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ON THE CONFORMAL MODULUS DISTORTION
UNDER QUASIMOBIUS MAPPINGS

V.V. Aseev

0. Introduction

In thxs paper we shall study some properties of the topological embeddings
i Y- R, T being a compact in R", under which the distortion of conformal
moduli of rings in ¥ is of a bounded character. Such mappings have been termed
w-BMD embeddings, where w denotes a bound for modulus distortion. Although
the class of w-BMD embeddings of continua in R is essentially equivalent to that
of w*-quasimdbius embeddings, there are some problems concerning the modulus
distortion function w. Does the sequence of w-BMD embeddings fx: ¥ — R"
converge to BMD-embeddings with the same bound w for the distortion of moduli?
In Sections 2-3 the affirmative answer will be given in the case where ¥ is a locally
equiconnected sequence of continua or the limit continuum is a Jordan arc in R".
In Section 4 we give a counterexample for the negative answer in a general case.
Section 5 aims to get an analogue of Liouville’s theorem for BMD-embeddings.

1. BMD and QM embeddings

We equip the Mobius space R" with the chordal distance [zy]. The conformal
invariant characterxstlc r(T) of a quadruplet (an ordered quadruple of distinct
points) T = abed in R" is defined by

(L1) (T) = [a][ed)/([ac][bd]).

1.2. Definition ([V3] or [Asll Let w: [0,400) — LO +00) be a homeomor-
phism. An embedding f: ¥ - R of £ C R" into R is said to be a w- -QM
(quasimdbius) embedding if r(fT) < w(r(T)) for all quadruplets T in .

Given a pair of compact sets E,F C R and a domain D C R, let
M(E; F; D) denote the conformal modulus of the famﬂy of all arcs joining E
to F in D. A palr of d1SJoxnt continua E, F in R is called a ring. We set

1.3. Deﬁnition ([Asl]). An embedding f: £ > R of £C R’ is said to be
w-BMD (of bounded modulus distortion) if

(1.4) w ' (M(E,F)) < M(fE, fF) <w(M(E,F))
for all rings (E,F) on X.
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The connection between BMD and QM classes of embeddings has been ascer-

tained [Asl, Theorem 5.6, p. 22, Theorem 4.3, p. 12] as follows.

1.5. Theorem. (i) Every w-QM embedding f: & — R’ is also w -BMD
where w* depends on]y on w and n. (ii) Every w-BMD embedding f: ¥ — R"
of a continuum £ C R is also @- -QM, where & depends only on w and n.

1.6. Remarks. The concept of QM embeddings of subsets in the plane
is actually emplyed in S. Rickman’s paper [R, p. 389]. These embeddings were
termed as “quasimobius” by J. Vaisala [Vi] and the author [As2] in 1984. The
notion of BMD embeddings had been offered for investigation by P. Belinskij in
1976 and was introduced in [AsV1].

2. Convergence theorems

For a compact metric space X we shall denote by Cont X’ the space of all
continua in X equipped with Hausdorff distance between compact subsets of X
(see [K, Chapter 2, Section 21]). The compactness of Cont X [K, Chapter 4,
Section 42] will be employed throughout the paper. An embeddmg fi T > R" of
a continuum £ C R may be associated with its graph in R* x R

Ff:{(a:,y)eﬁnxﬁn::cEE,y=f:c}

and thereby be considered an element of Cont (R" xR"). We assume the conver-
gence fr — f of embeddings fi: Tk — R to be equivalent to the convergence
Tfr — I'f in the metric space Cont (R" x R ). Since the characteristic 7(T) is
continuous on the space of quadruplets in R, we have the following property.

21. If fx = f as k — oo, fr being w-QM, the limit embedding f is also

w-quasimObius with the same distortion bound w.

2.2. Definition [As3]. A family of embeddings M = {f,: £q —» R ;T4 €
ContR"} is called compact (in the class of embeddings) if any sequence in M
has a subsequence converging to an embedding. The family M is termed normal
if any sequence {fr} € M has a subsequence {fx,} such that T'fy, — I in
Cont(R" x R"), T being either the graph of an embedding or a compact set
containing none triple of points with distinct projections.

2.3. Theorem [Asl, Theorem 6.1, p. 23] G1ven a homeomorp}usm
w: [0,400) — [0,+00), the family M = {f T - R;T € ContR'} of all w-
quasimébius embeddings is normal. Moreover, any subfamz]y M' Cc M of w-BMD
embeddings with a common triple of fixed points is compact.

According to 2.1 and Theorem 1.5, this immediately implies the following
statement.
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2.4. Theorem. Given a homeomorphism w: [0, +00) — [0,+00), the family
M = {f Y > R;Te€ ContR",f € w-BMD} is normal. Moreover, any sub-
family M' C M of w-BMD embeddings with a common triple of fixed points is
compact. For a convergent sequence {fx} C M the limit embedding f is also
w*-BMD, w* depending only on w and n.

2.5. Now the question arises whether the limit embedding in the above the-
orem is actually w-BMD with the same distortion bound w. We shall answer in
the affirmative in the two special cases and give a counterexample for the general
situation.

2_£5. Given £ € ContR", one may consider ContE to be a continuum in
ContR" (see [K, Chapter 5, Section 47.7, Theorem 3]) as well as a point in the
metric space Cont ContR .

2.7. Theorem. Let w-BMD embeddings fi: Ek — R where Xj € ContR"
for k = 1,2,..., approach an embeddmg fiS >R . I Cont Yx — Cont X in
Cont Contﬁn When k — oo, then f is also w-BMD with the same distortion
bound w.

Proof. Let (E,F) be an arbitrary ring on X. The convergence Cont Xy —
Cont ¥ immediately implies that each subcontinuum E C ¥, while being a point
in Cont X, may be approached in Cont R" with a sequence Ex, (s=1,2,...) of
subcontinua Ej, C I, . Since Cont ¥y, — Cont £ in Cont Cont R" and fr, = f
as s — 00, We may assume the subsequence f, to be the initial sequence fi. Since
the space Cont (R" xR") is compact, the sequence f; may be replaced once more
with a subsequence so as to provide the convergence I'fy | Ex — I'f | E, and so
the convergence fxEr — fE as k — co. The same argument gives a subsequence

Fy; € Cont Xy, such that Fi; — F and fi; Fx; — fF in Cont R". Since the
convergences Ek — E and fk Ey; — fE have been preserved, we may assume
the subsequence fkj to be the ini’cial one. Thus we have gained a sequence (Ek, Fx)
of rings on Zk and the convergences (Ex, Fx) — (E,F), (fxEx, fiFx) — (fE, fF2
of rings in R". The continuity theorem for the conformal capacity of rings in R
(see [G, Theorem 5, p. 228; Theorem 1, p. 222]) implies

lim M(Ex, Fy) = M(E, F),
kl—i»n:oM(kak’ frFx) = M(fE, fF).
Letting k¥ — oo in
1 (M(Ex, Ft)) < M(fxEx, feFx) < w(M(Ex, Fy))

yields the desired estimate (1.4) for the embedding f. o
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2.8. Corollary. Let a sequence fx: Ty — R" of w-BMD embeddings with
Tx € ContR" converge to f: ¥ — R". If Sg41 C g forall k=1,2,..., then f
is w-BMD.

Proof. If a sequence E; € Cont Ly converges to E in Cont R', then E C
3, E being a continuum. Thus liminf;_,o ContExy C ContX. Since ¥ =
limg oo Bk = N Zi

ContX = n ContXy = klim Cont Iy = likm inf Cont Zy.
—00 - 00
k

These inclusions imply that Cont ¥ = limg_.o, Cont Xy . Hence (see [K, Chapter
5, Section 9, 42.2, Remark 1]) Cont Ty — ContX in Cont ContR" as k¥ — oo.
The assertion now follows from Theorem 2.7. o

3. Special cases of convergence

3.1. T_heorem. Let a sequence fy: Ty — F: of w-BMD embeddings of
Tr € ContR" converge to an embedding f: ¥ — R". If £ is a Jordan arc (a
topological image of a closed interval), then f is w-BMD with the same distortion
bound w.

Proof. According t to 2.7, it is sufficient to obtain the convergence Cont Iy —
Cont T in Cont ContR". Since limsup;_, ., & C Cont I, it suffices to derive the
inclusion

(3.2) ContX C likm inf Cont Z.

Let ¢:[0,1] — X be a parametrisation of the arc £. Every nongenerated con-
tinuum 7 C ¥ may be represented as 7 = ¢[t1,?;], where 0 < ¢; < t5 . <L Let
P = p(t1), P = ¢(t2), 11 = ¢[0,11], T2 = @[t2,1]. Foraset A C R denote
by A(e) its closed e-neighbourhood in R". Given ¢ > 0, there exists e, € (0, é]
such that 71(e1) N 72(e1) = 0. Hence we may choose § > 0 such that

= ¢([0,1] N (t; — &,ti + 6)) C Pi(er),

where ¢ = 1,2. Since the closed arcs 01 =71 \ 71, o =7\ (11 U"Y2), 02 =72\ 72
are mutually disjoint, this is also true for o1(e2), o(e2) and o2(e2) when &2 €
(0,€1] is sufficiently small. Because £ — I, there exists an integer ko such that
Ek C 2(62), Ek = Zk ﬂPl(el) # @ and Fk = Ek n P2(€1) 55 (0 for all & > ko.
We shall next show that X N 7(e1) is connected between Ej and Fj (see [K,
Chapter 5, Section 46.4]). Assume that the statement is false. Then Tx N7(e;) is
a union & UF of two disjoint closed sets £ and F such that Ey C £, Fx C F.
Consider the closed nonempty subsets £ U (Zk N 01(52)) and F U (Ek N 0’2(62))
of Xj. Since
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(i) ENnF=0,

(11) (Ek 00'1(62)) N (Ek 00'(62)) C 0’1(62)0 0’2(62) = @
(lll) Eﬂ(Z‘kﬂaz(eg)) C (Pl(El)na'z(Sg))U(O’(Eg)ﬂa'z(sz)) = Pl(el)ﬂag(eg) = @,
(iV) fﬂ(anal(eg)) C (Pg(sl)ﬂa'l(&z))U(O‘(&z)ﬂd’l(ez)) = Pg(el)ﬂdl(sz) =w
Eu (Zk Noy (52)) and FU (Ek Noy (62)) are disjoint. Nevertheless, their union is
pIR

[su (s 001(62))] U [}‘u (SN 02(52))]
= (EUF) U (o1(e2) N Zk) U (02(e2) N k)
=ZiN [7'(61) Uoi(ez)U 0'2(52)] =i N X(e2) = Li.

This contradicts the connection of Xj.

Since X N 7(e1) is connected between Ej and Fj, there exists a continuum
vk C Zx N 7(e1) joining Ex to Fi (see [K, Chapter 5, Section 47.2, Theorem 3;
Section 47.1, Theorem 6]). Letting ¢ = 1/s for s = 1,2,..., we obtain the increas-
ing sequence k, and continua yx C Lx N 7(1/s) for ks < k < ky41. Obviously,
Yk — T as k — 0o, and hence 7 € liminfy_,o Cont Xx. Thus (3.2) is proved. o

3.3. A family F of continuain R is called locally equiconnected if for any
given € > 0 there exists § > 0 such that every pair of points z,y € £ € F with
[zy] < 8 can be joined by a continuum 4 C I of spherical diameter < ¢.

3.4. Theorem [As4, Theorem 2.1, P 19]. Let a sequence fx: &x — R of
w-BMD embeddings of continua £y C R converge to an embedding f: ¥ — R".
If the family {Zx : k = 1,2,...} is locally equiconnected, f € w-BMD with the

same distortion bound w.

Proof. Let X, be an arbitrary subsequence of ;. Since the family {Z, :
s = 1,2,...} remains locally equiconnected, it follows from [As4, Lemma 1.2,
p. 17] that Cont ¥ C limsup,_,,, Cont £x,. Because of the arbitrary choice of a
subsequence Tk, we obtain by [K, Chapter 2, Section 29.5 (1)]

ContX C ﬂ lim sup Cont Ly, = hm mf Cont Xk C limsup Cont £y C Cont %,

$—00 k—oo
where the intersection expands over all subsequences X, of L. Thus the equality

Cont ¥ = limy o Cont Xy holds and the desired result follows from Theorem 2.7.

3.5. Question. Does Theorem 3.1 remain true if ¥ is replaced by a Jordan
curve (a topological image of a circle)?
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4. Counterexample

All the considerations throughout this section will refer to the extended com-
plex plane C, z = z + iy = pe'¥ being a complex variable.

4.1. A continuous mapping f: & — C, where ¥ C C, is termed circular with
respect to a point zg if |fz — fzo| = |z — 20| for all z € E.

4.2. Lemma. Let (E,F) be aringin C and f: EUF — C a circular

mapping with respect to zo. Denote by a(a,b) the acute angle between segments
zoa and zob while a,b € C\ {z}. If

< a(a,b) asa€ E,beF,
a(fa’fb){za(a,b) asa,be E ora,b€ F,

then M(fE, fF) > M(E,F).

Proof. Since the distance |a— b| between the points a,b € C\ {20} with fixed
|a — zo| and |b— zo| is increasing to a(a,b), the estimates

<|la—b] asa€ E,beF,
|fa_fbl{2|a_b| asa,beEora,bEF

hold. By [AV, Theorem 2, p. 8; Theorem 1, p. 7] we have the inequality md(E, F)
> md(fE, fF) for transfinite 2-moduli. Thus by Bagby’s theorem [B, Theorem
5, p. 325] the same inequality holds for conformal moduli of these condensers. The
connection between the conformal moduli and the conformal capacity of condensers
gives the desired estimate. o

4.4. In the case where the distortion bound w of w-BMD embedding is of the
form w(t) = kt, k > 1, the coefficient k& will be termed the distortion coefficient
of f and denoted by k[f].

4.5. Question (P.P. Belinskij). Is it true that every BMD-embedding f of a
continuum has a finite distortion coefficient? For a brief discussion of the problem
see [AsV2]. In this connection also see [AsT, Theorem 5.2, p. 547].

4.6. The following construction is a mere modification of the example from
[AsV3, p. 14] (the paper contains a lot of misprints). For some fixed ¢ € (0,7/8)
set h ={z€C:argz=e+3n},hb={2€C:argz=—c+1in},l5={2€C:
argz =0}, E=04L UL UI;. The embedding f: & — C is deﬁned by the formula

(2) = { as z € I3,

1z asz€lUl,.

For k = 1,2,... weset iy = {z € ly : |2] <k}, by = {z € Lo : |2| > 1/k},
Lk = ik Ulr Ulz and fx = f|Zkx. Obviously fy — f when k — oco. We are
going to show that

(4.7) k[fx] < ( +9)
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forall £k =1,2,....

Let a pair of disjoint continua in I; be denoted by E,F so as to have E
between F and the endpoint ike** of ¥x. Note that, for any pair 7,5 € {1,2,3}
and continua E; = ENl;, F; = FNl; (possibly empty), the circular mapping
f: E; U F; — C with respect to 0 preserves angles on E; and F; separately
and does not increase angles between E; and F;. By Lemma 4.2 we obtain the
inequality M(E;, Fj) < M(fE;, fFj) for each pair 7,5. Hence

M(E,F) <) M(E;,F}) < ) M(fEi, fF;) < 9M(fE, fF).

i,J 1,
Thus
(4.8) M(E,F)/9 < M(fxE, feF)

holds for all rings (E,F') on Zk.
In order to obtain an upper estimate for M(fxE, fxF') we consider the fol-
lowing five cases.
Case 1. Let E CIl3Ul. Then F C I3Ul;. The embedding f|(I3 Ulz) extends
to a quasiconformal mapping g;: ge'? — pe*f(¥) | where B(0) =0, ﬂ( e+im) =¢,
B(27) = 2r, the function B being linear on [0, —¢ + ;7] and [—¢ + i, 27r] Since
e < /8, the dilatation of g is (7 — 2¢)/2¢. Hence

M(kaako) = M(glE')glF) < (_1 +W/26)M(E7F)

Case 2. Let F C [Ul3. Then E C l;Ul3. The restriction f | (I;Ul3) extends
to a quasiconformal mapping g;: ge'? s ge~*#(¥)  where 5(0) =0, B(e-{—%w) =e,
B(2m) = 2m, the function B being linear on [0,€ + 7] and [e + 37, 27]. Since the
dilatation of g3 is (7 4 2¢)/2¢, the estimate

M(fxE, fiF) = M(g2E, 92 F) < (1 + n/2¢)M(E, F)

holds.

Case 3. Let E C l; Ul3 and F C l3Ul;. The circular mapping g¢3(z) =
{zonl3Uly;Z only Uls} preserves angles on E as well as on F and does not
decrease angles between E and F. By Lemma 4.2 M (E,F) < M(E, F), where
E= gsE. The mapping g4: ge'? — 0e'f(?) where f(—7) = —7, B(—¢ — —7r)
—¢, B(—e+ 37) = ¢, B(0) = 0, B(m) = m, B being linear on the segments
[-m,—€ — %ﬂ'], [—e - 1m,0], [0,—€ + in], [—s + i, 7], transforms E into fE
and F into fF. Since ¢ < w/8, the dilatation of g4 is equal to (7 + 2¢)/2¢.
Hence

M(fE, fiF) = M(fE,fF) < (1+ 7/2)M(E,F) < (1 +n/2)M(E, F).
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Case 4. Let I3 C E. Then F C l;. Denote E; = ENly and S = I3U fl;. The
mapping gs: ge*? — pe'#(¥)  where 8(0) =0, B(c) =¢, B(2T —¢) = 27, B being
linear on segments [0, ], [¢, 27 —¢], has dilatation K[gs] = (27 —¢)/2(mr—¢) < 8/7
and transforms the domain D = {2 :0 < argz < 27 — ¢} into C \ 3. Hence

M(fE,fF) S M(SUfE,, fF) = M(SU fE,, fF;D)
< (8/T)M (I3 U fEz, fF;95D) = (8/T)M(g91(ls U l2), 91 F)
< (8/7)(=1 + 7/26)M(ls U Ey, F) < (8/7)(—1 + 7/2¢)M(E, F).
Thus
MJiB, fuF) < (8/7)(~1 + 7/26)M(E, F).

Case 5. Let I3 C F. Then E C l;. Denote Fy = FNly, S'=13U fly. The
mapping ¢¢(z) = ¢5(2) transforms the domain D' = {z : ¢ < argz < 27} into
C \ /3 and has the same dilatation as gs. That is, K[gs] = K[gs] < 8/7. Hence

M(fE,fF) < M(fE,S' UfF)= M(fE',S" U fFl;'D')
< (8/T)M(fE, fF1 Uls; g5(D")) = (8/7)M(fE, f(FL Uls))
= (8/7)M(g2E, g2(F1 U l3)) < (8/7)(1 + 7/2¢)M(E, Fy U I3)
< (8/7)(1 + 7/2¢)M(E, F).

Thus
M(fvE, firF) < (8/7)(1 + n/2¢)M(E, F).

The estimates in Cases 1-5 together give the inequality
M(frE, fy F) < (8/7)(1 + 7 /2¢)M(E, F)

for all rings (E,F) on Zi. On the strength of (4.8) it implies the announced
upper bound (4.7).

_ Provided ¢ is sufficiently small, we can show that the limit embedding f: £ —
C is not of the class w-BMD with the same distortion bound w(t) = (8/7)(9 +
7/2¢)t as that of fx. Consider the continua E =1, Ul,, F(§) = {z €Ely3:6<
|z] < 671}, where 6 € (0,1). It is easy to get the crude estimates for the capacities
of rings (E, F(6)) and (fE, fF(6))

M(E,F(8)) < [(—e + 3m) 7" + (—¢ + 37/2)7"]21og 1/6 + %_2_2)
B 16(m —¢) 1 8(m—e¢)
~ (= 2¢)(37 — 2¢) &% + T—2 "’

M(FfE,fF(6)) > M (fE, fF(8); {6 < |2| < 67}) = (4/¢)log 1/6.
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Since

. M(fE,fF(§)) _ (r =237 = 2¢)
s—0 M(E,F(8) ~ de(m —€)

and

(r—2¢)(83m —2¢) 3w 47r~8<9+ 7r)

4e(m —¢€) 4 " T T 2%

as € — 0, there exists, for a sufficiently small €, a § = §(¢) < 1 such that the
strict inequality

M(fE, fF(6)) > (8/7)(9 + 7/2¢)M (E, F(6))

holds. It shows that for such ¢ the embedding f is not of the class w-BMD with
w(t) = (8/7)(9 + m/2¢)t.

5. id-BMD embeddings
According to Definition 1.3, the embedding f: ¥ — R" is id-BMD if

(5.1) M(fE,fF) = M(E,F)

for any ring (E,F) on £. We use the term Mobius embedding for any id-
quasimoébius embedding. Note that every Mobius embedding in r" may be trans-
formed by a suitable M&bius mapping into an isometric embedding and hence it
may be extended to an isometry over all R . So in order to obtain a Mé&bius
extension of an id-BMD embedding one only needs to prove that it is a Mobius
embedding.

5.2. Conjecture (P.P. Belinskij; see the final remark in [As5, p. 1529]). Every

id-BMD embedding of a continuum into R is a Mdbius embedding.
We will commence with a two-dimensional case.

5.3. Theorem (see also [As6]). If & C R’ has a positive topological
dimension at each point of a dense subset ¥' C ¥ C f', then every id-BMD
embedding f: ¥ — R? is a Mébius one.

Proof. Choose a decreasing sequence 8¢ \, 0. By [K, Chapter 5, Section
47.2, Theorem 9] there exists at each point a € &' a continuum 7, C T such that
a € v and 0 < diam+, < éx. Hence for an arbitrarily given quadruplet a;azazay
in ¥’ we may contruct a sequence of continua vix (¢ = 1,2,3,4; k = 1,2,...)
such that a; C 7ix C £ and 0 < diam~;x < 6. By [AV, Theorem 5, p. 14] and
[B, Theorem 5, p. 325] we have

(5.3.1) kll{rolo 7(vik)7(vjk) exp mod(vik, vjk) = |ai — a;|?,
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where 7(E) denotes the transfinite diameter of E in R’ and mod(vik, Vjk) =
27 /M(%ik,7vjk). Thus the characteristic 7(T) of the quadruplet T = aj;azazay
may be derived as follows:

r(T)? = Jim exp [ mod(y1k, v2k) + mod(ysk, Yak) —mod(71k, 3k ) —mod(v2k, Y4k )] -

The same arguments for the condensers (f7ix, fv;k) give the following expression

of r(fT):
T(fT)2 = kli_.n;o exp [mOd(f'Ylka fry2x) + mod(fy3k, fyak)
— mod(fy1k, fysk) — mod(fyzk, fyax)].

Since mod(f¥ik, fyjx) = mod(¥ik,vjk), it follows that r(T) = r(fT) for any
quadruplet T in ¥', so that f | &' € id-QM. Hence the continuous extension f
of f|Z' over T is also a Mébius embedding.

5.4. Definition (cf. [As7, p. 201]). A continuum v C R is said to be
raylike at a point a € Yy N R if for any stretching sequence ,uaitk]: T a+
tr(z — a), paltr]: 00— o0, tx — oo of Mobius self-mappings in R~ the limit set
limg— oo pa[tk]y in Cont R", if any, is a ray origined at a. o

5.4.1. Remark. The raylike property of a continuum 4 at a € v does
not imply the existence of a tangent ray at a point a. The counterexample was
communicated to me by V.A. Vasilenko in 1986.

5.5. Lemma. Let Jordan arcs 71,72 € R be raylike at points z, € v, and
Ty € 72, respectively. Then for any sequences {vir C vi : k =1,2,...} of subarcs
such that z; € vyix (1 =1,2) and éix = max{|z,~ —z|:z € 'y,'k} —0ask— o0
the equality

(5.5.1) klim 81%62k exp mod(y1x, ¥2k) = Anlz1 — 22|?

holds. Here )\,, denotes the Grétzsch constanst in R

Proof. We may assume z2 = z; + e, where |e] = 1. Denote by ¥(¢) the
conformal modulus of the Teichmiiller ring in R". Given ¢ > 0, since log A\, t% —
¥(t2 — 1) decreases to 0 as t — oo [G, (a), (¢), p. 225), there exists a = a(e) > 1
such that

(5.5.2) 0 <logApa? —p(a® —1) <.

When k is sufficiently large, the spheres Six = {z : |zi — z| = abix} (i = 1,2)
are disjoint. For any line segments 7 of length 6;x origined at z; (z =1,2) we
have (see [V, Lemma 5.53, p. 66])

(5.5.3) mod(7ik, Six) = 2 (o = 1), i=1,2.
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After a suitable subsequence has been chosen and relr:),belled,_irtl may be assumed
by the raylikeness condition that pz,[1/8ik]yik — vio in Cont R, 7o being a unit
line segment origined at z;. The uniform convergence of rings

(pzi[1/8ik)vik, pz:[1/6ik)Six) = (vi0, Si = {z : |zi — z| = a})

combined with the continuous property of ring moduli [G, Theorem 5, p. 228] and
the equality (5.5.3) together imply

(5.5.4) mod(v1k, S1x) + mod(y2k, S2k) = ¢(a2 -1)+ 0

with O; — 0 as k — oo. Since the ring (Six, S2x) may be transformed by a
Mébius map into a spherical ring {z : 1 < |z| < Tk} with Tk = exp mod(Six, S2k)
— 0o as k — oo, the direct calculation yields
(5.5.5)

mod(Slk, Szk) = log Tk

= log (1 — a2(61k - 62k)2) —log a®81162k — 2log(1 + Tk'l)
= ].Og(l/&]kagk) - 10ga2 + 02,
where O; — 0 as k£ — oo. The extremal property of the Teichmiiller ring [G,

Section 2, Theorem 4, p. 226] and the asymptotics for its conformal modulus [G,
Section 2, (c), p. 225] imply the estimate

1+51k+52k) 1

(5.5.6) mod(y1x,72k) < w( s

where O3 — 0 as k — oo. It follows from (5.5.4), (5.5.5) and

mod(71k,¥2k) = mod(y1k, S1x) + mod(Sik, S2x) + mod(v2k, S2k)

that
mod(y1k,¥2k) = d)(a2 —1)—log Apa? + log(An/61x02k) + Oy,

where Oy — 0 as k — oco. The latter estimate, together with (5.5.2), (5.5.6),
implies the double bound

log A + O4 — € < mod(y1k, 72k) + log 61x62x < log A + Os.
Letting k£ — oo and € — 0 yields
kl_i_{go 01kb2k €xp mOd(‘Ylk,’sz) =An

as desired. o
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5.6. Lemma. Let f: ¥ —» R be an id-BMD embedding. A point a € T
will be regarded as a regular point for f if there exists an arc 4 C ¥ origined at
a such that both v and fv are raylike at points a and fa, respectively. If the
set X' of all regular points for f is dense in ¥, then f is a Mébius embedding.

Proof. To prove this assertion we just need to modify the arguments from the
proof of Theorem 5.3 slightly as follows. We may think of %;r as subarcs in +;
such that a; € 4ix and §;x = max;e,, |z — ai|, while 4; is just the arc mentioned
in the above definition of a regular point for f. Because of the raylikeness of «;
and fv; at the respective points, Lemma 5.5 yields the asymptotics

(5.6.1) klln;o 8ix 6k exp mod(yik, ¥jk) = Anlai — aj|2,

Jim_ 61,85 exp mod(fik, f15e) = Malfai = fasl?,

where 6}, = max |z — fai| over fv;r. The asymptotics (5.3.1) and similar asymp-

totics for mod( f¥ik, fv;x) should now be replaced by (5.6.1). o

5.7. Theorem. If ¥ C R" is a circle or circular arc, every id-BMD embed-
ding f: £ - R" is a Mébius embedding.

Proof. If ¥ is a circle, the theorem has been proved in [As5] by arguments
quite similar to [G, Section 5, p. 241-243]. Thus we may assume X to be a ray
origined at 0 and the points 0, co to be fixed under f. Let a € ¥\ {0,00} and
Ya C ¥ be the ray origined at a. In order to prove that fv, is raylike at fa we
consider an arbitrary stretching sequence { Kfa [tk]} such that pg(tk]fye — v in
ContR" as k — oo. Let 3 = fzx be a point at the Jordan arc 7 C f¥X with
endpoints 0 and fa such that |,ufa[tk]2k —fa| = |fa|. Since Z; — fa as k — oo,
there may be found an increasing sequence t}, — oo such that a+t}(zx —a) = }a.
The sequence of rays Xy = p,4[t}]E converges to a circle £y C R" in ContR" as
k — oco. Since the sequence {vi = pyqlts] o f o u7t[th]: Tk — Rn} of id-BMD
embeddings is normed by the conditions vk(a) = f(a), vi(c0) = o0, |vi(3a) —
f a| = |fa|, it is a normal family. If we apply Theorem 2.3 to choose a subsequence
vk, that converges to an BMD embedding v: £y — R" of a circle Y CR" , then,
because t} , >t} and Iy C Y41, we get the equality M(E,F) = M(vE,vF) for
all rings (E, F') on ¥\ {oo} = UxZk. Since v|Zo\ {00} is an id-BMD embedding
of the line Xy \ {co0}, we have the situation as in [As5, Lemma 4]. Thus v is a
Mobius embedding of a line £ \ {co} and hence v = vy, is a ray origined at fa.
Thus f7, is raylike at fa and the point a is a regular point for f. So by Lemma
5.6 f is a Mobius embedding. o

5.8. Lemma. Let an arc y C R" be raylike at a point a € v. Then for any
id-BMD embedding f: ¥y — R~ its image fv is also raylike at fa.



On the conformal modulus distortion under quasimébius mappings 167

Proof. Consider an arbitrary stretching sequence pf4[tx] such that tx — oo
and pfq(te]fy — v' in Cont R". For every k there exists a point x = fzx € fv
such that |pfa[tk]2k — fa| = 1. Since Z; — fa as k — oo, we have z; — a and
may consider v = pq[l/|a— 2k|] a stretching sequence for 7. Choosing a suitable
relabelled subsequence gives the convergence vy — 49 in Cont R", where Yo is a
ray origined at a. The sequence {Tx = pya[ti]o fovy': vy — _Rn} of id-BMD
embeddings is normed by conditions Txa = fa, Tk(00) = co0 and |rxby — fa| =1
for by = vkzr with |bx —a] = 1. By Theorem 2.3 we may assume the convergence
Tk — T: v0 — 7' of id-BMD embeddings 74 to a BMD embedding 7 of a ray 7.
By Theorem 3.1, 7 is also an id-BMD embedding. Hence by Theorem 5.7 it is a
Moébius embedding and 4’ = 77 is a ray. Thus the raylikeness of fv at the point
fa has been proved. o

5.9. Theorem. Let & C R have a dense subset ' such that for every
point a € ¥’ there exists an arc 7, C & which is raylike at a. Then every id-BMD
embedding f: © — R is a Mdbius one.

Proof. By Lemma 5.8 the situation satisfies the conditions of Lemma 5.6,
which implies the desired assertion. o
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