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LINEAR FUNCTIONALS ON THE SMIRNOV
CLASS OF THE UNIT BALL IN C”

M. Nawrocki

1. Introduction

Functional analytic properties of many classical spaces of analytic functions
have received much attention in recent years. In particular, topological duals of
the Hardy spaces of many typical domains have been identified (see [1, 2, 5, 6, 7,
13]). The Smirnov class N, of the unit disc in the complex plane was extensively
studied by N. Yanagihara [16, 17], who described all continuous linear functionals
on N, and found multipliers of N, into Hardy spaces. However, up to now, no
satisfactory characterization of linear functionals on the Smirnov class N,.(D) of
any multidimensional domain D has been obtained. The present paper is a study
of the linear space structure of the Smirnov class N,(B,) of the unit ball B, in
the space of n-complex variables C™.

We recall that a function f, analytic in B,,, is said to be in the Nevanlinna
class N(B,) if

sup [ log|(r0)] () < oo,
0<r<1 JoB,,

where ¢ is the rotation invariant probability measure on S = §B,,. The Smirnov
class or the Hardy algebra N,(By) is the subspace of N(B,,) consisting of those
functions f for which the family {log+| f(r)l :0 < r < 1} is uniformly integrable
on S. It is well known that N.(B,) equipped with the topology induced by the
metric

df,9) = If =gl = Jim_ [ 10g(1+]7:0) = 9(rO]) do()

is an F-space (i.e., complete metrizable t.v.s.). For each f € N,(B,), the radial
limit f*(¢) = lim,_1_ f(r({) exists for almost all ( € S and

£l = /slog(l +|f*]) do.

The reader is referred to [11] for information on N.(B,).

In 1976 M. Stoll proved
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Theorem S ([14] Theorem 10). For each continuous linear functional v on
N.(B,) there exists a unique analytic function g on B, such that

©) A= Jim_ [ fre™ 0300 do(0)

for all f € N.(B,). Conversely, given any g analytic on B,, for which the limit
in (S) exists for all f € N.(B,) (S) defines a continuous linear functional on
N.(Bp).

The main result of the present paper is Theorem 3.1, which together with
Corollary 3.5 gives, in terms of the growth restriction of the Fourier coefficients
of g, a necessary and sufficient condition for an analytic function g to define by
(S) a continuous linear functional on N.(B,). It turns out that the dual space
of N.(By) can be identified with the dual of the Fréchet space (locally convex
F-space) F,(B,) invented by M. Stoll [15] (see Section 2). This will imply that
F,(B,) is the so called Fréchet envelope of N,(B,), i.e., the completion of the
space (N.(B,),7¢), where 7¢ is the strongest locally convex topology on N.(B,)
which is weaker than the original topology 7 of N.(B,).

In Section 4 we show that if n # m, then Fy(B,) is not isomorphic to
F,(B;). This implies that the Smirnov classes N,(B,), N.(B,,) are not iso-
morphic for different dimensions n, m. The results of the Sections 3 and 4 are
applied to obtain the best possible estimate of Fourier coefficients of functions in

N.(Bp).

2. Preliminaries

Throughout the paper we use the standard notation of [11]. Let (z,w) =
E;.l:l zjw; (z,w € C") denote the standard inner product on C" and |z| =
(z,2)/? (2 € C™) the corresponding norm on C". We denote the unit ball and
the unit spherein C™ by B = B,, and S = S,, = 9B,, respectively. Moreover, let
Z, denote the set of all nonnegative integers and Z7% its n-fold product. T™ is
the n-fold product of T = dB;.

For any multi-index a = (a1,...,a,) € Z} and 2,{ € C", r € C

la| == a1 + -+ an, z2C = (21C1,- -+, 2nCn),
al:=ay! - ayl, rz = (rz1,...,72,),

o

2% =2yt ez

n -

It is well known that the analytic monomials 2%, a € Z”, are orthogonal on
the sphere, i.e.,

[eta@=0 iazs
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Moreover,

—1lal
2.1 *|2d, = (n—
(21) L erant) = e
(see [11] 1.4.8, 1.4.9). Therefore,

n—1+|al)! 1/20 n
¢a(z)=<ﬁ z-, aGZ_,_,

is such an orthogonal system of monomials on B,, which is normalized in Ly(S, o).
Each analytic function f on B,, has the Fourier expression

@)= aalf)pal2),
aGZ;

where the series is convergent uniformly and absolutely on each compact subset
of B,, and

aolf) = Jim_ [ 0070 do(c).

M. Stoll [15] defined the space F,(B,) of all analytic functions f on B, for
which

Ifllx = sup |aa(f)| exp(—|a|”/(”+1)/k) < oo forall ke N.
a€Zy

F,(B,,) equipped with the topology determined by the sequence of norms {HH B
ke N} is a Fréchet space. Moreover,

Theorem 2.1 ([15] Theorem 5.2).
(a) N.(B,) is a dense subspace of F,(B,),
(b) the inclusion mapping N.(B,) — F.(B,) is continuous.
3. Representations of linear functionals
In this section we prove the following main result of the paper.

Theorem 3.1. If {ba}a621 is such a sequence of complex numbers that

(3.1) bo = O(exp(—cla|™™*D))  for some ¢ >0,
then
(32) Y(F) = aa(fbay  f € Nu(By),

defines a continuous linear functional v on N,(B,) with the convergence in (3.2)
being absolute.

Conversely, for each continuous linear functional v on N.(B,) there exists a
unique sequence {bo} such that (3.1) and (3.2) hold.
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In the proof of this theorem we will use properties of the functions

few(2) = exp (c(l__l(_;’li’))l';nﬁ) )

where w,z € B, and ¢ > 0.

Lemma 3.2. We have
lim sup ||cfe,w| = 0.
=0 4eB

Proof. In the proof we follow [3]. The measure ¢ on S is invariant with
respect to the group U(n) of all unitary operators of the Hilbert space C", so
| fe,wll = ||fc’|u,|e1 || , where e; is the first unit vector in C™. Therefore, it is enough
to show that

lim sup |lcfe,re,|| =0.
¢=0re(o0,1)

Let U be a neighbourhood of e; on S. It is easy to see that

lim sup sup |C ;re(<)(<)| =0.
¢—0¢es\U re(0,1)

Consequently,
lim sup / sup(1+ [cfy e, |) do = 0.
S\U

=0 re(0,1)
Using the inequality log(1l + cz) < log(l+¢) +1log2 +logz, z > 1, ¢ > 0, with

z = exp(c(l — r?)|1 — rz;|~("*V) | we have

/ log(1 + |cfZ e, |) do < o(U)log(1 + c) + o(U) log 2
U

+ c/[;(l —rHl —\rcll_(""'l)da(C).

However, sup,,ep fg(1—|w|?)|1- (w,()l_(nﬂ)da(g) =: C < oo (see [11], 1.4.10),
so

/ log(1+ |cff,.,|) do < 20(U)log2 + cC
U

for any U and 0 < ¢ < 1. This completes the proof, because we could choose U
at the very beginning as small as we want.
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Lemma 3.3. For each ¢ > 0 there exists a k € N such that

aienzf?r :‘ég‘aa(fc,w)l exp(—|a|™"+Vi/k) > 0.

Proof. For each ¢ > 0, w,z € B we have

o) = 3 (1= ) (1 = (2y)) "

§=0

o= ¢J i +1)j+k—-1
SRR IR0 B (i A IR
j=1 k=0
¢ i [(n+1)j+k-1 koo s
=1+Z;j—!(1_|w|2)szo( A )Zazw
J: =

lal=k
— el oo i e (n+1)]+k —k_ 5%
_1+§|a|z=k(;ﬂ(l l |)( ! )a!>
TSP ol O SRS T SCESTIENN L P
k=0 |a|=k \Jj=1 T a! (n—1+|a|) Pal?);

where

. g if(n+1)j+k—1
vj(c, |w], k) := j!(l lw|?) ( . )

Thus, if u(c,a) = supw€B|aa(fc,w)l , then

« ! n—1 !a! 1/2
w(e,@) 2 vj (e, [wl, |a|)%((n—(—_1—+)|7|)!> o

forall j € N, w = (wy,...,w,) € B with w; <0, ¢ = 1,2,...,n, and all
a € Z} \ {0}. However, by (2.1), for every o € Z7 there is a £ € S such that
1€*] = ((n — Dla!/(n — 1+ la|)!)l/2. Of course, we can choose ¢ = (§1,...,&R)
such that & >0, i =1,2,...,n. Consequently, taking w := r¢, where r € (0,1),
we obtain
(n=1)!

r

(Jal+1) - (Ja| +n —1)

forall j € N, r €(0,1), a € Z% \ {0}. Using the obvious inequality

el

p(e @) 2 vj(e,m lal)
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(n+1)j+k-1 k(nt1)i—1
( k ) Z syl

we have

|a|(nt D) rlel
(n+1)71) lal(lal+1) - (Jal +n - 1)

o .
ple,a) > j—!(l —r2y

forall j €N, r€(0,1), a € Z} \ {0}.

Now, let us fix 0 < d < } so small that d"*! < ¢(n + 1)~("+1)_ For a €
Z7\ {0} take j = j, := the integer part of d|a|?/("+1) and take r? = r2 := 1—z,,
where z = z4 = d/|a|®/("*D . Note that j, > 1 for sufficiently large |a| as well
as ro € (0,3).

Using Stirling’s formula we have

log p(c, ) > jloge + jlog(l —r?) + jlog |a|"*! + |a|logr — jlogj + j — O(log §)
—jlog((n+ l)j)"'i-1 + (n+1)j — O(log(n + 1)j) — O(log |a|)

. c(1 — r?)|a|™t!
=](n+2+log (5171)17)4_%) + |a|logr — O(log |al).

However,
C(l _ ,,.2)|aln+1 cd|a|n+1—1/(n+l) o1
(n + 1)n+1jn+2 = (n + 1)n+1dn+2|a|(n+2)n/(n+1) =

for large a and
ol log r = o] log(1 — 2) = —[ale = —dla["/("+D,
since 0 < z < % Finally,

log (e, @) > (n +2)(dla]™/™+D) — dja|™/ "+ — O (log |a])
> [a|"" D [k — O(log|al)

for some k£ € N. The proof is completed.

Lemma 3.4. For each n,k € N and each family of complex numbers {:co, :
a € Z%,|a| = k} we have

max |z,| > max
o £eTn

Z ToE*
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Proof. Let m, be the normalized Lebesgue measure on T. The system of
monomials {%, a € Z% , is ortonormal in Lz(T", my), so

2
max EI;kwaﬁa Z[I‘n\gflafa

€T
|

Proof of Theorem 3.1. M. Stoll has proved that (3.2) with {by} satisfying
(3.1) is a representation of continuous linear functionals on the space F,(B,)
(see [15] Theorem 5.3). This and Theorem 2.1 imply that each {b,} satisfying
(3.1) defines by (3.2) a continuous linear functional on N.(B,).

Suppose now that v is a continuous linear functional on N.(By). Put by :=
Y¥(¢a) for o € Z% . Then there is an € > 0 such that

(3.4) lV(f)| <1 forall fe Nu(Bn), |fll <e.
For each f € N.(B,) and ( € D = B; we have || f({-)|| < ||f]| and

710 =7 (F(C) = Z( ) aa(f)ba)ck.

k=0 “a|=k

2
dmn(ﬁ) = Z |mal2 > mgx |ma|2'
a

Therefore, for each f € N.(B,), ||f|| < ¢, the function vy is analytic on the unit
disc D in C and suchD|'yf(()| < 1. Consequently,

(3.5) | aalfba

lee|=F

<1 forall fe N.(B), ||fl|| <e, keN.

Lemma 3.2 tells us that there exists ac > 0 such that
(3.6) llefewll <€ for all w € B.
Moreover, by Lemma 3.3, there are £k € N, § > 0 such that

(38.7) sup |aa(fe,w)| > sexp (e k) for all @ € VA
weB

Let us fix an arbitrary g € Z%} . By (3.7) we can choose such a w = wg € B
that

(3.8) |ag(few)| 2 6exp(|b™/ "+ /k).
Using Lemma 3.4 we can find £ € T" such that

(3.9) |ap(fe)bs] < | D as(fowbat®
lee|=15
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Let us observe that ||cfc (£l = |lcfe,wll S € and fo w(€2) =3, a(fe,w)é%pal2),
z € B. Therefore, (3.9) and (3.5) imply

‘caﬂ(ft:,w)bﬂ| Sl Z aa(cfc,w(ﬁ‘))ba
la|=I8]

<L

Finally, by (3.8),

18] < |eas(few)| < (c8) ™" exp(—|B["/ "+ /).
We have proved that {b,} satisfies (3.1). By the first part of the theorem, {4}
defines by I'(f) = Y aa(f)ba a continuous linear functional on N,(B,), which

coincides with v on the space of all polynomials. Finally, I'(f) = ~(f) for all
f € N«(B,,). The proof is finished.

Corollary 3.5. An analytic function g(z) = Y baa(z), z € B, , defines by
(S) a continuous linear functional on N,(B,) if and only if {b,} satisfles (3.1).

Proof. The absolute convergence of the series 3 aa(f)bo, f € Nu(By), is
easily seen to imply that the limit in (S) exists and is equal to the sum of this
series. Therefore, we see, by Theorem 3.1, that if {bo} satisfies (3.1) then the
analytic function g(z) = Y bapa(2) defines by (S) a continuous linear functional
on N.(B,).

Conversely, if v is a continuous linear functional on N,(B,) defined by (S)
with g(z) = 3 bapa(2), then

(3.10) v(f) = Z ao(f)ba for each polynomial f.

The set of polynomials is dense in N,(B,), so the equality in (3.10) holds for all
f € N«(B,) and {b,} satisfies (3.1).

Let us recall that if X = (X,7) is an F-space whose topological dual X'
separates the points of X, its Fréchet envelope X is defined to be the completion
of the space (X, 7€), where 7€ is the strongest locally convex topology on X
which is weaker than 7. In fact it is known (see [13]) that 7€ is equal to the
Mackey topology of the dual pair (X, X'). Since for each locally convex, metrizable
topology £ on X, (X,€) is a Mackey space, i.e., { coincides with the Mackey

topology of the dual pair (X, X é) (cf. [12] Chapter IV. 3.4), so the Fréchet envelope

X of X is up to an isomorphism uniquely defined by

(FE1) X is a Fréchet space,

(FE2) there exists a continuous embedding j of X onto a dense subspace of X ,

(FE3) the mapping v — v o0 j is a linear isomorphism of X' onto X'.
Theorem 3.7. The space F,(B,) is the Fréchet envelope of N,(B,).
Proof. Let j be the inclusion mapping of N,(B,) into Fy(B,). Then (FE2)

holds because of Theorem 2.1 while (FE3) is a consequence of Theorem 3.1 and
[15] Theorem 5.3.
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4. The nuclearity of F,(B,) and applications

We recall that a nondecreasing sequence v = {v;} is said to be a stable nuclear
exponential sequence of finite type if supy2j/7j < oo and lim(logj)/v; = 0. For
each such sequence v the finite type power series space A;(7) is defined to be the
space of all complex sequences ¢ = {z;} such that

qr(z) = sup|zj|exp(—7;/k) < oo  foreach k €N

(see [4]). It is well known that A;(7) is nuclear.
We say that two sequences v, 7' are equivalent (y ~ v') if

0 < liminf(v;/7}) < limsup(y;/7;) < oo
J J

Proposition 4.1. For every n € N the space Fy(By) is isomorphic to
Ay (jY/(+D). Consequently, if m > n, there does not exist any subspace of
F,(B,) isomorphic to Fy(By).

Proof. Let j be any bijection of Z% onto Z4 such that j(a) < j(a') whenever
la| < |a|. It is easily seen that j(a) ~ |a|™. Consequently, the operator T :
F.(B,) — A(5/(+D) defined by T(f) := {:E](f)}, where z;(f) := aq(f) if
j = j(a), is a linear and topological isomorphism.

The second assertion of the proposition immediately follows from the first one
and Proposition 3 in [4].

Theorem 4.2. If n < m, there is no complemented subspace of N,(B)
isomorphic to N,(B,,). In particular, the spaces N(B,) and N,(B,) are not
isomorphic.

Proof. Suppose that P is a continuous projection of N,(B,) onto its subspace
X isomorphic to N«(B,,). P remains continuous if we equip N.(Bp) and X
with their own Mackey topologies. X is complemented in N,(B,), so the Mackey
topology of X coincides with the topology induced on X by the Mackey topology
of the whole space N.(B,). Consequently, the extension of P to the Fréchet
envelope F.(B,) of N.(B,) is a continuous projection of F4(B,) onto the closure
X of X in Fy(B,). Finally, X is a subspace of Fy(By) which is isomorphic to
X ~ F,(B,,). This contradicts Proposition 4.1.

M. Stoll proved that an(f) = O(exp(o(a)|a|?/("*1)) is the best possible
estimate of Fourier coefficients of functions f in Fi(By) (see [15] Theorem 5.1).
We apply the nuclearity of Fi(B,) to show that this estimate is the best possible

~ one for N,(By).

Proposition 4.4. For each sequence of positive numbers {\,} decreasing to
zero there is an f € N.(B,) such that

sup{|aa(f)| exp(-Aalal"/ ") s a € 2 } = co.
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Proof. Our proof follows [8] Section 4. Suppose that
ao(f) = O(exp(’\alaln/(n+l))

for all f € N.(Br). Let X be the Banach space of all analytic functions on B,
for which

IFll = sl;plaa(f)| exp(——/\ala|"/("+l)) < o0.

It is easily seen that the topologies of X, Fy(By), and N.(B,) are stronger than
the weak topologies defined on these spaces by the continuous linear functionals
f —aa(f), a € Z% . Moreover, X C F,(B,) and, of course, N,(B,) € X. Con-
sequently, both inclusion above mappings have closed graphs, and so, by the closed
graph theorem, they are continuous. Therefore, the topology of X restricted to
N.(Bn) coincides with the topology induced on N.(B,) by Fi(B,) (the strongest
locally convex topology on N,(B,) which is weaker than the original topology of
N,(B,)). Consequently, the closure of N,(B,) in X is the Fréchet envelope of
N.(Br). However, this is impossible, because each nuclear Banach space is finite
dimensional.
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