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A CLASS OF MEROMORPHIC FUNCTIONS
WITH NO WANDERING DOMAINS

Gwyneth M. Stallard

Abstract. We consider the class of meromorphic functions with finitely many fixed points,
that is the class of functions of the form f(z) = z+ R(z)e?(*), where R is rational and g is entire.
We show that, in the case where g is a polynomial, such a function has certain properties which
allow us to apply the method of proof of [2, Theorem 6.1] to show that its set of normality can
have no wandering domains.

1. Introduction

In the following we will let f: C — C denote a non-linear meromorphic
function and f™, n € N, the n-th iterate of f. The set of normality, N(f),
is defined to be the set of points 2 € C such that the sequence (f™) is defined,
meromorphic and forms a normal family in some neighbourhood of z. It is easy to
see that N(f) is open and has the property of complete invariance under f, that
is z € N(f) if and only if f(z) € N(f). The complement J(f) of N(f) is called
the Julia set. This set is clearly closed and contains all the poles of f and their
pre-images. More details of these and other basic properties of the sets N(f) and
J(f) can be found in [8] and [9] for entire functions and in [3] for meromorphic
functions with at least one pole.

For any meromorphic function f it can easily be seen that a component U of
the set of normality, N(f), must be mapped by f into a component V' of N(f). If
frr™U)N fA(U) # 0 for some integers n > 0, m > 0 then we say that f*(U) is
a periodic domain and, if this fails to hold for n = 0, U is a pre-periodic domain.
If, however, f*(U)Nf™(U) = 0 for all integers n,m > 0, n # m, then U is called
a wandering domain of f. The situation where U is periodic is well understood,
and such domains can arise in only a small number of ways. In the case where f
is a rational function Sullivan [13, 14] proved the following important result thus
solving a problem which had been open since the time of Fatou and Julia.

Theorem A. A rational function whose degree is at least 2 has no wandering
domains.
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This result cannot, however, be extended to cover all meromorphic functions.
Indeed several examples of transcendental entire functions with wandering domains
are known. One such example is the function f(z) = z—1+ 27+ e~? quoted by
Sullivan in [13]. It is, however, possible to extend the result to certain classes of
meromorphic functions.

One such class is the class of transcendental functions whose inverse functions
have only finitely many singularities as proved by Eremenko and Lyubich in [7],
and by Goldberg and Keen in [10]. Goldberg and Keen obtain their result by
a method which is based on Bers’ version [6] of Sullivan’s proof of Theorem A.
This proof, however, involves the theory of Teichmiiller spaces. A similar result
has been obtained by Baker [2, Theorem 6.1]. His method of proof avoids the use
of Teichmiiller spaces by constructing an explicit family of quasiconformal maps.
The precise form of his theorem is as follows.

Theorem B. Suppose that the transcendental entire function f has the
following properties:
(1) there are finitely many singularities of f~1;

(ii) the components of N(f) are simply connected;

(iii) there is a constant K > 1 and a finite set of real parameters X, ... v Xn(k,f)
such that every entire function of the form fg = ®f®~!, where & is K-
quasiconformal, and ® fixes 0, 1, oo, can be expressed uniquely in terms of
X1, Xn(k,f);

(iv) if in (iii) ® = ®(¢,2) depends on a system of parameters t which vary in an
open neighbourhood T of the origin of RM | for some M, in such a way that
®(0,z) = z and ®(t,z) € CY(Z) for fixed z, then in some open subset of T
the parameters X; are also C'-functions of t.

Then f has no wandering domains.

In a recent series of papers Baker, Kotus and Lii Yinian have proved several
results concerning the iteration of meromorphic functions. In [5] they show that the
results on wandering domains can be extended to cover the class of meromorphic
functions which are not rational functions of degree less than 2 and whose inverse
functions have only finitely many singularities.

By examining the conditions of Theorem B and its proof and the recent work
on meromorphic functions we are led to consider meromorphic functions with
finitely many fixed points. Such functions are of the form f(z) = z + R(2)e?()
where R is a rational function and g is entire. We are able to prove the following
result.

Theorem C. A function f of the form f(z) = z + R(2)e®®), where R is a
rational function, Q) is a polynomial, and f is not a rational function of degree
less than 2, has no wandering domains.

The class of functions in Theorem C with @ constant is simply the class of
rational functions of degree at least 2 for which the result is already known. The
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remaining work is devoted to the proof of Theorem C for the class of functions
where Q is not a constant. We denote this class by F'.
We claim that if f is a function in F' that is not entire then the set

O~ (00) = {z: f*(2) = oo for some n € N}

contains infinitely many points and hence, from [3, Lemma 1], J(f) = O™ (c0)’.
For suppose that there exists a function g in F' which is not entire and for which
the set O~(oo) is finite. It follows from Picard’s theorem that g must be of the
form

9(2) = a+ (z —a)Heh®

where h is an entire function and k is a positive integer. Thus g(z) = oo only
at z = o and g(z) = @ has no roots. As g is in the class F, it also follows that
g(z) = z has only finitely many roots. Thus the function

G(z) = 9(z) = =

a—z

takes each of the values 0, 1, co at only finitely many points. It then follows
by Picard’s theorem that G and hence g are rational functions, thus giving a
contradiction.

We also note that, for any function f in F, f™ is analytic in N(f) for each
n € N.

We will show that a slightly adapted form of the proof of Theorem B can
be used to prove Theorem C. We first consider the effect of allowing f to be a
meromorphic function instead of just entire. The proof of Theorem B uses the fact
that, if f is entire, the fixed points of f are dense in J(f). It was shown in (3,
Theorem 1] that if f is meromorphic and O~ (o0) is infinite then the fixed points
of f are densein J(f). As O~ (o0) is infinite for all functions in the class F', the
argument still holds. The rest of the proof follows through easily for meromorphic
functions satisfying conditions (i) to (iv) with ‘entire’ replaced by ‘meromorphic’
in condition (iii) and in a few places in the proof. In the following work we consider
how each of the four conditions of Theorem B are used in the proof and show that
functions in the class F satisfy similar conditions which are sufficient to allow this
method of proof to be used.

2. Singularities of f~!

We first consider the condition (i) of Theorem B and note that this is needed
only to ensure that if f has a wandering domain U then f"(U) contains no
singularities of f~!, for large n € N. We show that this is in fact the case for all
functions in the class F. The finite singularities of f~! arise in one of two ways.
Firstly, suppose that z € C and f'(z) = 0. Then z is defined to be a critical
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point of f and its image f(z) to be a critical value of f. The critical values of
f are clearly singularities of f~!. The other type of singularity is known as a
transcendental singularity. A point « is said to be a transcendental singularity of
f71 if there is a curve T' in C such that, as 2 — co on T, f(2) — a on f(T).
For a function in the class F' we first show that there are no problems due to
its critical values by showing that all but finitely many of its critical points are
contained in invariant domains of f and hence in invariant components of N(f).

Theorem 2.1. If f is in the class F' then all but finitely many of its critical
points are contained in invariant domains.

Proof. We first observe that f has an infinite number of critical points. It
follows from Nevanlinna’s theory of meromorphic functions (see, for example, [11,
Theorem 3.3], that if ¢ is a transcendental meromorphic function and if g(z) = 0
has only finitely many solutions then ¢'(z) = ¢, where ¢ is a constant, ¢ # 0, has
infinitely many solutions. We apply this to the function f(z)—z and deduce that
f'(2) = 0 has an infinite number of solutions.

As the result we require is invariant under conjugation we may write f(z) =
z+AS(2)e?(®) /T(z) where ) is a non-zero constant and S, T, Q are polynomials
having leading coeflicients equal to 1. We write R(z) = S(2)/T(z), (degS —
degT) = n and deg @ = m. Differentiating, we see that

(2.1) fl(z) =14 A[R'(2) + R(2)Q'(2)] e?®).

For the sake of simplicity we will write U(z) = R'(z) + R(2)Q’(2).
We now put ¢t = Q(z). In a neighbourhood of co the branches of the inverse
function z = Q~!(¢) have an expansion of the form

(22) z:tl/m+00+clt_l/"‘+...

where co, ¢; are constants. So Q7!(¢) has m branches in the region A = {t :
lt| > M,t ¢ R*}, where M is a sufficiently large constant. A particular branch
Q;l(t) is defined by taking argt!/™ in the interval (27(; —1)/m,27j /m) where
J is an integer, 1 < j < m. For sufficiently large M, QJ_1 maps A univalently
onto a region B;.

From (2.1) it is clear that the critical points, 2., of f satisfy

(2.3) AU (20)e90e) = 1,
Putting m +n — 1 = k we see that, as |z| — oo,
U(z) = me*[1+ 0(1/2)]
and so taking the logarithm of the modulus of both sides of (2.3) gives
(2.4 Re Q=) = — log |Amz*| + O(1/]z.])



A class of meromorphic functions with no wandering domains 215

as |z.| — oo. Putting t. = Q(z¢), and noting that

Q)| =1="1(1 +0(1/I2]))

as z — oo, it easily follows that |Im¢.] — oo as |z.] — oo. Hence, for |z
sufficiently large, z. is one of the values Q]-_l(tc) and lies inside some Bj;.

We now consider all such z, in one particular region B;. From now on t!/™
refers to the j-th branch. From (2.2) and (2.4) we see that

]_{etC = —log |/\mtlcc/ml + O(l/ltcll/m)

as [tc| = o0o. So for any My > M, a > 0, all such t., with |t.| sufficiently large,
lie in the region X where

X = {t:|t| > My,Ret < a —log (l’\|mlt|k/m)}.

Now f|p; is conjugate to the function F; = QfQ]-_1|A. To prove our theorem it
is sufficient to show that all the values t. lie in invariant domains of F} for |t|
sufficiently large. We see that

(2.5) Fj(t) = Q{Q;l(t)HR(Q;‘(t))e‘} = Q{Q;l(t)+)\ett"/m [1+0(t—1/m)]}

as |t| = oo. In X we have

Ale* n—k)/m —-1/m
Ao =0/ 14 0 4m)|

_ & =m)/m ~1/m
=<y [1+ 0317/

Aet/™ [14 O™ |

IN

(2.6)

as |t| — co. Recalling that Q;'(t) =t!/™[1+ O(t™*/™)] as |t| - oo, we deduce
from (2.5) and (2.6) that, for t € X,

Fj(t) =t + dmt(m=10/met[1 4 0471 /m)] = t + AmtF/met [1 4 Ot 7H/™)]
as |t| —» co. We also have from (2.6) that
|Fi() = ¢] < e*[1+ 0(t17/m)]
as |t| = co. Hence, given an ¢ > 0, we choose o, M, to ensure that
(2.7) |Fi(t) —t| <1+e

forall t in X.
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We now put H;(t) = Amt¥/™e! and observe that
(2.8) arg Hj(t) = C; + Imt + ﬁ—argt, 0 < argt < 2m,
where Cj is a constant, gives a continuous definition of arg H;(t) for ¢ in A. We

consider the curves 'y in X on which arg H;(t) is constant. Writing ¢t = re®®
we have

(2.9) rK={teX:mme+£ﬁ=1(—cJ

for some constant K. Writing ¢t = x + ¢y this becomes

(2.10) PK={teX:y+%um*@n)=K—CJ.
It follows from (2.9) and (2.10) that there exists R > 0 such that

(211) K>R 3TgkC{2:Imz>0}and K< —-R = T'g C{z:Imz < 0}.

We find that on a curve I'g

dy (k/m)y
dz 22 +y2+ (k/m)z’

If £ = 0 then it is clear that dy/dz = 0. If k # 0 then by choosing a, M,

appropriately we can ensure that

< 2/myy| 2k 2k

2.12 \ 1
(2.12) dzx z? 4 y? < [t] M,

< 1/100.

We now consider the vertical separation of two curves 'y, Tx+, in X where
6K = K- K' >0, and either K, K' > R or K, K' < —R. Take points ¢, #'
lying on I'k, T'xs respectively such that the real part of each point is equal to
z. Then from (2.9), (2.10) and (2.11) the vertical separation of the two points is
given by

0y + (k/m)60 = 8K, where [66] < 7/2.

If we consider the case when K, K’ > R and Ret > 0 then, putting L =
min (|¢], |t'|), we see from Figure 2.1 that

7| sin 66| ) m|éy|

18] < 2 2L 2L -
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|3yl
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Figure 2.1.

By following the same line of argument we see that the above also holds if
Ret < 0 and, similarly, if K, K' < —R. Thus, by choosing M, and hence L
sufficiently large, it follows that éy > 0 and indeed

m|k|
2mL

(2.13) syr/3 > by(1+ 5 ) > 6K > 0.

We now consider the points t., and recall that they satisfy /\U(Q]-_l(tc))etc =-1

(see (2.3)), where U(Q;l(t)) = mtk/™ 1+ O(t“l/m)] as |t| — co. By definition,
H;(t) = AmtF/™et and so

Hj(te) = =1+0(t71/™)

as |t.| = oo. Hence, for large |t|, arg H;(t.), defined as in (2.8), lies in an interval
((2r + 1)m — /6, (2r + 1)m + 7/6) for some integer r(t.). As t. lies on the curve
I'x where K = arg H;(t.) it follows that ¢. lies in the domain V; in X bounded
by the curves 'k, , 'y, where K1 = (2r +1)m +7/3, K, = (2r+1)mr — /3. For
large r it is clear that V, is contained in A as My > M.
From previous arguments we see that for a suitable choice of o, My we have
i) |Fj(t)—t| <3/2,t€ X, (see (2.7)),
ii) arg(Fj(t)—t) € (K —n/100,K +7/100), t € Tk, (as arg Hj(t) = K on T
and Fj(t) —t = H;(t)[1 + O(t~/™)]),
iil) |dy|/|dz| < 1/100 on each curve I' in X (see (2.12)),
iv) 8y > (3/m)8K for large K (see (2.13) for details).
Using these results it is not difficult to see that, for large r, Fj(V;) C V.. The
case where r > 0, k < 0 is illustrated in Figure 2.2.
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Figure 2.2.

We have shown that, for |z.| sufficiently large, there is a branch Q; ! f
Q! such that t. = Q(z.) lies in an invariant domain, V,, of F; = QfQ_

l(t )=zc. QF ~1 is well defined in V;. and so Q; '(V;) is an invariant domam
of f containing z. as required.

For any function f in F' we now consider the transcendental singularities of
f~'. Asin Theorem 2.1 we may assume that f is of the form f(z) = z4+AR(2)e@(®
where ) is a constant, R is a rational function, @ is a polynomial and R(z) =

[1+o(1)] Q(z) =2z™[1+0(1)] as z — forsome m,ne€Z, m>0.

We now suppose that f~! has a transcendental singularity at a € C. Then
by definition there is a path T' in C such that, as z — co on I', f(2) — a on
f(T). So, writing z =re*®, as 2 — 00 on T we have

(2.14) AR(2)e%?) = o — 2z + 0(1) = —z[1 + o(1)],

(2.15) IAR(2)e??)| = |A|r™ exp {r"‘ [ cos(m) + o(1)] }
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For f to satisfy both (2.14) and (2.15) it is clear that as z — co on I" we must
have cos(mf) — 0 and hence § — 6y where sin(mfy) = £1.
We can also see that as z — co on T’

arg AR(2)e®® = r™ [sin(mfo) + o(1)] = r™[£ 1+ o(1)] mod 2.
It follows from (2.14), however, that as z — oo on T
arg AR(2)e9?) = 6y + 7 + o(1).

This is clearly a contradiction, as arg AR(z)e?(*) varies continuously with z, and
so there are no finite transcendental singularities of f~!.

It now easily follows from Theorem 2.1 that, given a function f in the class F’
and a wandering domain U of f, the component U, of N(f) containing f"(U)
contains no singularities of f~! for large values of n € N.

3. Multiply-connected domains of normality

We now consider condition (ii) of Theorem B. The proof of Theorem B requires
only that if a function f has a multiply-connected wandering domain U then the
component U, of N(f) which contains f™*(U) is simply-connected for large n € N
which, for entire functions, is equivalent to condition (ii). In this section we show
that if f is a function in the class F' then it has no wandering domain U such that
U, is multiply-connected for all n € N. In order to prove this we first consider
the following result proved by Baker [2, Theorem 3.1].

Lemma 3.1. If f is transcendental entire and U is a multiply-connected
component of N(f) then U is a wandering domain, and every component of
N(f) is bounded. Further, f* — oo in U as n — oo and U contains a Jordan
curve v such that, for large n, the curve v, = f*(v) in U, is at a large distance
from 0 and has a non-zero winding number about 0.

We see from this that if f is an entire function in the class F and if U is
a multiply-connected wandering domain of f then U contains a curve v whose
iterates nest around co. We will show that all functions in F' have a similar prop-
erty. To do this we need the following result concerning meromorphic functions
proved in [4, Lemma 2.1].

Lemma 3.2. Suppose that f is a meromorphic function such that O~ (o)
contains infinitely many points and that (f™) contains a subsequence with a non-
constant limit function in a component Ny of N(f). Then Ny is either periodic
or pre-periodic.

We are now able to show that a weaker form of Lemma 3.1 is true for all
functions in the class F'.
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Lemma 3.3. Suppose that f is a function in the class F and that U is a
wandering domain of f such that U, is multiply-connected for all n € N. Then,
for some k € N, Ui is bounded and there exists a Jordan curve v in Ui such
that for any M >0, M € R, there exists L(M) € N and a continuum 6p,(pr) C
ooy = fFEM(y) such that ép(my C {z :|2| > M}, with one of the components
of the complement of §1,(ary being bounded and containing {2z : |2| < M}.

Proof. As already observed, if f is entire then the result follows immediately
from Lemma 3.1. Now suppose that f is a function in the class F' with poles
P1, ---, pm and that U is a wandering domain of f such that U, is multiply-
connected for all n € N. From Section 2 we know that there exists £k € N such
that, putting V' = Ui, each V,, contains no singularities of f~!.

We take a Jordan curve v(t) in V, v:[0,1] —» V, 4(0) = p, which is not
null-homotopic in V. We claim that, for each n € N, 4, is not null-homotopic
in V,. For suppose not then, for some m € N, v,, ~ f™(p) in V;, where o ~ ¢
if and only if o is homotopic to 1. We now take the branch g of f~™ such that
gf™(p) = p. As there are no singularities of f™! in each V,, 1 < n < m, it
follows that the continuation of g around v, gives 7. Hence g can be used to lift
the homotopy vm ~ f™(p) in V,, to the homotopy v ~ p in V. This is clearly a
contradiction.

We now take a Jordan curve v in V such that, for each r € N, 5, is not
null-homotopic in V;.. It is clear that, for each r, one of the bounded components
of C\vr, say D,, must contain a point in J(f) and hence, as J(f) = O~ (), a
point in O~ (c0). We denote by n(r) the least non-negative integer such that f™(")
maps a point in D, to one of the poles p;;) of f, where i(r) € {1,...,m}. As
") is analytic in D, it follows that fM"(D,) is a bounded domain containing
Pi(r)- Without loss of generality we may assume that i(r) = 1 for infinitely many
values of r.

From Lemma 3.2 we see that all convergent subsequences of (f™*"(")) in V
must have constant limits and so the spherical diameter of Yr+n(r) must tend to
zero as r — 00. So there must either be a subsequence of (Yr+n(r)) which tends
to oo or a subsequence which tends to p;.

We now take M to be a real value such that M > max (|pi],..., lpm]). In
the case where there is a sequence of curves Yr(k)+n(r) tending to oo, there exists

r(k) such that v, (k)4n(r) C {z sz > M} As p € f"(’)(Dr(k)), it follows that
(D) D {z : |2| > M}. In this case we take bpary = 0f™ (Do) C
Yr(k)+n(r) -

In the case where there is a sequence of curves Yr(k)+n(r) tending to p;, as

p1 is a pole of f, it follows that there exists r(k) such that Yr(k)+n(r)+1 C {z :
2| > M}, and also that f"(D+1(D, ) is a full neighbourhood of oo contained
in {z:|z] > M}. So we put L(M) = n(r) + r(k) + 1 and take dr(a) to be the
boundary of the component of the complement of Yr(k)+n(r)+1 containing p; .
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Finally since VNV, =0, n > 0, the above results clearly imply that V is
bounded.

We are now in a position to prove the main result of this section.

Theorem 3.4. A function f in the class F' has no wandering component U
of the set N(f) such that U, is multiply-connected for all n € N.

Proof. The proof is by contradiction. Suppose that f(z) = z + R(2)e?® is
a function in F with a wandering domain U such that U, is multiply-connected
for all n € N. We may then take ¥ € N and a curve v in Uy = V satisfying
the conditions of Lemma 3.3. Denoting hyperbolic distance in W by [-,-]w and
recalling that V is bounded we see that there exists a constant L such that
[21,22]v < L for all 21, 2o € . Writing f"(2i) = wn,i, ¢ = 1,2, it follows from
Schwarz’s lemma that [wn,1,wn2)f(vy < L for all wp1, wa2 € yn. We also
know that V is a wandering domain and so, for large n, f*(V) C  where Q is
the plane punctured at the points 0, 1. So, for large n, we have

L > [wn1,wn2]fn(v) 2 [Wn1,wn )0

for all wn,1, Wn2 € Yn.

Using the estimates for hyperbolic distance in  given in [1, p. 17, 18] we see
that there exist real constants My, A > 0 such that if w,,1, wy2 are two points
lying on 7, such that |ws 1|, |wa,2| > Mo then

lwn,2l
L > [wn,1,waz2la 2 /\/ _lde] > ,\/ _dlz|
o z|1og 2] lwn1| 121108 ]2]

where ¢ is a path joining wn ;1 to wy,2. Hence for such points

/\(loglog |wn,2| — 10g IOg |wn,1]) <L,

L
= loglog |wy 2| < 3 + loglog [wn 1,

= loglwn,QI < Alog!wn,ll:

(31) = |wn72| < |wn,1|A

where A is a positive constant dependent only on 7.

We now take a real number M > 2M, anda curve é7(p7) which satisfies
the conditions of Lemma 3.3. We see that there exist points wrar),1, wr(am),2
on dp(p) such that Q(wr(ar),1) is real and positive and Q(wr(ar),2) is real and
negative. Thus, for M sufficiently large,

| F(wran )] = [wpan . + R(wpany,1)e@Eona)|
> 16(1/2)Q(WL(M),1)| > |wL(M),1| > M,
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and

Mo < (1/2)lwran 2| < |f(wian,2)| = |wran,2 + R(wriary 2)e@ran.2)
< (3/2)](wL(M),2)|-

It follows that f(wr(a,1), f(wr(a),2) also satisfy (3.1) and so

» A
|e/Dwran.)| < |f(wroan1)| < |Flwran,2)|” < (3/2)4wrian 2|
2
< (3/2)* lwranal*

From Lemma 3.3 we can take M and hence |w L(Mm),1| to be arbitrarily large which
is clearly a contradiction. This completes the proof of Theorem 3.4.

4. Conjugation with quasiconformal maps

Finally, we consider conditions (iii) and (iv) of Theorem B. We show that all
functions in the class F satisfy these conditions if the word ‘entire’ is replaced by
‘meromorphic’ in condition (iii). This is sufficient to allow the use of the proof of
Theorem B modified to apply to meromorphic functions. It is clear that for each
function f in the class F we must consider families of the form

Gk (f)= {fq> = ®f®~!: ®is K—quasiconformal fixing 0,1, 0o, fs is meromorphic}.

Throughout the following section we will assume that if f(z) = z + R(2)eQ(),
where R is a rational function and @ is a polynomial of degree g, then K qg<gq+l.
The only result about quasiconformal maps that we use is the following (see, for
example, [12] for a proof of this result and for more background material).

Lemma 4.1. If f is a K -quasiconformal homeomorphism of the complex
plane, fixing 0 and oo then there is a constant C such that for large z we have

|f(2)| < Clz|¥  and |£71(2)| < Cl2|K.

We also need the following result proved in [§].
Lemma 4.2. Suppose that

f(2) =z 4 amyi(z =)™ 4.

near z = 2', where am4+1 # 0 and m > 1. Then there exist m equally spaced rays
at z' and m regions D;, 1 < i < m, each of which lies between two adjacent rays
and is bounded by a smooth curve which is tangent to the rays at z' , such that
f(Di) C D; and, in D;, f*(z) — 2' in the direction of the bisector, as n — oo.
The regions D; are known as petals.
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We are now in a position to show that functions in the class F' satisfy the
modified form of condition (iii).

Lemma 4.3. For a specified K > 1, and a function f in the class F,
the family Gk(f) can be expressed uniquely in terms of a finite set of complex
parameters X1,..., Xk, f) -

Proof. We take a function f in the class F' and recall that f can be written
in the form

f(z) = z + 5(2)e?? /T(2)

where S, T, Q are polynomials. We may assume that S and T have leading
coefficients equal to one and have no common roots. We denote the degrees of S,
T, Q by s, t, q respectively. We write S(z) = Hi(z—zi)’(i), where ), s(2) = s,
and note that the fixed points of f are precisely the points z;. We now take a
function fe from the family Gi(f). A point z is a fixed point of fs if and only
if fo(z) = @f®71(2) = z implying f®~!(z) = ®7*(z). Thus ®7'(z) = z giving
z = ®(z;), for some z;.

We now write T(z) = [];(z — w;)*9) | and observe that the poles of f are
precisely the points w;. Using a similar argument to the above we see that a point
z is a pole of fp if and only if fe(z) = ®f®~1(z) = co implying f&®1(z) =
®71(c0) = 0o. Thus ®71(z) = w; giving z = ®(w;), for some w;.

It follows from the above work that

fo(2) = z + Sa(2)e9 ) Ty ()

for some polynomials S¢, T¢ and some entire function g. We now use Lemma 4.1
to see that the maximum modulus of fe satisfies M(fs,r) = O(exp(r¥?)) and
hence ¢ must be a polynomial Qg of degree ¢’ < Kq < ¢+ 1. We now use the
same reasoning to deduce that Q has degree at most Kq'. As K(¢—1) < g, it
follows that Q¢ must have degree equal to ¢.

It is clear that Ts can be written as Te(z) = []; [z — ®(w;)] ‘9 and so Ts
has degree t.

We now consider the polynomial S¢. The roots this has are the points ®(z;)
but it is not clear what orders these roots have. Suppose z; is a multiple root of
S,ie. s(z) > 1. Then, near z;, f satisfies the conditions of Lemma 4.2 and we
see that there are s(z) — 1 petals at z;. It is easy to see that these are mapped by
® onto s(i) —1 petals for f at ®(z;) and so ®(z;) is a root of Sg of order s(z).

We deduce that Se can be written as Se(z) = [[; [z — fb(zi)]s(z) and so Sg is of
degree s.

It follows that the family Gk (f) can be expressed in terms of a finite set
of parameters X1,...,X,(k,f) as required where n(K,f) = s+t+ ¢+ 1. The
parameters are the zeros of Sg and Ty and the coefficients of Qg .
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We now consider the effect of letting ® depend on a parameter ¢t and find
that the following result holds, and hence functions in the class F' satisfy condition

(iv).

Lemma 4.4. If, for a given family Gk (f), where f € F, each homeo-
morphism ® = ®(t,z) depends on a system of parameters t which vary in an
open neighbourhood I of the origin of RM for some M, and ®(0,2) = 2,
®(t,z) € CY(Z) for fixed z, then for some open subset I' of I, the parameters
X; are in CY(T').

Proof. From Lemma 4.3 we know that if f(z) = z + S(2)e?(*) /T(z) where

S, T, @ are polynomials of degree s, t, g respectively then each function fs =
®f®~! in Gk(f) is of the form

fa(2) = z+ S¢(2)e9* ) | Ty (2)
where Sg, Ts, Q¢ are polynomials of degree s, t, ¢ respectively.

Writing $(2) = [[;,(2—2:i)* we also know that S can be written as Se(z) =
IL [z - @(zi)]s('). Similarly, if T(z) = [[;(z - w;)t) | then Tp(z) = I1; [z —
®(w;)] 0 Thus Se and T are uniquely determined by the functions ®(z;) and
®(wj;) all of which are in C1(Z).

We now write Qa(2) = ag2?+ -+ ao where the ax, 0 < k < ¢, depend only
on t. The result will clearly be proved if we show that each aj is in C(Z") for
some open subset Z' of T.

As shown in the proof of Theorem 2.1, f has infinitely many critical points

ac, ¢ € N. The critical points of fe are precisely a.(t) = ®(t,a.). Each such
a(t) satisfies

Fu[8(t,2),8(t,05), ax(0), ] = T3 (ae) 2 fo (ou(t)
= T3 (ac(t)) + [=Sa (c(t)) Tg (ae(t)) + S (ac(t)) To (ae(t))] €22 (xe()
+ S (0e(t)) To (re(t)) Qlp (ac(t)) Q2 (M) = 0,

We see that each F. depends analytically on each of the parameters of fe and
belongs to C1(T).
We have a.(0) = a, and so, at ¢t =0,

6_17;: = [=S(@)T'(ac) + S'(ac)T(ac) + S(ac)T(ac)Q' (a.)] ake@(@)

(4.1)  Oa
+ kS(ac)T(ac)ak~1eQl0),

We claim that there are ¢ + 1 choices of ¢ for which the vectors

oF.  OF.
“Cz(aao""’a_%)
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are linearly independent at ¢ = 0. If not, then all of the u, span a space in C?+!

of dimension at most ¢. This implies that there exists a vector v = (vo,...,vq)
such that v # 0, and for each c at t =0
OF. OF.
. — 4 =0.
(4.2) vo Oag Tt Oag

Combining (4.1) and (4.2) we see that the polynomial P where
P(z) = ka {[=S)T'(2) + S'(2)T(2) + S(2)T(2)Q' ()] 2* + kS(2)T(2)z* "}

then vanishes for each a. and hence for all z. The highest power of z in this
polynomial is s +¢+2g — 1 and this comes from the term vxS(2)T(2)Q'(2)z? and
so vy = 0. Using the same line of argument it follows successively that v,—; =0,
vg—2 =0, ..., vo =0 and so v =0 which is a contradiction.

We are now able to take g + 1 choices of ¢, which we label as ¢(d) where
d=0,1,...,q, such that the vectors u.4) are linearly independent at ¢ = 0. It
follows that the matrix

(). osdksa

is non-singular at ¢ = 0. Letting b(¢) be the vector with components ®(¢,z2;),
®(t,zj), and a(t) = (ao(t),...,aq(t)) it now follows from the implicit function
theorem that thereisa C! functlon g: b(t) — a(t) in a neighbourhood of a(0). We
know that all the components of b are in C!(Z) and hence all the ax, 0 < k < ¢,
are in C1(Z") for some open subset I’ of T as required.

Using the results of the last three sections we are now able to prove Theo-
rem C using essentially the same argument as that used to prove Theorem B in
(2, Section 7).

The author wishes to thank Professor I.N. Baker for his helpful suggestions
and the SERC for their financial support.
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