the existence of an approximation of type (1.2) can be
proved directly without ReSetnjak’s Theorem 3.3, and this leads to injectivity results
quantitatively better than the application of 3.3.

4.2. Let f: D—~C be analytic in an open set DcCC, z,¢D and T an analytic
function in a ncighborhood of f(z,). Consider the following series expansion:

4.3) Tof(2)—z = ay+a(z—zp) +as(z—zg)2+....

If the first coefficients a,, a;, ..., @, vanish, we may consider T a local approxima-
tive inverse mapping of f at z,. The approximation is the better the larger & is.
Especially, we may look for the best possible approximation 7 in a given function
class .#. Three classes are of special interest here: #,={T€GM (2): T is translation},
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My={TeGM(2): Tis affine} and #,=GM (2). Itis easy to see that the best approxi-
mation T€.#, exists and is uniquely determined by the condition @,=0 in (4.3),
and for this 7 we have a;=f"(z,)—1. The following lemma shows that also in the
classes .#,, k=1, 2, the best approximation exists and it is uniquely determined by
the conditions ;=0, 0=i=k. Here f"(z,)/f’(zo) and S;(z,) appear as (k+1)! a4,
k=1, 2, respectively.

44. Lemma. Let f: D—C be analytic, zy€D and f’(z,)#0.

(1) There is a unique TEMy such that Tof(zy)=z, and (Tof)(zo)=1. For
this T we have (Tof) (zo)=f"(zo)/f (2o)

(ii) There is a unique TEMy such that Tof(zg)=z,, (Tof)(zp)=1 and
(Tof) (29)=0. For this T we have (Tof)” (zo)= S;(zo).

Proof. The proofs are easy to obtain by the Taylor expansion of f at z,. We
consider only the case (ii). We may suppose that f(z,) =0 and z,=0. Leta, b, ¢, d€C,
ad—bc0, and consider the M&bius transformation 7'(z) =(az+b)/(cz+d). Because
f(0)=0 and (7of)(0) should vanish, =0 and d>0. We may suppose d=1.
Substitute the expansion

@) = O 45 S O+ O+

into the expression Tof(z)—z=af(z)(¢f(z)+1)"1—z, and observe that it is of the
form azz®+a,z*+... if and only if a=1/f'(0) and c¢=(1/2)f"(0)/f"(0)2, which
coefficients yield

= HFE- 3N - 50

The lemma is proved.

4.5. Remark. For the Schwarzian derivative the above lemma gives an alterna-
tive characterization which emphasizes the connection to the approximation of
(4.3) with 4;=0, i=0, 1, 2. Note that from this characterization one easily obtains
the basic relations: Sro,=S; and S;y=0 for all TeGM(2).

4.6. If f: D—~C is analytic and injective in a domain DcC, then
4.7 If"(2)f'(2)|dist(z,0D) =4 and
(4.8) S, (2)| dist (z, dD)* = 6
for all zeD, and the bounds are the best possible. For (4.8) see [G, Cor. 1]. To
prove (4.7) let zé D with r=dist (z, 0D)<oo. Define g(w)=[f(z+rw)—f(@))/[rf ()],
lw|<1, and write g(w)=w+a,w?+a;w®+.... Because g is univalent in B2, we
have 2=|a,|=(1/2)r|f"(2)/f'(2)|, and (4.7) follows. The function z/(1+2)?, |z|<],

shows that 4 is the best possible in (4.7). These relations suggest the use of the left
sides of (4.7) and (4.8) as distortion measures rather than |f”/f’| and [S,| in
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the following discussion. The following Theorems 4.9 and 4.14 show that in John
domains the local approximation results of Lemma 4.4 can be made global as in
Resetnjak’s Theorem 3.3.

4.9. Theorem. Let DcC be an (o, p)-John domain, O<a=f <o, f: D~C
analytic, f'(z)#0 for all zéD and

Je) L
'Ol dist(z,0D)| = k 5 for all z€D.

Let z,cD be the center of D and T(z)=a+bz for z€C with a=z,—f(20)/f (20
and b=1/f"(z,), i.e. Tof(zg)=z, and (Tof) (zy)=1. Then

Tof(a)—z = <01 (,f(/ﬁ/))

Proof. Let z€D, z#z,. Let y;: [0, d;]—~D be a rectifiable path with arc length
as parameter and such that y,(0)=z,, y,(d) =z, d;=f and

(4.10)
B for all zeD.

dist (y,(2), 0D) = (dl—t) for 0=t=d,.

Let kf<o'<a. Itis not difficult to see that we can replace y; by a rectifiable Jordan
arc y: [0, d]-D with arc length as parameter and such that y is (finitely) piecewise
affine, y(0)=z,, y(d)=z, d=d,, and

4.11) dist (y(7), 0D) = ——(d—t) for 0=t=d.

Then it is easy to choose a simply connected domain GCD in such a way that
7[0, d]lc G. Observe that the function

o= fon{ [ arsa. v

Zo

is a solution of the equation
p f”(u)
4.12 u)—

with ¢@(z))=z, and ¢’(zy)=1. Because Tof is also a solution of (4.12) with
the same initial values at z,, we have, by uniqueness, Tof(u)=¢(u) for ucG. Set

y'(u) =0, u€gG,

h(u) = J{f”((w)) dw, u€G.

We obtain

d
(4.13) Tof(z)—z| = f [exp (hoy (1) — 1]y (1) dt

éf [exp (|hoy(@®)])—1] dt.
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On the other hand, by (4.10) and (4.11)

LGOI

00/~ 523 02 f

§fk—£—(d—s)'1ds=log[[d—it]k’],

where k’=kp/o’/. Substitute this into (4.13) and get

ITof(z)—z| = ﬁd—d = Tf—kﬂ

Finally let o’—o and the theorem follows.

4.14. Theorem. Let D C be an (o, f)-John domain, 0<a=f<o, f: D->C
analytic, f'(z)#0 for all z€D and

4.15) 2(S,(2)| dist (z, 0D)* = k < (%]2 for all zeD.

Let z,¢D be the John center of D and T the unique Mobius transformation with
To f(zo) =29, (To f) (zg)=1 and (To f)"(zy)=0. Then

k(B/x)*
(4.16) |Tof(z)—z| = T k(B

Proof. Let z€D, z#z,. Let y: [0,d]—~D be a rectifiable path with arc length
as parameter such that y(0)=z,, y(d)=z, d=f and

B for all z€D.

4.17) dist (y(1), 0D) = 5 (d—t) for 0=t=d.

The reasoning in the proof of Theorem 4.9 shows that we may assume y to be a
piecewise affine Jordan arc.
Let g=To f: D—~C. Then g is meromorphic and
(4.18) g(z) =z, g(z9) =1 and g"(z) =0.
Furthermore, Sy(z)=S,(z)=(g"/g’) —(1/2) (g”/g")?, and so

“4.19) w'(2)= Sf(z)—!-—;-w(z)z, w(z,) =0, where w(z)= % z€D.
We show that
(4.20) wEO)| = k—— for 0=1t<d,

o? d—
after which we can proceed as in Theorem 4.9. To prove (4.20) begin with abserving
that ¢ (t)=k(B/e)*(d—1t)~%, 0=t<d, satisfies the differential equation

kp?

4.21) o' () = x(t 1—%(/)(02, 0=t<d and ¢(0)= 2’
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where x(t)=(k(ﬂ/<x)2—(1/2)(kﬁ2/a2)2)(d—1)‘2. Let

0® = w(0)] +2E

for 0=tr<d.

Let S={s€(0,d): w(y(¢)) bounded for €0, s]} and 1, =sup S. Note that S0
by (4.18). Because w is meromorphic we only need to prove (4.20) for #€[0, z,) since
then we have #,=d.

Now w: [0, #;)~R is absolutely continuous on closed subintervals of [0, ,).
We get for almost every 7€[0, #;) by (4.19), (4.15) and (4.17)

W@ = [ GO O] = v 6O) = | 5,60)+ 2w GO
p

= ]S,(y(t))!-l—%w(t)z = %k [glz(d—t)‘“r%co(t)2 = %(t)—l—%w(t)z.

Next, define for ¢€[0, #,)

:f; + f [%(s)-{——é—w(s)z] ds = ff; + Of '(s) ds = o(2).

Y@ =
Then ¥: [0, #;)—~R is continuously differentiable and
4.22) W) = x(t)—l—%a)(t)z = x(t)+%¢(t)2 for 0=¢=¢,

and ¥ (0)=kp?/oa*d. Then a standard differential inequality reasoning (see e.g. [BR,
p. 22]) yields
Wo@)| =0 =y@) =@ for €[0,1).

This proves (4.20).

Let 5€(0,d) be arbitrary. Because y is a piecewise linear Jordan arc, we can
choose a simply connected domain G D in such a way that y[0, s]cG. By (4.20)
w=g”[g’ is analytic on y[0, 5], and therefore we may assume that g”/g’ is analytic
in the entire G. Now, g is in G the unique solution of the equation

”
” ’

y_/y:()
g

with g(zg)=z, and g’(z)=1 by (4.18). This implies, by uniqueness,

u

’ g’ (1) ]
v) = | ex —=——=dt|ldu+z,, vEG.
Write

_ d g” ()
h(u) = f Lo an uca.

2o
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Then due to (4.20) we get

lIA
A
&~

@) =| [ we@) e ar

T
- izt -l
=Ofk°‘2 d__rdr—log[ d—t) , 0

where k’=kp?/a?. Furthermore, we get, as in Theorem 4.9,

(4.23) lg(r()—7()| =

[ Texp (@)~ 117 @) dtl

(4 R P S
=0f[[7_—t]—1]dt—-1—_—k;(d & ([d ') —s = T d—s.

Let s—d and, because g=To f is meromorphic, (4.16) follows from (4.23). The
theorem is proved.

4.24. Theorem. Let f: D—~C be analytic in an (a, B)-uniform domain DCC,
O<a=pB<oo, and f'(z)#0 for all zeD. If either

2l

o

@) S?E THE) dist (z, 0D) < 7 @p+11,

or

(ii) sup |S, (2)| dist (z, aD)? < i(ﬁ)z(zﬁﬂ)—l
2D j‘ B 2 ﬁ 1)

then f is injective in D.

Proof. Observe that if z€Gc D, then dist (z, dG)=dist (z, 0D). The proof fol-
lows now from Theorems 4.9 and 4.14 and Proposition (1.1).

4.25. Remark. Let D be the unit disk and f: D—C analytic with f’(z)=0
for z€D. By Becker [B] and Nehari [N] fis injective if sup,¢, | f"(2)/f(2)|(1—]z])<
1/2 or sup,.p |S/(2)|(1—|z[)*<1/2. We can compare this to the above theorem.
By 2.13 (a) DcU(1/2, ¥2/2) and for these « and B (they are not the best possible)
we get (o/f)(2B+1)71=0,292... and (1/2)(«/B)*(2f+1)"1=0,103.... The above
theorem also extends Ahlfors’ theorem [A], because a plane domain whose boundary
is a K-qc circle is (o, B)-uniform with « and # depending only on K; see Theorem 2.15.
Observe that the proof of 4.24 (ii) is different from that of [N]. Especially, we did
not use the well-known fact that if S,;=20Q, then f= V1/ys, where y;, i=1,2, are
solutions of y”+Qy=0.

4.26. Theorem 4.24 can be improved if it assumed that | f”/f"| and |S;| are
uniformly small in the domain D. This leads us to consider quasiconvex domains.
We say that a domain DCR", n=2, is g-quasiconvex, ¢=1, if any x, y€D can
be joined in D by a rectifiable path whose length does not exceed o|x—y|. Note
that an («, f)-uniform domain is 2f-quasiconvex.
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4.27. Theorem. Let DCC be a o-quasiconvex domain, diam (D)=d<o, and
f: D—C analytic with f'(z)#0 for all z¢D.

) If sup,cp |f7@/f (2)|=k<wuy/(do®), then f is injective. Here x;=1,256 ...
satisfies e*1=142x,.

(i) If sup,.p |SH(2)|=k<2x3/(d*c®), then fis injective. Here x,=1.165... sat-
isfies 2u,=tan x,.

Proof. Suppose that f(z,)=f(z,) for some z;,z,(D, z;#z,. Let GCD be
a simply connected domain and y: [0, /]~G a rectifiable curve, arc length as para-
meter, such that y(0)=z,, y(!)=z, and /=or, r=|z,—2z|>0.

To prove (i) let TeGM(2) be affine such that Tof(z;)=z; and (Tof) (z;)=1
By reasoning as in Theorem 4.9 we get

r=|22—21[=|Tof(z2)—zl—(zz—zl)|=‘f2[e).(p( }‘((”)) )—l]du

l
=[ [e"'—l]dt=%(e"’—-l)—léazrqu)(kad),
0

where @ (x)=x"2(¢*—1-—x), x>0, which implies

(4.28) 21 - = ko (kod).

Note that ¢(x;)=x;'. By assumption k=<x,/(do?), which yields kod<x,c-'=
%,. Therefore, kx;'=ke(3%)>ko(kod)=1/(c®d) by (4.28). This is a contra-
diction.

To prove (ii) let T€GM(2) such that g(z;)=z,, g'(z))=1 and g"(z,)=0 for
g=Tof. Observe that ¢ (t)=atan (at/2) satisfies ¢ (0)=0 and ¢’(t)=k+(1/2) ¢ (t)?
for 0=ta<n and a=(2k)"?. By reasoning as in Theorem 4.14 we get

r=ln— 2l = gz — 21— (20— 2| = [ f 2 [exp(z f i((;’)) o)1) au

= [ ool foun()a) ]~ Zun(2) 1=

= 2By (al) = a?63r3y (aod),

where a=a/2 and Y (x)=x"%(tan x—x) for x=>0. This implies

1
3d2
Note that Y (x)=x;> By assumption k<2xid 2¢~%, which implies aod=
(k/2)Pod<n,067V2=x,. With (4.29) this yields o 3d =y (doa) <oy (x,)=
k/(2%2), which is a contradiction. The proof is complete.

(4.29) = o? Y (doo).
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