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SOME RESULTS CONCERNING THE EIGENVALUE
PROBLEM FOR THE p-LAPLACIAN

Tilak Bhattacharya

1. Introduction

Let Q be a bounded C? domain in R™, n > 2. Consider the following
problem

(1.1) Lyu+ AulP72u =0 in
ueWPP(Q), u#0, Ae€R and 1<p< oo,

where Lyu = div(|Vu[P~?Vu) is the p-Laplacian. We say u is a solution of (1.1)
if there exists a A such that (1.1) holds in the sense of distributions, i.e.

(1.2) / |VulP~2Vu - Vi = /\/ [ulP~2uyp V¥ € WPP(R).
Q Q
It is well known that there is a minimization problem related to (1.1), namely,

(1.3) inf I(v), ©veWy?(Q) and J(v)=1,

where I(v) = (1/p) Jo |Vv|P and J(v) = (1/p) [, [v|?. Then the following result
holds [11].

Theorem 0. There exists a smallest \y > 0 and an associated solution
uy, > 0 that solves (1.1). Furthermore, A\, is the infimum in (1.3).

We will refer to (1.1) as the eigenvalue problem for the p-Laplacian. The
smallest eigenvalue \; will be referred to as the first eigenvalue. Thelin in [11]
shows that if {2 is a ball then u} , the spherically decreasing rearrangement of
a solution uy,, is also a solution. Furthermore, all radial solutions are unique
up to scalar multiples. He then raises the question as to whether or not the first
eigenfunction on the ball is radially symmetric. We showed in [2] that the answer
is indeed yes, and the method was based on an idea due to Pélya and Szegd [8].
Let ¢ = uy,, where uy, is as in Theorem 0, by the Hopf maximum principle
¢ > 0. Let u be any other eigenfunction, define f by u = f¢. One then shows
that f is a constant. We have been able to extend this idea to prove a similar
result on C? domains. The main difficulty here lies in showing that f € L>(Q).
This is achieved by the use of appropriate barriers. More precisely, we prove
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Theorem 1. Let Q be a C? domain and \; > 0, the first eigenvalue in
(1.1), then A, is simple.

Corollary 2.1. If Q is a ball, then the first eigenfunction is radially sym-
metric.

Corollary 2.2. Let Q be a C? domain and Q' a strict subdomain of 2,
then /\1(9') > /\I(Q).

Corollary 2.3. Let Q be as in Corollary 2.2, and u an eigenfunction in (1.1)
for some Ao > 0. If u > 0 then Ao = A1, i.e., eigenfunctions corresponding to
higher eigenvalues must change sign in .

The second part of this paper is a study of the radial problem, when  is a
ball of radius R. It is known that the eigenfunctions in (1.1) are Cu* [3, 12] and
thus the radial eigenfunction u(r) satisfies

n—1

(1.4) =2 { (o — 1)is + - u} +AMulf"2u=0, 0<r<R,
2(0) =u(R) =0,

where u and @ represent differentiations with respect to r. Our study primarily
focuses on the distribution of higher eigenvalues in (1.4) [4]. In our work, instead
of solving the problem on bounded domains, we consider the problem on all of
R™ with A = 1. We deduce that the solution, which we denote by #(r), has
countably many zeros and is globally unique. The zeros of ¢ can be related to the
eigenvalues in (1.4) via a scaling argument, namely

Amir = (%’")”, m=0,12,...,

where z,, is the mth zero of ¢ and Apm41 is the (m+1)th eigenvalue in (1.4). This
shows that the radial problem has countably many eigenvalues and the uniqueness
of ¢ proves that these are the only ones. Thus, we have

Theorem 2. For 1 < p < oo, there is a unique ¢ € C'[0,00) that solves

P2 {(p =13+ "4} + P26 =0, r>0, 6(0)=1, 40)=0

and

(i) ¢ has countably many zeros {zm }3—,, ordered as 20 < z; < 2 < +++ < 2z <
-+, and 2z, — 00 as m — 00,
(ii) lim,co|@(r)| =0, and
(ii1) limm—oo Zmt1 — 2m = T(p),
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where T(p) = 2(p — 1)'/? fol(l —tP)1/Pdt, For p > 2,

_ 2n(p—1)/P
T = peos((p— 2)m/2p)’

For p =2, ¢(r) is r(2"")/2J(,,_2)/2(r), where J(n_2)/2(r) is the Bessel function
of order (n—2)/2. It is interesting to note that for p = 2, T(2) = 7, a result well
known about Bessel’s functions.

While this work was being completed, the author was informed of several
parallel works. Sakaguchi in [9] proves Theorem 1 for convex smooth domains; he
also proves that if u is the first eigenfunction then log |u| is a concave function.
Anane also proves Theorem 1 for C*'® domains [1]. The author thanks Professor
Sakaguchi for pointing out the work of Anane. The author also thanks the referee
for informing him of the work of Guedda—Veron [15] that contains results similar
to Theorem 1. More recently, Azorero and Peral [5] have proven a general result
regarding the asymptotic behaviour of the higher eigenvalues in (1.1). Finally, the
author has learned that in a recent work Peter Lindqvist has a version of Theorem
1 valid in any domain.

2. Proof of Theorem 1

Let © be a bounded C? domain in R™, n > 2, with 9Q connected. Then
0Q satisfies both an exterior and an interior sphere condition. Furthermore, one
can find the largest ball that works for both cases. Let R be the radius of such a
ball. We introduce the following notation:

Qp = {z € Q : dist(z, 00) > h}.

Then dist(0$,00Q) = h.
Let u be a solution of (1.1) in ©. It follows from [10; p. 264], for every p
such that 1< p<n
[[ulloo < o0,

and for p > n, u € C¥*(Q) with a = 1— (n/p) [7; p. 163]. Again u € L>(Q).
Thus by the regularity results in [3, 12], u € Cllo’cﬂ (Q) for some S € (0,1). By
Hopf’s maximum principle [13; p. 801}, it follows that wuy,, in the statement of
Theorem 0, is strictly positive in .

Set ¢ = uy,, and let u be any other eigenfunction corresponding to A = A,
and satisfying (1.1). Define f by u = fé, then f € CY(Q) and |f| is locally
Lipschitz in Q.

Lemma 2.1. Let ¢ > 0, u be eigenfunctions satisfying (1.1) with X = ;.
Let f be defined by the equation uw = f¢, then f € L=(Q).



328 Tilak Bhattacharya

Proof. We divide the proof into three parts. Part (a) sets up an estimate for
u near OS2, using barrier functions. The construction of these functions is made
possible by the exterior ball condition. Part (b) sets up a lower bound on the
growth of ¢ near JQ2. The proof follows the proof of Hopf’s maximum principle,
and uses the interior ball condition. Part (c) finishes the proof using the results
of part (a) and part (b).

(a) We prove that

(2.1) lu(z)| < ko dist(z, OR),

where ¢ € Q is such that dist(z,0Q2) < R, and ko depends on n, p, R and
llulloo -

Let zo € 0Q, then there is a yo € 2° such that the ball Br(yo) lies outside
Q and 0BRr(yo) N0 = {zo}. Define

1 1
A=)
w() (R, tw—yw)

where 0 = (n —1)/(p—1), (we may choose ¢ > (n—1)/(p—1)), z € Q and 4 a
positive constant to be determined later. Then,

__(p=1)(c4)™!
Lyw = — ro(p—D+p
where r = |z — yo|. Let Sr = Bar(yo) N, choose A such that,

_ —1)(cA)P? 1 1
. A p—-1 < _(p — N < —_— e .
(2.2) lullB5t < @R)"- Dt and lu]loo < A R @RY

Then w(z) > u(z) on dSg and L,w < Lyu in Sg. By the weak comparison
principle [12], it follows that w(z) > u(z) in Sg. Replacing w by —w, we get
that |u(z)| < w(z). Hence,

Iu(oc)|§A<L ;> Yz e Sk

R°  |z-— Yol®
Set r = |z -- yo|, then by an application of the mean value theorem,

1 1 _o(r—R) )
—.R—‘;—T—”SW in R<r<2R.

Thus for some kg > 0,
|u(z)| < ko(lz — yo| — R).



The eigenvalue problem for the p-Laplacian 329

Let £ € Q be such that dist(z,00Q) < R; then there is a zo € 9 such that
dist(z,zo) = dist(z,0Q). There is a corresponding yo € Q° and a ball Br(yo)
that satisfies the exterior ball condition at zo. Then it follows that dist(x,0Q) =
|z — yo| — R, and hence

|u(z)| < ko dist(z, 69).

(b) We now prove a lower bound for the growth of ¢ near 9§2. We show that
(2.3) é(z) > ky dist(z, 09),
where z € Q and dist(z, Q) < R/2, k; depends only on n, p, R and ¢.

We start by presenting the proof of Hopf’s maximum principle. From (2.1),
it is clear that every eigenfunction is continuous up to the boundary. Thus ¢ is
zero on O in the classical sense. Let zo € 9, and Bg(zo) C § be such that
OBRr(20) N9 = {z0}. Let S = Br(z0) \ Br/2(20); take

vy (2) = e—elz=zol* _ e_aRz, Vzels.
Thus for every z € S,
Lyv,(z) 2 Ceo(P-DR? {(p —1)a®?R?* —2a(p+n — 2)},
where
C = (aR)P™2,  if2<p< oo,
Tl (2aR)P7Z, ifl<p<2.
Choosing a large enough, it follows that Lyv,, >0 > L,¢,in S. Since ¢ € C1(Q)
and ¢ > 0, it follows that

li > 0.
a9

Thus, there is an € > 0 such that ev;, < ¢ on 0Bg/s(20), for all 20 € IQr.
Note that v,, vanishes on 0Bg(zo). Therefore, by the weak comparison principle,
#(z) > ev, (z) in S. Again, by an application of the mean value theorem,

¢(z) > k1 (R — |z — 20]) Vzes.

Let z € Q\ Qg/2, then there is an zo € 9§ such that dist(z, zo) = dist(z, 0Q).
There is a zo such that = = tzo+ (1 —t)z for some t € [0, 1], and the ball Br(z)
lies in Q and dBgr(z0) N 0N = {xo}. Thus,
é(z) > ky dist(z,00).
(c) To finish the proof, we note that in Qg/,,
lul _ _llulles
= —S —F———<
|f| ¢ lanR/2 ¢
From (2.1) and (2.3), it follows that in Q\ Qg/2,
lu| _ ko dist(z, 09)
=l PR )
=7 <t a0 <%
Hence f € L*(Q). o
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Remark 2.1. Estimates (2.1) and (2.3) hold for equations Lyu+F(z,u)=0
in Q with v € W)'?(Q), F € L™ and u > 0.

Lemma 2.2. We have that |f|P¢ € WaP().

Proof. We note that |f| is Lipschitz continuous in 2. Furthermore, |V f| =
|V|f]| a.e. Forn=1,2,8,..., let h, = h/n and &, = hnj2,and 0 <9, <1 be
a function in C3(f) such that

1 inQ, ,
Yn(z) = {0 in Q\ Q5

and |V¢,| < Cn/h, where C is a universal constant and in general would depend
on 2. From (2.1), ¢(z) < K dist(z,dQ) implying then ¢(z) < Kh/n in Q\ Q.

The rest of the proof is now the same as in Lemma 3 in [2].

Lemma 2.3. Let f, ¢ be C' functions, 1 < p < co, then
IVISIP > [Vo[P=2V - V(fP¢) + K¢ |V f|?,

where 0 < K <1 and K =0 if and only if ¢V f = 0.

Proof. See Proposition 2 and Theorem 1 in [3].

Proof of Theorem 1. Let ¢ > 0, u be eigenfunctions satisfying (1.1) with
A= A1. Let f be defined by u = f¢. The proof that f is a constant and thus
A1 is simple is exactly the same as the proof of Theorem 1 in [2]. It is clear that
u does not change sign in Q. o

Proof of Corollary 2.1. Immediate.

Proof of Corollary 2.2. It is clear that \,(Q') > A1(2). Suppose equality
holds. Let u € W, "?(Q') be the nonnegative minimizer of (1.3) with Q replaced
by Q'. Extend u by zero to rest of Q. This modified u is in W, () and is a
minimizer of (1.3) in Q. Clearly, u > 0 in Q and by the results in [11], u solves
(1.1) with A = A; in Q. By Theorem 1, u > 0 in 2, and hence in Q\ @', a
contradiction.

Proof of Corollary 2.3. It is clear that \q > A1. Let ¢ > 0 be the first
eigenfunction in (1.1). Define f by ¢ = fu. Then from Lemma 2.2, it follows
that fPu is a legitimate test function. Proceeding as in Theorem 1 in (2],

/Q Vol = ), fn &,

/Q VulP =2V V(£74) = A /Q (Fu)? = X /Q &> 0.

and
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Comparing,
[ 1wer =5t [1vup=2vu-v(su)

Using Lemma 2.3,
/KuP|Vf|” <0.
Q
Thus, f is a constant and Ag = A\1. O

3. Proof of Theorem 2

We will obtain the proof of Theorem 2 through several lemmas. Let ¢ satisfy

(3.1) %(r"—ww-%) g 26 =0,  0<r< oo
#0)=1 and ¢0)=0 and 1<p<oo,

where ¢ represents differentiation with respect to r. The choice ¢(0) = 1 is
arbitrary. The function ¢ defined through the following integral equations satisfies

(3.1);

(32) s =97 (- [ el e ),

and

63 sm=1+ [0 ({55 [ so)) “

where g(7) = |7|P727, —0c0 < 7 < 00 and g7(t) = |t|¢7%¢ with (1/p) + (1/q) =
1. We note that the first zero of @(r) as defined in (3.3), is the radius of the
ball for which A = 1 is the first eigenvalue. For p = 2, the function ¢(r) is
r(2=n)/2 J(n—2)/2, Where J(n_3)y/2 is the Bessel function of order (n —2)/2.

Lemma 3.1. The function ¢(r), as defined in (3.3), has countably many
zeros in v > 0.

Proof. We change the problem in (3.1) in order to attain more generality. Let
us specify the conditions in (3.1) at an arbitrary point r = a, with a > 0, i.e. we
take ¢(a) =1 and ¢(a) = 0. The corresponding integral equatlons for ¢ become

(3.4 i ={ 5 [ ewa)
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and

@9 wn=1- [ [k [oleoraoa)” T a

in r > a. We show that ¢(r) as defined in (3.5) changes sign. Near r = a, ¢
is positive and ¢ is negative. It follows that ¢ is decreasing and (3.4) may be
rewritten as

o = e { [ el swar [ elsorawa)

Lrsor(222)

where b > a is close to a, and A = fab t"714(¢)[P=2¢(t) dt. Using the inequality
(z + y)Y/ =D > C(gt/(p-D) +y/®1D) 2 >0, y >0 and C an appropriate
constant depending on p, we have

n n\ 1/(p—1)
|¢3(r)| > C'r‘(l—n)/(P—l){Al/(p—l)+¢(r)<r —b ) P }
n

Let 7> b be such that (r™ —b")/n > r"/2n, for r > 7. If ¢(r) is zero for some
r < T, we are done. Otherwise continue ¢ past » = 7. With new constants B
and C, the above inequality for ¢ becomes

l¢(r)| > Br—m/(p-1) 4 Cri/e=Dg(p), inr>r.

v

Noting that ¢ <0, an integration yields with new constants D and E,

U r 6Dtp/(P-1)
—prp/(p— _
é(r)<e {E /F ey y ey dt}.

Since the integral on the right side of the inequality is divergent, ¢(r) changes
sign at some r in (@,00). For a = 0, call this point z9. Thus z; is the first zero
of ¢(r) that solves (3.3). From (3.2), it is clear that ¢(z) < 0. Continue ¢ past
r = 2o, using (3.3). In order to prove the next statement we may take without
any loss of generality, 2o = 1 and ¢(z) = —§6, where ¢ is any positive number.
We now show that there is a r; € (1,00) such that ¢(r) — 0 as r — ry.

It is clear that near r = 1, ¢ is negative, thus ¢ is decreasing and is negative.
In a small righthand neighborhood of r =1, ¢ satisfies

()" = ,,,,1_1 {6*"1 + / rtn_1|¢(t)|p_2¢(t)dt}
< ,.nl_l {51»—1 4 /1 ;t"‘1|¢(t)lp_2¢(t)dt},
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where € > 0, is a small positive number. Noting that ¢(1 + €) < 0, we obtain

w(r)lp—l < % {5p—1 - |¢(1 + e)ll"l (w)}

n

Thus there is a r; € (1,00) such that ¢(r) — 0 as r — ry. Again continue ¢ past
r1 using (3.3). By repeating the foregoing arguments, it can be shown that ¢ has
countably many zeros, 29 < 21 < 22 < **- < 2y < ---. Furthermore, ¢ attains its
relative extrema where ¢ vanishes. Label theseas hg < hy < he <+ < hp <...,
where hg =0, and hyp < 2m < Am41- O

To prove that the zeros march to infinity, we need the following lemma.

Lemma3.2. The distance between two successive zeros is bounded uniformly
from below.

Proof. For a fixed m > 0, consider the interval [zmy,,2zm+1]. Without any
loss of generality, we may take ¢ to be positive in this interval. The function
¢ is increasing in [zm,hAm+1] and decreasing in [hm+1,2m+1]. We show that
Zm+1 = hm+1 is bounded from below, the proof for Ay — 2, follows in a similar
fashion. Let #(hm41) = M, £ any number in (0,1]; noting that ¢(hm41) =0
and ¢(r) <0 in [Am+1,2m+1], Wwe have

- 1 ¢ i 1/(p—1)
d(r)=M — {{1—1—;—1—/ s"_1|¢(s)|p é(s) ds} dt, inr > hmyr.
R hmt1

Let bym+1 € [Am+1, #Zm+1] be such that ¢(bpmy1) = M. Since ¢ is decreasing,
LM S ¢(7‘) S M in [hm+1,b1m+1], thus

bim4r (gn _ pn 1/(p-1)
IM>M—-M / {—"‘“} dt.
3

1 ntn—l
Using the inequality, t™ — A ., < nt""'(¢t — hpy1), and integrating once more,
we have
p -
(1 =0777 < (bempa = hme1 )P/ P70,

Thus,

(36) b£m+1 - hrn+1 2 I(Zap)a

where I(£,p) is an appropriate constant depending on £ and p, and independent
of M. o

Proof of part (i) of Theorem 2. From Lemmas 3.1 and 3.2, it follows that
Zm — 00 as M — 00. O

We now prove results needed for discussing the asymptotics of ¢.
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Lemma 3.3. The distance between two successive zeros is bounded from
above.

Proof. For a fixed m, consider the interval [z, z;m+1]. We will assume that
¢ is positive in this interval. As before, ¢ increases in [zm, Am+1] and decreases in
[Am+1,2m+1]. In part (a) we prove the assertion for the subinterval [z, hm+1],
and in part (b) we treat the subinterval [Rm41,2m+1]. The proof of the latter
is more involved and we need to treat the cases 1 < p < n, p=n and p > n,
separately. Let ¢(hpy1) =M > 0. ) )

(a) Consider [zm, Am+1], noting that ¢(zm) = ¢(hm+1) =0, ¢ >0 and ¢ >0
in this interval, it follows

(6™ = i { G )™ = [ 3 p00) e},

m

for z;, <7 < Aypgr. Thus ¢ is decreasing and ¢ is concave in this subinterval.
For the proof, we use the following form for ¢.

1/(p-1)

Bomt1 L
(3.7) é(r) = {Tnl_l / "1 (p(1))P” dt}

Integrating (3.7) once from z,, to hpm41, and noting that ¢t > r, we find
1/(p-1)

B(hmi1) > / :'"“ { / . (¢(t))P_1dt} dr.

Setting T = hm41 — zm and using that ¢(r) > (M(r — z,,))/T (this follows from
the concavity), the above integral inequality for ¢ yields

1/(p—1)

hmt1 1 hmr .
T (t—zm)P7 dt dr <1.

After a few simplifications,

p\ 1/(p=1) /1
<_T_) / (1 —7P)/P=Dgr <1,
p 0

Thus,
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where c(p) is an appropriate constant depending only on p. Thus Ami; — 2y is
bounded from above uniformly. )

(b) Now consider the interval [Rm1,zm+1]. We note that ¢(zm+1) = ¢(Am+1)
=0, ¢ >0 and ¢ < 0 in this interval. By differentiating (3.3) twice, it can be
shown that ¢ has a point of inflection. For 1 < p < o0, let

t _ {r(p_n)/(p_l), p # n

Inr, p=n.

Set w(t) = #(r) for r > 0. The differential equation in (3.1) is thus transformed
to

Y
(3.9) (p—-1) lH‘ | [P~ 24 + (VP (=) |y P=24y — p#n,
and
(3.10) (n — D)]wb|* 2% + e™w|" 2w = 0, p=n,

where now the differentiations are with respect to t. It is clear that w is concave
whenever w > 0. We now consider the three cases 1 <p <n, p>n and p=n,
separately.

Case 1. Consider 1 < p < n. Equation (3.9) holds in the interval [T}, T],
vyhere T1 = (zm+1)(p—n)/(p-—1) and T2 = (hm+l)(p—n)/(p-—l) . Note that ’w(Tz) =
¢(hmt1) = 0, sign(w) = —sign(4) and w is increasing. Integrating (3.9) twice,
we get

1 (T T, _2 1/(p—1)
(311) w(t) =w(D) - 5 / / sP=D/P=1) |y (6) [P e0(s) ds dz,
t z

where 4 = |(p—n)/(p— 1)|p/(P_1). Let 0 < 6 <1, and Ts € [Ty, T3] be such that
w(Ts) = (1 — 6)M, where w(T2) = ¢(hms1) = M. Taking t = Ts in (3.11) and
simplifying, we obtain

S . 1/(p—1)
/ / P =D/ =) yy(5) P2y (s) dis dz = ASM.

Ts

By concavity, w(s) > M(l +(s— Tg)&/(Tg)) where Ts = T, — T ; and thus from
the aforementioned integral equality we get

T, T 5 — T p—1 1/(1’_1)
/ / ((n=Dp/(p=n) (1 + __25) ds dz < A6,
Ts z T6
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Since s < Ty and p < n, s(»=Dp/(p=7) > Té"—l)p/(p_"). Thus the above inequality
after an integration yields,

1/(p-1) 1, _ 1/(p—1)
(Ty)(n=Dp/(o=m)(p=1) (%’;.) / [1 -{1+2 TT2 }”] dz < AS.
Ts 5

Setting 7 = 1+ (¢ — T3)6/(Ts), we obtain

(TsTg"‘”/("‘”

(3.12) 5

p/(p—1)
> /1 5(1 — )= Dgr < Apt/ PV,
For § > -;—,

(1 A l)d7'>/ (1—rP)Y/e-Ddr = C,
1-5

where C' is an appropriate constant depending only on p. For § < %—, an applica-
tion of the mean value theorem yields

1-m>p(1-6P(1-7), Vre[l-4§1].

Hence,

(1 TP (=) > pt/(P=1) (1 _ 5)/ (1 —r)M®Vdr = D(1 — §)67/P—1)
1-6

where D is an appropriate constant that depends only on p. Thus (3.12) yields

(n-1)/(p-n) _ [ C; if §
(3.13) Ts T < {050’ o, o

where C is a constant that depends only on n and p. Let rs in [Am+1, 2m+1] be
such that ¢(rs) = (1 — §)M . Then,

rs — hmy1 = (Ts)P~D/(=m) _ ()(p=1)/(p=n) < Z: 11)_6 6("—1)/(P—n)_

Therefore, from (3.13) it follows that by choosing T, small enough, i.e. hm+1
large enough, we may make Ts < T2 Since Ts = Ty — Ts, we have Ts > T2
Thus,

rs — hmps < CTyT("—D/G=m)
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where C is a new constant. We have then shown that for all m = 0,1,2,...,

c; l<o<t
75 — hm41 < {C5(p—1)/p; 8 <8< 3.

Here C is a constant that depends only on n and p.

The analyses in the remaining cases are very much similar to Case 1. Hence
we only present details at places where the analyses differ.

Case 2. Let p > n, then (3.9) holds in the interval [T},7T:] where now
I = (hm+1)(”"")/(”_l) and T, = (Zm.,.l)(”’")/(”_l). In this case, w(T}) =
#(hm+1) = 0, sign(w) = sign(4), and w is decreasing. Upon integrating twice,
(3.9) yields

1 t z _2 1/(p—1)
(3.14) w(t)=w(Th)— —/ {/ s(""l)p/(p_")|w(s)lp w(s) ds} de.
AJr Un
With 6 and Ts as before, and noting that w is concave in [T, Ts] and setting
Ts =Ts —T1, (3.14) gives
1/(p-1)

Ts | r= T,—s "7}
/ ] S(n—l)p/(P—n){l + IT_(S} ds dzr < Aé.
Ty Ty Ts

It follows then

1
' 7 pn-1/(p-n) o [ C; if 3<6<1
(3.14") TsT) < { CEP-D/p, 0 <5< %,

where again C' is a constant that depends on n and p. Defining rs as before,

_ n _ n -1 . Y
s — Ry = (T5)P~D/(® ) —(Ty)P=D/(p )Sﬁ—nT‘s(Ts)( 1/(p—n)_

Since Ts = Ty + T, by choosing T sufficiently large and using (3.14' ), Ts can
be majorized by say 3T;/2. Thus, it follows, for all m =0,1,2,...,

C; )

rs — hm+l S {06(1"1)/?; 02< §

Case 3. Take p = n. Then (3.10) holds in [Ty, Ts] where Ty = fn(hmy1)

and Tp = €n(zm+1). We note that in this case w(T;) = ¢(Am41) = 0, sign(-w) =
sign(-¢), and w is decreasing. Thus

w(t) = w(Ty) /Tt {/T e"’lw(s)]n_zw(s)ds}l/(n_l)dz.
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With 6, Ts, Ts and rs as before, we can show that

B C if ;<6<1
Ty < ’ 21
Tse't < {Cg(n—l)/"; if0<é< %5

where C depends only on n. Thus, it follows, for all m =0,1,2,...,

1
rs — hm+1 S {Ca(n_l)/n' 3

We may sum up the conclusions as follows. For 1 < p < 00, and for all
m=0,1,2,...,

C; ifl<é6<i
(3.15) rs — hmt1 < { 0,5("_1)/”; if(Z; <_5 < %,
Here C is an appropriate constant that depends only on n and p.
Hence the distance between successive zeros is bounded uniformly from above.o
The next lemma shows that |¢(hm)| decreases as m increases. It also sets up
an inequality that will be used to prove that |¢(hm)| actually decays to zero and
Zm+t1 — zm‘ approaches asymptotically a number T'(p) that depends only on p.

Lemma 3.4. The values |¢(hm)l are decreasing.

Proof. For a fixed m, consider the interval [hm,hm+1]. Without any loss
of generality, we may assume that ¢(h,) > 0 and @¢(hm41) < 0. We note the
following

(1) ¢ S 0 in [hm, hm+1],
(11) ¢(hm) = ¢(hm+l) = 0, and
(iil) ¢(zm) = 0. '
Multiplying the differential equation in (3.1) by ¢ and simplifying, it follows

n —

. d
21817 + Il 219l = 0,

(3.16) (p— 1)|¢3l”'lg;lq3l +

in (hm,hm+1). Integrating the above, from h,, to k.41, we obtain

hmg1 y r p
|(hm)|” = |$(hmt1)|” + p(n — 1)/h lﬂ—r)l"dr'

This shows that |¢(hm)| is decreasing. By iterating the above relation, we find

hm | A4 r p
o) = o0 =1 [ L g
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and hence

(3.17) /ooo ‘¢(:)| dr < pl(":fo_)‘l). o

Proposition 3.1. For z > 0 large, 1 < p < oo and n > 2, consider the

integral
z+1 Y P/(p—1)
- Ye-n)y_ (X
I(z) /z ¢ {1 (t)} dt.

Then there are constants C and C depending on n and p such that

gSI(:::)S g
T T

Proof. For any z > 0,

p-1) z \™)P/(P-D)
< p= - .
I(z) < (z+1) {1 (w+1) }

Applying the mean value theorem, we obtain

To obtain a lower bound for I(z), we notice that

I(z) > /=D /:+1 {1 B (_Zi)n}p/(p-—l) i@t

z

Since (z/t)" < (z/t) <1 and z <t <z + 1, the above yields

T 1/(p—1) pz+1
I(lt) > {m} / (t—z’)p/(p_l)dt.

Simplifying,

&2.|Q

I(z) >

This finishes the proof. o

Proof of part (ii) of Theorem 2. We prove that |¢(hm)| — 0 as m — oo,
thereby proving that lim,._,oo‘¢>(r)| = 0. In (3.17), take ¢(0) = 1. We proceed
by contradiction. Suppose there is an n > 0 such that |¢(hm)| > 2n, for all
m = 0,1,2,.... Then |¢(r)l > |%¢(hm)[ > 0 in [hm,bmya], where by, is as
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defined in Lemma 3.2. Furthermore, it follows from (3.6) that there isa § > 0
such that for every m, bp /3 — hm > 6. Recalling that ¢(hm) = ¢(zm) = 0, an
integration of (3.1) over [hm,r] yields

1
-1

rﬂ

] Pl — _ " n—1 p—2
6" 6(r) = /h o |6(8)[P~* 4(2) dt.

It follows, regardless of the sign of ¢ in [hm,2m], that

: - _y [T —=h% )
|¢(T)lp Lz ( nrn=1 ) in [, bnz].
Thus,
ny p/(p-1)
(3.18) |g(r)|” > Crr/(e=1) {1 - (hT'") } in [Rm, b2l

where C = n? /n?/P=1 for all m =0,1,2,.... Now,
/oo |¢;(‘_t)‘p dt > i _/hm+6 |¢(t—)|p dt.
0 t = hm t
Using (3.18),

oo | 4 p 00 hopm+6 ny p/(p—1)
/ Mdtz EC/ tl/(P—l){l_ <E_"l) } dt.
0 t = N t

The integral on the right side may be estimated using Proposition 3.1, and hence
for large values of m, say m > mg for some m, large,

= (1) >, A(n,p,6,1)
/0 DD

m

From Lemma 3.3, hy < mL for some L > 0. Thus the integral on the left hand
side is divergent, contradicting (3.17). Hence |¢>(hm)| —0asm—oo00.0

We now prove part (iii) of Theorem 2 which describes the asymptotic behavior
of the zeros.

Proof of part (iii) of Theorem 2. We show that limm—oo Zm+1 — 2m = T(p),
where T'(p) is an appropriate constant that depends only on p. Fix m, without
any loss of generality take ¢(hp41) = 1, thereby choosing ¢ > 0 in [2m, Zmt1)-
In (3.7), majorizing ¢ by 1 and applying Lemma 3.3, we obtain that |¢(r)l <M,
Zm <1 < Zm41. Here M depends on n and p. We now divide the proof into two
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parts. In part (a) we prove that hp41 — 25, has an asymptotic limit, and in part
(b) we show that zm41 — Am41 has the same limit.

~ (a) Consider the interval [zm,hm+1]. We have that ¢(zm) = ¢(hms1) =0,
¢ > 0 and thus ¢ is increasing. Integrating (3.16) from r to hp41, yields

. Bt | 4(+)|P
(p—1)|¢(r)|”+|¢>(r)l”=1+C/r l‘[’—(:)—Ldt,

where C' = p(n — 1). Using that |¢| < M, we obtain with a new constant C,

(3.19) 1< (p-1)|¢)| +|s(r)f <1+C nlmtt gy e(m).

Zm

Since hm41 — zm < L, for some L independnt of m, it follows that e(m) — 0 as
m — oo. Integrating the first inequality in (3.19) from zm to hpmy1, we find that

hm+1

(p—l)l/”p/lL>/ dt = b1 — Zm.

o T=ei ).,

Thus,

(3.20) hms1 = 2m < (p— 1)?P(p),

where P(p) = f/(1 —?)"1/Pdt. Let e > 0, and m be sufficiently large so that

e(m) < €. By integrating the second inequality in (3.19), again from 2z, to hm41,
we get

1 hom
821) -0 [ — % [T b=
' o (L+e—gr)t/r = J, mAL T Eme

We estimate the integral on the left side of the inequality. It is clear that

1 dt (1/(1+e)H?P ds
[arezom=)  a=em
_ ! ds 1 ds
B ./o (1—sr)ilp /(1/(1+e))1lr (1—sp)t/r

e \-D/p
2Pp-c()

where C is an appropriate constant that depends only on p. The estimate on the

second integral has been gotten by using the substitution v = s?, and majorizing
v by 1. From (3.20) and (3.21), we get

p c (p-1)/p 1
(p—].) P(p)—C i—-{-_(-:— Shm+1_zm.<_.(p—1) P(p)
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. (b) Consider now the interval [hm41,2m+1]. In this case ¢(zmp1) = O,
$(hm41) = 0, ¢ < 0 and thus ¢ is decreasing. Integrating (3.16) from A1
to r, we find

T 1 p
o=V +sf =1-¢ [ SO

where once again C = p(n — 1). Using that |¢| < M, it follows that
(3.22) 1—e(m) < (p—1)|o(r)|” + ()| <1,

where €(m) = C €nzm+1/hm+1 and C is an appropriate constant. As before,
g(m) — 0 as m — co. Integrating the second inequality in (3.22) from hm+1 to
Zm41, We obtain

(3.23) Zmt1 = hmy1 > (p— 1)Y/? P(p).
Let 7 > 0 be such that 1 — (1 —n)!/? < 1. Choose m so large that e(m) < 7.
Define 7, in [Amt1,2m+1] to be the value of r for which ¢(7,) = (1 — n)!/?. In

the first inequality in (3.22), replace £(m) by 7 and integrate from Ty t0 Zm41
to obtain

(1-m)/? do
—1)i/p - v 7
(p 1) /(; (1 —n— ¢p)1/p 2 Zm+1 Tn.
Therefore,
Zm+1 =Ty < (p— 1)V/PP(p).
From (3.15), with 6 =1 — (1 — )/,
Ty — hmy1 < C’n(”‘l)/”,
where C is an appropriate constant. It follows that
Zm+1 = hmt1 < (p = 1)1/PP(p) + CyP=/2,
From (3.23) and the foregoing inequality,
(p = DY?P(p) < zmi1 — hmps < (p— 1)Y?P(p) + Cplr=D/2,
Combining the results of part (a) and part (b) we see that
m zm41 — zm = 2(p — 1)1/? P(p).
m—0o0
Thus,
T(p) = 2(p — 1)"/? P(p).

We now prove that ¢ is unique. By Corollary 2.3 the function ¢ is the first
eigenfunction, with A\; = 1, on the ball of radius z,. By Corollary 2.2, z, is
unique. By Theorem 1, ¢ is unique on [0, z9]. Now suppose that for some m > 0,
the zeros zo,21,...,2zm and ¢ on [0,z,] are unique. It is clear that ¢ is the
first eigenfunction on the annulus formed by z,, and Zm+1, With A; = 1. Again
uniqueness of 2,11 and ¢ on [z, Zm+1)] follow from Corollary 2.2 and Theorem 1.
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