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REPRES ENTATION THEOREM S

FOR ANALYTIC FUNCTIONS
WITH QUASIMEROMORPHIC EXTENSIONS

Zerrin Göktiirk

This paper is concerned with normalized quasimeromorphic functions of the
extended plane Ö which are analytic in a domain D of the plane, and have a pole
only at one point. For these functions, which are strictly finitely multivalent in
C , *" generalize representation theorems concerning normalized quasiconformal
homeomorphisms of Ö which are conformal in D. The representation formulas
yield estimates for the power series coefficients.

1. Deffnitions

A function / is called å-quasimeromorphic in a plane domain D, if. f is
spherically continuous and a generalized .L2 -solution of a Beltrami differential
equation fz: pf , in D, where the complex dilatation ;r satisfies the condition

llpll- ( k <1..
We introduce the class .F.f of fr -quasimeromoprhic functions / of C whose

restrictions to D* : {, I lrl > t} are meromorphic and of the form

(1.1.)

(1-2)

f (r)
pr

1
n:0

oo

anzP-n + »
n:L

f (,) - z

ap+nz n, ag:1, pelf,

and /(z) - oo only for z : x.
f,fl denotes the subclass of .t'fl consisting of functions / whose singular part

at oo reduces to zP l2]:
We denote by D* the class of &-quasiconformal homeomorphisms f of e

which are conformal in D* with a development of the form

+i
n:l

bnz-n
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2. Representation theorems
2.L. A function f e FI has the representation

f-Poh
where t e Dx and P is a polynomial of degree p with leading coefficient 7.

Proof. Let f e Ffl and pr be its complex dilatation. From the existence and
uniqueness theorems for the Beltrami equation it follows that there is a unique
quasiconformal homeomorphism h e D* with complex dilatatio\ l.th : p a.e.
The function P : f o h-r has then the complex dilatation zeto a.e. in C. Since
it has .tl -derivatives, it is meromorphic in e , and hence rational. Because / has
the only pole at z : @, P is a polynomial. If follows from the normalization
( 1 . 1) that it is a polynomial of degree p with leading coefficient 1 .

Let f € »I. Then the polynomial P in (2.i) is the Faber polynomial of
degree p of h, since the only polynomial of degree p such that the singular part
of Plh(z)l at oo reducesio zP is the pth Faber polynomial of h.

Remark 2.L. Let trfr; denote the set of complex valued measurable functions
pr satisfying llpll- < å < L and having support in the closure of the unit disc D.
A function p e Lf,* determines uniquely the element h € D* whose complex
dilatation pä equals p a.e. but not the element of F{. For, if P is an arbitrary
polynomialof degree p withleadingcoefficient 1, then f : P oh e Ff with
lth : p a.e. However there is a one-to-one correspondence between the functions
p e Lf,* and the elements f e »i,. In this case the uniqueness (and the existence)
of. f e !fl follows from the uniqueness (the existence) of the Faber polynomials.

It is an immediate consequence of Theorem 2.1 that a function / e Ffl takes
each value in Ö exactly p times. In particular, a function f € .t'f is a Lo*"o-
morphism, a translation of its basic homeomorphism h e Do. Moreover, since
0-quasimeromorphic functions are meromorphic, tr'f is the set of all polynomials
of degree p with leading coefficient 1. We use the same notation F{ for the class
of the restrictions flo. ofall / e Ff. Then every Ff , 0 < k ( 1, is contained
in the class -F'p of functions / which take every value at most p times in D* and
have a development of the form (1.1).

A function g which is analytic in the interior of C n : h(lzl: E) fo, som"
-B e (1,oo) can be expanded into a series of Faber polynomials belonging to ä,
i.e., the function g has the representation

oo

g(*)- » c*P,n(*)
m:0

where P* denotes the mth Faber polynomial of h, andin the interior of C a,

(2.2) crn: : t,L 2r JVt

The representation is

: ss 
(nf4) 

'-n'L-' d''

unique [8], [11].

Ae (1,.B)) m:0, 1,



Represent ation theorems for analytic functions

Theorem 2.2. Let f € F{. Then f has the representation

f : f, * atfp-r+... + ao-rft * ap,

where f*: P*oh e DT, m:7r...rp, and a* are the powq seies coefficients
of f .

Proof. Let / € FX . By Theorem 2.1 / has a representation of the form (2.1).
Expanding P into series in terms of Faber polynomials P- of ä we obtain

p

p(*) -- | c^P*(w)
m=O

where !,he c* are given by (2.2). It is clear that c* : dp-* ) 'ttt, : 0, . . . ,p. Hence,

f : P o ä: (! "*P*) 
o ä and the assertion follows.

Consequently, for a given polynomial G(z) : Då=o q,nzp-n , do : 1, and a
function p e Lffx there exists a unique quasimeromorphic function f e FI which
has complex dilatation pI: lt a.e., and G as its principal part at z:@.

Let T be the operator defined by

rw(z):-+ ll*d€d,t, e :€+i,r
c

and If the two-dimensional Hilbert transformation ([9] Chapter III.7). It is well
known that using 7 and If , a function of !u can be represented with the aid of
its complex dilatation. The proof of the representation formula ([9], Chapter V.5)
applies, with obvious modifications, to the functions of .t'f also.

Theorem 2.3. Let f e Ft. Then

(2.8) lQ) : G(z) +Lrf ^r,r, z e c,
n=l

where G is the principal part of f at z: oo and the functions Sn are defrned by

öt : pG' , ön : HH ön-r, fl :2r3, . . .. ?åe series is uniformly convergent .

Just as in the case p : 1, formula (2.3) gives asymptotic estimates for the
coefficients of the functions in Ff .

Theorem 2.4. Let f belong to FI and have the expansion (1.1). Then

p-l
(2.4.) loo+*l s2k» ffi\"*l+ o(k2), n : 1,2,....

m=O'

The estimate is sharp.
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The proof given in [10], pp. 432433, for the counterpart of. Q.\ in !o can
be repeated as such, with the only difference that now /1 : pG' .

Equality holds for the functions

fo : fo,p I arfn,b-u * "' * ap-rfnl * ap

rvhere the functions f n,* are defined by

f .,*7"1: [ ("**")lz 11a2-@+")1212^,/(*+") for lzl > 1'

\7r<**.1/, + 1z@+n)lzlzml@+n) for lzl ( 1,

for m:7r...rp.
For the special case G(z): zP, inequality (2.4) yields the sharp estimate

loo+ol 
= #+ o&\' n:1''2' " "

Let .Ffl(O denote the class of functions f in FI which take the value zero
only at the point (,. If f € .t'f(O, then it follows from Theorem 2.1 that

(2.5) f:(h-å(())'
where ä e Dr.

Theorem 2.5. Let / € ,Ff(0) . Then

(2.6) lall < 2pk-

Equality holds only for the functions

f (z\ : I Q"', + tceie z4?)2p for lzl > 7'
"' - \ (zrlz + lceiozrl2)2P for lzl < t.

Proof. The estimate (2.6) follows from / : (h - ä(0))' when we take into
account Kiihnau's result lå(0)l < 2k (t5l).

In Section 3 we shall derive the above estimates from a general inequality.
Let / - (n-n(0)'€ .F,fl(O andlet bn, n:!,2,..., denote the power series

coeffi.cients of ä. We see that at: o,2: . '. : oN : 0 if and only if h(() : 0 and

(2.7) bt : bz: . .. : örv_r : 0.

In this case,

(2.8) &n:pbn-tt n:N*1,...,2.1f+1.



Representation theorems for analytic functions

Theorern 2.6. Let f e Fon(0).

2kn

Equality holds for the

f (r)

Proof. Again, w€

n- N,N+1)... r2N
In particular, for
In t3] we proved

(2.9). In Doo, the esti

3. Majorant principle for the class FX(C)

In this section we establish a counterpart of Lehto's majorant principle [10]

for the class r'fl(() , c e D, from which we obtain estimates for the power series

coefficients an of afunction f _e F|ox!). The estimate for lol l leads to a distortion
theorem for lhl, h eDx h D.

we denote by re(0) the class of functions f in lrp which do not assume the

value zero in D*. Then every restricted class FX@, e e D, is contained in the

"lass 
FP(0).

The'ciasses !6 and »; : {n1", lä e D*}, 0 ( fr < 1, are known to be

compact in the topology of locally uniform convergence. From the representation

(2.5) it follows that every FX(O, 0 ( fr < 1, is compact. Also, Fe(0) is compact.

Let O be an analytic functional defined "r Fp(0). Then o is defined on

every F[(O, 0 < k < !. Because the classes fP(0) and .F,f (O are compact,

max lo (f )l - rw (t)
/€FP(0)| 

\'.
and 

,&?t ,l*(/)l 
: M(k)

exist. The class .Ff (() contains only the function fo : (, - e)0, and we write
M(o): lo(r,ll.

Theorem 3.L. Let Q be an analytic functional defined on Fe(o). Then for
every f e F{(e),

M(rlffi

functior2s

make use "f (2.5). Because (2.7) is true , lb"l < 2k l@
(Kiihnau t6]). Hence, (2.9) follows from (2.8).

+1) ,

from

(3.1) M(rlffi
In particular, if O(/s) : 6,

lo(/)l < kM(1).

Proof.In [10], inequality (3.1) was established in the case / € !. Thanks to

the simple relation (2.5) the same proof applies to ff (0.
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Corollary 3.L. Let f e fX1E1. Then

(8.2) lo,l < ,oYUq.
Proof. Let O(/):ar. Then M(0):pl(l *dbyTheoremXI.6.3. in[1] we

have M(L) : 2p. Thus (3.2) follows from the right-hand inequality of (3.1).
For the class .F'j(O we obtain from (3.1)

t./l +2k
t@,t < 2rJiki.

Corollary 3.2. Let ä e Dr . Then for ( e D

lqell s zl.el+.?| .
2 + klel'

Proof. The function f : (n - n«))' is in Ff (O. Since ar -- -ph(e), the
assertion follows from (3.2). As k -* L, it gives the well-known sharp estimate

lnfell s2in!.
For (:0 Corollary 3.2. yields the sharp estimate lntOll < 2k lb).

Corollary 3.3. Let / e ff1Ol . Then

lall < 2pk, lorl < p(2p - 1)k.

The first estimate is såarp.

Proof. The first estimate follows from Corollary 3.1 for ( - Q.

For the second estimate, let O(/) : az. For ( :0, fo(z): zp and therefore
M(0):0. By Theorem XL6.3 in [1], M(7): p(zp- 1) and the assertion follows
from (3.1).

For p - L we obtain lrrl < 2k,la2l ( /c for the class .F'&r(0) [b, 6].

Remark 3.1. The second estimate in Corollary 3.3. is not sharp for p ) 1.
For, let f e F{(0). By the representation (2.5)

(f(r))'/o : h(r)- h(o) : z *g * i c,Z-npT
and 

tt-9-o:=7o?''p2p'r
Since lcll (,t, this together with ihe first estimate in Corollary 8.3 yields

lorl < pb *zp(p - 1)k'.
Remark 3.2. Let O(/) : dnt n : 3,4,..., for / e tr,e(0). Then M(O) :

0 and by Theorem XI.6.3 in [f], M(1) < C(",p), where C(",p) is a constant
depending on n and p only. By Theorem 3.1 we have then lo,l < kC(n,p) in
ffl(0). We note that bounds of this kind cannot be always found for the class Ff .



Representation theorems for analytic functions

a. Class ^Sf(o
we denote uv si(o the class of k,-guasimeromorphic functions / of e which

are analytic in D and of the form

(4.1) f (r): ro +f ctp-,nzn

and, f (z): 0, oo onIY for z : 0,(, ,"rr""li'ltr'
Sit*l denotes ihe class of ,t-quasiconformal homeomorphisms / of e whose

restrictions to D have the form 
E

f ("): z +\b.2"
n:2

and which leave oo fixed.
The proof of the following representation theorem is similar to the proof of

Theorem 2.1.

Theorern 4.L. A function / e S;161 has the unique representation

(4.2) f:(, !',,,=\''- \r -uh(O)
where tz e S;'(m).

consequently, a function ,f € s[(o takes every value in Ö exactly p times.

In particular, a function / e S1161 is a homeomorphism. We write Si(O : St(Q.

Theorern 4.2. A function / of Si(() has the unigue representation

f : (h)o

where l, e S*(0.
It f e Sfl(-), the representation (4.2) takes the form

(4.3) f : hP

where å, e S*(*) ([z]).
It follows from Theorem 4.1 that the class Sfr(O contains only the function

fo(z) : ,o(l - rl)-p. we use the same notation sfl(o for the class of the

restrictions flo "f all / € Sf(O Then every Sfl((), 0 < k ( 1, is contained in
the class .9p of analytic functions / which take every value at most p times in D
and have the normalization (4.1).

Majorant principle. Let O be an analytic functional defined on ^Sp. Again,

the classes ^9p and Sfl(O are compact so that

ftslo(i )l : M(7) and 
r&?tc)lo(/)l: 

M(k)

exist. For the function fs: zr(L - ,lO-o we write M(O): lO(frll.
Theorem 3.1 applies for the classes sf(o and .9p: If Ö is an analytic func-

tional defined on ,9P, then (3.1) holds for every / € ^9fl(O.
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Corollary 4.L. Let f e Sfl((). Then

(4.4) loo+rl ( 2e1! ,zkle-l .zl('l+k'

Proof. Consider the analytic functional O(/) : ar-p1. Then M(1) : 2p by
Theorem XI.6.5 in [1] and M(0) : p/l(1. Thus the assertion follows from (3.1).

Corollary 4.2. Let f e SX1q1. Then

(4.5) loo+rl.-p(2p+»ffi
Proof. Let O(/) : e,yt*2. Then M(0) : e@+1)lzl|l2, and by Corollary 8.16

in [+] M(t) : p(2p * 1). Thus the assertion follows from (3.1).
We obtain from (4.4) and (a.5) the estimates

lorl<ffi, lorl <rffi#r
for the class ,S1(O. Furthermore, laplrl < 2pk 1 and loo+rl < pQp+ 1)å in
Sfl(*). The first estimate is sharp.

Theorem 4.3. Let / € ,9f(oo) . If apqn:0, n - 1,.. ., N, (N ) 7), then

loo+.1 324-, n: N + 1,. . .,2N + 7.

Equality holds for the functions

Proof. The function z r-» llf (1 lr) is in f,f (0). It has the expansion

t -/ 
@ \

fu:zr(t+8,'"'-")'
where cn: -estln for n:.0[* 1,...r2N +1. Hence the assertion follows from
Theorem 2.6.

t 4 different proof of this estimate was given in l2).
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Theorem 4.4. Let f e Sfl(oo) . Then for z e D

where c and, C a,re Kiihnau's constants [7] . The estimate is shrarp.

The theorem follows from the representation (a.3) and Kiihnau's distortion
theorem ([7]).

Remark 4.L. Let,s denote the class of conformal homeomorphisms f of. D
which are normalized by the conditions /(0):0, ,f'(0): 1. It is known that
the classes Si(-) : {hlo I n e Sr(c§)}, O . k I l,are dense in,S with respect

to the topology of locally uniform convergence, as k -+ L. However, the classes

Sf(*) are not dense in ,SP, nor are !l dense in !p.

11
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