Annales Academie Scientiarum Fennicae
Series A. I. Mathematica
Volumen 14, 1989, 225-242

HARMONIC ANALYSIS AND
BOUNDARY CORRESPONDENCE UNDER
QUASICONFORMAL MAPPINGS

Jan G. Krzyz

0. Introduction. Notations. Statement of results

Any quasiconformal (abbreviated: qc) self-mapping of a Jordan domain G has
a homeomorphic extension to its closure G and induces this way a sense-preserving
homeomorphism of the boundary curve I' onto itself. In other words, any qc
automorphism of G induces an automorphism of G. It is well-known that the
induced automorphisms of " with a fixed point can be represented, after a suitable
conformal mapping of G onto U := {w : Imw > 0}, by M -quasisymmetric
(abbreviated: M -gs) functions, i.e. functions h: R — R which satisfy for some
M > 1 the celebrated M -condition of Beurling—Ahlfors: There exists a constant
M > 1 such that

-1 . h(z+1) = h(z) ,
(0.1) M7 S e <M c€R, 0£t€R,
cof. 1], [2].

As pointed out by the author in an earlier paper [5], the induced automor-
phisms of I" can be also characterized by M -gs functions of the form z — z+0(z),
where o is periodic with period 27. In fact, any automorphism of I" admitting
a qc extension H to G also admits a qc extension L o H to G having a fixed
point z € G, where L is a qc automorphism of G (with complex dilatation of a
constant absolute value) that keeps the points of I' fixed and carries H(zo) to 2.
The automorphism L of G corresponds, after a conformal mapping g of G onto
the upper halfplane U, to the affine automorphism L of U:

w i L(w) = L(w;wy, wy) = (w1 — @1) 7 (w2 — D1)w + (w1 — w2)),

where wy = g o H(z2p), wa = g(20). Evidently L(w;) = wy and L(z) = z for any
ceR. L= g loLog,then LoH and H are qc automorphisms of G inducing
the same automorphism of 8G, while L o H(z9) = zo. Now, the qc automorphism
LoH composed first with a conformal mapping of G onto the unit disk D with z
corresponding to the origin, and next with the conformal mapping z — —ilogz of
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D\ {0} onto U, generates a qc automorphism of U. This automorphism induces a
quasisymmetric function of the desired form z — z+0(z) from which the original
automorphism of I' can be recovered.

The above mentioned representation of the boundary correspondence under
qc mappings has many advantages. Due to periodicity of o, some local properties,
e.g. local Holder continuity, become global ones. Moreover, the exceptional réle
of the point at infinity, which is not justified while dealing with the boundary
correspondence, vanishes in this approach. The functions o, which may be con-
sidered as deviations of the induced automorphisms from the identity, have many
properties that are very nice from the point of view of the classical harmonic anal-
ysis. They are of monotonic type (i.e. o(z) + Cz is strictly monotonic for some
C # 0), of bounded variation over [0;27] and belong to the familiar class Ag
with o defined by (1.7).

Obviously the period 27 may be replaced by an arbitrary a > 0. The class
of all periodic functions ¢ of period a > 0 such that = — z + o(z) is M-gs
on R will be denoted by E(M,a). By performing a suitable translation we can
normalize o € E(M,a) so that

(0.2) 0(0) = 0 = o(a);

the subclass of E(M,a) with the normalization (0.2) will be denoted by E; (M, a).
Evidently E;(M,1) + id is the subclass of the familiar class Hy(M) of M-qs
functions A normalized by the condition

(0.3) h(0)=0,  h(1)=1.

With any o € E(M,a) we may also associate the function

oo(z) =o(z) —a™! / o(t)dt
0
which satisfies
(0.4) / oo(z)dz = 0.
0

For various reasons this normalization seems to be most natural and the resulting
subclass Eo(M,a), or rather the classes Eo(M,1), Eq(M,27) will be the main
objects of our investigations. In the latter case we adopt an abbreviated notation
E(M). If (0.4) holds then og(z9) = 0 for some zo € [0;a) so that oy(t) =
ao(t + zo) belongs to Ej(M,a). Thus both classes correspond to each other
under a translation. Obviously, o € Ex(M,a), k = 0,1 if and only if a suitable
normalization (0.2), or (0.4), holds and z — z + o(z) is M-qs, i.e. o satisfies

_ t+o(z+1t)—o(z)
1< < M; .
S To(@ —o@—1) =M ze€R,0#4teR
Remark 0.1. As shown in [5], inequality (0.5) with the same M holds if and

only if = ranges over [0;a] and 0 <t < 1a.

(0.5) M
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While establishing general properties of o, we shall be mainly concerned with
the class E1(M,1). On the other hand, we prefer to take a = 2w while dealing
with Fourier series of . In Section 1 some obvious consequences of the definition
are obtained. E.g. the modulus of continuity of ¢ € E(M,1) is determined and an
analytic expression for a qc extension of z+ o(z) in terms of Fourier coefficients of
o is given. In Section 2 an estimate of the sup-norm of o + E;(M,1) is obtained.
Also an estimate of fol |o| is derived. The Fourier series of o(z) can be written in
the form 3 o7, onsin(nz+z,), 0n > 0, and then the norm estimates of ¢ enable
us to find finite bounds for 3" o, and Y np? in E(M). In Section 3 the existence
of the uniform bound c¢(M) for the sequence (np,) in E(M) is established and
two-sided estimates of ¢(M) are given. The problem of Fourier coefficients of o
is reduced to the determination of the constant ¢(M) = sup{o1(c) : 0 € E(M)}.

The results presented in this paper were announced at the 13* Rolf Nevan-
linna Colloquium in Joensuu on August 13, 1987 [cf. p. 32 of Abstracts of lectures
presented at the Colloquium]. The author would like to express his sincere thanks
to the referee for his very helpful criticism.

1. Some preliminary considerations and remarks

If a >0 and £ =0,1 then
(1.1) o(z) € Ex(M,a) < a 'o(az) € Ex(M,1).

Thus taking a = 1 does not impair generality. Similarly, if o has the period a > 0
and n € N, then

(1.2) o(nz) € Egy(M,a) & no(z)€ Eq(M,a).
In fact, the middle term for o(nz) in (0.5) has the form

t+ o(nz 4+ nt) —o(nz)  nt4 +no(nz + nt) — no(nz)
t+ o(nz) —o(nz —nt)  nt+ no(nz) — no(nz — nt)

and the last expression may be considered as the middle term for no(z). Further-
more, the normalization (0.4) is preserved.
The inequality (0.5) may be written in an equivalent form:

(1.3) M~ (t+o(z)—o(z —t)) <t+o(z+t)—o(z) < M(t+o(z) —o(z —t)).

If k=0,1isfixed, A\; € [0;1], 0; € Ex(M,a) for j =1,2,...,n and Z;;l Aj=1,
then

Z /\jo'j € Ek(M, a)
j=1
which is readily obtained from (1.3).
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Corollary 1.1. Ey(M,a), k = 0,1, are convex subsets of the linear space
C(R) of continuous, real-valued functions on R.

If h € Hi(M), so does 1 — h(1 — z). Consequently
(1.5) o€ Ex(M,1) & —o(-z)€ Ex(M,1) k=0,1.

Corollary 1.2. If 0 € Ey(M,1), so does its odd part 1[o(z) — o(—2)].
However, an analogous statement does not hold for the even part of o .

The well-known local Hélder continuity of M -gs functions becomes a global
property in E(M,1). We have

Proposition 1.3. If h(z) = 2 + o(z) and o € E(M,1) then the moduli of
continuity w(6; f) satisfy for 0 < § < ,i—, the inequality

(1.6) w(8; f) <(26)* = (1+ M~1)é with f =h,o,
where
(1.7) a =logy(1+M™1).

Proof. With f = h the inequality (1.6) is essentially due to Kelingos [4], also
cf. [1], p. 66. Hence with f = ¢ € E1(M,1) we have h(z) = z + o(z) € H1(M)
and

(1.8) h(t +z) — h(t) < (h(t + 1) — h(t))(26)* = (26)*
foranyt€e Rand 0<z<é< % Consequently,

(28)* > h(t+z)—h(t)=z+o(t +2)—0(t) >0,
(1.9) (26)* >o(t+2z)—0(t) > -z > -6

which implies (1.6) for f =o.

Remark 1.4. Ex(M,1), k =0,1, are convex, compact subsets of the space
C(R).

For convexity cf. Corollary 1.1. The compactness of E;(M,1) follows from
the Ascoli-Arzela theorem. The same is true for Ey(M,1).
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Corollary 1.5. If 0 € E(M), then for any t € R
(1.10) lo(t+ z) — o(t)| < 2m(6/m)", O<z<éd<m.

Corollary 1.6. The class E(M) is a subclass of the familiar class A, of
2w -periodic, Hélder continuous functions with the exponent o given by (1.7).
Thus the Fourier series of o and its conjugate & are absolutely and uniformly
convergent on R, cf. [6].

We shall now perform the Beurling—Ahlfors construction of the qc extension
of an M-qgs function z — z + o(z). Suppose that o € E(M). Then we have for
suitably chosen z, € R

[e ]
(1.11) o(z) = Z onsin(nz + z,), on > 0.
n=1

The qc extension to the upper half-plane, cf. [1], takes the form w = u(z,y)+
iv(z,y), where

(1.12) u(z,y) =z + 2 onsin(nz + z,)sinny/(ny)
(1.13) v(z,y) =ty + Z oncos(nz + z,)(1 — cosny)/(ny).

We see that u, v are obtained by linear transformations generated by convergence-
preserving factors, as applied to a convergent Fourier series (1.11) and its conju-
gate. The factors in (1.12) are even sum-preserving as y — 0 and correspond to
the Lebesgue method of summability, cf. [6]. On the other hand, the convergence-
preserving factors in (1.13) tend to 0 as y — 0 and this implies lim,_o v(z,y) = 0
for any z € R. Note that (A,,) are convergence-preserving factors, if and only if
the series > [An — An41] is convergent, cf. e.g. [3, p. 394].

2. Estimates of ||o||. Some applicaticns

In this section we shall be concerned with estimates of various norms of o €
E(M,a), M > 1. We obtain estimates of the form A(M —1)/(M + 1) with a
universal constant A independent of M for the sup-norm and L?-norm, p = 1, 2.
We first prove
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Theorem 2.1. If h € H(M) then
(2.1) h(z) <z + (M —-1)/(M +1), 0<z<l.

Proof. 1t is sufficient to prove (2.1) with h replaced by some function F
majorizing all o € Hi(M) on I = [0;1]. A majorant F can be obtained in a
familiar way as the limiting function of the sequence (L,) of continuous, piecewise
linear functions, defined as follows.

Let M, be the partition of I determined by the points 2! k =k-27", k=
0,1,...,2". We assume that Ly = id and L, are linear in I,(c ™ = [z i")l,:ck ].
Given L, and its values y(") = Ln(:c(")) we assume that the values of L, and
L, 4, coincide at xi ™) while at the new points zf =1 [x(") (")] of the partition
Mp+1 the values y; = Ln+1(x %) are the maximal values admissible under the M -

condition as applied to the end points of I,(c") and its centre, i.e.
(2.2) = (M +1)7M (2, + My(”).

Evidently (L) is an increasing sequence converging uniformly to the continuous
increasing function F' being a majorant of all h € H1(M) on I. Note that all L,
are Holder continuous with the exponent a. We shall now obtain an estimate for
the increment of

(2.3) Yn =max{Ly(z) —z : z € I}.

Suppose that y,41 = Ln+1(w§~n)) for some j. Since (y,) is increasing and
Ln+1(:c§-")) = Ln(:vgn)), we have 7,41 = 7, in this case. Thus we may assume

that v,4+1 = Lnpy1(2') = y', where z' is the centre of an interval IJ(-n) = [z1; 2o].
Putting yx = Lnp(zx), k = 1,2, we see that y' has the representation (2.2). If
m = (y2 — y1)/(z2 — 1) is the slope of the segment on the graph of L, corre-

sponding to the interval I (n) , then after the bisection of I (") relevant slopes on
the graph of L, will be equal

(2.4) m' = 2mM/(M +1), m"=2m/(M+1).

Ifm>1 s(M+1),or m < (M+1)/2M, then L,4; —id will change monotonically

on I](~ ") which implies that its maximal value 7,4 is attained at z; or z, and
consequently v,4+1 = 7, as before. Otherwise

(2.5) (M +1)/2M < m < (M +1)/2.
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If1<m< (M+1)/2,then L, —id increases on I](-n) to the value y; —zp. With
d=z9 — 213 =27" we have y; —y' = m/(z2 — 2'), or in view of (2.4)

0 Y41 =1 <y —2' —(y2 —22) = %d(l—m”
= Ld(M +1—2m)/(M +1) < Ld(M — 1)/(M +1).

If (M+1)/2M < m < 1, then L, —id decreases strictly on I](-") and its maximum
on this interval is equal y; — z;. Then we have

0 < Y41 —7n _<_y’ -z —(yl —$1)= %d(ml_l)
= 1d(2mM/(M +1)—1) < 1d(M - 1)/(M +1).

Thus in any case
(2.6) 0 <Ynt1 = Yn < §d(M = 1)/(M +1) =27""Y(M - 1)/(M +1).
Obviously 71 < 3(M —1)/(M + 1) so that (2.6) implies

Yo <@R7TTH277 4 2T(M - 1)/(M +1) < (M —1)/(M +1)

and this ends the proof.
Note that for 1/(M +1) < & <1 a better trivial estimate h(z) < z + (1 —z)
is true.

Corollary 2.2. If h € Hi(M), then for any = € I
(2.7) |h(z) — 2| < (M —1)/(M +1).

In fact, if A(z) > z for some « € I, then (2.7) follows immediately from (2.1).
If h(z) <z, apply (2.1) to hi(z) =1—h(1l —z).

Corollary 2.3. If 0 € Ex(M,1), k=0,1, then
(2.8) sup{la(:c)[ czeR} < (M -1)/(M+1).

Ifla € E(M,1) and M[o] = max{o(z) : = € R}, m[o] = min{o(z) : z € R},
then

(2.9) Mlo] —m[o] < (M - 1)/(M +1).
Corollary 2.4. If 0 € E(M), then
(2.10) sup{|o(z)| : = € R} <2n(M —1)/(M + 1) := 2m(M).

The constant m(M) will appear later on in various estimates concerning the

class E(M).
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Corollary 2.5. Any o € E(M,a) is a function of bounded total variation at
most 2a on the interval of periodicity [0; a]. In particular, for ¢ € E(M) we have

(2.11) Vio] < 4.

Some natural open problems arise whether the bounds just mentioned could
be improved. In particular, the inequality (2.9) suggests that the bound in (2.8)
with k = 0 could be possibly replaced by (M —1)/(M+1). One may ask whether
the bound in (2.11) could be replaced by a smaller term depending on M.

We shall be now concerned with bounds of integrals of . We have

Theorem 2.6. If o0 € Ey(M,1), then

1
(2.12) /0 lo(z)|dz < 3(M —1)/(M +1).

Proof. Suppose first that h(z) = z + o(z) € Hi(M). Then 1/(M +1) <
fol h(z)dz < M/(M + 1), cf. [1, p. 67]. Hence

< (M -1)/(M+1).

| (he) - o) de

Thus, if h(z) — z has a constant sign in (0;1), then

/0 Ih(z) — 2| de < 1(M — 1)/(M +1).

Suppose now that h(z)—z vanishes at the end-points of an interval I C [0;1] and
has a constant sign in I. Then, after a similarity transformation of ratio |I|, we
reduce the problem to the just considered one and obtain

(2.13) /I|h(x) —z| < LHIP(M-1)/(M+1).

Let It (or J;, respectively) be the systems of maximal, disjoint, open intervals in
(0;1) such that h(z)—z > 0 on Iy (and h(z) —z < 0 on J, respectively) so that
h(z) — z =0 at the end-points of Iy and J;. If h(z) —z = o(z) € Eq(M,1) and
o(z) # 0, then both systems are non-void. Moreover, 3° [} o =3 [, (~0) due
to the normalization (0.4). Hence

/[0;1] |a[=2z/lka=2z/11(—a).
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Since Y |Ix| + 32 |Ji| < 1, at least one of these sums, say 3 |Ix|, is < ; so that
> Ik|? < 1. Hence, by (2.13)

M-1
—_ < 2 1
/[0:1]"’1 22/” 2> % |I|M+1—4M+

Corollary 2.7. If 0 € E(M), then with the notation (2.10)

2m
(2.14) / |a(a:)| dz < mm(M).
0
Proposition 2.8. If 0 € Eq(M,1), then

(2.15) /01|a(w)|2dm < ;-(Aj‘j:)z

Proof. If o € Eo(M,1), then

[ ot e < maxlot@)] [ ot = < y(221)

in view of (2.8) and (2.12).
Corollary 2.9. If 0 € E(M), then

(2.16) /(; "|a(x)|2da: < 27r(m(M))2.

The norm estimates just obtained give rise to some inequalities connected
with Fourier series of 0. In view of Corollary 1.6 o € E(M) can be represented
by an absolutely and uniformly convergent Fourier series

(2.17) o(z) = Z(an cosnz + b, sinne).
n=1
Putting
sin zn = an(a? + b2)71/2, cos T = bp(a? + b2)71/?

we can rewrite (2.17) in the form

(2'18) o(z) = Z on sin(nz + za), On = (arzz + bi)l/z 2 0.
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The relation E(M) C Ay N VB[0;27] supplies us with much information on the
Fourier series of o. E.g. for any 8 < «

o0
> 1P (Jan| + |bal) < +o0

n=1

(cf. [6, p. 251]. Moreover,

e [e o]
Z('anh + Ibnh) < +o00, Z(ai + bi)7/2 < +oo,
n=1 n=1

for any v > 2/(a+2), cf. ibid. p. 243. In particular, " g, < +o0. All these sums
admit an estimate in terms of M for any 0 € E(M). As a matter of example we
shall find a bound for the last sum. We have

Theorem 2.10. If 0 € E(M) and its Fourier series has the form (2.18),
then with the notation (2.10)

(2.19) i on <m(M) + 7vV2(M + /M(M +1)) := o(M).

Proof. If w(é) is the modulus of continuity of a continuous, 2r-periodic
function o of total variation V over [0;27], then the calculations carried out in
the proof of Theorem 3.6 [6; p. 241] yield the inequality

[o o]

D on SEVIEN T W3 (nj2k),
n=2

k=1

In our case w(6) < 27(é6/7)* and V < 4r, cf. (1.10) and (2.11). Hence
Z on < 71'\/52 2-k/2,
n=2 k=1

Now, 27%/2 = (M/(M +1))"/* and this implies

i@n <aV2(M+ /MM 11)).

On the other hand

o(z —x1) = g1sinz + gy sin(2z — 221 + z3) 4 - - -
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and hence
2m 2T
To1 =/ a(m—wl)sinxdaxg/ \a(:c)|d:1:§7rm(M)
0 0

by (2.14), i.e. p1 < m(M), hence the inequality (2.19) follows.
Since the Fourier conjugate 5(z) of o satisfies 6(z) = > oo on cos(nz + )
we see that |6(z)| < Yon’; on. Thus

(2.20) sup{|5(z)| : z € R,0 € E(M)} := (M) < o(M).

We shall now prove

Theorem 2.11. Suppose u(e’) = 0(6) € E(M) and u(z) is the harmonic
extension of u(e) on the unit disk D. Then the Dirichlet integral Dl[u] =
JJp(w +u?)dz dy is finite and
(2.21) Dlu] < mm(M)e(M)
with m(M), o(M) defined in (2.10) and (2.19), respectively.

Proof. It is well-known that Dfu] = n3 -2 np?, cf. (2.18). In the next
section we shall prove that ng, < m(M) for all n € N and that implies (2.21) in
view of (2.19).

We shall now derive another estimate of &(z) in terms of Holder continuity
exponent «.

Theorem 2.12. If 0 € E(M), then for any z € R
(2.22) |5(z)] < 4/(Fe) (14 a7t (21 — 1)*/OF) .= 7 (M),
where o is given by (1.7).

Proof. Using the well-known formula

a(z) == hm / (2 tan - a(x —t)—o(z+1))dz

T e—0

cf. e.g. [6, p. 51], we obtain by means of (1.10) and (2.14):

5 1 % t)2 [lo@—t)—o(x)|]  |o(z+1t)—o(@)|), 0"
|U($)|SF/O tan(t/2)( ta + to )t dt

182
T tan(8/2) / o)} dt

= a—1 EM_]‘
<7Ta/t dt+5M+1

=22 cY+ZT—£\—/I——— 0<é<m
T al\nr SM+1’ '
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Choosing

§ (1M —1\Y0+e
T (ZM+1)

we obtain

M-1 a/(14+a)
1)

Note that, in view of (1.7), (M —1)/(M +1) = 2'~* — 1 and this ends the proof.

It is quite natural to compare the estimates of (M) as given by formulas
(2.20) and (2.22). Both expressions o(M) and 7(M) are O(M) as M — co.
More precisely, o(M) ~ 27v/2M, 7(M) ~ 4M log?2. However, (M) =0((M -
DY24eM) e 7(M) = o(1), whereas o(M) = m(2 + v2) + o(1) as M — 1.
These facts, as well as computer evaluations, strongly support the presumption
that 7(M) yields a better estimate of (M) for all M.

|5(2)] < 470+ (1+ a‘”(

3. Fourier coefficients of ¢

We first introduce two classes of analytic functions intimately connected with
the class E(M). If ¢, = by +1ian, then the terms of the series (2.17) have the form
Imcne'™® which suggests introducing the class Q(M) of functions ¢ analytic in
D and continuous in D:

(3.1) {q(z) = Ecn(q)z" : Img(e'®) = o(z) € E(M)} := Q(M).

Obviously coefficient problems for E(M) and Q(M) are equivalent. If ¢ € Q(M),
then

(3.2) F(z) =zexpq(z) = z 4+ Ay(F)2% 4 - ..

is evidently a bounded, starlike univalent function. In fact, F(z)/z is analytic,
non-vanishing in D, continuous in D and arg F(e'?) = z + o(z) increases strictly
in [0;27) by 27. We shall denote by S*(M) the corresponding class of functions
F which may be called M -quasisymmetric starlike functions. Although any F €
S*(M) is associated with an M-gs function, it need not have a qc extension, as
a simple example F(z) = ze* shows. In this case F' € S*(M) with M > M; =
(m42)/(r—2), cf. Lemma 3.8, however, F'(—1) = 0,i.e. w= F(e*), 0 <t < 2r,
is not a quasicircle.

Since F € S*(M) implies Re{zF'(z)/F(z)} > 0, we have the following
relation

(3.3) geEQ(M) = 1+2(2)€P,
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where P is the familiar Carathéodory class of normalized functions of positive real
part. Thus (3.3) implies in view of (2.18)

(3.4) noea(0) =nlea(q)| < 2.

The relations (3.3) and (3.4) suggest introducing the constant

(3:5)  o(M)=sup{ei(0) : o € E(M)} =sup{|ai(q)| : ¢ € QM)}
= sup{|42(F)| : F € S*(M)}.

We shall prove that the constant 2 in (3.4) may be replaced by c¢(M) which is
< 2 for any M > 1. In fact, we have, using (2.20)

|F(e)| = [exp(io(x) + 5(2))]| = exp(a) < exp (M)
and hence
e(M) = sup {|A2(F)| : F € S*(M)} <2[1—exp(—i(M))] <2.
While proving Theorem 2.10 another bound for ¢(M) has been obtained: ¢(M) <

m(M) which is < 2 for M < M;. Thus we have the following:

Theorem 3.1. If 0 € E(M), ¢ € Q(M) have the expansions (2.18) and
(3.1), respectively, and are related by (3.1) then

(3.6) non(0) = nfea(q)| < (M) < min{m(M); 2[1 — exp(—i(M))] },

where ¢(M), ji(M) are defined by (3.5) and (2.20), respectively. The bound
¢(M) is sharp for all n € N.

In order to prove this theorem we need some properties of functions ¢ € Q(M)
which are contained in

Lemma 3.2. Q(M) is a convex, compact subset of the space A(D) of
functions analytic in D. If ¢ € Q(M), then also ¢(Z), q(az) belong to Q(M) for
an arbitrary a € D.

Proof. The first two statements are counterparts of Remark 1.4 and the
formula (1.5). If u(z) = Img(z), then the condition (1.3), with an arbitrary,
fixed real t and n = €', means that the harmonic function z + t + u(nz) — u(2)
has the function M [t 4+ u(z) — u(72)] (or M~ [t + u(z) — u(7z)] ) as a harmonic
majorant (or minorant). Putting z = ae’® (Ja] < 1, £ € R) we obtain (1.3) for
o(z) = Im g(ae'®), i.e. g(az) € Q(M).

Corollary 3.3. If F € S*(M), then a~'F(az) € S*(M) for any a € D.
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Proof of Theorem 3.1. Suppose that g(z) = Y oo caz™ € Q(M) and take
an arbitrary integer n > 2. If n = exp(27m:/n), then by Lemma 3.2 ¢x(z) =
q(n*z) € Q(M) for k = 0,1,...,n — 1 and by convexity of Q(M) also ¢l"l =
n~ g0+ q1 + -+ gn—1] belongs to Q(M). However, due to obvious equalities

k 2k n—1)k __ 0 fOTlSkSn—l,
L4 40 4o gD _{n for k = n,
we have ¢("(2) = cpz™ + c2,2?" + --- € Q(M). Consider now ¢*(z) = cpz +
canz’ + -+ and put o*(z) = Img¢*(e’®). Then Im¢™(e?*) = o*(nz). However,
Im ¢l™(e??) € E(M) since ¢™ € Q(M), and so o*(nz) € E(M). Due to the
formula (1.2) also no*(z) € E(M) which means that ng* € Q(M). Thus ncpz +
ncanz® + -+ € Q(M) and consequently n|c,(g)| < ¢(M) for any n € N. Since
the class Q(M) is compact, the bound is sharp for n = 1. Let p be an extremal
function for n = 1, ie. p(z) = ¢(M)z + -+ € Q(M) and Imp(e'®) = g¢(z) €
E(M). The formula (1.2) also shows that n™log(nz) € E(M), ie. n™lp(z") =
n~le(M)z™ +--- € Q(M) which implies that the bound ¢(M) in (3.6) is attained
for any n € N. Since the estimate of ¢(M) given in (3.6) has been already derived,
we are done.

In what follows we shall give estimates of ¢(M) both from above and below.
To this end we first prove a theorem which is of independent interest.

Theorem 3.4. If 0 € E(M), then for any m € N the mth Fejér mean o,
of ¢ also belongs to E(M).

Proof. Let K,,(t) denote the Fejér kernel, i.e.

—1(sin} Dt ?
(37) Kot = [2n(m + 1] (D)
sin 21
Then we have for any m € N
2m 2m
(3.8) / Kp(u)du =1, om(z) = / o(z + u)Kp(u) du.
0 0

Upon putting in (1.3) z 4+ u instead of z, multiplying all terms by a non-negative
factor Km(u) and integrating over [0;27] w.r.t. u, we obtain using (3.8) the
desired inequality (1.3) for oy,.

Corollary 3.5. If 0 € E(M), there exists a sequence of trigonometric poly-
nomials (¢,,) of degree m such that o,, € E(M) for any m € N and limo,, = ¢
uniformly on R.

Corollary 3.6. If 0 € E(M) has the representation (2.18), then oy(z) =
so1sin(z + z1) € E(M). Consequently Le(M)sinz € E(M).



Harmonic analysis and boundary correspondence 239

Thus we are led to the following problem: Given M > 1, find the greatest
real number ¢ such that the function z +— csinz belongs to E(M). To this end
we shall prove

Lemma 3.7. Let us define for t > 1 and (u,v) € R? the function
(3.9)
Fy(u,v) = (tv + sin(u + v) — sinu))/(tv + sinu — sin(u — v)) for v # 0,
1 for v =0,

and put
(3.10) M, = sup{Fy(u,v) : (u,v) € R?}.

Then M; satisfies

wt+ 2 t+1
11 <M, < —=
(3.11) m—2" ' t-1
or equivalently
Mt—-l 1 7TMt—].
. < -< = t>1
(3.12) M+1~t - 2M+1’ >

Moreover, M; is a continuous, strictly decreasing function of t > 1 such that

. w42 .
(313) Ml = t]if{l+ Mt = — = 4.50387.. .y t]irrgo Mt =1.
We have also
(3.14) inf{Fy(u,v) : (u,v) e R?} =1/M;,  t>1.

Proof. Since Fi(u,v) = 1/Fy(u,—v), (3.14) is evident. Obviously we may
restrict ourselves to v > 0. Note first that the continuity of M; for ¢t > 1 easily
follows from (3.9). We have M; > Fy(3n,7) = (nt + 2)/(wt — 2), which implies
the left hand side inequality in (3.11). We now prove the mononicity statement.
Suppose that 1 < s <t and My = Fy(uo,vg) with vg > 0. Hence

8V +sin(ug 4+ vg) —sinug + (t — s)vg = My (svo +sin ug —sin(ug — vo)) + M(t— s)vo,
ie.

S $% + sin(up +vp) —sinug M (M —1)(t — s)vo

= svg +sinug — sin(ug —vg) ¢ sve + sinug — sin(ug — vp)
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which is greater than M, since the last term is positive. This proves that M, is
strictly decreasing.
If v# 0 and t > 1, we have by the mean value theorem:

t 4 cos(u + J1v)
t + cos(u — Jav)’

Fi(u,v) = O0<dr<l, k=12,
which implies (¢t —1)/(t + 1) < Fy(u,v) < (t+1)/(t = 1) for all u,v (v #0) and
t > 1. This proves the right hand side inequality in (3.11), as well as the second
limiting case in (3.13).

We shall be now concerned with the case ¢ = 1. It is sufficient to consider
the range: 0 <u <27, 0 <v <7, cf. Remark 0.1.

The partials of F; vanish at points (u,v) which satisfy

(1 = cosv)(vcosu +sinv) =0, ((1 = cosu)(1 — cosv) — vsinv)) sinu = 0.

If cosv =1, or sinu =0, then Fj(u,v) =1, so we have to assume v cosu + sinv
=0, vsinv = (1 — cosu)(1 — cosv), or

(3.15) (14 v !sinv)tan(v/2) — v = 0.

It is easily verified that the left hand side in (3.15) is strictly increasing in (0; ),
so we have to find extremal values of F} on the boundary of the range, i.e. for
v = m. Hence M; = (7 + 2)/(m — 2) and this proves the first limiting case in
(38.13), in view of monotonic behaviour of M;.

As an immediate consequence of Lemma 3.7 we obtain

Lemma 3.8. A necessary condition for csinz, ¢ > 0, to belong to some
E(M) is that ¢ < 1. If M > M, this condition is also sufficient. If M € (1; M;)
is given, then the condition ¢ = 1/t,, where tq > 1 is the unique solution of the
equation My = M, is sufficient for csinz to belong to E(M) and ¢ cannot be
replaced by any greater number.

Proof. If csinz, ¢ > 0, belongs to some E(M), then z + csinz has to be
strictly increasing, i.e. ¢ <1 is necessary. If 0 < ¢ <1 is given, put t =c¢~1 > 1.
Then the M -condition (0.5) for o(u) =t~ sinu takes the form M~! < Fy(u,v)
< M and the sufficiency statement immediately follows from (0.5) and the previous
lemma.

Since sinz belongs to E(M) for M > M, we have ¢(M) > 1 in this case.
Moreover, for 1 < M < M; we have by means of Corollary 3.6 1/to < ¢(M) < 2/tg
and this implies, in view of (3.12)

(3.16) (M—1)/(M+1) < (M) < 7(M—1)/(M+1) = m(M), 1<M < M,.

It is easily seen that (3.16) also holds for M > M.
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Corollary 3.9. For any M > 1 the function z — (M — 1)(M + 1)"!sinz
belongs to E(M).

This shows that the norm estimates obtained in Section 2 have a correct order
of growth as M — 1.

A better lower estimate for ¢(M) can be obtained by considering the function
F(2)=2z1-r2)72,0<r<1.If

g(z) = arg F(e'*) = z + o(x),
then

1+ ret®
1 — re=

g'(z) =1+0'(z) =Re

and hence, by the mean value theorem,

vto(utv)—o(u) _ maxg'(z) _ (1“)2.

v+ o(u)—o(u—v) = ming'(z) \l-r
Thus, for r = (\/M—- 1)/(\/]\-/1‘-}- 1), o(z) € E(M), F(z) € S*(M) and by (3.5)

M-1
WD +varas ) <M

(3.17) Ay(F) =2r =

which improves the lower estimate in (3.16) and is valid for all M > 1. The
estimates (3.17) and (3.4) imply limps— o0 ¢(M) = 2.

It seems that the final solution of the Fourier coefficient problem for the class
E(M), i.e. the determination of the constant ¢(M), could be achieved by settling
the problem of the second coefficient in the class of M -quasisymmetric starlike
functions.
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