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A CTASS OF MEROMORPHIC FUNCTIONS
\MITH NO WANDERING DOMAINS

Gwyneth M. Stallard

Abstract. We consider the class of meromorphic functions with finitely many fixed points,
that is the class offunctions ofthe form f(z) = z+ R(z)es('), where .E is rational and g is entire.
We show that, in the case where g is a polynomial, such a function has certain properties which
allow us to apply the method of proof of [2, Theorem 6.1] to show that its set of normality can
have no wandering domains.

1. Introduction

In the following we will let /: C -, Ö denote a non-linear meromorphic
function a,nd "f" t n €. N, the n-th iterate of /. The set of normality, If(/),
is defined to be the set of points z € C such that the sequenc. (f") is defined,
meromorphic and forms a normal family in some neighbourhood of z. It is easy to
see that N(/) is open and has the property of complete invariance under /, that
is z e N(/) if and only if f(z) € N(/). The complemenr J(f) of N(/) is called
the Julia set. This set is clearly closed and contains all the poles of / and their
pre-images. More details of these and other basic properties of the sets ,nf(f) and
/(/) can be found in [8] and [9] for entire functions and in [3] for meromorphic
functions with at least one pole.

For any meromorphic function / it can easily be seen that a component U of
the set of normality, N(/) , must be mapped by / into a component V of. ,^f(/). If
f"+*(U)nf"(U)*0 for someintegers n ) 0, m) 0 thenwesaythat /"(U) is
a periodic domain and, if this fails to hold for n : 0, U is a pre-periodic domain.
If, however , f"(U)n f*(U) :0 for all integers n,m )- 0,, , * rn., then U is called
a wandering domain of /. The situation where U is periodic is well understood,
and such domains can arise in only a small number of ways. In the case where /
is a rational function Sullivan [13, 14] proved the following imporiant result thus
solving a problem which had been open since the time of Fatou and Julia.

Theorem A. A rational function whose degree is at least 2 has no wandering
domains.
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This result cannot, however, be extended to cover all meromorphic functions.
Indeed several examples of transcendental entire functions with wandering domains
are known. One such example is the function f(z): z -1*2ri*e-' quoted by
Sullivan in [13]. It is, however, possible to extend the result to certain classes of
meromorphic functions.

One such class is the class of transcendental functions whose inverse functions
have only finitely maf,ry singularities as proved by Eremenko and Lyubich in [7],
and by Goldberg and Keen in [10]. Goldberg and Keen obtain their result by
a method which is based on Bers' version [6] of Sullivan's proof of Theorem A.
This proof, however, involves the theory of Teichmiiller spaces. A similar result
has been obtained by Baker [2, Theorem 6.1]. His method of proof avoids the use
of Teichmiiller spaces by constructing an explicit family of quasiconformal maps.
The precise form of his theorem is as follows.

Theorem B. Suppose that the transcendental entire function f has the
following properties:
(i) tåere are frnitely many singularities of f-L ;
(ii) the components of N(/) arc simply connected;
(iii) ilrere is a constant K > 1 and a finite set of real pa^rameters Xr,...tXn(K,J)

sueh that every entire function of the form fa : O/(D-l , where O js k-
quasiconfonnal, and O fixes 0, 1 , oo, can be expressed uniquely in terms of
Xr,...tXn(K,!)i

(iv) if in (iii) o : o(t, z) depends on a system of parameters t which vary in an
open neighbourhood T of the origin of RM , for some M , in sucå a way that
Q(0,2) : z and Q(t,z) e Cr(T) for fixed z, then in some open subset of I
the parameters X; are also Cr -functions of t.

Then f has no wandering domains.

In a recent series of papers Baker, Kotus and Lö Yinian have proved several
results concerning the iteration of meromorphic functions. In [5] they show that the
results on wandering domains can be extended to cover the class of meromorphic
functions which are not rational functions of degree less than 2 and whose inverse
functions have only finitely many singularities.

By examining the conditions of Theorem B and its proof and the recent work
on meromorphic functions we are led to consider meromorphic functions with
finitely many fixed points. Such functions are of the form f (r) : z * R()etQ)
where .R is a rational function and g is entire. We are able to prove the following
result.

Theorem C. A function f of the form f(r) : z * R(z)eOQ), where R is a
rational function, Q is a polynomial, and f is not a rational function of degree
Iess than 2, has no wandering domains.

The class of functions in Theorem C with Q constant is simply the class of
rational functions of degree at least 2 for which the result is already known. The
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remaining work is devoted to the proof of Theorem C for the class of functions
where Q is not a constant. We denote this class by .F,.

We claim that if / is a function in .t, that is not entire then the set

O-(*) : {z : f"("): oo for some n e N}

contains infinitely many points and hence, from [3, Lemma 11, J(f) : O-(*)'.
For suppose that there exists a function g in .F' which is not entire and for which
the set O-(-) is finite. It follows from Picard's theorem that g must be of the
form

sQ):a*(z-a)-k"h(27
where lr is a^n entire function and k is a positive integer. Thus g(z) - oo only
a!, z: e and g(z): o has no roots. As g is in the class F, it also follows that
sQ) : z has only finitely many roots. Thus the function

G(z):g(z)-z
d-z

takes each of the values 0, 1, oo at only finitely many points. It then follows
by Picard's theorem that G and hence g are rational functions, thus giving a
contradiction.

We also note that, for any function f in F, /" is analytic in ,nf(/) for each

n€N.
We will show that a slightly adapted form of the proof of Theorem B can

be used to prove Theorem C. We first consider the effect of allowing / to be a
meromorphic function instead of just entire. The proof of Theorem B uses the fact
that, if / is entire, the fixed points of / are dense in /(/). It was shown in [3,
Theorem 1] that if / is meromorphic and O-(*) is infinite then the fixed points
of / are dense in /(/). As O-(m) is infinite for all functions in the class F, the
argument still holds. The rest of the proof follows through easily for meromorphic
functions satisfying conditions (i) to (iv) with 'entire' replaced by 'meromorphic'
in condition (iii) and in a few places in the proof. In the following work we consider
how each of the four conditions of Theorem B are used in the proof and show that
functions in the class .t, satisfy similar conditions which are sufficient to allow this
method of proof to be used.

2. Singularities of ;-t
We first consider the condition (i) of Theorem B and note that this is needed

only to ensure that if / has a wandering domain U then f"(U) contains no
singularities of /-1 , for large n € N. We show that this is in fact the case for all
functions in the class tr,. The finite singularities of /-1 arise in one of two ways.

Firstly suppose that z € C and f'(") : 0. Then z is defined to be a critical
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point of .f ,rrd its image f(z) to be a critical value of /. The critical values of

"f *" clearly singularities of /-r. The other type of singularity is known as a
transcendental singularity. A point o is said to be a tra.nscendental singularity of

"f-t itthere is a curve I in C such that, as z -+ oo on f, f(r) --+ a on /(l).
For a function in the class .t' we first show that there are no problems due to
its critical values by showing that all but finitely maf,ry of its critical points are
contained in invariant domains of / and hence in invariant components of If(/).

Theorem 2.L. If f is in the class F then aJl but frnitely many of its critical
points are contained in inva,riant domains.

Proof. We first observe that / has an infinite number of critical points. It
follows from Nevanlinna's theory of meromorphic functions (see, for example, [11,
Theorem 3.3], that if g is a transcendental meromorphic function and if gQ) : O

has only finitely many solutions then g'(z): c, where c is a constant, c f 0, has
infinitely many solutions. We apply this to the function f (r) - z arrd deduce that
f '(r) :0 has an infinite number of solutions.

As the result we require is invariant under conjugation we may write /(z) :
z*),S()ea{") ITQ) where ) is a non-zero constant a^nd .9, T, Q are polynomials
having leading coefficients equal to L. We write R(z) : S(z)lfQ), (deg,S-
deg 7) : n and d"g Q : rn. Differentiating, we see that

For the sake of simplicity we will wfite U(z) : R'(z) + R(z)Q'Q).
We now put t : QQ) . In a neighbourhood of oo the branches of the inverse

function , : Q-'(t) have an expansion of the form

(2.2) z - tr/* * co * cr t-r/* +

where cot ct are constants. So Q-'(t) has rn branches in the region a: {t:
Itl> M,, d R+), where M is a sufficiently large constant. A particular branch

Q;'(t) is defined by taking argly'l* in the interval (2"(j - t)l*,,ztr j lm) where
j is an integer, L < j < nz. For sufficiently large M, 8; t *u,pr ,4, univalently
onto a region B;.

From (2.1) it is clear that the critical points, z.,of / satisfy

(2.3) \U(z)sQG.) : -1.
Putting rn + n - 1 - & we see that, as lzl -, m,

U(z): *zklt + O(Uz)l

and so taking the logarithm of the modulus of both sides of (2.8) gives

(2.1)

oOllr"l)(2.4) R" Q( z") : - los l»mzll +
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as lz.l -, oo. Putting t.: QQ.), a,nd noting that

lA@l: l,*l(t + o(t71,1))

as z + oo, it easily follows that llmt"l --+ oo as lz"l --+ oo. Hence, for lz"l
sufficiently large, z" is one of the values Q;L(t.) and lies inside some Bi.

We now consider all such z" in one particular region B;. From now on tll-
refers to the j-th branch. From (2.2) and (2.4) we see that

Rer" - - log l)rntf l*1q O(tllt"l'l*)

as lr"l + oo. So for ffiy Mo ) M, o ) 0, all such 1", with lt"f sufficiently large,
lie in the region X where

x : {t: lrl > Ms,rtet I a -tog (l)lmlrlol*)}.

- Af A;'lo. To prove our theorem it
lie in invariant domains of \ for lt" I

215

Now fla, is conjugate to the function F1

is sufficient to show that all the values t 
"sufficiently large. We see that

(2.5) Fj(t) = q{q,'!;+rn(ei 1(r))"} : e{e;'{r)+\ett^/* [r+o1t-tr-y1]

as lJl -* oo. In X we have

l\"'t'/*lt + o1t-'r-)11 s ffilrl("-orr- [r + o(ltl-,/\)
(2.6) 

eo: _ltll-^rz- 
[r + o(1r;-tl-;]

as ltl --+ m. Recalling that Q;r(, - *l^lt + O1t-'t-)] ." ltl --+ m, we deduce
from (2.5) and (2.6) that, for t e X ,

FiQ) : t * \m{*-r*n)/m "tlt + o1t-'t-)] : t * »m*l*"' [t + oQ-t/*11

as ltl --, m. We also have from (2.6) that

lFrttl - tl < 
"" [r + o(111-tl-;]

as ftf -* oo. Hence, given an e ) 0, we choose a, Mo to ensure that

(2.7) lqtrl-tl <r+e
for all t in X.



(2.e) rr: {tex:rsind **t-o-r,}
for some constant K. Writing t: u * iy this becomes

(2.10) ro:{, eX:y+1tur,-'(y/x):K-Cj}.

It follows from (2.9) and (2.10) that there exists .R > 0 such that

(2.1L) K>R =*lnC{z:lmz)0}and I{<-n * Ir C{z:Imz<0}.

We find that on a curve 16
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We now put HiU) : ),m1k/m"t and observe that

(2.8) argI.{t):Cj*Imt* Lurgt, 0<argt<2tr,

where Ci is a constant, gives a continuous definition of arg H1(t) for I in A. We
consider the curves Ir in X on which argEl(t) is constant. Writing t : reiq
we have

dy (k l*)y
dx x2 * a2 + (klm)c'

appropriately we can ensure that

(212) l*|.ry#.'#.,#<1/1oo
We now consider the vertical separation of tlvo curves 16, f 71, , in X where

6K : K - K' > 0, and either I{, I{t )lR or K, K,< -.R. Take points l, t,
lying on 16, 16, respectively such that the real part of each point is equal to
c. Then from (2.9), (2.10) and (2.11) the vertical separation of the two points is
given by

6y + (klm)60 : 6Ii, where 160l < r 12.

If we consider the case when K, K' ) .R and Rel > 0 then, putting tr :
min (ltl, lt'l), we see from Figure 2.1 that
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By followirg the same line

sufficiently large, it follows that

(2.13)

We now consider the points t 
" 

,

(see (2.8)), where U (q;t (t)) -
H iU) - ),mtk /m 

"t and so

Figure 2.L.

argument we see that the above also holds ifof
Kt
6y

and recall that they satisfy 
^U 

(A;'(r"))"'" - -1
mtk/'" [1 + O(r-'/*)) as ltl oo. By definition,

HiU)--1 +o$;rt^1

as lt,l --+ oo. Hence, for large lt"l, arg Hi(t"), defined as in (2.8), lies in an interval
((2r + 7)r - r16,(2r *l)r +r16) for some integer r(t"). As l" lies on the curve
16 where K : arg Hi(t") it follows that t. lies in the domain V, in X bounded
bythecurves 16r, fK, where I{1 :(2r +1h'+rf3, K2:(2r*7)r-rl3.For
large r it is clear that V, is contained in A as Mo > M .

From previous arguments we see that for a suitable choice of a, Ms we have

i) lrrftl - tl < z1z, t e x, (see (2.7)),
ii) arg(frftl-t) e (I{-11700,1{+TrltOO), t e lr, (as arg Hj(t): K on llg

and .Q.(t) -t: Hj(t) [1+ O1t-tl-;1;,
iii) ldyllldrl < 1/100 on each curve 11; in X (see (2.12)),
iv) 6y > (3lr)6K for large .K (see (2.13) for details).

Using these results it is not difficult to see that, for large r, Fi(W) C V". The
case where r ) 0, ,t < 0 is illustrated in Figure 2.2.
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'lehgth

Figure 2.2.

We have shown that, for lz"l sufficiently large, there is a branch Q1t "t
Q-1 such that t" : QQ) lies in an invariant domain, V,, of Fi : QfQil and

Q;'(t"): r". Qi'is well definedin V. and so Q;t(V,) is an invariant domain
of / containing z. as required.

For any function / in .F we now consider the transcendental singularities of
.f-' . Ar in Theorem 2.Lwemay assume thai / is of the form /(z) : 2q),p()6QG)
where ) is a constant, .E is a rational function, Q is a polynomial and ,R(z) :
z"fl+r(i)] ,QQ):r*lt+o(1)] as z-+@ forsome ffitne z,m>0.

We now suppose that /-l has a transcendental singularity at o € C. Then
by definition there is a path I in C such that, as z -+ oo on l, lQ) --+ a on
/(l). So, writing z : reiq , as z --+ oo on I we have

(2.74)

(2.15)

),R(z)"QG) : ot - z+ o(1) _ -rlt* o(1)],

lxnlr)eot't1: l)lr'"*p {r* [cos(m e) +o(1)] ]

ls,
a
a

G\
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mustFor / to satisfy both (2.1a) and (2.15) it is clear that as z ---+ 6 on I we

have cos(nz0) + 0 and hence 0 --+ 0s where sin(rnOs): *1.
We can also see that as z --+ oo on I

ary),R(z)ea(z) : rm Isin(mds) + o(r)] - ,*l+ 1 + o(1)] mod2zr.

It follows from (2.14), however, that as z --+ m on I

ary),R(z)ear'1 - 0o * zi'* o(1).

This is clearly a contradiction, as arg),R()ea(') varies continuously with z, and
so there are no finite transcendental singularities of /-1.

It now easily follows from Theorem 2.1 that, given a function / in the class .F
and a wandering domain U of f , the component U, of N(/) containing f"(U)
contains no singularities of /-1 for large values of n € N.

3. Multiply-connected domains of normality

We now consider condition (ii) of Theorem B. The proof of Theorem B requires
only that if a function / has a multiply-connected wandering domain U then the
component Un of N(/) which contains f"(U) is simply-connected for large n € N
which, for entire functions, is equivalent to condition (ii). In this section we show
that if / is a function in the class F then it has no wandering domain [/ such that
U, is multiply-connected for all n € N. In order to prove this we first consider
the following result proved by Baker [2, Theorem 3.1].

Lemma 3.1. If f is transcendental entire and U is a multiply-connected
component of N(/) then U is a wandering domain, ffid every component of
lf(/) is bounded. Fbrther, f" - x in U as n --+ oo and U contains a Jordan
curve 1 such that, for large n, the curve 1n: f"(l) in Un is at a la,rge distance
from 0 and has a non-zero winding number about 0.

We see from this that if / is an entire function in the class F and if [/ is
a multiply-connected wandering domain of / then U contains a curve 7 whose
iterates nest around oo. We will show that all functions in F have a similar prop-
erty. To do this we need the following result concerning meromorphic functions
proved in [4, Lemma2.Ll.

Lemma 3.2. Suppose that f is a meromorphic function such that O-(*)
contains infinitely many points and that (f") contains a subsequence with a non-
constant limit function in a component iVo of lf(/). ?åen No is either periodic
or pre-periodic.

We are now able to show that a weaker form of Lemma 3.1 is true for a,ll

functions in the class .t'.
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Lemma 3.3. Suppose that f is a function in the class .F' and that U is a
wandering domain of f such that Un is multiply-corutected for aJl n € N . Then,
for some lc € N, Ux is bounded ar.d there exists a Jorda,n curve 1 in U1, such
thatforany M )0, M € R, tåereexists L(M) € N and acontinuum 6Uru)C
'tL(M): 1r'(wt)1r1 such that 6U$ C {z : lzl > M} , with one of the components
of the complement of 64y1 being bounded a.nd containing {z : lzl < M} .

Proof. As already observed, if / is entire then the result follows immediately
from Lemma 3.1. Now suppose that / is a function in the class .F with poles
pr t ... r p,n arld that U is a wandering domain of / such that t/, is multiply-
connected for all n € N. From Section 2 we know that there exists & € N such
that, putting V : U1, each V," contains no singularities of /-1 .

We take a Jordan curve 7(f) ir V , 7: [0,1] -s V , Z(0) : p, which is not
null-homotopic in V. We claim that, for each n € N, 7, is not null-homotopic
in V". For suppose not then, for some m € N t ^lm - f*(p) it V* where , - ,b
if and only if o is homotopic to /. W" now take the branch g of f -^ such that
Sf*(p) : p. As there are no singularities of /-1 in each Vn, I I n 1 m, it
follows that the continuation of g around 7,n gives 7. Hence g can be used to lift
the homotopv ^rm - f*(p) in v* to the homotopy .,1 - p in v. This is clearly a
contradiction.

We now take a Jordan curve 7 in I/ such that, for each r € N, 7. is not
null-homotopic in V. lt is clear that, for each r, one of the bounded components
of C \ ^yr t say D,, must contain a point in /(/) and hence, as "I(/) : O-(m), , a
point in o-(-). we denote by n(r) the least non-negative integer such that 7"(.)
mapsapointin D,to oneof thepolesp;1,y of /,where i(r)e{1,...,rn}. As
/"(') is analytic in D" it follows that /n(r)1D,) is a bounded domain containing
.A;14. Without loss of generality we may assume that i(r) : 1 for infinitely many
values of r.

Flom Lemma 3.2 we see that all convergent subsequences of (f"+n(r)) in V
must have constant limits and so the spherical diameter of 7r1.n1r1 must tend. to
zero as r -+ oo. So there must either be a subsequence of (lr+,irl) which tends
to oo or a subsequence which tends to p1 .

'We now take M to be a real value such that M > rrrax (lpr l,. . .,lp*l). I"
the case where there is a sequence of curves 7r(t)+r,(r) tending io *, there åxists
r(k). such that 7,11y.r-n(r) C {z : lzl > M}. A. p, e f"G) (D,(}) ), it follows that
f"G)(D,G)) > {, : lzl > M}. In this case we take 671y1': Afn(r)(D,1ry) c
7r(t)*a(r) .

In the case where there is a sequence of curves lrg)!n(r) tending to p1 , as
p1 is a pole of /, it follows that there exists r(/c) such that 7,17,;1n(r){1 C {z :

lrl > M\, and also that /n(r)+'(Drr,l) is a full neighbourhood of oo contained.
in {2.: lrl 7 U1. So we pd L(M): n(r) + r(k) * 1 and rake 61,11ay to be the
boundary of the component of the complement of Tr(r)+r,(r)1r containiog pr.
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Finally since V fiVn:0, n ) 0, the above results clearly imply that V is

bounded.
We are now in a position to prove the main result of this section.

Theorem 3.4. A function f in the class F has no wandering component U
of the set l[(/) sueh that Un is multiply-connected for aJl n € N.

Proof. The proof is by contradiction. Suppose that /(z) : z * R(z)eaQ) is

a function in F with a wa,ndering domain U such that Un is multiply-connected
for all n € N. We may then tale /c e N and a curve 7 in Ux: I/ satisfying
the conditions of Lemma 3.3. Denoting hyperbolic distance in T4z by [',']w .td
recalling ihat I/ is bounded we see that there exists a constant .t such that

lz1,z2lv 1L for all 21, zz e 'Y. Writing f"(r;): un,i,, i:'l',2, it follows from
Schwarz's lemma that [urr,r,un,zlf"(v) I L fot all tur,1 , wn,2 €'ln. We also

know that V is a wandering domain and so, for large n, f"(V) C O where O is
the plane punctured at the points 0, 1 . So, for large n, we have

L ) lw n,1, w n,zl f " (v) 2 l* n,r, w n,z)a

for all u)n,y, 1Dn,2 €'fn.
Using the estimates for hyperbolic distance in O given in [L, p. 17, L8] we see

that there exist real constants Mo, Å ) 0 such that if un1s un3 are two points
Iying on ?z such that lto,r,1l , lr,-,rl ) Ms then

L )_ lw o,1,,t n,zla . 
^ l, #h. ^ l:^",,',' #h

where a is a path joinin1 un1 to tDr,2. Hence for such points

+ los log l*n,rl S *+ los los l*,,r1,

+ log l*n,rl S A log l*n,rl,

+ l*n3l S l*n1lA

where .4 is a positive constant dependent only on 7.
We now take a real number M > 2Ms anda curve 6;114y which satisfies

the conditions of Lemma 3.3. We see that there exist points wL(M)1t ?DL1M1,z

or 64y1 such that Q(*nfW,) is real and positive and Q(.r,(tnD,r) is real and
negative. Thus, for M sufficiently large,

(3.1)
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It follows that f (*qu1,r), f @rtu),r) also satisfy (9.1) and so

From Lemma 3.3 we can take M and hence lruw,rl to be arbitrarily large which
is clearly a contradiction. This completes the proof of Theorem 8.4.

4. Conjugation with quasiconformal maps

Finally, we consider conditions (iii) and (iv) of rheorem B. We show that all
functions in the class F satisfy these conditions if the word 'entire' is replaced by
'meromorphic' in condition (iii). This is sufficient to allow the use of the proof of
Theorem B modified to apply to meromorphic functions. It is clear that for each
function / in the class F we must consider families of the form

Gx(/)- {r" _ o/o-1 ' o is K-quasiconformal fixing 0, 1, oo,,fo is

Throughout the following section we will assume that if f(") : z 1- R()IQQ) ,
where 8 is a rational function and Q is a polynomial of degree g, then Kq < q+|.
The only result about quasiconformal maps that we use is the following 1r"", fo.
example, [12] for a proof of this result and for more background material).

Lemma 4.1. If f is a K -quasiconformal homeomorphism of the complex
plane, fixing 0 and oo fåen tåere is a constant C such that for la,rge z we have

we also need the followirrg result proved in [8].

Lemma 4.2. ,Srppose that

lQ) : z * a*+r(z - z'1*+t *...
neat z : z', where am+t * 0 and m ) t. Then there exist m equally spaced. rays
at zt and m regions D;, 1 I i I m, each of whicå fies between two adjacent riys
and is bounded by a smooth curve which is tangent to the rays at zt , such th.at
f(O;) C D; and, in D;, f"(r) -- zt in the direction of the bisector, as rz --+ oo.
The regions D; are known as petals.

leolz)Q@t<nr,r)l q lf @r1q,r)l < lf @r1M),r)l' < @lz)Alu4*.yplo
< (3/2)Alw"1*,1,rlo'.

meromornhic).
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We are now in a position to show that functions in the class F satisfy the
modified form of condition (iii).

Lemma4.3. Foraspecified K > 1, andafunction f intheclass F,
the family Gx(f) can be expressed uniquely jn terms of a finite set of complex
parameters Xt r. . ., Xn(K,fl .

Proof. We take a function f :

in the form
f(r)-

in the class F and recall that f can be written

z + S(r)"a{a pQ)

where S, T, Q are polynomials. We may assume that .S a.nd 7 have leading
coefficients equal to one and have no common roots. We denote the degrees of ^9,
T , Q by s, t, 9 respectively. We write S(z) : lloQ - z;)"(;), where !; s(i) : s,
a^nd note that the fixed points of / are precisely the points z;. We now take a
function /q from the family G*(f). A point z is a fixed point of /o if and only
if fa(z) : Qf Q-r(z) : z implying /Q-t (r) : Q-L(r). Thus a-'Q): zi giving
z : Q(z;), for some z;.

We now wfite T(z):fliQ -w)t(i), and observe that the poles of / are
precisely the points tu;. Using a similar argument to the above we see that a point
z is a pole of /o if and only if fq(r): O/O-1(z) : oo implYing /O-1(z) :
O-'(*) : oo. Thus O-'(r) : u.,j giving , : @(wi), for some u.rj.

It follows from the above work that

fo(z): z * So(z)esG)ToQ)

for some polynomials ,So , 7o and some entire function g. We now use Lemma 4.1

to see that the maximum modulus of /6 satisfres M(fq,r) : O(exp(rKc)) and
hence g must be a polynomial Qo of. degree q' A Kq < q* 1. We now use the
sarrle reasoning to deduce that Q has degree at most I{q'. As K(q- 1) < g, it
follows that Q6 must have degree equal to g.

It is clear that ?o can be written as Tq(z):llilr- O(ri)]t(i) and so ?o
has degree t.

We now consider the polynomial ,9o. The roots this has are the points O(z;)
but it is not clear what orders these roots have. Suppose zi is a multiple root of
,S, i.e. ,(i) > 1. Then, near zi, / satisfies the conditions of Lemma 4.2 ar;.dwe
see that there are 

"(i) - 1 petals at z;. It is easy to see that these are mapped by
O onto "(i)-1 petalsfor /6 at Q(z;) andso O(z;) is aroot of ,So of order s(i).
We deduce that ^9o ca,n be written as .9q(z) : llrl, - O(r;)l'(') -rd so ^96 is of
degree s.

It follows that the family Gx(f) can be expressed in terms of a finite set

of parameters X1 ,...rXr(K,l; as required where "(K,f): s* t*C* 1. The
parameters are the zeros of ,56 and ?p and the coefficients of Qq.
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'We now consider the effect of letting O depend on a pa,rarneter f and find
that the following result holds, and hence functions in the class .F' satisfy condition
(i").

Lemma 4.4. If, for a given family Gx(f), where f e F, each homeo-
morpåism O : O(t, z) depends on a system of parameters t which vary in an
open neighbourhood I of the origin of RM for some M, and §(O,z) : z,
Q(t,z) e Cr@) for fixed z, then for some open subset It of I, the pa^rameters
X; are in Ct(T').

Proof. Flom Lemma 4.3 we know that if. f(z) : z * S()ea@ /f(z) where
S, T, Q *. polynomials of degree s, t, Q respectively then each function /6 :
O/6-t ia Gx(f) is of the form

fo(z) : z * So(z)ea*Q) 1Tq(z)

where ,5o , 7o , 8o are polynomials of degree s, t, Q respectively.
Writing S(4- : TlrQ-2r|"(i) we also know that ,5q can be written as ,56(z) :

}l, [, -.O( z)f"(;). Similarly, if T(z) : fl,/, - w)t(il, then To(z) : lli[, -
O(ri)]'('). Thrrr,So and Tq areuniquely determined by the functions e(z;) and
O(ri) all of which are in C,(T).

Wenow wÅte Qq(z): oczq +...+ae wherethe o7r, 0 < & ( g, dependonly
on l. The result will clearly be proved if we show that each ar is in Cr(I,) for
some open subset It of. I.

As shown in the proof of rheorem 2.L, f has infinitely many critical points
dct c e N. The critical points of /6 are precisely o"(t): O(f,a"). Each such
a"(l) satisfies

.F" [O1t, z ;), Q (t, w ), a 1,(t), t] : Tä (o 
") fi n 6 "p11

: T&(""(t)) + [-So (ot"(t))Ti(""(r)) + s!(a"(t))ro (""1ry)1 
"Qo(a"(t))

*,9o (a"(J)) ro (""1t;; q,q 
@ "(t)) 

eao (o" (r) ) - 0.

We see that each F" depends analytically on each of the parameters of /6 and
belongs to Ct(I).

We have a"(0) : a" and so, at f : 0,

(4.1) *:[-S(a")"'(o") * S'(a")T(a") * '9(a")" (o")Q'@"))a!eQ@")

* k S (a 
")T(o")af 

-t 
"Q(o").

We claim that there are g * 1 choices of c for which the vectors

/0F" äf"r%: l.Aoo,"', Aoo)
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are linearly independent at t :0. If not, then all of the uc span a space in Cq*1
of dimension at most g. This implies that there exists a vector 9: (uo, ...,uc)
such that u # 9, and for each c at f : 0

(4.2) we see that the polynomial P where

q

P(r)_»uk{[
k:0

+ kS(r)"( ,)ro-t )

then vanishes for each o" and hence for all z. The highest power of z in this
polynomial is s * t*2q - 1 and this comes from the term u;,,5(z)T(z)Q'Q)zq and
so os :0. Using the same line of argument it follows successively that uo-r : 0,
uq-2:0, ...r u0 :0 and so u :0 which is a contradiction.

'We are now able to take g * 1 choices of c, which we label as c(d) where
d:0,1,...,g, such that the vectors u"14; are linearly independent at t: 0. It
follows that the matrix

(4.2)

Combining (4.1) and

[1]

t2l

t3l

t4l

t5l

- S(r)T'(r) +.s'( 4r(4 + S(r)T( ,)Q'Q))ru

0F"uo- +
oao

(oF'<ol\
\ )ox )'

aF.*uq6 - 0.

is non-singular at f :0. Letting !(t) be the vector with components O(t,21),
Q(t,z), and a(t) : (os(t),...,or(r)) it now follows from the implicit function
theorem that there is a Cr function S, b(t) --+ o(t) in a neighbourhood of q(0). We
know that all the components of å are in Ct(T) and hence all the as, 0 ( k 1q,
are in C'(7') for some open subset 7t of 7 as required.

Using the results of the last three sections we are now able to prove Theo-
rem C using essentially the same argument as that used to prove Theorem B in
[2, Section 7].

The author wishes to thank Professor I.N. Baker for his helpful suggestions
and the SERC for their financial support.
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