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BMO AND TEICHMULLER SPACE

D.H. Hamilton

1. Introduction

Let us consider the class Qo of quasiconformal maps F' of the Riemann sphere
fixing oo and conformal at co with normalization f(z) ~ z at co. M. Reimann
[18] proved that logdet(DF) € BMO(R?). We show the connection of this with
a fundamental result of Teichmiiller theory. Let My be the class of L™ functions
p with compact support and ||g|| < 1. Ahlfors and Bers [3] show that the solution
F € Qg of the Beltrami equation

OF = udF

depends holomorphically on x. One formulation of Teichmiiller space T (see
Becker [4], Gehring [11]) on a fixed domain Q containing oo is to set

T = {log F'(z) : F € Qo conformal on  with quasiconformal extension}.

Then it is proved that, if € is a quasidisk, T is an open set in the space B(Q) of
functions ¢ analytic on  with

lgllg = sup|g'(z)! dist(z,09) < oo, |zg(z)| -0 as |z| = oo.
Q

Now B(f2) is a closed subspace of the Bloch space. Coifman, Rochberg and
Weiss [8] prove that B() is the class of analytic functions BMO with respect
to . Furthermore, by Jones [12], if Q is a quasidisk every g € B(Q) has an
extension to a function of BMO(R?).

We remove the assumption that Q is a quasidisk, and the restriction to con-
sidering log OF where F' is conformal. The formula log F will be defined first for
smooth F'. Now we do not take the principle branch of arg OF but a continuous
value so that log OF depends holomorphically on p and is essentially unique.
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Theorem 1. Suppose for p € My we let
II(p) = log(9F),
where F' = F* € Qo. Then the map II is a well defined holomorphic map of M,
into BMO(R?).
This has a number of implications.

Corollary 1. For any open set 8 with co € pu and for any F conformal
on  with quasiconformal extension to C the function log F'(z) (z € ) has an
extension to BMO(R?).

We shall use the “L? norm” ||-||, for BMO, see Section 2.
Corollary 2. For any p,v € My with corresponding F, G € Qg

llog OF —10g 0G|, < K [l = v]| oo + Ol — o))

with K = K(||v||). In particular at G = z

llog OF|, < 3|lullo. + O(lull.)’,

and 3 is best possible.

Remark. Reimann [19] obtained an upper bound for logdet(DF) which
tends to 0 as |lu||,, = 0. The 3 comes from Iwaniec’s bound for the Hilbert
transform [13].

Let Q be a domain containing oo, and M(Q) the subset p € M, which are
supported by C\ Q. The map

II: M(Q) — log(F'(z))

is a holomorphic map into B(2), see Ahlfors and Bers [3].

Bers [5] and Gehring [11] ask for a characterization of domains with a uni-
valence criteria, i.e., domains for which there exists a = a(Q2) so that for any
g € B(Q2) with ||g||z < a then there is F conformal on Q with log F' = g.

Now let H be the Hilbert transform

i) = -7 [ L dmie)

A classical result of Fefferman and Stein [9] implies for § € L=(Q°) that g =

Hé € BMO(R?) and thus glg € B(Q). Bers [5] essentially proves the converse,
ie.,

B(Q) = HL®(QF),
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provided {2 is a quasicircle. We show that this integral representation for B({2)
(which is stronger than BMO extension property for elements in B(Q)) holds if
and only if  has a univalence criteria.

The equivalence occurs by the application of the A-lemma of Sullivan,
Thurston [22] and Bers, Royden [7] to the structure of the “pseudo” Teichmiiller
space

S = {log F': F conformal on  and F = z 4+ O(1) near o0}

A complex curve L C S is a holomorphic map A: {|)| < 1} — S with tangent
7 at A = 0 given by 7 = (9A/0))|a=0. The set of tangents at g = A(0) is the
tangent space V; at g. Clearly V; is a subset of B(2) and if 0 € Int.S then
Vo = B(2). We answer a question of Bers [6] who asked when V; = B(Q). Shiga
used (7], [22] to characterize V.

Theorem 2. The following are equivalent for an open set  with co € :
(i) Q has a univalence criteria;
(i) the tangent space V; = B(Q);
(iii) B(R) has integral representation, i.e.,

g(z) =Hs, &€ L™ (Q°).

Remarks. 1) Kra [13] independently obtained similar results for Jordan
domains.

2) It is interesting that the linear condition (iii) implies the nonlinear condi-
tion (i).

Finally we note that (iii) implies that (i) is actually a local condition.

Corollary 3. Let Q be a domain so that QC is the union of disjoint compact
sets Ay, Az. Then § has a univalence criteria if and only if AY, AS do.

Instead of assuming p has compact support we could just as well consider

M= {peL=E): |||, <1)

with normalization for solutions F,
F(0) =0, F(1)=1, F(o0) = oo.
It is not so clear how to define log(J0F) even in the smooth case. Nevertheless we

prove

Theorem 3. The map II: M — log(9F), for quasiconformal F = F* solving

OF = puOF and fixing 0, 1 and oo, is a well defined holomorphic map of M into
BMO(R?).



216 D.H. Hamilton

Finally we shall observe that this theory actually gives a new result for singular
integrals.

Corollary 4. For any 6§ € L* (supported on a compact set)
H(6HS) — L(H6)* € BMO(R?).

Remark. In general(H6)? or H(§H6) do not belong to BMO(R?).

This quadratic formulae in u easily yields a commutator type result. For
i € L define the operator @ = (u, H) by

Qf = H(pHf) + H(fHp) — (Hp)(HS).

Corollary 4 proves that @ is a bounded operator from L* to BMO. Coifman,
Rochberg and Weiss [8] prove that the operator

Wf =H(fHu) — (Hu)(HS)

is a bounded operator of L?, 1 < p < oco. Their result does not hold for p = oo
so that the @ operator is the correct generalization, note also that the first term
of the @ operator

H(uHf)
is a bounded operator on L?, 1 < p < oo, for p € L.

2. Preliminary results

In this section we collect some tools necessary for the proof of the main the-
orem. We shall be using BMO(R?) with “L? norm”

91, = (sup f |- f_rdeas )"

taken over all disks @, where f o is the mean value. The basic theory of BMO

is given by Fefferman and Stein [9], where it is proved that BMO is the dual of
the Hardy space H'. In particular, the unit ball of BMO is weakly compact and
since for 1 < p < co the set

E= {u € LP(R?): suppu compact,/ udm = 0}
R2

is dense in H?', for each sequence {f,} C BMO with ||f,|| < K! there is a
subsequence {f,} and an f € BMO so that for any h € E

1 K denotes a constant which may vary from line to line, any dependence on parameters is

made explicit, e.g.: K = K(m) with m = ||py||, .
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/hfnkda:dya‘/ hfdzxdy, k — oo.
R2 R2

A map x: My — BMO is holomorphic if for each po and pg; in L*°, with
po 4+ A1 € My for |A| < 1, the map x(uo + Ap1) is holomorphicin A. This is well
known to be equivalent to the stronger condition that x has continuous (Gateaux)
differential.

Now Montel’s theorem does not hold for Banach spaces but there is the follow-
ing weak form. This is based on the fact that a map x: {|A| < 1} = BMO will be
holomorphic if and only if [ A(z)x())dz dy is analytic for all h € E. Thus given a
sequence Xn of holomorphic maps from {|A| < 1} into BMO so that ||xal, < K
then there is a limit x so that x, — x weakly, i.e., for any h € E and compact
U c {|Al <1}, [ hxn(A)dzdy — [ hx())dz dy uniformly for A € U.

The theory of quasiconformal solutions of

5F = /JaF, JUNS MO,

may be seen in Ahlfors and Bers [3]. Thus F(z) = z + o(1) near oo and we have
the canonical solution F' = F*#:

Fz)=z+Cu+CuHp+---,

where C and ‘H denote the Cauchy and Hilbert transforms. It is important that
F — z depends holomorphically on g (in the above simple minded way) as a map
into the space of bounded continuous functions. Now let DF be the differential
of F, then p € C$° implies DF and DF~! are both C*, see [16], p. 233.
M. Reimann considered the function

g(z) =log det |DF]|

and proved g € BMO with norm only dependent on |||l . As a simple observa-
tion we have

Lemma 1. For canonical F = F* | log|J0F| is BMO and
llog [0F|l, < K (llullo)-
We have only to write
logdet |DF| = log |0F|*(1 — |u|*) = 2log|0F| + log(1 — |ul)

and observe

log(1 — |ul*) € L Cc BMO.
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We now consider the definition of log(0F'). This is no problem when y € C§°N
M, and may be accomplished in two different ways. One way is to take log(9F) =
0 at co and use a path v from oo to z, along which log(0F) is continuously
defined. It is clear that this log(OF) is uniquely defined independently of v. A
second way is to consider a continuous deformation of p to 0,

ut)=tp, 0<t<1,

and an associated family F*

OF' = tudF!
of canonical maps. Beginning with F° = z and log 8F = 0 we may continuously
define log OF*(z) at fixed z. It is clear that this definition agrees with the first
(by the usual homotopy argument) and in fact any C'® deformation of x into G
may be used. Thus log(9F) is uniquely defined for the C™ case.

Now for the general case, as F' may be totally singular on a circle, the first
method fails. It is necessary to show that the second method may be generalized
and gives log OF uniquely, whatever the representation. Thus we begin with the
C* case and establish BMO bounds. There are various difficulties caused by the
fact the C§° N My is not L™ dense in M, , and a type of weak convergence for
sequences of quasiconformal F;, is needed. The usual good convergence, see Lehto
and Virtanen [15], p. 185, ensures 9F, — OF (a.e.).

Assume |[|tin|l o, |1]loe < k <1 fixed. We assume that

(i) F, — F uniformly on compact sets.
(i1) pn(z) — wu(z) (a-e.) on compact sets.

Lemma 2 (Lehto, Virtanen [15], p. 216). For k < 1, there are p = p(k) > 2
so that the above conditions imply ||0F™ — OF||, — 0 on compact subsets of R?.

3. Proof of Theorem 1 (part 1)

We have to obtain a well defined log OF for F = F* and u € M,. First we
assume 4 smooth and obtain a uniform estimate.

Lemma 3. For canonical F = F*, € CS° N My,

[log OF||, < K (||ull.)-

For fixed k, ||u|l,, < k¥ <1 and F = F*, consider the following one parameter
family F* defined for |A\| < 1/k. Let F* be the canonical map satisfying

OF* = \udF*.
Observe by the Ahlfors-Bers theory that (F*), (F*)~! are C* and the function

A =logdF*
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depends holomorphically on A. Thus we may write
fA=day + Nag+---

where each a;(z) € C*, and the series converges for || < 1/k.
1

Note that without loss of generality we may assume k > 5 (otherwise the
bounds still apply for smaller dilatations). Choose a number p depending contin-
uously on k so that

1
1 —.
<p< %
Let T' be the positively-oriented circle {|\| = 9}. Now we apply Lemma 1 to F*
for A € T', noting that the dilatation Ay, satisfies || Au|,, = K(k) < 1. Thus for
Ael

[Re £2], < K (k).
However )
Re f* = }(daq + Aay ) + 1(A%az + A2a3) + - -

and therefore
d\

— 1 A
U o /F(Ref 255w

and consequently
K(k
ol < =5

Thus, evaluating f! = log OF

E®) < gor).

log OF, = flay + a3 + -], < 20 <

In order to define log(OF) for general p we proceed as follows. For any fixed
k > |||l choose a sequence p, € C§° so that the conditions (i), (ii) of Lemma 2
hold. Let F' be the canonical solutions of

OF, = udF,

and

fn = log(0Fy,).

Now we apply Lemma 3 and the weak compactness of the unit ball of BMO. Thus
there is an f € BMO so that some subsequence f,, — f weakly. However by
Lemma 2

|OF,,| — |OF| (a.e).
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In particular,
log |0Fy, | — log |OF| (a.e).

Now Lemma 2 implies

/(log |OF,|)udz dy — /(Iog|0F|)u dz dy
for all v € E. Thus
Re f =log|0F|

and we may define
I(p) = f.

Let us show f is well defined. Now suppose v, is another sequence in C§° N M
converging to u so that (i), (ii) hold. Let g be the corresponding weak limit. For
the sequence p, we associate an analytic family Au,, |\ < 1/k', k' > k and
corresponding quasiconformal F}

OF) = AunOF2)

with
fa =log(0F))

which is a uniformly bounded holomorphic family in A. Thus (at least for a
subsequence) there is a weak limit f*, holomorphic in A. By the above analysis

Re f> = log |0F%], |\ < kl

Similarly for v, we define Av, and corresponding G
oG, = /\z/naG,’z

with
gn = log(G).

Thus there is a weak limit g* holomorphic in |\| < 1/k'. But as v, — u a.e.
© Avp — Mg ae. weakly and |0G| — |0F?| (a.e). Therefore

Re g = log |0F|.

Now g*, f* are holomorphic functions with the same real part and value (0) for
A =0. Thus g* = f* for |A| < 1/k' and in particular (for A = yg=f.
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4. Proof of Theorem 1 (part 2)

In this section we prove holomorphic dependence of log F* for v()) holo-
morphic in A. By the Ahlfors-Bers theory log dF*) is holomorphic in X if
v(A) e C§° N M.

For general holomorphic A : {|A| < 1} — M there exist sequences of holo-
morphic mappings A, € C§° N My so that A,(A) — A(X) a.e., in fact for any
r < 0o

[An(X) = AV, = 0,  n— oo,

and for A on a compact subset of the unit disk. To see this, take ¢, € C§° to be
an approximation of the identity. Define

Aa0) = [ on(e = 2 = in)AN) d dy,
Now as ¢, >0, [ppdzdy =1,
AV <k < 1.
Observe that A, € My N C* and that by the standard estimate, for all r < oo,
[An(A) = A, — 0

for A on any (fixed) compact set of the unit disk.
Consequently the corresponding sequences

gn = log(9G?)
will converge weakly to a holomorphic function g*. However, as before, this is the
unique definition of log(G*) which is therefore holomorphic in .
5. Proof of Theorem 2
As preliminary results we need the following form of the A-lemma (see [7],
(22)).
Lemma 5. Let L be a holomorphic curve in S, ie, L =A({|A\| <1}),
A {]N<1}—>S
is holomorphic with A(0) = 0. Then for |A| < 1 there is a holomorphic map
T: {]A < 3} = M(Q)
so that
log OF(\) = A(N).

This is because if ¢ = g* € L depends holomorphically on L then so does

F* = / egxdz

which is univalent on €. By the A-lemma F* extends to a quasiconformal map-
ping which, for |\| < %, has dilatation y* depending holomorphically on .
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Remark. The maximal complex manifold containing g = 0 is essentially the
class of all quasiconformal deformations with p € M(Q).

Since log 0F* = log(1+ Hp + ---), DII(0) = H and the above lemma gives

Lemma 6. The tangent space at 0 is
V = HL>(QO).

Remark. In particular there is a nontrivial complex manifold through 0 if
and only if Area(Q¢) > 0.

Finally we prove the theorem. Our previous comments give (i) — (i) —
(iii). We use Theorem 1 to complete the chain of equivalences. Now as B(Q2) =
HL®(02), H is an open map of L®(QC) onto B(Q). However as O|ame) is
holomorphic, by the implicit function theorem there is a b > 0 so that II maps
{w e M(Q): ||ull. <b} onto an open neighborhood of 0. Thus € has univalence
criteria.

6. Proof of corollaries

Observe that Corollaries 1, 2 are just special cases of Theorem 1. We next
have to complete the proof of Corollary 3. For each g € B(f2) we use the Cauchy
integral to write

g=9g1+92

where g; € B(AJC). Thus if B(A]c) has integral representations so does B(f). So
by Theorem 2 we only have to prove the converse. Suppose now that g € B(AY)
say. However, g € B(Q) and thereis a ¢t > 0 so that for |A| < ¢

Ag = log Fy

for F) univalent (normalized) on . But ¢ is analytic on A so that Fy has
an analytic extension to AY. Also Fy is 1 : 1 on a set of Jordan curves 74
separating A; from A,. Thus by the argument principle F) is univalent inside .
Consequently, B(A{) has univalence criteria.

Finally we prove Corollary 4 by simply observing that the second derivative
of II with respect to u must be in BMO:

log(OF) = log(1 + Hp + HuHp +---) = Hu+ (HpHu — L(Hu)®) +---.
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7. Proof of Theorem 3

The method is almost exactly the same as the proof of Theorem 1, so we only
point out the differences. The first problem is defining log(0F) for F, F~1 ¢
C>®. Now if F has dilatation x, we use holomorphic family F* defined by
quasiconformal solutions of

OF* = \pdF>, |\ < —— i ”

fixing 0, 1, co. Now F' as holomorphically dependent on A we obtain a holomor-
phic function

£ =log(dF?)

which letting log(l) = 0 defines log(0F). A homotopy argument shows the
uniqueness of this definition. The rest of the proof proceeds analogously.

8. VMO and quasiconformal mapping
A function f € VMO if

][Q |f—/fdwdy|dxdy—>0

uniformly as area of all disks @ satisfies |@Q| — 0. We consider the canonical map
from the set of continuous dilatations to quasiconformal F (fixing 0, 1, o).

Corollary 6. The canonical map
II(p) = log(0F*)

is a well defined holomorphic map from M N C into VMOy,.. In particular for
continuous u, logdet(DF*) € VMO, .

The proof is a simple deduction from Theorem 1. The canonical map is the
restriction of a holomorphic map to a convex submanifold. We have only to show
log(OF) € VMO)o. . Now there exist p, € M N C* so that

I = pinlloe — 0
Thus, by Theorem 3, if F = F* and F,, = F#»
|[log(0Fy,) — log(dF)||, — 0.

Thus log(0F) is in the BMO closure of C and is therefore VMO, .

Remark. One should note that for continuous g OF is not necessarily

even L¥ .
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