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ON SPECTRAL PREDICTION ERROR FORMULAS
FOR STATIONARY RANDOM FIELDS ON 272

H. Niemi

1. Introduction

We are concerned with analytical expressions for the prediction errors of sec-
ond order stationary random fields zm,n, (m,n) € Z%. The study of prediction
theory of stationary random fields goes back to Chiang Tse-Pei [1] and Helson and
Lowdenslager [2], [3]. More recently several authors have treated different kinds of
prediction theoretical problems for stationary random fields, cf. e.g. [4]-[11] and
[13].

Let m,n, (m,n) € Z2, be a stationary random field. Mainly the following
prediction problems have been treated in literature

(i) the half-plane prediction error

(1.1) lle!(@)1? = llzo,0 — Projzp(s; i:j<okez)To0ll%,

(i1) the lexicographic prediction error

(1.2) le2(z)1? = llzo,0 — Projsp(z; »:i<0,keZ or j=0,k<0}0,0/|%,
(iii) the extended half-plane prediction error

(1.3) le*@)II* = llwo,0 = Profspia; :i<o,kez,G iz 0.0) %00l
(iv) the quarter-plane prediction error

(1.4) lle*(2)]1* = llzo,0 — Projsp(a; ,:i<0,k<0}o,0ll*-

Analytical expressions for |e!(z)||? were obtained independently in [5] and [8]
(cf. [1]) and, respectively, for ||e?(z)||? in [2]. Corresponding results for ||e3(z)]||?
have been obtained in [6] and [11].

Our main result is an analytical expression for ||e*(z)||? under the strong
commutation condition, introduced in [4] (cf. Theorem 3.9 and 3.10). Our results
are based on the four-fold Wold decomposition for stationary random fields having
the strong commutation property obtained by Kallianpur and Mandrekar [4] and
its spectral counterpart obtained by Korezlioglu and Loubaton [8] (cf. [5]). We
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244 H. Niemi
also make use of the spectral representation theorems for the horizontal and, re-
spectively, vertical innovation fields of ., 5, (m,n) € Z2, obtained by Korezlioglu

and Loubaton (8].

As noted earlier, our main results are derived under the strong commutation
condition. Sufficient spectral conditions for the strong commutation condition to
hold have been obtained by Soltani [13] and Miamee and Niemi [10].

2. Geometrical interpretation

Let {m,n} be a stationary random field. The information sets generated by
observations ., (m,n) €S (C Z?), are defined as closed linear subspaces of

L?(Q,A,P) as follows:

H, =3p{z;x : (j, k) € 2%},

Hi(m)=3p{zjk: j<m, k€ Z}, H(-00)= ez Hi(m),

Hi(n) = 5p{z;0: j € 2, k<n}, H(=00)=(,ez H(n),

Hyt(m,n) = Hy(m) V5p{@ms1,k: k <n},

HZ*(m,n) = Hi(n) V3p{zjn41:J <m},

H(m,n) =3p{zjx: j <m or k< n} ,Hy(m,n)=3p{zjkx: j <mk<n}
and, in general, for an arbitrary S C Z2

Hy(S) =5p{zjk: (4,k) € §}.
Furthermore, for any closed linear subspace M C H, we define

Tmn/M = Projyzmn,, (m,n)€ Z2

2.1. Definition. A stationary random field {z,, ,} is
(a) horizontally deterministic, if Hl(—o0) = H,,
(b) horizontally purely non-deterministic, if H.(—oo) = {0},
(c) vertically deterministic, if H2(—o0) = H,,
(d) vertically purely non-deterministic, if H2(—oo) = {0},
(e) strongly purely non-deterministic, if H}(—oo) = H2(—o0) = {0}.
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Recall that any stationary random field {z, } admits two-fold Wold decom-
positions of the form

Tm,n = o n(2) + Spo,n(2),
with
Stn(@) = Tmn/Hi(=00), Ry n(2) = Tmpn— Sy n(e), i=1,2.
The component {R}, ,(z)} (respectively {R?, ,(2)}) is horizontally (respectively

vertically) purely non-deterministic and {S}, ,(z)} (respectively {S2, .(z)}) is
horizontally (respectively vertically) deterministic. The stationary random fields

W,{,,,,(x) = Bmm — T a/HL(m —1)
respectively
W2 () = Tmm — Tmn/H2(n—1)

are the horizontal (respectively vertical) innovations of {zmn}. It is well-known
that

(2.2) Hk.(z)(m) = H{)V.(z)(m), l = 1,2.

2.3. Remark. Our method to obtain an analytical expression for the pre-
diction error (1.4) is based on the spectral representation of the innovation fields
{W,‘n’n(w)} , © =1,2. The formula (2.4), going back to Korezlioglu and Loubaton
[8], p. 155, shows that e?(z) can be obtained as the one-step prediction error of
the stationary sequence {Wg ,}nez.

2.4. Proposition. Let {2, n} be a stationary random field. Then
(24)  (2) = Wio(2) = Wio(a)/ Hwn ({0, k) € 2215 = 0,k < 0}).

The next commutativity property was introduced by Kallianpur and Man-

drekar [4].

2.5. Definition. A stationary random field {zm, } has the strong commu-
tation property, if

Proj gy (myProjuz(n) = ProjH,(mm), (m,n)€ 22

2.6. Remark. Each of the conditions (2.6.a) and (2.6.b) is equivalent to the
strong commutation property:

(2.6.a) Projys(myProjuzn) = Projuz(n)Projui(m) and
H,(m,n) = H{(m)Nn H(n), (m,n)€ 2%,

(2.6.b) Hl(m)© Hy(m,n) L HX(n) © Hy(n,n), (m,n)€ 22
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2.7. Lemma. Let {z,, .} be a stationary random field having the strong
commutation property. Then

(2.7.2) H;(m,n) = Hy(m,n) & [H;(m)© Ho(m,n)] & [Hi(n) © Ho(m,n)],

(2.7.b) H.({(G,k) € 2% :j <m,k <n}\{(m,n)}) =
Hy(m—1,n—-1)® [Hy(m,n—1)6 Hy(m — 1,n — 1)]
&b [Hz(m“‘ l,n)eHz(m" 1,n— 1)]’
(2.7.c) Hit(m,n) = Hy(m,n) @ [Hi(m) O Hy(m,n)]
@ [Hz(m + l,n) S} Hz(man)]’
(2.7.d) HZ*(m,n) = Hy(m,n) ® [Hi(n)© Hy(m,n))
@ [Hz(m, n+ 1) S} H:z:(m, n)] s

(2.7.¢) H,(m,n)6 Hy(m,n—-1)= sz(z)({(j, kyeZ?:5<m,k= n}),
(2.7£) Hy(m,n)© Hy(m —1,n) = Hun (o) ({(j, k) € Z%: j = m,k < n}).

Proof. The statements (2.7.a-d) are obvious. By symmetry it is enough to
present a proof only to the first one of the statements (2.7.e-f). Denote,

S(m_?n)= {(],k)€Z2 :jsmak=n})

and
M = {z — Projp2(n-1yz: 2 € H,;(S(m—,n))}.

It is obvious that M = H Wz(z)(S(m—,n)) . Moreover, by the strong commuta-
tivity
P?"ijg(n_l)z = PTOjHZ(n_l)PTOjHl(m)Z
= Prosz(m,n—l)za z € Hz(S(m_an))v
showing that
M = {z— Projy,(mn-1)z : 2 € Hy(S(m—,n))}.
Since for all z € Hy(m,n — 1), 2z — Projy, (m,n-1)% = 0, it is then obvious that

M = {z — Projy, (mn-1)z : 2 € H,(m,n)} = Hy(m,n) © Hy(m,n —1).

The next result shows that the *-prediction problem, introduced in [13], re-
duces to the lexicographical one when {z;, »} has the strong commutation prop-
erty. The fact that

Tmp/Hit(m—1,n—1) =2, /H (m - 1,n-1), (m,n)€ Z?
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for any stationary random field {z,,,} having the strong commutation property
has been proved already by Korezlioglu and Loubaton [7; Proposition 2.1.4] (under
the assumption Tm /Hit(m —1,n—1)# 0).

2.8. Proposition. Let {zmn} be a stationary random field having the
strong commutation property. Then

(2.9) Tmn/Him—1,n—1)=2my/Hit(m—-1,n-1)
=Zmn/H2(m—-1,n—-1)
= Cmn/Ho({(, k) € 22 : j S m,k < n}\ {(m,n)}).

Proof. By Lemma 2.7
Tmn/Hy(m —1,n—1) = Proju, (m-1,n—1)%m,n
+ [PTOthl(m—l) - ProjH,(m—l,n—l)]wm,n
+ [ProjHZ(n—l) - ProjH,(m—l,n—l)]xm,rr
Furthermore, by the strong commutativity
ProjH;(m—l)xm,n = ProjH;(m—l)Prong(n)wm,n = ProjH,,.(m—l,n)f‘cm,n
and by symmetry
PrOng(n—l)xm,n = PTOch(m,n—l)xm,na

yielding together with (2.7.b—d) all the equalities in (2.9).

In what follows we make heavy use of the four-fold Wold decompositon the-
orem obtained by Kallianpur and Mandrekar [4]. According to Theorems 2.1 and
2.2 in [4] any stationary random field having the strong commutation property -
admits a representation of the form

(2.10&) Im,n = £m,n + C}n,n + C?n,n + nm,na (m’ n) e Zz’

where all the components are mutually orthogonal stationary random fields having
the strong commutation property and

(2.10.b) Hz(m,n)= H¢(m,n) ® Hp(m,n)
® He2(m,n) @ Hy(m,n), (m,n)€ Z2

Moreover,

H}(~00) = H}(~o0) = {0}, Hl(—o0) = HA(—o00) = {0},
(2.10.c) H%(—c0) = Hp, H;(—o00) = Hez,

H}(—o00) = H}(—o00) = H,.
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2.11. Theorem. Let {z,,,} be a stationary random field having the strong
commutation property. If {€m, n} is strongly purely non-deterministic, then

(2.11.2) e*(z) = Wy o(z) + Wi o(z) — doo(2)
with

do,o(z) = To0 — To,0/ HyT(—1,—1) = zo,0 — Zo,o/ HIT (-1, -1);
and

(2.11b) [le*(@)]I* = [Wo,o(@)lI” + IWEo()II* = le*()II*.

2.12. Theorem. Let {zm } be a stationary random field having the strong
commutation property. Then

(2.12.2) e*(2) = €o,0(2) — €o,0(2)/He(=1,=1) + o 0() = Go 0(2)/H(—1)
+ Cg,o(z) - Cg,o(x)/Hg2("1)
with
(2.12.b) €00 — €00/ He(—1,~1) = W5 0(6) + W5o(€) — do,o(£);
and
(2.12.¢) [le* (@)1 = W3 oI + W5o(ONI* ~ lle*(E)II”
+11¢0,0(2) = Go,0(@)/ Hax (=1)II* + 1165 0(2) = €3 o(2)/ HZ(-1))|>-

Proof of Theorem 2.11. We first notice that by the strong commutativity

zo,0 — 0,0/ He(—1,-1) = (I — Projyi(—1)Projuz(-1))%o,0
= (I — Projyz(—1yProjui(-1))Zo,0-

Furthermore, for any projections P; and P, one has I — Py P, = (I — P;)+ Py(I—
P,). Thus, in the present case

To,0 — To,0/He(—1,-1) = Wol,o(f'?) + Wg,o(f”)/Hal:(_l)-
Moreover, by the strong commutativity
W3 o(z)/HY(—1) = Projgi(-1)Projuz)Wso(z) = Proju,(—1,00 W3 o(z),
and since W¢o(z) L Ho(—1,-1),
Proju, (-1,0Wao() = Proju,(-1,06H. (-1,-nWs,0(2)-
By (2.7.e), with S((—=1)—,0) = {(j,k) € Z22:j < -1,k =0},

Hz(—l,O) © Hz‘(_l’ _1) = HW’(I) (8((_1)_5 0))
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This, together with Proposition 2.4, gives
W3 o(e)/Hy(=1) = Wi o(2)/Hwz (S((—1)=,0)) = 20,0/ H;*(~1,-1).
Thus, by applying (2.4) together with (2.9) we obtain
0,0 — 20,0/ Hy(—1,—1) = Woo(2) + W5 ()
— (W5 o(z) = W5 o(2))/Hwz (S((=1)-,0))
= W o(2) + W5o(z) — doo().
The proof of (2.11.b) is obvious.

Proof of Theorem 2.12. It clearly follows from the orthogonality property
(2.10.b) of the four-fold decomposition (2.10.a) that

0,0 — To,0/ Ho(—1,-1) = €00 — €0,0/He(=1,—1) + {50 — (o 0/ Her (=1, -1)
+ (30— ¢ o/Her(—1,—1) 4+ mo,0 — m0,0/ Hy(—1,-1).
Since H}(—o0) = H}(—o0) = H, (cf. (2.10.c)) and since {.nm,,',} has the strong
commutation property it is obvious that H,(—1,1) = H,, yielding
n0,0 — 10,0/ Hy(—1,-1) = 0.

Since {(}, ,} has the strong commutation property and is vertically deterministic,

Hea(-1,-1) = Hu(-1).

By symmetry, He(—1,-1) = ng(—l); finishing the proof of (2.12.a).

Since {€m,n} has the strong commutation property and is strongly purely
non-deterministic one can apply Theorem 2.11 to {{m,n}, giving (2.12.b).

The proof of (2.12.c) is obvious.

3. Analytical solution

Our method to obtain an analytical expression for the prediction error ||e*(z)||?
is based on the spectral representation for the covariance kernel of the innovation
field {W,},,n(a:)} obtained by Korezlioglu and Loubaton [8]. According to Propo-
sition II.2 and (IV.8) in [8] the covariance spectral measure of {W}, (z)} has the
properties

(3.1.a) dvwn (z)(u,v) = 51;; du dpl(v)
with
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(3.1.b) dpi(v) =/ del(z)(u,’U)
and
dpr(v) 1 1 [7
(3.1.¢) el R o log fr(u,v) du

as the absolutely continuous part of dpl with respect to the normalized Lebesgue
measure dv on [—7, 7). By symmetry, the same properties hold for dvy2 (.

3.2. Remark. It clearly follows from (3.1.a) that the covariance spectral
measure of the stationary sequence {VV’OI,"(:AC)}"E 4 is dp}. Furthermore, by the
well-known prediction theoretical results on stationary sequences only dpl(v)/dv
is needed in calculating the prediction error of {Wol,n(z)} needed in Proposition
2.4 (see e.g. [12], pp. 63-71). The spectral counterpart of (2.4) is well-known [2].
However, (2.4) combined with (3.1.c) gives a simple method to obtain

(3.3) le2()]|2 =exp{#/:r /_:logfz(u,v)dudv}.

The next example shows that dpl need not be absolutely continuous with
respect to dv.

3.4. Example. Let {znn} be a bivariate and, respectively, {fm}mez, a
univariate white noise. Assume, in addition fx L Zmn, k,m,n € Z. Define

(3.4.&) Zmpn = Tm,n + fma (mv n) € VAN

Then, Wy, ,(2) = zmn, (m,n) € Z2,i.e., {W} ,(2)}nez, contains a deterministic
component. Moreover, obviously

(3.4.b) dv,(u,v) = dvwi(g) = (2 @7 —— dudv + du ® bo,

where §, is the Dirac measure concentrated at the origin.

Our method to derive an analytical expression for the prediction error ||e*(z)]|?
is based on the spectral counterpart of the four-fold decomposition (2.10.a) ob-
tained by Korezlioglu and Loubaton [8; Corollary III.13] and, under the weak
commutation condition

(35) P’I‘OjH}:(m)PT‘Oszz(n) = PTOszz(n)PTOjHé(m) , mne€Jz,
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independently in [5; Theorem II.12]. According to Corollary III.13 [8], for any
stationary random field {z, .} one has ém n(z) # 0, if and only if

{ ffﬁ log fz(u,v)du > —c0

(3.6) .
S log fz(u,v)dv > —oc0

and, under this condition,

1
(3.7.a) dvez) = (Er-)—z-log fz(u,v) dudv,
1 dvg(u,v)
3.7.b d¢(z) = ——=2——dudpl*(v),
(37.0) (o) = g 2T dudpl (o)
2,y _ L dvz(u,v) 2,3
(376) dc (.’I)) - o dpz,s(u)dv dp:t (u) dv';

where dpl®(v) and dp%°(u) are the singular parts with respect to the Lebesgue
measure of dpl(v) and dp%(u), respectively. For brevity we state the spectral
counterparts of Theorems 2.11 and 2.12 only under the assumption (3.6).

3.8. Remark. Let {z,; n} be a stationary random field. In what follows we
use the notation

" “ -i/ﬂ’ i/ﬂ'
d*(z )—277 _"exp o _”logfz(u,v)du dv

+ 1 exp {i log f(u,v) dv} du

27 J_. 27 J

—exp{(—z—# ‘/;" _ﬁlogfl(u,v)dudv}.

3.9. Theorem. Let {z,, .} be a stationary random field having the strong
commutation property. If {z, »} is strongly purely non-deterministic, then

(3.9.2) dv, < dudv and (3.6) holds,
and
(3.9.5) le(@)]12 = d(*).

3.10. Theorem. Let {2 n} be a stationary random field having the strong
commutation property. If (3.6) holds, then

(3.10.a)  [le(@)lI* = lle* (@I + 1163,0(2) = Co,0(2)/ Hir oy (—DII*

+ 1163 o(2) = €3 o(2)/ HEz oy (= DII?
with
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(3.10.b)  [le*(¢()? = d*(=*),
(3.10.c)  I¢o0(z) = Co,0(2)/Her(y(-D)II* =

/_:eXP {%{-/_Zlog [juy_(;(u—%}_)j] }dP,,- 3(v),
(3.10.d)  [I€3o() = C2o(e)/HEmy (DI =

Before presenting proofs of Theorems 3.9 and 3.10 we continue Example 3.4.

3.11. Example. Let {2z, ,} be defined according to (3.4). It is obvious that
{#m,n} has the strong commutation property and ém,n(2) = Tm,n, (5 n(2) = fm,
€2 4(2) =0, nmn(2) =0, (m,n) € Z%. Moreover,

T 1
dpi(v) = / dvw(g)(u,v) = o dv + 8.

It is obvious, that
Cnn(@)/ Hipy(m—=1) =0 and (g, o(2) = Coun(@)/HE gy (m — 1) = fm.

Proof of Theorem 3.9. Theorem III.12 together with Corollary III.13 in [g]
imply that the properties (3.9.a) hold for any strongly purely non-deterministic
stationary random field. The expression (3.9.b) then follows straightforwardly
from (2.11.b) by using (3.1.c) and (3.3).

Proof of Theorem 3.10. The formula (3.10.a) is just a reformulation of (2.12.c).
Since {€m,n(z)} has, by Theorem 2.1 [4], the strong commutation property (3.10.b)
follows from (3.7.a) combined with Theorem 3.9.

By symmetry it is enough to justify (3.10.c) to finish the proof. It follows
from Theorem II.1 [5] (cf. Proposition II.11 [7]) that

1 1 [7 dv.(u,v) .
dneun) = goewp {5 [ s [ ) o

The formula (3.10.c) follows then immediately.
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