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HARMONIC ANATYSIS AND
BOUNDARY CORRESPONDENCE UNDER

QUASICONFORMAL MAPPINGS

Jan G. Krzyil

O. Introduction. Notations. Statement of results

Any quasiconformal (abbreviatea' q9 self-mapping of a Jordan domain G has

a homeomorphic extension to its closure G and induces this way a sense-preserving
homeomorphism of the boundary curve I onto itself. In other words, any qc

automorphism of G induces an automorphism of 0G. It is well-known that the
induced automorphisms of I with a fixed point can be represented, after a suitable
conformal mapping of G onto U :: {w : Imur > 0}, by M-quasisymmetric
(abbreviated: M-qs) functions, i.e. functions ä: R --+ R which satisfy for some
M > 1, the celebrated M-condition of Beurling-Ahlfors: There exists a constant
M>lsuchthat

h(* +t) - h(*)
h(*)-h(*-t)

cf. [1], [2].
As pointed out by the author in an earlier paper [5], the induced automor-

phisms of I can be also characterized by M-qs functions of the form r --+ rlo(r),
where o is periodic with period 2r. In fact, any automorphismof I admitting
aqcextension ä to G alsoadmits aqcextension LoH to G havingafixed
point zs € G, where .L is a qc automorphism of G (with complex dilatation of a
constant absolute valle) that keeps the points of I fixed and carries H(ro) to zs.
The automorphism L of G corresponds, after a conformal mapping g of G onto
the upper halfplane U, to the affine automorphism L of. U :

u; * L(w): L(w;ut,.u,2): (t r - rr)-'((*, - w1)w * (., - w2)a),

where wt:9oH(zs)t luz:SQo). Evidently L(.r):wz a$d L(a): r forany
c € R. If. L: g-roLog,then LoH agd If areqc automorphismsof G inducing
the same automorphism of äG, while .L o H(zs): 20. Now, the qc automorphism
LoH composed first with a conformal mapping of G onto the unit disk D with zs

corresponding to the origin, and next with the conformal mapping z ++ -i log z of

(0.1)
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D \ {0} onto U, generates a qc automorphism of U. This automorphism induces a
quasisymmetric function of the desired form r ,- a * o(x) from which the original
automorphism of I can be recovered.

The above mentioned representation of the boundary correspondence under
qc mappings has many advantages. Due to periodicity of o, some local properties,
e.g. local HöIder continuity become global ones. Moreover, the exceptional röle
of the point at infinity, which is not justified while dealing with the boundary
correspondence, vanishes in this approach. The functions o, which may be con-
sidered as deviations of the induced automorphisms from the identity, have many
properties that are very nice from the point of view of the classical harmonic anal-
ysis. They are of monotonic type (i.e. o(x) * Cr is strictly monotonic for some
C * 0), of bounded variation over [0; 2n) ar.d belong to the familiar class Ao
with a defined by (1.7).

Obviously the period 2r may be replaced by an arbitrary a > 0. The class
of allperiodicfunctions o of period a ) 0 suchthat x å a *o(o) is M-qs
on R will be denoted by E(M,a). By performing a suitable translation we can
normalize o e E(M,o) so that

(0.2) "(0)-0 -o(a,);
the subclass of. E(M,a) with the normalization (0.2) will be denoted by E1(M,a).
Evidently Er(M,1) + id is the subclass of the familiar class ff1(M) of M-qs
functions ä normalized by the condition

(0.3) ä(0): s, ä(1):1.
With any o e E(M,o) we may also associate the function

os(o) : o(r) - r-' 
lo oQ)d,t

which satisfies

(0.4)
lr" oo(r) d* - 0.

For various reasons this normalization seems to be most natural and the resulting
subclass Eo(M,a), or rather the classes Eo(M,7), Eo(M,22.) will be the main
objects of our investigations. In the latter case we adopt an abbreviated notation
E(M). If (0.4) holds ihen oo(ro) : 0 for some r0 e [0;a) so that o1(t) :
oo(t + cq) belongs to E1(M,a). Thus both classes correspond to each olher
under a translation. Obviously, o e E*(M,a), k:0,1 if and only if a suitable
normalization (0.2), or (0.4), holds and r å n * o(r) is M-qs, i.e. o satisfies

t+o(r+t)- 
"(a)t+o(r)-o(*-t)

Remark O.1. As shown in [5], inequality (0.5) with the same M holds if and
only if o ranges over [0;a] and 0 <t < la.
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While establishing general properties of o, we shall be mainly concerned with
the class Et(M,1). On the other hand, we prefer to tale a:2r while dealing
with Fourier series of o. In Section 1 some obvious consequences of the definition
are obtained. E.g. the modulus of continuity of o e E(M,1) is determined and an
analytic expression for a qc extension of a * o(r) in terms of Fourier coeffi.cients of
a is given. In Section 2 an estimate of the sup-norm of o * ElM,1) is obtained.

Also an estimate "f f, l"l is derived. The Fourier series of o(a) car be written in
the form D3, pnsir(nx * an), Qn ) 0, and then the norm estimates of o enable
us to find finite bounds for ! gn and D"p'" in E(M). 'In 

Section 3 the existence
of the uniform bound c(M) for the sequence (np") in D(M) is established and
two-sided estimates of c(M) are given. The problem of f'ourier coefficients of o
is reduced to the determination of the constant c(tvt1 : sup{p1(o) : o e E(M)} .

The results presented in this paper were announced at the L3th Rolf Nevan-
linna Colloquium in Joensuu on August 13, 1987 [cf. p. 32 of Abstracts of lectures
presented at the Colloquium]. The author would like to express his sincere thanks
to the referee for his very helpful criticism.

1. Some preliminary considerations and remarks

If a >0 and k- 0, l then

( 1.1)

Thus taking
and n e N,

(L.2)

"(") e E{M, a) <+ a-ro@r) e E*(M,l).

o(nr) e Eo(M, o) <+ no(r) e Eo(M , o).

In fact, the middle term for o(nr) in (0.5) has the form

t+o(nr*nt)- o(nr) nt++no(nn+nt)-no(n*)
t+o(nr)-o(nr-nt) nt+no(nr)-no(nr-nt)

and the last expression may be considered as the middle term for no(*). Further-
more, the normalization (0.4) is preserved.

The inequality (0.5) may be written in an equivalent form:

(1.q M-t(t+"1c1-o(r- r)) S, *o(r*t)-o(x) < M(tro(r)-o(c
If k - 0, 1isfixed, \j € [0; t] , oj € Ex(M,,a) forT-1,2)...,r, and
then

\ jo j e Ex(M, o)

o, - 1 does not impair generality. Similarly, if o has the period a > 0

then

\anL j-r

_ ,))

Åj-1,

i
j:t

which is readily obtained from (1.3).
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Corollary t.L. Ek(M,a), k:0, 1, ar.e convex subsets of the linear space
C(R) of continuous, real-valuedfunctions on R.

If å € Hr(M), so does 7 - h(7 - c). Consequently

(1.5) o€Ep(M,\) <+ -o(-x)eEk(M,7) &:0,1.

Corollary 1.2. If o e Eo(M,1), so does its odd part ll"@) - "(-*)].However, an analogous statement does not hold for the even part of o.

The well-known local Hölder continuity of M-qs functions becomes a global
property h E(M,1). We have

Proposition 1.3. If h(x) : t * o(u) and o e E(M,l) then the moduli of
continuity ,(6; f) satisfy for 0 < 0 < | the inequality

(1.6) ,(6; f) < (26)' : (1 + M-r)6d with f : h,o,

where

Proof. With / : ä the inequality (1.6) is essentially due to Kelingos [4], also
cf. [1],p.66. Hencewith f :o € E1(M,1) wehave h(a):x*o(a)eHlM)
and

( 1.7)

(1.8)

a- logr(1 + M-').

( 1.e)

which implies (f .O) for f : o.

Remark L.4. Ek(M, 1), &:0, 1, are convex, compact subsets of the space
C(R).

For convexity cf. Corollary 1.1.. The compactness of. E1(M,1) follows from
the Ascoli-Arzela theorem. The same is true for Es(M,l).
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Corollary 1.5 . If o e E(M) , then for any , € R

(1.10) l"(t * x) - "(t)l .2"(6 l")', 0 1r < 6 <.-n.

229

Corollary 1.6. Tåe class E(M) is a subclass of the familiar class Åo of
2r -periodic, Hölder continuous functions with the exponent a given by (L.7).
Thus the Fourier series of o and its conlugate 6 are absolutely and uniformly
convergent on R, cf. [6].

We shall now perform the Beurling-Ahlfors construction of the qc extension
of arr M-qs function n F+ o + "(r). Suppose that o e E(M). Then we have for
suitably chosen 0n € R

( 1.11)

(1.12)

"(") p,, sin(nr + *n)t Qn > 0.

u(*, v) - n p, sin( nn + *n) sin ny l("y)

_»
n:l

The qc extension to the upper half-plane, cf. [1], ta^kes the form ur : u(x,y)l
iu(x,y), where

.å

(1.13)
oo

,(*, y) _ *y + » pn cos (n* * x, X1 - cos ny) l@il.
n:7

'We 
see that u, ?, are obtained by linear transformations generated by convergence-

preserving factors, as applied to a convergent Fourier series (1.11) and its conju-
gate. The factors in (i.12) are even sum-preserving as y --+ 0 and correspond to
the Lebesgue method of summability, cf. [6]. On the other hand, the convergence-
preservingfactorsin(1.13) tendto 0 as y --+ 0 andthisimplies limy*o a(r,y):g
for any r € R. Note that ()") are convergence-preserving factors, if and only if
the series » lf" - ln*11 is convergent, cf. e.B. [3, p.39a].

2. Estimates of lloll. Some applications

In this section we shall be concerned with estimates of various norms of a €
E(M,o), M > 1. We obtain estimates of the forrn A(M -l)l@ * 1) with a
universal constant Ä independent of M for the sup-norm and -Lp -norm, p : lr2.
We first prove
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Theorem 2.L. If h e Ht@) then

(2.1)

Proof. It is sufficient to prove (2.1) with å replaced by some function F
majorizing all ä e H{M) on .f : [0; 1]. A majorant F can be obtained in a
familiarwayasthelimitingfunctionof thesequence (.t,) of continuous,piecewise
linear functions, defined as follows.

Let 11, be the partition of .[ determined by the points *?) : Ie .2-n , k, :
0,1,...,2'. 'We assume that .ts : id and Ln are linear in lf,') : pf,)r;*f,)1.
Given Ln and, its values Vf) : h@3)) we assume that the values of .t, and

-t,,-p1 coincide at c["), while at the new points a'o : !l"f), +r[")] of the partition
lT,-.1 the values UL: L.+r(a') arc the maximal values admissible under the M-
condition as applied to the end points of. tf,') and its centre, i.e.

(2.2) y'*- ( M +1)-' @12, * My[")).

Evidently (I") is an increasing sequence converging uniformly to the continuous
increasing function .F being a majorant of all å e H{M) on .[. Note that all .t,
are Hölder continuous with the exponent a. We shall now obtain an estimate for
the increment of

(2.3) 7n: max {t"(*) - * : n € /}.

Suppose that 7r.41 : Lr*r@\"); for some j. Since (ry,) i. increasing and

t**r@|")): L.@t")), we have .yn*t:7, in this case. Thus we may assume

that 7,r-1-1 : Ln+t(r') - y', where s' is the centre of an interval II") :@r;rrl .

Putting a*: Ln(xx), l, :1.,2, we see that y' has the representätion (2.2). If
*: (y, - yt)l@z - c1) is the slope of the segment on the graph of Ln corre-
sponding to the interval 1j"), th"r, after the bisection of tj") relevant slopes on
the graph of Ln11 will be equal

(2.4) mt :2mMl@ + 1), mtt - 2mf (M + 1).

If m ) L@ +l), or m < (M +1)12M, then -L,..1 -id will change monotonically
on Ij') which implies that its maximal value 7,41 is attained at rc1 or 12 arrd,
consequently 1n*r : .yn, ds before. Otherwise

(2.5) (M +1)l2M <m<(M +1)lz.
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If 1 < * < (M +t)/2, then L,-id, increases on Ij") to the vafue y2-o2. With
d : az - ot : 2-n we have y2 - a' : *" (*, - *'), or in view of Q.\

0 ( 7,r+r -.yn l yt - a' - (y, - ar) : laQ - *"): La(u + t - 2m)l(M + L) < La@ - Dl@ + t).

Tf (M +L)/2M < n't. <1, then Ln-id.decreases strictly or, .f1') and its maximum
on this interval is equal Ur - xt. Then we have

0 ( 7",+r -.yn 1y' - x' - (y, - xr1 : la(m' - t)
: ld(2mMl@ + 1) - 1) . ia]w -t)/(M +t).

Thus in any case

(2.6) 0 (7,,+r -.yn<-l,a@ -l)l@ +1): z-n-t(M -t)l@ +t).
Obviously tL < +(M - t)l@ * 1) so that (2.6) implies

.tn4(2-'+2-2 +...+2-")(M -1)l(M +1) < (M -t)l(M +t)
and this ends the proof.

Note that for tl(M +1) < o ( 1 abetter trivialestimate å(r) < r*(1-c)
is true.

Corollary 2.2. If h e H{M), then for aay r e I
(2.7) la(,) - *l s (u _ 1)l@ +t).

In fact, if h(a) ) c for some r € r, then (2.7) follows immediately from (2.1).
If h(c) ( o, apply (2.1) to fu(r) : 1 - h(l - r).

Corollary 2.3. If o € Ep(M,!) , lc : 0,7, then

(2.8) sup{lo(e)l : re R} <(M -l)l(M+t).
If o e E(M,7) a,nd Mfo): max{o(r) : r € R}, rn[o] : min{o(r) : r € R},
then

(2.e) Ml") - mlol < (M - t)l@ + t).

Corollary 2.4. If o e E(M), then

(2.10) sup{lo(o)l : o e R} <2r(M -l)l(M * 1)::zrn(M).

The constant *(M) will appear later on in various estimates concerning the
class E(M).
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Corollary 2.5. Any o e E(M,a) is a function of bounded total variation at
most 2a on the interual of periodicity l0; al. In particular, for o e E(M) we have

(2.11) Vl"l I 4r.

Some natural open problems arise whether the bounds just mentioned could
be improved. In particular, the inequality (2.9) suggests that the bound in (2.8)

the bound in (2.11) could be replaced by a smaller term depending on M.
We shall be now concerned with bounds of integrals of o. We have

Theorem 2.6. If o e Es(M,l), then

(2.72)

Prcof. Suppose first that h(x) : a * o(a) e HIM). Then t/(M + 1) <
h(x)dx < Ml@ * 1), cf. [1, p. 67]. Hence,6

\1,'@(*) -,) ,, I = Lor- 1)tw+ 1)

Thus, if h(") - r has a constant sign in (0; 1), then

Suppose now that h(*) - r vanishes at the end-points of an interval I C [0; 1] and
has a constant sign in f . Then, after a similarity transformation of ratio l.Il , we
reduce the problem to the just considered one and obtain

(2.13) -,1 s *lrl'(M -1)l@ +1).

Lel \ (or fi, respectively) be the systems of maximal, disjoint, open intervals in
(0;1) suchthat h(c)-r ) 0 on I7, (and h(r)-r ( 0 on ..ft, respectively) sothat
h(*) - r:0 at the end-points of /* and J1.If h(x) - r: o(a) e Er(M,1) and

"(*) * 0, then both systems are non-void. Moreover, D lrr, - D"[r,(-"; a""
to the normalization (0.4). Hence

l,'

l,rur"t

lr,rlol - 2» l,r' - 2» 
lr,'-o)'



Harmonic analysis artd boundary correspondence 233

Since !lIrl+ DUrl S 1, at least one of-thesesums, say »ll1l, is < | so that

X lI*l' < f . Hence, by (2.13)

J 1o: rl

Corollary 2.7. If o e E(M), then with the notation (2.10)

(2.14) 
l"'" l,told, < trm(M).

Proposition 2.8. If o € Eo(M,1), tåen

(2.15) lo'lol*)l'0"=L(#)
Proof. lf. o € Eo(M,1), then

1l

lo'lotdl'ac 
< maxlo( dl l,'lo(r)ldr =f(#)'

in view of (2.8) and (2.12).

Corollary 2.9. If o e E(M), then

(2.16) 
lo'" lotdl'd,a < 2tr(m(M))' .

The norm estimates just obtained give rise to some inequalities connected
with Fourier series of o. In view of Corollary 1.6 o € E(M) can be represented
by an absolutely and uniformly convergent Fourier series

(2.17) o(r) :i,r, cosntrt å, sinnr).
n:l

Putting
sin e.n: an(a2n + b?.)-'/', cos rn : br(o?, + b2)-1/2

we can rewrite (2.17) in the form

(2.18) o(a) :i n, sin(nr * rn), p,: (a?. + b2*)t/2 > o.

n:7
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The relation E(M)
Fourier series of o .

(.f. [6, p . 2577. Moreover,

i (lo,l, + lb*lr) ( *oo,
n:l

Jan G. Krzyå

C Ao O V B[0;2n] supplies us with much information on the
E.g. for any B < a

for any I > 2l@+2), cf. ibid. p.243. In particular, D Qn ( *m. All these sums
admit an estimate in terms of M for any o e E(M). As a matter of example we
shall find a bound for the last sum. We have

Theorem 2-1.o. If o e E(M) and its Fourier series åas the form (2.1g),
then with the notation (2.10)

» Qn 1*(M) * rlD,(u +
n:l

n:t

:- p( M).(2.19)

Proof. If ar(6) is the modulus of continuity of a continuous, 2zr-periodic
function o of total variation tr/ over l0;2r1, then the calculations carried. out in
the proof of Theorem 3.6 [6; p.2 7l yield the inequality

oo

k:1

In our case ar(6) <2r(6lr)" and V <-4tr, cf.. (1.10) and (2.11). Hence

Now, 2-o/z- (twt(M + 1))'/' and this implies

ia 1n'nQw +

On the other hand

o(r - rt)- p1 sin n + p2 sin(2r - 2rt * rz) + ..

i
n:2

M(M



rQt : 
lo'" 

or*- 11) sinr a, < lo'" lo(a)ldr < nm(M)

by (2.7 ), i.". p, < *(M), hence the inequality (2.19) follows.
Since the Fourier conjugate ö(x) of a satisfies 6(x) : DL, pncos(nx ! an)

we see that lä(0)l < DL, p,,. Thus

(2.20) sup{la(r)l : c € R, o e E(M)},: i'(M) < e(M).

We shall now prove

Theorem 2.11. Suppose u(eie): "(0) e E(M) and u(z) is the harmonic
extension of u(ei') on the unit disk D. Then the Dirichlet integral Dlu) :
[o@', + u2) da d,y is finite and

(2.21) Dl") < rm(M)p(M)
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and hence

with m(M), p(M) defrned in (2.10) and (2.L9), respectively.

Proof. It is well-known that Dlu): "DL,npf;, cf.. (2.1S). In the next
section we shall prove that nQo 1*(M) for all n € N and that implies (2.21) in
view of (2.19).

We shall now derive another estimate of. 6(r) in terms of Hölder continuity
exponent o.

Theorem 2.12. If o e E(M), then for any x €R
(2.22) la(r)l . At/(t+a) (7 * o-t11Zr-a - 1;a/(t+o) :: r(M),

where a is given by (1.7).

Proof. Using the well-known formula

ö(r) : llX 1," frtu^f,)-' (o(* - t) - o(x * t)) dr,

cf. e.g. [6, p. 51], we obtain by means of (1.10) and (2.14):

lä(,')l s + l,' #De-+"@ .P;@)*-'0,
1. 6/2 lu,+affiDJ-*|"@lat

. + f r-tdt.;#ro Jo

4/6\o rM-'J.:;(;,) +iM+t'o<6<z'
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6 /1M-1\r/(1*o)tl
;-\4M+t)

we obtain

la(,)l .41l(1+a)(1+ o-') (#)o/(+o) .

Note that, in view of (1.7), (M -l)/(M + 1) : zt-o -1 and this ends the proof.
It is quite natural to compare the estimates of ir(M) as given by formulas

(2.20) a"nd (2.22). Both expressions p(M) and r(M) are O(M) as M -+ oo.
More precisely, p(M) x zr1f2M , r(M) x 4Mlog2. However, r(M) : O((lrt -
1)1/2+0(1)), i.e. r(M): o(L), whereas p(M): r(2+rt)+o(1) as M --+ 7.
These facts, as well as computer evaluations, strongly support the presumption
that r(M) yields a better estimate oI p(M) fot all M.

3. Fourier coefficients of o

We first introduce two classes of analytic functions intimately connected with
the class E(M). lf. cn : bn+ian, then the terms of the series (2.17) have the form
Im.cne'o' which suggests introducing the class Q@) of functions g analytic in
D and continuous in D:

(3.1) {q(r): 
å "n(q)rn 

: Im q("i') - o(t) e E(M)} :- Q(M).

Obviously coefficient problems for E(M) and Q(M) are equivalent. If g e Q(M),
then

(3.2) F(r) - zexp q(z) - z * Az@)r' +

is evidently a bounded, starlike univa.lent function. In fact, F(z)lz is analytic,
non-vanishing in D, continuous in D and arg]i(et') - t* a(r) increases strictly
in [0;2zr') by 2r. We shall denote by S-(M) the corresponding class of functions
.F which may be called M-quasisymmetric starlike functions. Although any -F e
S.(M) is associated with an M-qs function, it need not have a qc extension, as
a simple example F(z) : ze' shows. In this case F e S-(M) with M 2 Mr :
Qr+2)/(tr -2), cf. Lemma 3.8, however, f"(-1) : 0, i.e. * : F("i'), 0 I t 1 2n,
is not a quasicircle.

Since F € S. (M) implies
relation

(3.3) qeQW) =+ 1+zq'(z)e P,
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where P is the familiar Carath6odory class of normalized functions of positive real
part. Thus (3.3) implies in view of (2.18)

(3.4) npn(o) : nlc"(q)l < 2.

The relations (3.3) and (3.4) suggest introducing the constant

(3.5) c(M):sup{p1(o) : o eE(M)}:"rp{l"r(s)l t qeQ(M)}
: sup{lAr(F)l : F e S.(M)}.

We shall prove that the constant 2 in (S.+) may be replaced by c(M) which is
12 fot arry M > 1. In fact, we have, using (2.20)

lr("0')l : lexp(;o(r) + ä(o))l : 
"*p 

ö(") < exp p,(M)

and hence

c(M) :'"p {lar(r')l, F € s.(M)} < 2lt - exp(-1'(u))] . z.

While proving Theorem 2.10 another bound for c(M) has been obtained: c(M) <
*(M) which is < 2 for M I Mt. Thus we have the following:

Theorem 3.1. If o e E(M), C e Q(M) have the expansions (2.78) and
(3.L), respectively, and are related by (3.1,) then

(3.6) ne,(o) : "|""Q)l 
< 

"(M) 
< rnin{m(M); z[t - exp(-p(-l,r))]],

where c(M), fi,(M) a.re defined by (3.5) and (2.20), respectively. The bound
c(M) is sharp for afl n e N.

In order to prove this theorem we need some properties of functions g e Q@)
which are contained in

Lemma 3.2. A@) is a convex, compact subset of the space A(D) of
functions analytic in D. If q e Q(M), then also q(z), q(az) belong to Q(M) for
anarbitraryoeD.

Proof. The first two statements are counterparts of Remark 1.4 and the
formula (1.5). If u(z) : Inq(z), then the condition (1.3), with an arbitrary,
fixed real t and r7 : "i', m"u.rrs that the harmonic function z r-+ t * u(qz) - u(z)
has the function Ult +"(r) -"Ol-r)l (ot M-rlt+"1r1-"(n")l) as a harmonic
majorant (or minorant). Putting z: aei' (l"l < l, x e R) we obtain (1.3) for
o(a) : rlr-q(aei'), i.e. q(az) e Q@).

Corollary 3.3. If F e S.(M), then a-r F(az) e S.(M) for any o e D.
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Proof of Theorem 3.I. Suppose that q(r) : DL, cnzn e Q@) and take
arr arbitrary integer n ) 2. If q : exp(2riln), then by Lemma 3.2 qk(z):
Cltkr) e Q@) for k :0,1,...,n-l and by convexity of Q(M) also g["] -
n-'lqo * gr + . ..* g,-r] belongs to Q(M). However, due to obvious equalities

7 + rtk + n'o +"' * 7('-r)- : { l f:: I : l,= " -''
we have Ol"lQ) : cnzn + c2oz2n + '.. € A(q. Consider now g*(z) : cnz *
c2nz? !... and put o*(r) : Img*(ei'). Then Img["J1el'; : o*(nx). However,
Img["J(ei'; e E(M) since g["J e Q(M), and so o*(nx) e E(M). Due to the
formula (1.2) also no*(r) e E(M) which means that nq* e Q@). Thus ncnz I
nc2nZ2 +... € Q@) and consequently nlc,(il|S c(U) for any n € N. Since
the class A@) is compact, the bound is sharp for n : 1. Let p be an extremal
function for n : 1, i.e. p(z): c(M)z +... € A@) and Imp(e") : oo(r) e
E(M). The formula (1.2) also shows that n-los(nr) e E(M), i.e. n-lp(zn) :
n-r c(M)z'+ . . . € a@) which implies that the bound c(M) in (3.6) is attained
for any n € N. Since the estimate of c(M) given in (3.6) has been already derived,
we are done.

In what follows we shall give estimates of c(M) both from above and below.
To this end we first prove a theorem which is of independent interest.

Theorern 3.4. If o e E(M), then for any m, € N tåe mth Fejår mea.n o,n
of o aJso belongs to E(M).

Proof. Let K*(t) denote the Fejdr kernel, i.e.

(3.7)

Then we have for any m e N

K,-(t): lzn(*+ 1r] -' ( sin |t
,r, 

)
sin|(**

(3.8)
lr'o 

o,n(u) d,u- 1 , o*(*)- 
lr'n 

o(n + u)K,n(,r) d,u.

Upon putting in (1.3) r f u instead of r, multiplying all terms by a non-negative
factor K^(u) and integrating over [0; 2z'] w.r.t. u, we obtain using (3.8) the
desired inequality (1.3) for a-.

Corollary 3.5 . If o e E(M), there exists a
nomials ("*) of degree m such that ont e E(M)
uniformly on R.

_ Corollary 3.6. If o e E(M) has therepresentation (2.18), then o1(a):
}or sin(r * rr) e E(M). Consequentty lc(M)sinr € E(M).

seg uence of trigonometric poly-
for any m e N and lirn o* - o
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Thus we are led to the following problem: Given M > l, find the greatest
real number c such that the function c r+ c sin o belongs fo E(M). To this end
we shall prove

Lemma 3.7. Let us defrne for t ) 1 and (u, u) e R2 tåe function
(3.e)

F,(u.u\: [ (t" ]sin(u + u) - sinu))/(to * sinu - sin(u - u)) f9r u 10,-.\-)-, [1 foru:O,

a,nd put

(3.10) M, : tt p{Fr (u,u) t (u, u) e R2}.

Then M1 satisfies

(3.11) T-+i4 < Mt < 

=,rt-2- "-t-7'
or equiva)ently

(8 12) Y-<ls:Y'-'Mtll- t - 2Mr+1' t>1'

Moreover, M1 is a continuous, strictly decreasing function of t > 7 such that

+ -LD(3.13) M, : ,\T* Mr: i5: 4.50387..., ,lirårlr, : t.

We have aJso

(3.14)

Proof. Since F1(u, u) : TlFt(u,-a), (3.14) is evident. Obviously we may
restrict ourselves to u ) 0. Note first that the continuity of M1 for t ) 1 easily
follows from (3.9). We have $ / fi(f;r,r) : (trt + 2)lQrt - 2), which implies
the left hand side inequality in (3.11). We now prove the mononicity statement.
Supposethat 1( s ( t and M1 : Ft(uo,ue) with us ) 0. Hence

sus { sin(u6 1 ro) - sin uo * (t - s)us : Mr(suo* sin uo - sin(us - ro )) + Mt(t- s)uo,

i.e.

^,r \ 
suo *sin(uo*u0)-sinus 

^r, 
(Mt-1)(,-r)ro

JVLS .- 
- 

JYtt T
suo * sin us - sin(us - u0) - -t' suo f sinu6 - sin(us - u0)
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which is greater than M1 since the last term is positive. This proves that Mt is
strictly decreasing.

lf. a I 0 and t ) 7, we have by the mean value theorem:

Ft(u, u) : t * cos(u * {ru)'
t + cos(u - flzu)'

whichimplies (t-t)l(t+1) < Ft(u,u) <(r+t)l(t- 1) for all u,o (ul0) and
, > 1. This proves the right hand side inequality in (3.11), as well as the second
limiting case in (3.13).

We shall be now concerned with the case f : L. It is sufficient to consider
the range: 0 ( u ( 2n, 0 I a I r,cf. Remark 0.1.

The partials of f,r vanish at points (u, u) which satisfy

(1- cosu)(ucosu *sinu):0, ((f - cosuxl - cosu) - usinu)) sinu:0.

If cosu : 1, or sinu:0, then \(uro): 1, so we have to assume ?rcosu * sinu
: 0, usinu : (L - cos"X1 - cosu), or

(3.15) (1 + u-L sin u) tan(u 12) - u - 0.

It is easily verified that the left hand side in (3.15) is strictly increasing in (0; r'),
so we have to find extremal vaJ.ues of .t\ on the boundary of the range, i.e. for
u : T. Hence Mr - Qr + z)lQr - 2) and this proves the first limiting case in
(3.13), in view of monotonic behaviour of M1.

As an immediate consequence of Lemma 3.7 we obtain

Lemma 3.8. A necessary condition for csinr, c ) 0, to belong to some
E(M) is that c I 1,. If M > M1, this condition is aJso sufficient. If M e (1; Mr)
is given, then the condition c :Llto, where t6 ) 1 is the unique solution of the
equation Mt : M , is sufrcient for c sin x to belong to E(M) and c cannot be
rcplaced by any greater number.

Proof. If csin x, c ) 0, belongs to some E(M), then r * csinr has to be
strictlyincreasing,i.e. c( l isnecessary. If 0(c(l isgiven,put f :c-r > 1.
Then the M-condition (0.5) for o(u): f-lsinu takes the form M-r < F1(u,u)
I M andthe sufficiency statement immediately follows from (0.5) and the previous
Iemma.

Since sinc belongs to E(M) for M ) Mt, we have c(M)> 1 in this case.
Moreover, for L < M I Mt we have by means of Corollary 3.6 Tlto < 

"(M) 
< 2lto

and this implies, in view of (3.12)

(3.16) (M-t)l@+1) < c(M)<r(M-t)l@+1):m(M), t<M 1Mr.

It is easily seen that (3.16) also holds for M 2 Mr.
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Corollary 3.9. -Fbr any M >L thefunction rv-+(M -l)(M +1)-rsinr
belongs to E(M).

This shows that the norm estimates obtained in Section 2 have a correct order
of growth as M --+ 7.

A better lower estimate for c(M) ca.r be obtained by considering the function
F(z) : z(L - rz)-2, 0 (, < 1. If

s(u) :argF(ei') : x * o(r),

then
t+reg'(*):L*o'(a):R"ffi>0

and hence, by the mean val.ue theorem,

u*o(u*u)-o(u) .maxgt(a) _ /f +r\'?
u+-o(u)--61"-"1= *;"Y1"; - \1-'/

Thus,for r: (t/M-1)l('/M *1), o(c) eE(M), F(r) €S-(M) andby(3.5)

(3.17) Az@):2r: -- - --,,M -L,,- - -- < c(M),
(M +t)(i + \/M lQ, + M)) - \

which improves the lower estimate in (3.16) and is valid for all M > 7. The
estimates (3.17) and (3.a) imply limM*oo c(M):2.

It seems that the final solution of the Fourier coefrcient problem for the class
E(M), i.e. the determination of the constant 

"(M) , 
could be achieved by settling

the problem of the second coeffi.cient in the class of M-quasisymmetric starlike
functions.

?t

1,fr
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