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BMO AND TEICHMÖT,LER SPACE

D.H. Hamilton

1. Introduction

Let us consider the class Qs of quasiconformal maps .F of the Riemann sphere
fixing oo and conformalat oo withnormalizatiot f(z) - z a.t m. M. Reimann
[18] proved that log det(DF) e BMO(R2). W" show the connection of this with
a fundamental result of Teichmiiller theory. Let Mo be the class of I- functions
p with compact support and llpll < 1. Ahlfors and Bers [3] show that the solution
F e Qo of the Beltrami equation

gp: p?F

depends holomorphically on p. One formulation of Teichmiiller space 7 (see
Becker [4], Gehring [11]) on a fixed domain O containing oo is to set

7: {log F'(z) : F e Qo conformal on O with quasiconformal extension}.

Then it is proved that, if O is a quasidisk, 7 is an open set in the space 6(O) of
functions g analytic on Q with

llgllu - lrgQ)l + o as lrl + co.

Now 6(O) is a closed subspace of the Bloch space. Coifman, Rochberg and
Weiss [8] prove that 6(O) is the class of analytic functions BMO with respect
to Q. Furthermore, by Jones [12], if O is a quasidisk every 9 € 6(0) has an
extension to a function of BMO(R2).

We remove the assumption that O is a quasidisk, and the restriction to con-
sidering log?F where .F is conformal. The formula log0F will be defined first for
smooth F. Now we do not ta,ke the principle branch of arg0F but a continuous
value so that logä.F' depends holomorphically on p and is essentially unique.
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Theorem 1. Suppose for p, e Ms we let

II(P) : log(0r'),

where F : Fp € Qo. Then the map II is a well defined holomorphic map of Ms
into BMO(.82).

This has a number of implications.

Corollary 1. Fbr any open set Q witå oo € /, a.nd for any F conformaJ
on O witlr quasiconformaJextension to C the functionlogF'(z) (z e O) åas an
extension to BMO(R2).

We shall use the ".L2 norm" ll.ll. for BMO, see Section 2.

Corollary 2. For any F,u e. Mo with corresponding F, G € Qo

lllogär - logäGll. < K llp- "11"" 
+ o(llp - "lD'

with K: ff (ll"ll) . In pa,rticular at G : z

lllosärll- < 3 llpll- + o(llpll-)',

and 3 is best possible.

Remark. Reimann [19] obtained an upper bound for logdet(DF) which
tends to 0 as llpll- -+ 0. The 3 comes from Iwaniec's bound for the Hilbert
transform [13].

Let O be a domain containing oo, and M(O) the subset F e Mo which are
supported bV C \ O. The map

II: M(O)--+ tog(r'(z))

is a holomorphic map into B(O), see Ahlfors and Bers [3].
Bers [5] and Gehring [11] ask for a characterization of domains *'ith a uni-

valence criteria, i.e., domains for which there exists a : a(O) so that for any
g eB@) with ll9ll, ( a then there is F conformal on O t'ith logF':9.

Now let V{ be the Hilbert transform

11f(,): -: I"d%d*G)
A classical result of Fefferman and Stein [9] implies for 6 e ,-(Oc) that g :
716 e BMO(R2) and thus gls € 6(Cl). Bers [5] essentially proves the converse,
i.e.,

6(0):t{L*(Ac),
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provided O is a quasicircle. We show that this integral representation for B(O)
(which is stronger than BMO extension property for elements in 6(f)) ) holds if
and only if O has a univalence criteria.

The equivalence occurs by the application of the )-lemma of Sullivan,
Thurston [22] and Bers, Royden [7] to the structure of the "pseudo" Teichmiiller
space

5 : {logF': .t' conformal on Q and .F : z * O(1) near m}.

A complex curve -t C,9 is a holomorphicmap 
^: 

{l)l < 1} -*,9 with tangent
r at ,\ : 0 given by r : (0NA»l^=0. The set of tangents at g - Å(0) is the
tangent space Vo at g. Clearly I/, is a subset of B(O) and if 0 e Int ^9 then
Vo : B(Q). 'We answer a question of Bers [6] who asked when Vo : B(A). Shiga
used [7], l22l to eharacteize Vo.

Theorem 2. The following are equiva)ent for a,n open set {l with oo € C);
(i) O åas a univa)ence criterial
(ii) tåe tangent space Vs : B(A);
(iii) 6(fr) has integral representation, i.e.,

g(z):?t6, 6 € r* (0c).

Remarks. 1) Kra [13] independently obtained similar results for Jordan
domains.

2) It is interesting that the linear condition (iii) implies the nonlinear cond.i-
tion (i).

Finally we note that (iii) implies that (i) is actually a local condition.

Corollary 3. Let {l be a domain so that Qc is the union of disjoint compact
sets 41, A2. Then O åas a univa)ence criteila if and only if .ef , ll ao.

Instead of assuming p has compact support we could just as well consider

tvt : {p€ r*(Ö), llpll"" < 1}

with normalization for solutions .F',

F(0) : g, f(1) : 1, 'F(m) : so'

It is not so clear how to define log(äF) even in the smooth case. Nevertheless we
prove

Theorem 3. The map IIt M --+ log(?F), for quasiconformal F : Fp solving
6Ii' : pAF and fixing 0, 7 a.nd oo, is a well defined holomorphic map of M intå
BMO(Rr).
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Finally we shall observe that this theory actually gives a new result for singular
integrals.

Corollary 4. For any 6 e L* (supported on a compact set)

?{(6?{6) - +(?{6)' € BMO(R2).

Remark. In general(?16)2 or ?{(6?t6) do not belong to BMO(R2).
This quadratic formulae in p easily yields a commutator type result. For

p e L* define the operator Q: lp,77l by

Ql :Tt(prtf) +x(fxp) - (up)(xf).

Corollary 4 proves that Q is a bounded operator from -L- to BMO. Coifman,
Rochberg and Weiss [8] prove that the operator

wf :H$Hp)-(tlil?tf)
is aboundedoperator of LP,7 <p< oo. Theirresult doesnot holdfor p- oo
so that the Q operator is the correct generalization, note also that the first term
of the Q operator

?1(p7{f)

is a bounded operator on Lp, I 1 p( oo, for p e L*.

2. Preliminary results

In this section we collect some tools necessary for the proof of the main the-
orem. We shall be using BMO(R2) with " L2 trorm"

ll/ll. : G, /, V - { 
"r 

tu dvla, ar)'/' ,

taken over all disks Q, where {q i" the mean value. The basic theory of BMO
is given by Fefferman and Stein [9], where it is proved that BMO is the dual of
the Hardy space ffr. In particular, the unit ball of BMO is rveakly compact and
sincefor 7<p< oo theset

E : {u€ ZP(Rz) : suppr, "o*pr.t, / ua*:0\t - \ / ' 'Jrr, -)

is dense in är, for each sequence {f"} c BMO with ll/"ll < .tr(r there is a
subsequence {å} and an / € BMO so that for any h e E

1 K denotes a constant which may vary from line to line, any dependence on parameters is
made explicit, e.g.: K = K(m) with rn = llpll- .
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t hf n* d,x d,y + t hf d,x dy, k --+ oo.
JnZ Jn2

2t7

A map x: Mo -+ BMO is holomorphic if for each po and prr in -t-, with
tro*\pr € Ms for lll < 1, the map x?ro+)p1) is holomorphicin .\. This is well
known to be equivalent to the stronger condition that X has continuous (Gateaux)
differential.

Now Montel's theorem does not hold for Banach spaces but there is the follow-
ing weak form. This is based on the fact that a map x, {lÅl < 1} - BMO will be

holomorphicif and only if I nQ)yQ) dx dy isanalyticfor all h e E. Thus given a
sequence Xn ol holomorphic maps from {l}l < 1i into BMO so that llx"ll. < f<
then there is a limit X so that Xn + X weakly, i.e., for any I? € E and compact
U c{ l}l < 1} , I hx"Q)dady + [ nx})dady :uniformlyfor .\ e U.

The theory of quasiconformal solutions of

6p - p,aF, tt € Mo,,

may be seen in Ahlfors and Bers [3]. Thus F(z) : z * o(L) near oo and we have
the canonical solution F : FP:

F(r)- z+Cp*CpT{p,*

where C and ?l denote the Cauchy and Hilbert transforms. It is important that
F - z depends holomorphically on pr (in the above simple minded way) as a map
into the space of bounded continuous functions. Now let DF be the differential
of F, then pr € Co- implies D.E and DF-r are both C-, see [fO], p. ZSS.

M. Reimann considered the function

sQ) : logdet lDFl

and proved 9 € BMO with norm only dependent on llpll"". As a simple observa-

tion we have

Lemma 1. -Fbr canonical F : FP, log läFl is BMO and

lll"s lAFlll. < K (llpll"").

We have only to write

and "or"r:g 

det lDFl - los @Fl'(1 - lpl') - 21os @Fl + tos(t - lpl)

los(t - lt l') e L* c BMO.
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we now considerthe definition of log(äF). This is no problemwhen p, e cf;n
Ms and may be accomplished in two different ways. One way is to take log(äF) :
0 at oo and use a path 7 from a to z, along which log(0r) is continuously
defined. It is clear that this log(0r) is uniquely defined independently of 7. A
second way is to consider a continuous deformation of p to 0,

p(t):tp, 0<r<1,
and an associated family .F 

t

6Ft:tP7Ft
of canonical maps. Beginning with F0 : z ar.d log1P: 0'we may continuously
define log?Ft(z) at fixed z. It is clear that this definition agrees with the first
(by the usual homotopy argument) and in fact any c- deformation of p into 0
may be used. Thus log(äF) is uniquely defined for the C- case.

Now for the general case, as F may be totally singular on a circle, the first
method fails. It is necessary to show that the second method may be generalized.
and gives log?F uniquely, whatever the representation. Thus we begin with the
C- case and establish BMO bounds. There are various difficulties caused by the
fact the Co- fl Ms is not .t6 dense in Ms ,, and a type of weak convergence for
sequences of quasiconformal F, is needed. The usual good convergence, see Lehto
and Virtanen [15], p. 185, ensures 7Fn -- äf' (a.e.).

Assume llp"ll-, lllrll"" < k < 1 fixed. We assume that
(i) .F" --+ .F' uniformly on compact sets.
(ii) p,"(z) -- p(z) (a.e.) on compact sets.

Lemma 2 (Lehto, Virtanen [15], p. 276). For k 11, there a.re p : p(k) > 2
so that the above conditions imply ll7?" - 1Flln --+ 0 on compact subsets of R2 .

3. Proof of Theorem 1 (part 1)

We have to obtain a well defined loglP for .F' : -F'r, and p e Mo. First we
assume ;.t smooth and obtain a uniform estimate.

Lemma 3. For canonical F : Fts , p e Ctr f1 Mo,

lllog ärll. < r<(llpll-).

Forfixed e, llpll- < å < 1 and F - Fp,considerthefollowingoneparameter
family lr^ definedfor l)l <llk.Let .F.^ be the canonical map satisfying

6F^ : ),PoF^.

observe by the Ahlfors-Bers theory that (r')), (F^)-' are C* and the function

f^:logAF^
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depends holomorphically on ). Thus we may write

"fÅ 
: l*r + \zaz *..,

where each ai(z) e C6, and the series converges for l)l < 1/e.
Note that without loss of generality we may assume lc > + (otherwise the

bounds still apply for smaller dilatations). Choose a number p depending contin-
uously on ,t so that

t.p.l.- &'

Let I be the positively-oriented circle {1.\l : p}. Now we apply Lemma 1to .F}
for .\ € I, noting that the dilatation )p, satisfies lllpll- : K(k) ( 1. Thus for
.\ef

lln"/^ll. < K(k).

However
Re/) : å(r"r + rä;) + +(^2az +\2ar) a...

and therefore

.,i: *.[,*"/^)2#
and consequently

lloill.< ry
QJ

Thus, evaluating fr :Log?F

lllosäFll. : llo, * az *...11. < # = 
K'(k).

In order to define log(ä.F) for general p we proceed as follows. For any fixed
k > llpll- choose a sequence p" e Ctr so that the conditions (i), (ii) of Lemma 2

hold. Let F be the canonical solutions of

6Fn: p,7Fn

and
/" : tos(äF").

Now we apply Lemma 3 and the weak compactness of the unit ball of BMO. Thus
there is an / € BMO so that some subsequence fnr - / weakly. However by
Lemma 2

l7F.rl - lAFl (".").
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In particular,
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log l7F"rl -r log lAFl (..").
Now Lemma 2 implies

I t^r4F*l)u d,x dy - | t^rloll)u d,x d,y

for all u e E. Thus
Re/ : log läFl

and we may define
II(t') : f '

Let us show / is well defined. Now suppose 2,, is another sequence in Cf; n M
converging to p so that (i), (ii) hold. Let g be the corresponding wea"k limit. For
the sequence pn we associate an analytic family Åp", l)l < 1lk', lr, ),t and
corresponding quasiconformal F)

afll : \P,*oF)

with
# : toglar];

which is a uniformly bounded holomorphic family in .\. Thus (at least for a
subsequence) there is a weak limit /1 , holomorphic in ). By the above analysis

' kt'

Similarly for un we define \rn and corresponding G*

6Gn - Åu^1G)

with
sl:tog(lcf;).

Thus there is a weak limit 9Ä holomorphic in l)l < 71k,. But as r,,n --+ p a.e.'' \uo --+ ),p, a.e. wea^kly and läG)l --+ läJ;,)l (a.e). Therefore

R"e^ - log läFrl.

Now g^, .fl *" holomorphic functions with the same real part and value (0) for
):0. Thus gr-1) for l^l<Llkt andinparticular(for.\:l) g=f .
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4. Proof of Theorem 1 (part 2)

In this section we prove holomorphic dependence of log.F"()) for z()) holo-
morphic in .\. By the Ahlfors-Bers theory log0F"(r) is holomorphic in ) if
z(.\)€Cf;nMo.

For general holomorphic A: {lfl < 1} -+ Mo there exist sequences of holo-
morphic mappings Å" e Cfl O M6 so that Ä,()) --+ 

^(,\) 
a.e., in fact for any

r<oo
ll^"(l) - Å())ll, --+ 0, r, --+ oo,

arrd for I on a compact subset of the unit disk. To see this, take g" e Cf; to be
a^n approximation of the identity. Define

^,()) 
: I p*Q - x - iy)tt(\)d,r d,y.

J

Nowas 9n)0, Ip,d*dy:1,
ll^"())ll <å<1.

Observe that Å,, e Moll C- and that by the standard estimate, for all r ( @,

ll^"())-Ä())ll,+0
for ) on any (fixed) compact set of the unit disk.

Consequently the corresponding sequences

e) : log(äc))
will converge weakly to a holomorphic function gr. However, as before, this is the
unique definition of log(äGl) which is therefore holomorphic in ).

5. Proof of Theorem 2

As preliminary results we need the following form of the )-lemma (see [7],
1220.

Lemma 5. Let L be a holomorphic cuwe in S, i.e., f : 
^({l}l 

< 1}),
l: {l)l < 1} --+ 

^e

is holomorphic with 
^(0) 

: 0. Then for l.\l < | tåere is a holomorphic map

r: {l)l . å} * M(a)
so that

logär(.\) : 
^()).This is because if. g : g^ € L depends holomorphically on .L then so does

F^ : [' 
"o^ 

d,
J

which is univalent on O. By the ,\-lemma tr'r extends to a quasiconformal map-
ping which, for l)l < å, hu. dilatation pÅ depending holomorphically on ).
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Remark. The maximal complex manifold containing 9 : 0 is essentially the
class of all quasiconformal deformations with p € M(O).

Since log AFP - log(1 + Hp + .), DII(0) - 7{ and the above lemma gives

Lemma 6. The tangent space at 0 is

V:Ttl*(ec).

Remark. In particular there is a nontrivial complex manifold through 0 if
and only if Area(Oc) > 0.

FinaJIy we prove the theorem. Our previous comments give (i) --+ (ii) -r(iii). We_use Theorem 1 to complete the chain of equivalences. Now as 6(Q) :
HL*(Ao), ?{ is an open map of .t-(Oc) onto B(O). However as Ulylej is
holomorphic, by the implicit function theorem there is a 6 > 0 so that II maps

{p, e M(A): llpll"" < 6} onto an open neighborhood of 0. Thus O has univalence
criteria.

6.

Observe that Corollaries
have to complete the proof of
integral to write

Proof of corollaries

1, 2 are just special cases of Theorem 1. We next
Corollary 3. For each g € 6(Cr) we use the Cauchy

9:9t*gz

is analytic on A so that r,Å has
: 1 on a set of Jordan curves j x

principle F1 is univalent inside j*.

where 91 e B(Af). Thus it O@l) has integral representations so does 6(O). So
by Theorem 2 we only have to prove the converse. Suppose now that S e B(A?)
say. However, I e6(O) and there is a t > 0 so that for l)l < t

Äs - los4

for .Fr univalent (normalized) on S). But g
an analytic extension to A?. AIso .F\ is 1

separating A1 from A2. Thus by the argument
Consequently, B(A?) has univalence criteria.

Finally we prove Corollary 4 by simply observing that the second derivative
of fI with respect to p must be in BMO:

log(O^F') - log(1 + 7{p, * 71p?{p, + .) - rtp + (xpup - +(11p)') +
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7. Proof of Theorem 3

The method is almost exactly the same as the proof of Theorem 1, so we only
point out the differences. The first problem is defining log(ä.F') for F, F-t e
C*. Now if .F' has dilatation Ft we use holomorphic family F^ defined by
quasiconformal solutions of

6F^ : \p,oF^, lll . #
fixing 0, L , oo. Now -F' as holomorphically dependent on ) we obtain a holomor-
phic function

/) : l"g(äF))

which letting log(1) : 0 defines log(äF). A homotopy argument shows the
uniqueness of this definition. The rest of the proof proceeds analogously.

8. VMO and quasiconformal mapping

A function / € VMO if

I o,, - | r d'r d'vl d'* d'v ---+ o

uniformly as area of all disks Q satisfies lQl - 0. We consider the canonical map
from the set of continuous dilatations to quasiconformal .F (fixing 0, 1, oo).

Corollary 6. The canonical map

II(P) : log(gf'P)

is a well defined holomorphic map from M ft C into VMO1." . In particular for
continuous p, log det(D Ft') e VMO1." .

The proof is a simple deduction from Theorem 1. The canonical map is the
restriction of a holomorphic map to a convex submanifold. We have only to show
log(0.F,) € VMOI... Now there exist Fn e M O C- so that

llP - P"ll- -- o'

Thus, by Theorem 3, if .t': .Fp and Fn - pu^

lllog(Ar") - los(äF)ll. --+ 0.

Thus log(äF) is in the BMO closure of C and is therefore VMOro".
Remark. One should note that for continuous f, 0.F is not necessarily

even .tff..
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