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REPRESENTATION THEOREMS
FOR ANALYTIC FUNCTIONS
WITH QUASIMEROMORPHIC EXTENSIONS

Zerrin Gokturk

This paper is concerned with normalized quasimeromorphic functions of the
extended plane C which are analytic in a domain D of the plane, and have a pole
only at one point. For these functions, which are strictly finitely multivalent in
C, we generalize representation theorems concerning normalized quasiconformal
homeomorphisms of C which are conformal in D. The representation formulas
yield estimates for the power series coefficients.

1. Definitions

A function f is called k-quasimeromorphic in a plane domain D, if f is
spherically continuous and a generalized L2-solution of a Beltrami differential
equation f; = uf, in D, where the complex dilatation p satisfies the condition
lllog < k< 1. )

We introduce the class F¥ of k-quasimeromoprhic functions f of C whose
restrictions to D* = {z | |z| > 1} are meromorphic and of the form

P

oo
(1.1.) f(z)= Zanz”_" + Zap.,.nz“", ag=1, peN,
n=1

n=0

and f(z) = oo only for z = oo.

>_% denotes the subclass of F} consisting of functions f whose singular part
at oo reduces to z? [2]:

We denote by 3, the class of k-quasiconformal homeomorphisms f of C
which are conformal in D* with a development of the form

(1.2) f(z)=z+2bnz_".
n=1
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2. Representation theorems
Theorem 2.1. A function f € F} has the representation
(2.1) f=Poh
where h € ), and P is a polynomial of degree p with leading coefficient 1.

Proof. Let f € Ff and p be its complex dilatation. From the existence and
uniqueness theorems for the Beltrami equation it follows that there is a unique
quasiconformal homeomorphism h € 7, with complex dilatation up = u a.e.
The function P = f o h™! has then the complex dilatation zero a.e. in C. Since
it has L!-derivatives, it is meromorphic in C, and hence rational. Because f has
the only pole at z = oo, P is a polynomial. If follows from the normalization
(1.1) that it is a polynomial of degree p with leading coefficient 1.

Let f € Y>-%. Then the polynomial P in (2.1) is the Faber polynomial of
degree p of h, since the only polynomial of degree p such that the singular part
of P[h(z)] at oo reduces to 2P is the pt" Faber polynomial of A.

Remark 2.1. Let L§% denote the set of complex valued measurable functions
p satisfying ||pl| < k< 1 and having support in the closure of the unit disc D.
A function p € Lg% determines uniquely the element h € ), whose complex
dilatation up equals p a.e. but not the element of FF. For, if P is an arbitrary
polynomial of degree p with leading coefficient 1, then f = P o h € F! with
p#r = p a.e. However there is a one-to-one correspondence between the functions
p € Lg% and the elements f € 3 7. In this case the uniqueness (and the existence)
of f € 3 % follows from the uniqueness (the existence) of the Faber polynomials.

It is an immediate consequence of Theorem 2.1 that a function f € FF takes
each value in C exactly p times. In particular, a function f € F} is a homeo-
morphism, a translation of its basic homeomorphism h € }_,. Moreover, since
0-quasimeromorphic functions are meromorphic, F} is the set of all polynomials
of degree p with leading coefficient 1. We use the same notation F? for the class
of the restrictions f|p~ of all f € Ff. Then every F? , 0 < k < 1, is contained
in the class F? of functions f which take every value at most p times in D* and
have a development of the form (1.1).

A function g which is analytic in the interior of Cr = k(|z| = R) for some
R € (1,00) can be expanded into a series of Faber polynomials belonging to #,

1.e., the function ¢ has the representation
o0

g(w) = Z cmPm(w)

m=0

in the interior of Cg, where P,, denotes the m‘" Faber polynomial of A, and
(2.2) cmz—/ h(z))z ™1 dz, o€ (1,R), m=0,1,....

The representation is unique [8], [11].
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Theorem 2.2. Let f € Fy. Then f has the representation

f=fh+tafpr+ - Fap_1fi+ap

where fm = Ppoh € 3.1, m=1,...,p, and a, are the power series coefficients

of f.

Proof. Let f € FP. By Theorem 2.1 f has a representation of the form (2.1).
Expanding P into series in terms of Faber polynomials P,, of h we obtain

P
P(w) =Y cmPn(w)
m=0
where the c,, are given by (2.2). It is clear that ¢y, = ap—m, m =0,...,p. Hence,

f=Poh= (Y cnPm)oh and the assertion follows.

Consequently, for a given polynomial G(2) = Y.?_ an,2P™", ap =1, and a
function p € Lg% there exists a unique quasimeromorphic function f € F¥ which
has complex dilatation pf = p a.e., and G as its principal part at z = co.

Let T be the operator defined by

Tuw(z) = /f A dgan,  c=etin

and H the two-dimensional Hilbert transformation ([9] Chapter IIL.7). It is well
known that using 7' and H, a function of ), can be represented with the aid of
its complex dilatation. The proof of the representation formula ([9], Chapter V.5)
applies, with obvious modifications, to the functions of F} also.

Theorem 2.3. Let f € F}. Then

(2.3) f(2)=G(z)+ Y Tén(z), z€C,

where G is the principal part of f at z = oo and the functions ¢, are defined by
¢1=pG', édn=pHon—1, n=2,3,.... The series is uniformly convergent .

Just as in the case p = 1, formula (2.3) gives asymptotic estimates for the
coefficients of the functions in FY.

Theorem 2.4. Let f belong to F} and have the expansion (1.1). Then

(2.4.) |laptn| < 2k Z —lam| + O(k?), n=1,2,....

The estimate is sharp.



6 Zerrin Goktiirk

The proof given in [10], pp. 432-433, for the counterpart of (2.4) in ), can
be repeated as such, with the only difference that now ¢; = pG'.
Equality holds for the functions

fn= fn,p + alfn,(p—l) +- 4+ ap—lfn,l + ap
where the functions f, ., are defined by

(z(m+n)/2 + kz—(m+n)/2)2m/(m+n) for |z| > 1,
(2(mtm /2 o pplmtmy/2y2m/men) g i,

fom(2) = {
for m=1,...,p.
For the special case G(z) = zP, inequality (2.4) yields the sharp estimate

2pk

apin| < —— + O(k?), n=12..
apin] < 225 1 O(K?)

Let FJ({) denote the class of functions f in F! which take the value zero
only at the point (. If f € FF(¢), then it follows from Theorem 2.1 that

(2.5) f=(h=nQ)"
where h € 3, .
Theorem 2.5. Let f € FF(0). Then

(2.6) lay| < 2pk.

Equality holds only for the functions

f) = (222 + kei®2=12) " for 2] > 1,
(21/2 + keiagl/z)zp for |z| < 1.

Proof. The estimate (2.6) follows from f = (h — h(O))p when we take into
account Kiithnau’s result |h(0)| < 2k ([9)).

In Section 3 we shall derive the above estimates from a general inequality.

Let f = (h—h(¢))” € FP(¢) and let b,, n =1,2,..., denote the power series
coefficients of h. We see that a; = ay = =ay =0 if and only if ~2(¢) = 0 and

(27) b1=b2==bN_1 = 0.
In this case,

(2.8) an = pbn_1, n=N+1,...,2N + 1.
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Theorem 2.6. Let f € FP(0). Ifa, =0, n=1,2,...,N (N > 1), then

2%k
(2.9) |m457§, n=N+1,...,2N +1.

Equality holds for the functions

£(2) = (™7 + keiez‘"/z)ZP/n for |z| > 1,
(z"? + keiegn/z)ZP/" for |z| < 1.

Proof. Again, we make use of (2.5). Because (2.7) is true, |b,| < 2k/(n+1),
n=N,N+1,...,2N (Kithnau [6]). Hence, (2.9) follows from (2.8).

In particular, for N = 1 we have |az| < kp and |as| < 2kp/3.

In [3] we proved that |a;| < 4k/3 in Zi, which can also be deduced from
(2.9). In Y°F, the estimate |a,| < k holds true ([2]).

3. Majorant principle for the class F}(()

In this section we establish a counterpart of Lehto’s majorant principle [10]
for the class FF(¢), ¢ € D, from which we obtain estimates for the power series
coefficients a,, of a function f € FF((). The estimate for |a;| leads to a distortion
theorem for |h|, h€ Y, in D.

We denote by F?(0) the class of functions f in F? which do not assume the
value zero in D*. Then every restricted class Fr(¢), ¢ € D, is contained in the
class FP(0).

The classes 3, and 3 ; = {h|p+ | h € 24}, 0 < k < 1, are known to be
compact in the topology of locally uniform convergence. From the representation
(2.5) it follows that every FF(¢), 0 < k <1, is compact. Also, F?(0) is compact.

Let ® be an analytic functional defined on F?(0). Then & is defined on
every FP(¢), 0 < k < 1. Because the classes F?(0) and F{(() are compact,

3(F)| =M d (F)| = M(k
é%%J(DI (1) an fﬁ?& ()] (k)

exist. The class FP(¢) contains only the function fo = (2 — ()7, and we write
M(0) = |2(fo)|.

Theorem 3.1. Let ® be an analytic functional defined on F?(0). Then for
every f € F{(¢),

(3.1) M(l)M(O)_kM(l)<|<I>(f)|§M(1)M(0)+kM(1)

M(1) — kM(0) = M(1) + kM(0)’

In particular, if ®(fo) =0,
|8()] < kM(D).

Proof. In [10], inequality (3.1) was established in the case f € ) . Thanks to
the simple relation (2.5) the same proof applies to F(().
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Corollary 3.1. Let f € Fg(¢). Then
I¢] + 2k
2+ kl¢|
Proof. Let ®(f) = a;. Then M(0) = p|¢| and by Theorem XI1.6.3. in [1] we
have M(1) = 2p. Thus (3.2) follows from the right-hand inequality of (3.1).
For the class F}({) we obtain from (3.1)
<] + 2k
2+ k¢l
Corollary 3.2. Let h€ Y,. Then for ( € D
61+ 26
|h(<)| < 2m-
Proof. The function f = (h — h(C))p is in FF(¢). Since a; = —ph((), the

assertion follows from (3.2). As k — 1, it gives the well-known sharp estimate

|R(Q)|<2in 3.
For { =0 Corollary 3.2. yields the sharp estimate |h(0)| < 2k [5].

Corollary 3.3. Let f € FF(0). Then
la1| < 2pk, laz| < p(2p — 1)k.
The first estimate is sharp.

Proof. The first estimate follows from Corollary 3.1 for ¢ = 0.

For the second estimate, let ®(f) = az. For ( =0, fo(2) = 2P and therefore
M(0) = 0. By Theorem XI.6.3 in [1], M(1) = p(2p — 1) and the assertion follows
from (3.1).

For p =1 we obtain |a;| < 2k, |az| < k for the class F}(0) [5, 6].

Remark 3.1. The second estimate in Corollary 3.3. is not sharp for p > 1.
For, let f € F¥(0). By the representation (2.5)

(F)” =) = h(0) = 2+ L4 3 e

(3.2) lai] <2p

|01|32

and
_a2 p—]. 2
1= — — 1

p  2p?
Since |ci| < k, this together with the first estimate in Corollary 3.3 yields

laz| < pk + 2p(p — 1)k

Remark 3.2. Let ®(f) = an, n=3,4,..., for f € FP(0). Then M(0) =
0 and by Theorem XI1.6.3 in [1], M(1) < C(n,p), where C(n,p) is a constant
depending on n and p only. By Theorem 3.1 we have then |a,| < kC(n,p) in
F{(0). We note that bounds of this kind cannot be always found for the class F?.
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4. Class S2(¢)

We denote by S%(() the class of k- quas1meromorph1c functions f of C which
are analytic in D and of the form

(4.1) S =2+ 3 apins”

and f(z) = 0,00 only for z=0,(, respectlvely
Sk(o0) denotes the class of k-quasiconformal homeomorphisms f of C whose
restrictions to D have the form

flz)=z+ Z bnz™
n=2

and which leave co fixed.
The proof of the following representation theorem is similar to the proof of
Theorem 2.1.

Theorem 4.1. A function f € SY(() has the unique representation

*2) /= (1——'1575)?

where h € Si(c0).

Consequently, a function f € SE({) takes every value in C exactly p times.
In particular, a function f € SL(¢) is a homeomorphism. We write S3(¢) = Sk(¢)-

Theorem 4.2. A function f of S§({) has the unique representation

f=Ry
where h € Si(¢).

If f € S7(c0), the representation (4.2) takes the form
(4.3) f=hn?
where h € Si(o0) ([2]).

It follows from Theorem 4.1 that the class S§({) contains only the function
fo(z) = 2P(1 — 2/{)™P. We use the same notation S(() for the class of the
restrictions f|p of all f € SP(¢). Then every S}(¢), 0 < k < 1, is contained in
the class SP of analytic functions f which take every value at most p times in D
and have the normalization (4.1).

Majorant principle. Let ® be an analytic functional defined on S?. Again,
the classes S? and S%({) are compact so that

max|2(f)| = M(1)  and frr;§§c)|¢(f)| = M(k)
exist. For the function fo = zP(1 — z/¢)™? we write M(0) = |®(fo)|.

Theorem 3.1 applies for the classes S7({) and SP: If @ is an analytic func-
tional defined on S?, then (3.1) holds for every f € SE(().
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Corollary 4.1. Let f € S¥(¢). Then

1+ 2k|(]

. < .

Proof. Consider the analytic functional ®(f) = ap41. Then M(1) = 2p by
Theorem XI1.6.5 in [1] and M(0) = p/|¢|. Thus the assertion follows from (3.1).

Corollary 4.2. Let f € S(¢). Then

(p+1)+2k(2p+1)|¢)?
22p+1)ICI2+ k(p+1)

(4.5) lap+2| < p(2p +1)

Proof. Let ®(f) = apy2. Then M(0) = p(p+1)/2|¢|?, and by Corollary 8.16
in (4] M(1) = p(2p + 1). Thus the assertion follows from (3.1).
We obtain from (4.4) and (4.5) the estimates

1+ 2k[¢|

1+ 3k|¢?
21+ k7

el = 3+ &

|a3| S?)

for the class Si({). Furthermore, |apt1] < 2pk ! and |ap+2| < p(2p + 1)k in
S%(c0). The first estimate is sharp.

Theorem 4.3. Let f € S¥(c0). If aptn =0, n=1,...,N, (N > 1), then

k .
lapenl < B o Nt1,.. 2N 41
n

Equality holds for the functions

f2) = 2P(1 4 ketzm)=22/n for |z| <1,
(2P (7 4 kOS2 or 1] 51

Proof. The function z +— 1/f(1/z) is in FF(0). It has the expansion

1 o0
=P |1+ E cnz™ ",
f(3) ( N1 )

where ¢, = —ap4pn for n =N +1,...,2N + 1. Hence the assertion follows from
Theorem 2.6.

1A different proof of this estimate was given in [2].
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Theorem 4.4. Let f € S2(cc). Then for z € D
c? <|f(2)] < CP,

where ¢ and C are Kiihnau’s constants [7]. The estimate is sharp.

The theorem follows from the representation (4.3) and Kiihnau’s distortion
theorem ([7]).

Remark 4.1. Let S denote the class of conformal homeomorphisms f of D
which are normalized by the conditions f(0) = 0, f'(0) = 1. It is known that
the classes Si(c0) = {h|p | h € Sk(0)}, 0 < k < 1, are dense in S with respect
to the topology of locally uniform convergence, as k — 1. However, the classes
S?(c0) are not dense in S?, nor are y_; dense in 7.
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