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IN HOLDER SPACES

Vesa Lappalainen and Ari Lehtonen

1. Introduction

For a smooth domain Q in R", e.g. a bounded Lipschitz domain, each func-
tion u which belongs to the Sobolev space W1?(Q) is in fact Holder-continuous
in Q if p is greater than n (cf. Adams [1], Kufner et al [6] or Necas [14]). A
similar embedding property holds also for Orlicz—Sobolev spaces (cf. [1] or [6]).

Typically, the boundary behaviour of u is handled by straightening the bound-
ary to a half space using local coordinate maps and deriving estimates for the
Hélder norm of u in terms of the (Orlicz—) Sobolev norm (cf. [14, Chapter 2.3.5.]).
Instead of using estimates on the boundary we first show that if p > n the Sobolev
spaces W1P(Q) can be embedded in a certain local Holder class loc Lip,(Q),
a =1—n/p for any domain Q. The embedding to C*(Q) is then derived for a
large class of domains via the embedding of loc Lip,(Q) to C*(Q). The following
result is obtained as a corollary:

Theorem. If Q is a bounded uniform domain and p > n, then WH?(Q) is
continuously embedded in C*(Q).

Note that by a result of P. Jones [5] there exists an extension operator W1?(Q)
— W1P(R") for uniform domains, and the theorem hence follows from the well-
known embedding W1P(R") — C*(R"). However, for the theorem no extension
result is needed, and our approach is based on classical Hoélder continuity estimates
together with Gehring and Martio’s [3] and Lappalainen’s (7] results on Lip,-
extension domains. Therefore our method applies to a larger class of domains
than uniform domains.

2. Preliminaries

An Orlicz function is any continuous map A: R — R which is strictly in-
creasing, even, convex and satisfies

lim AT =0, Jim A(€)67 = oo

We let Q denote a domain in R™. The Orlicz class K 4(2) is the set of all
measurable functions u such that

/QA(u(a:)) dr < oo,
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and the Orlicz space L 4(Q2) is the linear hull of K 4(Q). As norm in the Orlicz
space we use the Luxemburg norm

llull 4 o := inf{r >0: ]QA(u(:v)/r) dz < 1}.

The Orlicz—Sobolev space WL 4(Q) is the set of functions u such that v and
its first order distributional derivatives lie in L 4(Q2). In the case where A({) = &P
we obtain the standard Sobolev space W1P(Q). For a more detailed discussion
of Orlicz spaces we refer to [1] and [6].

A domain Q in R" is called c-uniform if each pair of points z,y € 2 can be
joined by a rectifiable curve v in § such that I(y) < c¢|z — y| and

dist ('y(t),BQ) >c! min(t, I(y) - t).

A modulus of continuity is any concave positive increasing function h: [0, oo[
— R, h(0) = 0. A function u: @ — R belongs to the local Lipschitz class
loc Lip,(Q) if there exist constants b € ]0,1[ and M = m; such that for each
z € Q and y € By(z) := B(z,b dist(z,00))

(2.1) |u(z) - u(y)| < Mh(z,y);

here and hereafter h(z,y) := h(Jz —y|). Asa matter of fact, it is shown in (7] that
it is equivalent to require the condition to hold for b = 1/2; the smallest m,,
defines a seminorm of u. It should be remarked that this definition differs from
the standard definitions of local Holder spaces. In fact, the class loc Lip, () is not
a local space but semiglobal in a sense. A function u belongs to the Lipschitz class
Lip,(£2) if there exists a constant M < oo such that (2.1) holds for all z,y € Q2.
For bounded domains Lip,(Q) = C*(Q), where C*(Q) is as in [1, 8.37].

Let h and g be two moduli of continuity. A domain {2 is a Lip, ,-extension
domain if locLip,(Q2) is continuously embedded in Lip,(2). For short Lip, , =:
Lip, and, for h(t) =t*, Lip, =: Lip,. The following result due to McShane [13]
justifies the name extension domain (see also Stein [15], [3] and [7]).

2.1. Theorem. If Q is a Lip, -extension domain and u € loc Lip,(Q2), there
exists a Lip, -extension u*: R" — R.

We can characterize Lip,-extension domains by using the following metric

in  : ( )
. h(dist(z, 09)
hQ(-T, y) = 7}12’5)[7 dlSt(Z,@Q) dS(Z),

where the infimum is taken over all rectifiable curves v in {2 joining x to y.
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2.2. Theorem. A domain Q C R" is a Lip,, ,-extension domain if and only
if there is a constant 1 < K(§,h,g) < oo such that

(22) ha(z,y) < K g(z,y)
holds in .
For a proof see e.g. [3] or [7].

3. Embedding of Orlicz—Sobolev spaces

Let A denote an Orlicz function. If
. %) A_l('f') d
(3.1) h(t) := . T/ r

is finite at ¢t = ¢, then h defines a modulus of continuity on the interval [0,¢]. It
is easily seen that the derivative h'(t) = n A7'(t™") is decreasing.

3.1. Proposition. If h(1) < oo, then WL 4(Q) is continuously embedded
in loc Lip,(?) for any domain 2 C R".

Proof. It follows from [1, Theorem 5.35] applied to balls contained in {2 that
each function u € WL 4(Q) is continuous. Now let By(xg) be a ball contained
in Q and z; € By(zo). Let t := |zg — 21| and choose a ball B of radius ¢ such
that zo,z; € B C By(zo). We denote by |B| the Lebesgue measure of B and by

1
upg = K] /Bu(z)dz

the mean value of u in B. As in [1] we obtain the following estimate for z € B:

|u(z) —up| < %/0 r'"/;B |Vu(z)| dz,

where B, denotes a ball of radius rt contained in B. Since

/B (Vu(y)| dy < 27" |B] [Vull o 5, A7 (-~"/IB]),

we obtain A-1(r)
4 < A7Y(r
|u(:t) - u3| < W IVull 4,0 v/l/IBI —71/m 9
where Q, := |B(0,1)|. Since h is increasing and concave, we have h(st) <

h((1+ s)t) < (1+ s)h(t) for s,t >0, and therefore
8
|u(@0) — u(z1)] < —7 IVullag h(t 21/™)
n

8(1+ Q"
< ( 1/n )”VUHA,Q h(anxl),
niin

which yields the desired result. o
The following theorem is an immediate consequence of Proposition 3.1.
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3.2. Theorem. Let A be an Orlicz function and h defined by (3.1). Assume
h(1) < oo, g to be a modulus of continuity and (2 to be a Lip,, , -extension domain.
Then W'L 4(R) is continuously embedded in Lip,(Q).

However, Lip, ,-extension domains do not necessarily exist. In order to apply
Theorem 3.2 we need to know that they do exist.

3.3. Theorem. Let h be a modulus of continuity. Then the following
conditions are equivalent:
(1) There are constants K < oo and tx > 0 such that for every 0 <t <t

/t%s)ds < K h(t).

(2) All bounded uniform domains are Lip,, -extension domains.
(3) The unit ball in R™ is a Lip, -extension domain.
(4) There exists at least one Lip, -extension domain.

For a proof see (7, p. 27].
Note that if Condition 3.3.(1) holds for all ¢ > 0, then all uniform domains
are Lip, -extension domains.

3.4. Corollary. Assume A to be an Orlicz function with

AI
(3.2) 2% > % for a.e. € > .
for some p >n and {, > 0 and Q to be a bounded uniform domain.

Then WL 4() is continuously embedded in C*(Q), where h is defined by
(3.1).

Proof. We just combine Theorem 3.2 with ¢ := h and Theorem 3.3 with the
following lemma.

3.5. Lemma. Let tx := A(&) ™™ and K :=p/(p —n). Then, for 0 < t <
tx, h(t) is finite and

t
/ h(s) ds < Kh(t).
0 S
Proof. Integrating the inequality (3.2) we obtain A(£) > (A(n)/nP) &P for

£ > n > & by the absolute continuity of A, and hence A7(r) < (n A(n)~1/7) r1/p
for r > A(n). Now for n = A~1(¢+™") the definition (3.1) of A yields

Ui * rl/p _ n so4l—n/p
) < ot /t e O = i Kt

Since h'/(t) = nA™ (™) and n/A(n)Y/P = A=1(t~™)t"/? we have h(t) < Kh'(t)t.
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4. Examples

Let © be a bounded uniform domain in R™.

4.1. Let p>n and « :=1—n/p. Then W1P(Q) is continuously embedded
in C*(Q). This follows immediately from Corollary 3.4 since for A(¢) := £P we
have A'(£)/A(¢§) = p/€.

4.2. Let A(€):= e¢. Then the modulus of continuity defined by (3.1) is given
by h(t) = n? (In(1/t)+1) t. For any « € 0, 1[ the Orlicz—Sobolev space WL 4(f)
is compactly embedded in C%(Q). By Corollary 3.4, WL 4(f) is continuously
embedded in C*(Q). Since h(t)/t* — 0 as t — 0, the result follows from the
Ascoli-Arzela theorem.

4.3. Let A(¢) := ¢ (In(¢))? and assume ¢ > n. Then h(t) = n(ln(n))_q/nx
(n/(g — n) In(n) + 1), where n := A7'(t™"). Then, if Q has the strong local
Lipschitz property in R™, the Orlicz—Sobolev space WL 4(Q) is continuously
embedded in C*(Q). This follows from [1, Theorem 8.36]. However, the modulus
of continuity h does not satisfy Condition 3.3.(1) and therefore there does not
exist any Lip,-extension domains.

The snowflake or the Koch curve described in Mandelbrot [10, p. 42] bounds
a uniform domain whose boundary is very irregular. Examples of domains which
are Lip,-extension domains but not uniform can be found in (7] and [3]. Also, in
[7] there are examples of Lip,-extension domains which are not Lip,-extension
domains for any a < £.
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