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A SUFFICIENT CONDITION FOR THE
WOLD-CRAMER CONCORDANCE OF
BANACH-SPACE-VALUED STATIONARY PROCESSES

Grazyna Hajduk-Chmielewska

Abstract. A recent result of Makagon and Salehi [7] is applied to obtain a sufficient condition
for the concordance of the Wold decomposition and the spectral measure decomposition of Banach-
space-valued stationary processes.

A sufficient condition for the Wold-Cramér concordance of Banach-space-
valued stationary processes based on the isomorphism theorem (cf. [8, Theo-
rem 3.3]) is presented in [4]. But for a given stationary process no algorithm for
the determination of its isomorphism image is known. The concordance theorem
for a stationary process with multiplicity one is given (cf. Proposition 7 below)
in a recent paper of Makagon and Salehi [7]. If we connect the technics applied
in [4] with the result of [7], we get the sufficient condition for the Wold-Cramér
concordance, but for initial Banach-space-valued stationary process is formulated
below.

In this paper, N, Z and K stand for positive integers, all integers and the
unit circle of the complex plane, respectively. By B(K) we denote the family of
Borel subsets of K and by m the normed Lebesgue measure on K. Let B be a
complex Banach space with the dual space B* and H be a complex Hilbert space
with the inner product (-,-) and the norm ||-||. We denote by L(B, H) the space
of all continuous linear operators from B into H and by L+ (B, B*) the space of
all continuous antilinear and nonnegative operators from B into B*.

By a second order stochastic process with values in B we mean a mapping
X: Z — L(B,H). X is stationary if its correlation function R(I,k) = X*(k)X(I)
depends only on [ — k. In that case R has the spectral representation

X*(k)X() = R(l—k) = /K 27k F(d2),

where F is a weakly countably additive measure on B(K) with values in L+ (B, B*).
F is called the spectral measure of the process X .
We denote M(X) =3sp{X(1)b: | € Z,b € B},

Mi(X) =55{X(Db: 1< k,b€ B}, M_oo(X) = ] Mi(X).
kez
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We say that a stationary process X is separable if M(X) is a separable subspace

in H. X is regular if M_o(X) = {0} and it is singular if M_o(X) = M(X).
A second order process X is stationary if and only if X has the unitary shift

operator, i.e, if there exists a unitary operator U: M(X) — M(X) such that

UX(k)=X(k+1), keZ

If E is the spectral measure of the operator U, then E and F are related by the
formula

() F(A) = X*(0)E(A)X(0), A € B(K).

Now we recall the Wold decomposition theorem (cf. [2, Theorem 8.6)).

1. Proposition. Let X: Z — L(B,H) be a stationary process with the
shift operator U. Then there exist two processes X" and X*® with the same shift
operator U such that

(1) X(k)=X"(k)+X*(k), ke Z,

(ii) M(XT") and M(X?®) are orthogonal,
(iii) for each k € Z, My(X") and My(X*) are contained in My(X),
(iv) X7 is regular and X* is singular.

The above decomposition is unique. Namely, X*(k) = P_,X (k) and
X7(k) = X(k) — X°(k), where P_., is the orthogonal projection onto M_(X).

In particular, it follows that M(X®) = M_(X) and M(X") = M(X) 6
M_(X).

The following definition of multiplicity of a stationary process is given in [7].

2. Definition. Let X: Z — L(B, H) be a separable stationary process. The
smallest number n € N U {oo} such that there exists a sequence {z;}7_, C M(X)
with the property

M(X)=sp{Urz: 1<i<n+1, ke Z)}

is called the multiplicity of the process X and denoted by m(X). The inequality
t<n+1lmeansi<nif n<oo and i < 00 if n = co.

We will say that the spectral measure F of a stationary process X is ab-
solutely continuous (or singular) with respect to a nonnegative scalar measure
p if (F(-)b)(b) is absolutely continuous (or singular) with respect to p for all
b € B. We will use the notations F << pu, F1lpu, respectively. Note that, for
fixed A € B(K), (F(A)b)(b) = 0 for each b € B if and only if F(A) = 0.
Hence F' << p is equivalent to the implication that if (A) =0, then F(A) =0,
A € B(K).

The following fact is proved in [1, Section 95] and [5, Section 66).
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3. Proposition. Let E be a spectral measure (on B(K)) in a Hilbert space
H and H® = {h € H: (E(-)h,h) << m}, H* = {h € H: (E(-)h,h)Lm }. Then
H*® and H*® are closed linear subspacesof H, H = H*®H*®, H* and H*® reducing
the spectral measure E.

In the case where E is the spectral measure of the shift operator U of a
stationary process X and H = M(X), we shall denote M*(X) = H*, M*(X) =
He.

4. Lemma. Suppose X, Y: Z — L(B, H) are stationary processes with the
same shift operator U and M(Y) C M(X). Denote by Fy the spectral measure
of the process Y. Then

(i) Fy << m if and only if, for each b € B, Y(0)b € M*(X) (equivalently

M(Y) < M*(X));

(ii) Fy Lm if and only if, for each b € B, Y(0)b € M*(X) (equivalently M(Y") C

M*(X)).

Proof. In (a), Fy(A) = Y*(0)E(A)Y(0); hence (Fy(A)b)(b) =
(E(A)Y(0)b, Y(0)b). Thus, by Proposition 3, (Fy(-)b)(b) << m if and only
if Y(0)b € M?*(X). Furthermore, Y(0)b € M%(X) for each b € B implies
M(Y) € M*(X) because M*(X) reduces the shift operator U and Y (k)b =
U*Y(0)b € M*(X). We prove (ii) in the same way.

5. Lemma. Let F' be the spectral measure of a stationary process X . Then

there exists a unique decomposition F = F*+ F*  where F® and F° are measures
with values in Lt (B, B*) such that F* <<m, F*1lm.

Proof. We denote X!(k) = P,X(k), X*(k) = P,X(k), where P,, P, are the
orthogonal projections on M*(X), M?*(X), respectively. Since M*(X), M*(X)
reduce the shift operator U, both X! and X? are stationary processes with the
same shift operator U. Let F* be a spectral measure of X! and F° the spectral
measure of X?. By Lemma 4, F* << m, F°1lm. Moreover,

(F(A)B)(5) = | E(A)X (0)b]* = [ B(A)(X*(0)b + X2(0)3)||”
= |E(A)X (0)b]|” + || E(A)X2(0)b]|* = (F*(A)b)(B) + (F*(A)b)(b)

for each b € B; thus F = F* 4+ F*. Next, for each b € B, (F*(-)b)(b) is the
absolutely continuous and (F?*(-)b)(b) the singular part of the measure (F(-)b)(b)
with respect to m. The uniqueness of such decomposition implies the uniqueness
of the decomposition of F' = F® + F°.

By [6, Theorem 21.13], it follows that in M (X) there exists a subset {z} er
(T is an index set) such that

(B) M(X)=Psp{U*z, : k € 2},

~v€er
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where U is the shift operator of a stationary process X. Now fix such decom-
position () and denote by P, the orthogonal projection on 5p{U*z. : k € Z}.
Let X,(k) = P,X (k). We claim that X, : Z — L(B,5p{U*z, : k € Z}) is a
stationary process with the shift operator U. Indeed, sp{U krt7 ke Z }) reduces
U, whence P, and U commute. Then

X (k+1) = P,X(k+1) = P,UX(k) = UP,X(k) = UX(k).

The following lemma gives a connection between the process X and the family
of processes X, .

6. Lemma.
(i) sp{U*z, : k€ 2} = M(X,).
(i) PyMR(X) = Mi(X,).
(i) PyM—oo(X) C M_oo(Xs).
(iv) If X is singular, X, is singular for each v € T.
(v) If for each v € T' X, is regular, X is regular.
Proof. (i) From the definition of P, it follows that 5p{U*z, : k € Z} =
P,M(X). We prove that P,M(X) = M(X,). In fact,

P,M(X) Csp{P,X(I)b:1€ Z,be B} =sp{X,(I)b: 1€ Z,be B} = M(X,).
On the other hand, X, (/)b = P,X(I)b € P,M(X) for each b € B and P,M(X)
is a closed linear subspace. Hence M(X,) C P,M(X).

(ii) As in (i) we show that Py M(X) = My(P,X) = Mi(X,).
(iil) PyM_oo(X) = P‘/(ﬂkez Mk(X)) < (nkeZP'yMk(X))

< ﬂ Py Mi(X) = ﬂ Mi(Xy) = M_oo(X).
kez keZ

(iv) By the assumption M(X) = M_,(X). From (iii)
M(Xy) = P,M(X) = PyM_co(X) C M_oo(X,).

Hence M(X,) = M_.(X,) and each process X, is singular.
(v) Since M(X) = D, er PyM(X),

M_oo(X) € P Py M-oo(X) € P M-oo(X) = {0},
~er ~eT
because every process X, is regular by assumption.

By Lemma 6(i) it follows that every process X. has multiplicity one.

Let now X = X" 4+ X° be the Wold decomposition of a process X as in
Theorem 1. We denote by Fxr the spectral measure of the process X" and
by Fxs the spectral measure of X°. Since M(X") and M(X?) are orthogonal
subspaces and reduce the shift operator U, we get F = Fxr+ Fxs as in the proof
of Lemma 5.

The following fact is proved in [7, as Corollary 3.8].
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7. Proposition. If X is a nonsingular stationary process with multiplicity
one, F* is the spectral measure of X" and F° is the spectral measure of X*°.

Now we state the main result of this paper.

8. Theorem. Let X: Z — L(B, H) be a stationary process with the shift
operator U and the spectral measure F. If there exists a decomposition

M(X) =P {Uz,: ke 2}
~€er

such that for each v € T' the orthogonal projection PyX of the process X on
§p{U*z, : k € Z} is nonsingular, then Fxr = F*, Fxs = F*.

Proof. By virtue of Lemma 4 it suffices to show that M(X") C M*(X) and
M(X?®) C M*(X). The first of these inclusions follows from Lemma 4 because the
spectral measure of a regular process is absolutely continuous with respect to m
(cf. [2, Theorem 10.2]). We prove that X°(0)b € M*(X) for each b € B. In fact,

X*(0)b=> P,X°(0)b, beB
~€er

and P,X°(0)b € Py M(X®) = P,M_oo(X) € M_o(X,) = M(X3), where the
above inclusion follows from Lemma 6(iii). Since, for each v € I, X, has mul-
tiplicity one, Proposition 7 implies that the spectral measure of X7 is singu-
lar with respect to m. Moreover, U is the shift operator of X, and X and
M(X3) € M(X,) € M(X) for every v € I'. Thus X*(0)b € M°(X) for each
b € B, which gives M(X?®) C M*(X).

9. Corollary. If the assumptions of Theorem 8 hold and the spectral measure
of X is absolutely continuous with respect to m, then X is regular.

10. Remarks. (a) If X is a separable stationary process with multiplicity
m(X) there exists in M(X) a sequence {x,}y;(lx ) realizing the decomposition
(B) (cf. [3, p. 914-918] or [7, Lemma 2.2]). In that case the power of this
decomposition is minimal. In a general case the power of the set I' depends on
the choice of a subset realizing (8).

(b) If a Hilbert space H is separable, Proposition 3 obtains a stronger form.
Namely, for a spectral measure E in H, there exists in this case the unique
decomposition E = E* + E®, where E® is a spectral measure in a subspace
H® C H, E° is a spectral measure in a subspace H* C H, H* ® H®* = H and
E® << m, E® is concentrated on a set of m-zero measure (then E* and E°® are

supported on disjoint Borel subsets of K ). Indeed, if for some orthonormal base
{ei}2, in H we define

wA)=> (E(Aeiei) 275, AeB(K),
i=1
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then p is a nonnegative finite measure and £ << u. Consider the Lebesgue
decomposition of y with respect to m: u = pa+pus. Let A, € B(K) be a set such
that m(AS) =0 and p, is concentrated on AS. If we put E4(A) = E(A,NA),
E*(A) = E(AS N A), H* = E(A,)H, H® = E(AS)H, we get the desired
decomposition. It is easy to verify that the subspaces H* and H® are the same
as in Proposition 3.

(c) Suppose that X is a separable stationary process with the shift operator
U and the spectral measure F'. By (b) it follows that there exists the unique
decomposition F = F® + F* where F'* << m, F° is concentrated on a set of
m-zero measure. In fact, let E be the spectral measure of U. The measures
Fe(A) = X*(0)E*(A)X(0), F*(A) = X*(0)E*(A)X(0), A € B(K), satisfy the
above condition.

11. Corollary. Let X: Z — L(B, H) be a separable stationary process with
multiplicity m(X). Let F be the spectral measure of X and U its shift operator.
Then

(a) There exists a unique decomposition F = F®+ F*, where F*® and F*® are
measures with values in L (B, B*) such that F® << m, F* is concentrated on
set of m-zero measure;

(b) if there exists in M(X) a sequence {x,}:’;(lx) such that

m(X)
M(X)= P s{U*z:: k€ Z}

=1

and every process P;X (1 < i < m(X) + 1) is nonsingular, F? is the spectral
measure of X" and F'* is the spectral measure of X®. (P; denotes the orthogonal
projection on 5p{U*z; : k€ Z}, 1<i<m(X)+1.)
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