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MONOTONICITY OF HYPERBOLIC CURVATURE
UNDER UNIVALENT MAPPINGS

Xiangyang Liu and David Minda

Abstract. We investigate the behavior of the hyperbolic (geodesic) curvature of a path on
a Riemann surface when the surface increases. Suppose X is a hyperbolic Riemann surface and
åx(o,Z) denotes the hyperbolic curvature at the point a of a smooth path 7. We determine a

necessary and sufficient geometric condition for the existence of a finite constant K(X) such that
kx(a,t) < åv(f(o),f o7) whenever lc;(a,T) > /((X) and /: X*Y is an (injective) conformal
embedding of X into another hyperbolic Riemann surface Y. The constant is independent of /
and Y. In particular, this monotonicity property of the hyperbolic curvature holds for any simply
connected surface X with /((X) = 2;this special case is due to B. Flinn and B. Osgood. They
raised the question of considering the problem of monotonicity for hyperbolic curvature for more
general surfaces.

1. Introduction

We begin with a brief review of some topics from hyperbolic geometry. Sup-
pose X is a hyperbolic Riemann surfacel that is, the unit disk D is the uni-
versal covering surface for X. The hyperbolic metric on D, normalized to have
Gaussian curvature -1, is )o(r) ldzl : Zldzll(t - lrl'). lf. g: D ---+ X is any
analytic universal covering projection, then the hyperbolic metric )x(r) ldtr.,l on
X is determined from )p(r) ldzl :9. ()x(u) ld.l) , where 9. ()x(?r) ldurl) is the
pull-back of the metric ,\1(u;)ldtul. For a hyperbolic plane region X, we have
)*(g(r)) lg'Q)l :21(1 - lrl,). The hyperbolic length of a path 7 on X is

length x(r) Åx(*) ld*1,

and the hyperbolic distance between the points a and b on X is

dx(o,,b) - inf : j is a path on X joining a and b ).
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The hyperbolic disk with center a and hyperbolic radius r is

Dx(o,,r) : {ö e X : d11(a,ö) < r}.
This paper deals with the behavior of hyperbolic curvature when the surface

increases. Let us recall the definition ofhyperbolic curvature. First, suppose X is
a hyperbolic region in the complex plane C; that is, C \ X contains at least two
points. If. 1 : w : w(t), t e I (where .I is usually some unspecified interval on
the real line) is a C2 curve on X, then the hyperbolic curvature of 7 at a point
w : u(to) is given by

nx(u,?) : )*b {o.@,.,/) + 2r* (eEu#A #ffi) },
where

rc.(w,-i: irhr*(#8)
denotes the euclidean curvature of 7 at to. Since Åo(r) :21(1-lrl'), we have

'*{W

(retft-ffir ffi) )'

for a path 6 : z: z(t), t € /, in D. In particular, rco(O,1): $12)n"(0,7). For
a holomorphic universal covering projection /: D --+ X and a path 1 : f o 6, we
have rcp(o,6): tv(l@),7). ttris expresses the hyperbolic curvature of a path
on X directly in terms of the hyperbolic curvature of a lifted path on the universal
covering surface. In terms of the universal covering projection /, we have

nx(u,t) : (r - lrl') l/' @l{*"(*,7) + 2 rm

where w - f(r).
The definition of hyperbolic curvature actually makes sense if X is a hyper-

bolic Riemann surface, provided one works in terms of local coordinates, because
hyperbolic curvature is a conformal invariant. More precisely, hyperbolic curva-
ture is invariant under holomorphic covering projections. That is, rc1(o,7) -
*r(f ("),/ o g) if X and Y are hyperbolic surfaces and /: X ---+ Y is an analytic
covering projection of X onto Y.

A number of conformal invariants exhibit monotonic behavior. For instance,
the hyperbolic metric itself is monotonic in the sense that Åx(r) ld.l2,\y(u) ldurl
on X if X C Y. Therefore, it is reasonable to inquire about possible monotonicity
properties for hyperbolic curvature. The first attempt at establishing a monotonic-
ity property for hyperbolic curvature is due to Haifawa [H]. Unfortunately, there
is a gap in his proof. Later, F linn and Osgood [FO] proved the following mono-
tonicity property of hyperbolic curvature under univalent mappings.
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Flinn-Osgood Monotonicity Theorem. Suppose X, Y are simply con'
nected hyperbolic regions in the complex plane and f is a holomorphic func-
tion mapping X univaJently into Y. For any C2 curve 1 on X, w(a,1) 1

"r ("f(r), f " t) if a is any point on 1 with ox(o,l) >- 2. The constant 2 is best

possible.

Flinn and Osgood also showed that there was no analog of their result for
general hyperbolic regions. Explicitly, if X : D \ {0}, Y : D and / is the
inclusion map of X into Y, then there is no finite consta,nt .I( with the prop-
erty that *x(o,l) < rcv(/(o), f ol) whenever ox(o,l) > K. On the other
hand, Minda [Mi] showed that the conclusion of the Flinn-Osgood Monotonicity
Theorem remains valid for arbitrary hyperbolic Riemann surfaces provided the
injective mapping / satisfies an additional condition. The condition is that the
group homomorphism /* (induced bV /) from the fundamental group of X to
the fundamental group of Y should be injective. In particular, the monotonic-
ity property for the hyperbolic metric holds whenever X is a simply connected
hyperbolic Riemann surface and Y is an arbitrary hyperbolic Riemann surface.

We want to characterize those hyperbolic Riemann surfaces X for which a

version of the Flinn-Osgood Monotonicity Theorem holds. Precisely, we wish to
determine those hyperbolic Riemann surfaces X for which there exists a finite
constant K > 0 (I( depends only on X) such that if / is any analytic univalent
mapping of X into another hyperbolic Riemann surface Y, then ny(a,1) I
*r(f(o),f ol) for any C2 c;;l,ve 7 on X and all a ot l satisfying n7(a,1))
K. Precisely, we say that a hyperbolic Riemann surface X has lhe hyperbolic
curvature monotonicity property, or simply the HCM-property, if there exists a

finite constant K such that for all hyperbolic Riemann surfaces Y, all C2 curves

7 on X and all a ol t, Kx(a,'y)> K implies rcx(a,i < "y(f("),f ""1) for
any univalent analytic function /: X -+ Y. Let I((X) be the infimum (in fact,
the minimum) of all such K. Define /{(X) : m if X does not have the HCM-
property. In other words, X has the HCM-property if and only if .ff(X) < oo.

Thus, our goal is to characterize hyperbolic Riemann surfaces with the HCM-
property. We say that X can be embedded in Y if there exists a univalent mapping
from X to Y; frequently we regard X as as a subset of Y when X is embedded in
Y. One difficulty in attempting to characterize surfaces with the HCM-property
is that certain surfaces possess this property for a trivial reason. A hyperbolic
Riemann surface is called maximal hyperbolic if it cannot be properly embedded
into another hyperbolic Riemann surface. Clearly, if X is maximal hyperbolic,
then X has the HCM-property and I((X) : g. In fact, hyperbolic curvature
on a maximal hyperbolic Riema,nn sur{ace X is unchanged under a univalent
mapping / of X into a.nother hyperbolic surface Y because any such mapping
is actually a conformal mapping of X onto Y. In order to discuss the possible
monotonicity of the hyperbolic curvature, it is reasonable to determine which
hyperbolic Riemann surfaces are maximal. In Section 3 we present a complete list
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of maximal hyperbolic surfaces with finite genus.
The characterization of hyperbolic surfaces with the HCM-property involves

the concept of a uniformly perfect Riemann surface. Recall that a hyperbolic plane
region X is called uniformly perfect if there exists c ) 0 such that ,\1 ) cf 6x,
where 6x(.) denotes the euclidean distance between to and the boundary of X.
We introduce a natural extension of this concept for hyperbolic Riema^nn surfaces
and show that it is a sufficient condition for a Riemann surface to have the HCM-
property. In Section 4 we show that a hyperbolic Riemann surface with finite genus
has the HCM-property if a^nd only if the surface is either maximal hyperbolic or
uniformly perfect. Also, in Section 4 a necessary and suffi.cient geometric condition
for a surface of arbitrary genus to have the HCM-property is given.

We want to thank the referee for carefully reading the manuscript and making
several useful suggestions for improving the exposition.

2. Uniformly perfect Riemann surfaces

From now on X will always denote a hyperbolic Riemann surface, and we
assume all mappings between Riemann surfaces are analytic.

We want to extend the concept of uniform perfectness to a hyperbolic Riemann
surface. Suppose / is an analytic mapping from X to another Riemann surface.
For z € x, let s(r,f) be the supremum of all s such that / is univalent in the
hyperbolic disk D1(z,s). Set s(/) : inf {s(2, f), , € X}. Then / is called
uniformly locally univalent (in the hyperbolic sense) if s(/) > 0. The quantity
s(/) is called the åyperbolic radius of uniform univalence for /.

For a hyperbolic plane region, we recall that the notion of uniform perfectness
is equivalent to uniform local univalence of any universal covering projection. Let
X be a hyperbolic plane region and g: D --+ X be a covering projection. It is
known (see [Po2]) that X is uniformly perfect if and only if g is uniformly locally
univalent.

There is a hyperbolic geometric interpretation for the uniform local univalence
of a universal covering projection. For o € X, let rx(o) be the supremum of
all r such that the hyperbolic disk D1(o, r) is simply connected. Suppose that
g: D --+ X is acoveringprojection. It iseasyto seethat if z €D satisfies g(r): a,
then r1(a) : s(2,9). If we introduce the quantity r(X) : inf {r1(o) : a e X},
then r(X) : s(s). The quantity r(X) is called the hyperbolic radius of injectivify.
Consequently the following definition is a reasonable extension of the concept of
uniform perfectness to a hyperbolic Riemann surface.

Deflnition. A hyperbolic Riemann surface X is called uniformly perfect if.
r(x) > 0.

Clearly, the notion of uniform perfectness is conformally invariant. Note that
all simply connected hyperbolic Riemann surfaces are uniformly perfect according
to this definition (if X is simply connected, then r(X) - m ). We want to mention
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the following known fact without a proof [BP]: A plane region with an isolated
boundary point is not uniformly perfect.

Example. Let p € (0,1) and A(p) be the annulus {r, p <l"l < 1}. Any
hyperbolic doubly-connected plane region is conformally equivalent to A(p) for
some p. Direct calculation shows that r(,4(p)) : 12lQog p) : rl(2mod (a(p))),
where mod(A(p)) is the conformal modulus of Ä(p). Therefore, a doubly con-
nected hyperbolic plane region is uniformly perfect if and only if its conformal
modulus is finite.

For holomorphic functions mapping D into either itself or C, the idea of
uniform local univalence is closely related to two "norms". We know that a holo-
morphic function .F is locally univalent if its derivative has to zero. If F is locally
univalent in D, let

L(F, z) lrl') F" (r) I F' (r) - zl

It is easy to verify that .t(F oT,z) : L(F,"(z)) for all conformal automorphisms
T of.D. Define the linear invariant norm (.t-norm) of l7 by

llrllz : sup {z(4 z) : z eD}.

The above observation shows that llfll, : lltr'o 
"llr 

if 7 is a conformal automor-
phismof D. By calculation, llFllr:1 if F itself is a conformal automorphism
of D. In fact, llfllz :1 if and only if F is a convex univalent function [Por].

If .F' is a locally univalent mapping of D into D and .F is not a conformal
automorphism of D, then let ä(F, z) : Hz(F, z)l H1(F,z) , where

_ lå (r

Ht(F, r)_ 1 lr'(')l (t - l'12) 
.1 lrt 4l' '

Hz(F, r) - 1- lrt,)l'
Note that H{F, r) > 0 is the invariant form of Schwarz' Lemma. The hyperbolic
linear invariant norm (ä-norm) of .F' is given by

llFlla - sup {U@,2) : z eD}.

It is not difficult to verify that ä(So (tr'o T),2) : H(F,TQ)) if .9 and T are
conformal automorphisms of D, so llf lla : lls o (,F, o 

")ll,..Note that the .t-norm and the ff -norm are not really "norms" in the linear
algebra sense.

l,l') oa)ru-z+
Q1r'e) (r- l,l,)

Il; r,
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Since ä1(.F', z) :0 if F is a conformal automorphism of D, we cannot define

llf ll,, as above. For each t e (0, 1), let fi(z) : F(tz). Then f't is not a conformal
automorphism of D, so ll.F,rll, is well-defined. We define llfll, to be the limit of
ll,Frllg as t increases to 1. In order to justify this definition, we have to show that
the above limit exists, and equals llf llr when F is not a conformal automorphism
of D. Fortunately, these facts are easy to verify; we omit the details because we
do not really need to use the concept of ä-norm for conformal automorphisms of
D in this paper. Direct calculation shows that any conformal automorphism of D
has If -norm 1. See [L] for details.

Lemma 1. Suppose that F is a locally univaJent function of D into D.
Then the two norms llfll" and ll.F, ll, are equivalent. In fact,

r < llrllz s llrllr S zllrllr + 1 < sllr'llz.

Proof. If F is a conformal automorphism of D, then the results are trivial
because llfllz, : lltr'll,.: L. So we need only to consider the case when .F is not
a conformal automorphism of D.

The inequality 1 < llFll, is due to Pommerenke [Por], while llfll, < llf'll,
is due to Ma and Minda ([MMr], [MMr]). W" need only to show that llFll, <
zllPllL + t.

Foreach o € D,let G(z): (.§o(f of))(z), where T(z):(z+a)l$+az)
and S(z) : (rQ) - F(q))/(t - r@1rp1). the" G maps D into D, c(0):0
ana lC'(O)l < 1. By a straightforward application of the Schwarz-pick Lemma,
we obtain lC"(O) S Zl(f - lC'(O)l'). From direct calculation, we have

H(F,a) - Hz(r, 4l(L lc'(o)l) s @rF,a) *lc'(o)l) l(1 -
lc'(o) l) s 2L(F, o) + 1 s 2 llrll, * 1.

lc'(o)l)
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a locally univalent function of D

233

into D.Lemma 2. Suppose that F is

Then
2

tanh (r(r) 12) tanh (r(r) 12)

Proof. We first establish the upper bound. We may assume that s(F) > 0.

If G is defined as in the proof of Lemma 1, then G is still univalent in each

hyperbolic disk of radius r : s(F). In particular, G is univalent in the euclidean

disk centered at 0 with radius .B : tanh(r/2). Then the function g(r) : G(Rz) I R
is univalent in D and maps D into D. A result of Pick [P] gives

lg"(o) l s als' (o) l (t - lo'(o) l).

Therefore,
H(F,o): 

|;;[,i7
So llF ll, < 2l tanh(r 12).

Next we derive the lower bound. For any a € D , let G(z) : (.F' o T)(r),
where T(z) : (z + a) l$ * oz) . Then

implies that

Thus, G is convex univalent in the euclidean disk centered at 0 with radius rn -
Jrt - L. If we can show that G is univalent in the euclidean disk centered at 0

with radius Lfm,lhen F will be univalent in the hyperbolic disk centered at a

with radius r:2axtanh(tlm). That is, s(F) ) r. So it is enough to prove that
for each fixed z e D with lzl < llm,

R"{zct(,)l[ctz)- c(0)] ] >0.

Select w €D suchthat z-2wl\+lrl'),then

lrl - tllrl -
By the same argument as above, we know that the function

E(")-c(tu+*)l(1 +lu,u))

(zlc'(o)l(1 lc'(o)l))
(znlg' (o)l (1 lo'(o)l)) < 2lR.

t llrl'

1
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is convex univalent in the disk {u, lrl < rn-\/ffi -1}. Therefore, the image of
ihe disk {u : lzl 1m - \/ffi=I} under the mapping .E is starlike with respect
fo E(-u). In particular, we have

Re {zG,(z)llc(,)- c(0)l} : +åP Re {wE,(w)/ln@) - o(-.)l} > 0.

Lemma 3. Suppose X and Y are hyperbolic Riemann sur{aces, / : X --+ Y
is analytic and locally univaJent but not a covering of x onto Y a,nd o € X.
Assurne g: D + X and ä: D --+ Y are covering projections satisfying S(0) : a
and å(0) : f (o) and F; D + D is the unique holomorphic function satisfying
I,(0)=0andfog:hoF.
(i) rf 1 is a c2 curve on x through a, then ox(o,7) s ,crr(/( o), f ol) provided

that ny(a,7) > I/(4 0).
(ii) Sup.pose there.exists apositive number I{ with the property that ny(a,1) I

"r(f (o), f o t) whenever nx(a,t) > I{ . Then K > H(F,O).

Proof. Since / is not a covering of X onto Y, the function .t' is not a
conformal automorphism of D. In particular, lf'10;l < t.

(i) Let 6: z: z(t) be the lift of 7 via g passing through 0 with z(O) :9.
By definition, we have

nx(a,,r) : ,co(0, 5) : (tl2)n"(0,6)

a^nd

nv(l@), f o t) : rco(0,r, o 6) : (tl2)n.(0, r, o 6).

By calculation we obtain

(1) lF'(o)1,,"(0,r.o6) : rc"(o,6) +rm tffi#&], o"(0,0 - l#81
Note that equality can hold in inequality (1) for an appropriate choice of 7. Since

lf'(O)l ( 1, then the above inequality is equivalent to

(2)

Inequality (2) implies that rc1(a,Z) ( rcy(/(r), f ol) whenever ny(a,1) )
H(F,o).

(ii) For any value of rc we can select a path 7 through o with ox(o,.y) : n
such that equality holds in inequality (1). Then

lr'(o)l ["(/(o), f o g) - H(F,0)] : rc1(a,7) - fi(r,0).

If r1(a,1): n < H(F,O), then the preceding inequality in conjunction with
lf'(O)l (l gives ux(o,z) > "y(/(q),f oz).Conr"quently, X2ng,O1.
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Theorem 1. Suppose that X is uniformly perfect. Tåen X has the HCM-
property a.nd

r((x) I 2 f tanh (r(x) 12).

Proof. Let f be a uniralent analytic mapping of X into a^nother hyper-
bolic Riemann surface Y and let 7 be a C2 cr:rve on X. There is no harm in
assuming that / is not a conformal mapping of X onto Y. For any a ot 1 )

let g: D + X and Iz: D ---+ Y be covering projections satisfying S(0) : o and
ä(0):/(o). Thenthereis an .F,: D -»D satisfying F(0):0 and f og:hoF.
Since / is univalent and X is uniformly perfect, t(X) > 0, and so g (and hence

f o S) is univalent in each hyperbolic disk of radius "(X). This implies that
.F is univalent in each hyperbolic disk of radius r(X). From Lemma 2, we ob-
tain llFll, < 2f tanh(r(X)/2). By Lemma 3(i), ox(o,t) 3 nv(f("),f ot)
provided that rc1(o,7) > ä(.F',0). In particular, the hyperbolic curvature will
increase if rc1(o,z) > llfll,,. Because llfll,, < 2ltanh(r(X)12), we obtain
I((X) < 2f tanh (r(X)/2) . This completes the proof.

Remark. In the case X is simply connected, Theorem 1 gives /((X) S 2

since r(X) : oo; this is the Flinn-Osgood Monotonicity Theorem.

Theorem 1 asserts that uniform perfectness is a sufficient condition for the
HCM-property. The next result shows that this condition is also necessary when
X can be embedded in a uniformly perfect hyperbolic Riemann surface.

Theorem 2. Suppose that f maps X univalently into Y artdY isuniformly
perfect. If there exists a constant /( > 0 (I( may depend on both X and f ) such
that

nx(a,t) S rcy(/("), f ot)
for aJI C2 curves 7 on X and any a on .y satisfying nx(a,i > K, tåen X is
uniformly perfect.

Proof. Let g: D --+ X and å: D --+ Y be covering projections. Then there
isafunction F:D -+ D suchthat /og:hoF. First,wewanttoshowthat
.t, is uniformly locally univalent. If / is a covering of X onto Y, then F is a
conformal automorphism of D and so F is actually univalent. Now, suppose / is
not a covering.

For each tl € D, set o : g(r.r.,) and let ? be a conformal automorphism of
D mapping to to 0 and ,S be a conformal automorphism of D mapping .F(tll)
to 0. Then the function Fo : ^9o (F o ?-l) is a lifting of / (via the covering
projections 9 oT-r and ä o S-'), and ^F|(0) : 0. From Lemma 3(ii) we obtain

This holds for all to in D, so llFll, < K. By Lemma 2,, F is uniformly locally
univalent and s(.F) ) 2artanh(UK).
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The Schwarz-Pick Lemma shows that .F maps a hyperbolic disk centered at
z € D into a hyperbolic disk centered at F(z) with the same hyperbolic radius.
Since ä is also uniformly locally univalent, ä o F is uniformly locally univalent.
The relation .f o 9 = h o.F' and the univalence of / imply that g is uniformly
locally univalent. Therefore, r(X): s(g) > 0, and so X is uniformlyperfect.

We give a^nother characterization of uniformly perfect Riemann surfaces which
is needed later. Let f(X) be the family of all homotopically nontrivial closed C2
curves on X. Define

Jvl(X): inf {lensth x(r) : 7 € r(X)}

if f(X) is nonempty, and

IZ(X) = oo

if l(X) is empty.

Theorem 3. M(X): 2r(X) . Therefore, X js uniformly perfect if attd only
if

Ir(x) > 0.

Proof. Let c = M(x) and g: D --+ X be a covering projection. Note that
s(s): r(X), so it suffices to show that s(9) : c/2.

If s(g) I cf2, then there are two distinct points z and z, in D with
do(z,z') < " ar..d g(z) : g(z'). Let 6 be the geodesic joining z and,2,. Then
the closed path 7 - g o 6 is homotopically nontrivial since 6 is not closed and so
belongs to f(X). But,

lengthx(z) : lengtho(6) < c,

a contradiction.
If s(9) > clz, then l(x) is nonempty and there exists a 7 e l(x) such that

lengthx(r) < 2.(s). Let 6 be a lifting of 7 via g with initial point z and end
poinl z' . Then , # ,' since 7 is homoiopically nontrivial on X. The fact that 7
is closed implies g(r): g(z'). So

This is impossible.

zt(g) ( Iength D(6) - length x(z) < 2r(s).
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3. Maximal hyperbolic Riemann surfaces

We begin by identifyirg some maximal hyperbolic surfaces. Note that a max-

imal hyperbolic surface need not be uniformly perfect since the first two types of
maximal hyperbolic surfaces in Theorem 4 are not uniformly perfect. It seems

that the results of this section might be known, especially to experts, but we were

unable to locate the results in the literature and have included complete proofs
for the benefit of the reader.

Theorem 4. If X is a thrice punctured Riemanrt sphere, a once punctured
torus, or a compact Riemann surface of finite genus E ) 2, tåen X is maximaJ
hyperbolic.

Proof. Let Y be a hyperbolic Riemann surface and / be a univalent analytic
mapping from X to Y. We only need to show that / is surjective. We consider
separately the three different types of surfaces.

First, suppose X is compact with genus g>2. Then the image of X under

/ is both open and closed in Y, so / must be surjective.
Next, suppose X is a once punctured torus. By Ohtsuka's generalization of

Picard's Theorem ([O], [MRR]), / extends to a holomorphic mapping fi defined
on the torus, say X1 : Xu{p}, and fi maps X1 into Yr , where Y1 is either Y or
Y with one isolated boundary point added. By using the fact that X1 is compact,
we obtain /t(Xt) - Y1. But a nonconstant analytic mapping from one compact
Riemann surface onto another must be n-io- 1 for some integer n ) 7. Since fi is
univalent on X : Xr\{p}, wemust have n : 1. Thus, /(X) : Vt\Ur(p)} : y
and so / is surjective.

Finally, consider the case in which X : P \ {r, å, c}, where P denotes the
Riemann sphere. Now, Ohtsuka's generalization of Picard's Theorem implies that
/ extends to an analytic mapping /r: P --+ Y1 , where Y1 is either Y or Y with
one, two or three isolated boundary points added. By using a similar argument as

in the preceding case, we may conclude that / is surjective.

Lemma 4, Every hyperbolic Riemann surface ca,n be embedded in a maximal
hyperbolic Riemann surface.

Proof. Let X be a hyperbolic Riemann surface. We consider the cases of
finite and infinite genus separately.

If X has finite genus g, then by a result of Maskit [M], X can be embedded
in a compact Riemann surface Z of the same genus. We may regard X as a subset
of Z. We treat the cases g:0, 8: L and g> 2 separately. First, suppose

B:0. Note that I :0 implies that Z is conformally equivalent to the Riemann
spherel hence Z \ X must contain three or more points to make X hyperbolic.
Let {a,ä,c} beasetof threedistinctpointsin Z\X. Then Y:Z\{4,ö,c}
is maximal hyperbolic and X can be embedded into Y. For the case g : L, Z
is conformally equivalent to a torus, so Z \ X must be nonempty since Z is rot
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hyperbolic. Let ae Z \ X, then Y : Z \ {a} is maximal hyperbolic and X can
be embedded into Y. If E ) 2, then Z itself is maximal hyperbolic and there is
nothing more to proye.

If x has infinite genus, then X is not compact. A result of Bochner [B]
says that X can be embedded into a Riemann surface Y such that Y cannot
be ernbedded properly into any other Riemann surface. The surface Y must be
hyperbolic since it cannot have finite genus, so Y is maximal hyperbolic.

The following theorem determines all maximal hyperbolic Riemann surfaces
with finite genus.

Theorem 5. If X is a maximal hyperbolic Riemann surface with frnitegenus
g, then X is conform ally equivalent to either a thrice-puncturedRiemann sphere,
a once-panctured torus, or a compact Riemann sur{ace with g ) 2.

Proof' Recall that X can be embedded into a compact Riemann surface
Z of genus g [M]. We may consider X as a subset of Z. If g : 0, then Z
is conformally equivalent to the Riemann sphere, and Z \ X consists of exactly
three points since X is maximal hyperbolic. For if z \ X had more than three
points, let o € z be aboundary point of X. Then for a suffi.ciently small e ) 0,
Y : X U {z e Z : ds,(z,o) < e} would be a hyperbolic Riemann surface and.
X could be properly embedded into Y. This is impossible. If g : 1 , then Z is
conformally equivalent to a torus. By the same argument as in the case g - 0,
we deduce that z \ x consists of exactly one point. If g > 2, then Z itself is a
hyperbolic Riemann surface, so X equals Z since X is maximal.

4. Characterization of surfaces with the HCM-property
We give two characterizations of hyperbolic surfaces with the HCM-property.

The first applies to surfaces of finite genus while the second is for arbitrary hyper-
bolic surfaces.

Theorem 6. Suppose X js a hyperbolic Riemann surface with finite genus.
Then X has the HCM-property if and only if X is either maximal hyperbolic or
uniformly perfect.

Proof. The sufficiency is clear from Theorem 1 and the definition of maximal
hyperbolic. Now we turn to the necessity. Suppose that X is not maximal. Again
we use Maskit's result [M] to embed X in a compact Riemann surface Z with the
same genus. If X is not uniformly perfect, then there is a sequence of points {or}
on X such that rx(an) -+ 0 as r, -+ oo. We may assume that {ar} converges
toapoint a €Z since z iscompact. Forsufficientlysmall € ) 0, thesurface
Y :,X U {z e Z : d7(z,r) < "} is hyperbolic since X is not maximal (see the
proofof Theorem 5). Thus
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if n is sufficiently large.
Let K: I((X) (< m), .f b" the identity mapping (from X into Y), I and

h be covering projections of D onto X and Y, respectively, and F: D ---+ D be

aliftingof / via 9 and ä sothat f og:hoF. As intheproof of Theorem2,

llfll,, ! K, so that F is uniformly locally unirralent by Lemma 2, and there is

a positive constant r ( 6 such that .t' is univalent in each hyperbolic disk of
radius r.

Select zn € D satisfying g(zn) : o,. and let to, : F(2"), then h(*.) : an.
The Schwarz-Pick Lemma shows that .F' maps the hyperbolic disk centered al, zn

with radius r into the hyperbolic disk centered al, wn with radius r. The radius
of the largest hyperbolic disk centered at zn in which / o g is univalent is r1(o")
(- 0). On the otherhand,for n sufficiently large, äoF (: f oS) is univalent in
the hyperbolic disk centered at z, with radius r, a contradiction.

We now obtain a geometric characterization of the HCM-property which is
independent of the genus of the surface. We say that a closed C2 curve 7 on X
belongs to l.(X) provided 7 is homotopically nontrivial on X but there exists
another hyperbolic Riemann surface Y such ihat X can be embedded into Y
and 7 is homotopically trivial on Y (or more precisely, the image of 7 under the
embedding is homotopically trivial). Roughly speaking, l.(X) consists of those
paths in f(X) which are homotopically trivial on some larger hyperbolic surface.
Define

M.(x) : inf {lengthx('1,) : 7 € f.(x)}
if l.(X) is nonempty, and

,^/.(X): oo

if f.(X) is empty. Clearls M(X) < /tl.(X) since f(X) f f .(X).
Observe that l-(X) corresponds to the kernel of the induced group homo-

morphism of the Fuchsian groups uniformizing the surfaces. From this viewpoint,
the following Theorem 7 asserts that X has the HCM-property if and only if there
is a positive constant c such that the trace of any element in this kernel is at
least c.

Theorem 7. If X is a hyperbolic Riemann surface, tåen X has the HCM-
property if and only if it4.(X) ) 0. More precisely, when M*(X) is finite, the
followin g ine qu alit ies h o1 d :

s /((x) s
tanh (M.(x)14) tanh (M.(x)14)

Proof.
So without
nonempty.

It is easy to show that X has the HCM-property when M.(X): oo.
loss of generality we may assume that ;V*(X) < m. Hence l.(X) is
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Set e : M.(X). First, we show that lltanh(e/a) S f1X). We may assume
I((X) ( oo. Let 1be a closed curve in l.(X); we only need to show that the
hyperbolic length of 7 is no smaller than c:4artanh(t7f<1X1). By definition,
X can be embedded in a hyperbolic Riemann surface Y such that the image of 7
is homotopically trivial on Y. Let /: X --+ Y be the embedding, .F: D --+ D be
a lifting of / via g and ä, where g and h denote covering projections of D onto
X and Y, respectively. As in the proof of Theorem 2, we obtai" llflls < /((X).
Now, Lemma 2 gives "(r) > cf2. Let 6 be the lift of 1 via 9 with initial point
z and terminal point zt. Then , * z' since 7 is homotopically nontrivial on X.
Onthe other hand, F(r): F(z') since Fo6 is alift of f ol via å and /o7 is
homotopically trivial on Y. Therefore,

lengthx(r) : lengthp(6) > 2s(F) > c.

Next, we show that I{(X) < 2ltanh(e la). Let / be an embedding of X in
another hyperbolic Riemann surface Y, and let F, g and ä be as above. From
Lemma 3(i), it suffices to show that llfll, < 2ltanh(el$. By Lemma 2, we
need only show that s(F) > el2. Without loss of generality, we may assume
e > 0. If s(f') < €12, then there are two distinct points z, zt in D such that
do(z,r') < e and l7(z) : F(r'). Let 6 be the hyperbolic geod.esic joining z and.
z' ar,d'y: g o6. Then /o7 is a homotopically trivial closed curve on V since
its lifting .t'o 6 via ä is a closed curve. on the other hand, T is closed since / o 7
is closed and / is a univalent mapping. Further, 7 is homotopically nontrivial on
X since its lifting 6 is not closed. Thus, 7 belongs to l.(X). But

lengthx(r): lengtho(6) < e,

a contradiction.

One may ask whether the conclusion of Theorem 6 holds for Riemann surfaces
of infinite genus, that is, does X having the HClr{-property imply that X is either
maxima.l or uniformly perfect? The answer is negative as the following example
shows.

Example. Let c be the complex plane. suppose G and G, are the subsets
of C given by

G: {z € C:1 < Im(z) <-3,12 - (,, + 2i)l>Lllnl, for n:2,-2,8,-8,...,},
G' : {z€ C : -3 < Im(z) . -1, l" - @ -zi)l>1/lnl, for n :2,-2,8,-8,...,}

The set G' is the reflection of G about the real axis. Now we glue G and G,
together by means of reflection about the real axis to make a Riemann surface Y.
Precisely,

1. Identify the points r * 3i with r - 3i for all c € (-*, **).
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2. Identifythe points c*i with x -i for all r € (-m,*m)
3. Identify the loints (n+2i)+(t/lnl)expiit) with (n -2i)+ (t/l"l)exp{-it},

where t € (-nr*rl, n : 2, -2r3, -3,. ...
In other words, the Riemann surface Y is obtained by taking two copies of G and

gluing them together along all boundaries. This produces a hyperelliptic surface

of infinite genus.
Then Y is a hyperbolic Riemann surface with infinite genu§. we take x

to be the hyperbolic Riemann surface formed by removing from Y the closed

hyperbolic disk E : {tr € Y : dy(2i,.rr) S c}, where c is any constant satisfying

0 < c < ry(zi). CleailS X is a hyperbolic Riemann surface with infinite genus.

We claim that X has the following properties:
(i) X is not maximal.
(ii) X is not uniformly perfect.
(iii) X has the HCM-property'
We establish these properties in order.

(i) Since X is properly embedded in Y,. X is not maximal.
(ii; f"t x, b;thå annulus \z:7ln <1, -(n+zi)l < 1), n--2,3,.... It

is elementary to calculate that '(X") 
: 12 f (logn)' Then for sufficiently large n'

X,, can be considered as a Riemann surface embedded in X. It is easy to see that
f(X) ) f(X"). The principle of hyperbolic metric gives

M(X) < M(X") :2r(X*) :2tr2l(lo1n) --+ 0

as n -) oo. Thus, M(X):0 and so X is not uniformly perfect by Theorem 3'

(iii) To show that X has the HCM-property, we need only verify that
/11.(X)) 0. From the construction of Y, it is evident that any closed C2 ctrve
on x which is homotopically nontrivial on Y does not belong to I.(X). So all
curves in l-(X) are homotopically trivial on Y . Let h: D ---+ Y be a covering

projection, 7 € l.(x), and 6 be a lifting of 7 via å. Then 6 is closed since 7
is homotopically trivial on Y. Note that the inverse image of E under ä is a
union of infinitely many hyperbolic disks on D , each of hyperbolic radius c. Also,

6 is homotopically nontrivial on D \ h-'(E) since 7 : ho 6 is homotopically
nontrivial on X. Then 6 must surround at least one of the hyperbolic disks in
h-r(E). Consequently, by the principle of hyperbolic metric,

lengthx(r) 2lengthv(r) : lengtho(6) 2..

Therefore, M.(X)) c) 0, or X has the HCM-property.

Remark. Note that every maximal hyperbolic Riemann surface with finite
genus g> 2 is uniformly perfect. The preceding example shows ihat this does not
remain valid for infinite genus. It is not difrcult to show that the Riemann surface

Y constructed above gives us an example of a maximal hyperbolic Riemann surface

with infinite genus that is not uniformly perfect.
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