THE CARLESON MEASURE AND MEROMORPHIC FUNCTIONS OF UNIFORMLY BOUNDED CHARACTERISTIC

Ž. Pavićević

Abstract. For a meromorphic function f(z) defined in the unit disc D:|z|<1 on the complex z-plane, z=x+iy, we denote its spherical derivative by $f^{\#}(z)$ and introduce the differentiable form $d\mu_f(z)=(1-|z|^2)[f^{\#}(z)]^2\,dx\,dy$. We prove that f(z) has the uniformly bounded characteristic if and only if the measure $\mu_f(z)$ is the Carleson measure. This result answers a question posed by S. Yamashita in Internat. J. Math. Math. Sci. 8, 1985, pp. 477-482.

1. Let f(z) be a meromorphic function defined in the unit disc D: |z| < 1 on the complex z-plane, z = x + iy, and $f^{\#}(z) = |f'(z)| [1 + |f(z)|^2]^{-1}$ its spherical derivative. For an arbitrary $w \in D$ and t, 0 < t < 1, we denote $\varphi_w(z) = (z - w)(1 - \bar{w}z)^{-1}$ and $\Delta(w, t) = \{z \in D; |\varphi_w(z)| < t\}$.

The Nevanlinna characteristic function T(r, f) of the function f(z) is defined by the Ahlfors-Shimizu formula

$$T(r,f) = \frac{1}{\pi} \int_0^r \frac{S(t,f)}{t} dt, \qquad 0 < r < 1,$$

where

$$S(t, f) = \iint_{|z| < t} [f^{\#}(z)]^2 dx dy, \qquad 0 < t < 1.$$

In [5], S. Yamashita proved that the Nevanlinna characteristic T(r, w, f) of the function f(w + (1 - |w|)z), $w \in D$ fixed, is of the form

$$T(r, w, f) = \frac{1}{\pi} \int_0^r \frac{1}{t} \left[\iint_{D(w, t)} [f^{\#}(z)]^2 dx \, dy \right] dt, \qquad 0 < r < 1,$$

where $D(w,t) = \{z \in D; |z-w| < t(1-|w|)\}, 0 < t < 1$. In particular, T(r,0,f) = T(r,f).

Denote $T(1, w, f) = \lim_{r \to 1-o} T(r, w, f)$. If $T(1, f) < +\infty$, then f(z) belongs to the class BC of meromorphic functions with bounded Nevanlinna characteristic. If $\sup_{|z| < 1} (1 - |z|) f^{\#}(z) < +\infty$, then f(z) belongs to the class N of normal meromorphic functions in D (cf. [2]).

For any $w \in D$, we denote $f_w(z) = f(\varphi_w(z))$, $\varphi_w(z) = (z - w)(1 - \bar{w}z)^{-1}$.

Theorem 1. A meromorphic function f(z) in D belongs to $BC \cap N$ if and only if

(1)
$$\sup_{|w|<1} T(1, w, f) < +\infty.$$

Proof. Let $f(z) \in \mathrm{BC} \cap N$. Since $f(z) \in \mathrm{BC}$, then, according to [4], p. 351, Theorem 2.1

(2)
$$\sup_{|w| < \rho} T(1, f_w) \le c_{\varrho} < +\infty$$

for any ϱ , $0 < \varrho < 1$.

It immediately follows from the definition that

$$T(1, f_w) = \frac{1}{\pi} \int_0^1 \left[\int_{\Delta(w,t)} \left[f^{\#}(z) \right]^2 dx \, dy \right] dt$$

(cf. [4]).

Since $D(w,t) \subset \Delta(w,t)$ for any $w \in D$ and 0 < t < 1, then

(3)
$$T(1, w, f) \le T(1, f_w)$$

for any $w \in D$.

It follows from (2) and (3) that

(4)
$$\sup_{|w| < \varrho} T(1, w, f) \le c_{\varrho} < +\infty$$

for any ϱ , $0 < \varrho < 1$.

Since $f \in N$, then, according to [5], Theorem 1

(5)
$$\sup_{q<|w|<1} T(1,w,f) \le c_q < +\infty$$

for any q, 0 < q < 1.

Choosing $q < \varrho$, we obtain from (4) and (5)

$$\sup_{|w|<1} T(1,w,f) \leq \max(c_{\varrho},c_q) < +\infty,$$

and (1) is proved.

Sufficiency. We put w=0 in (1). Then $T(1,0,f)=T(1,f)<+\infty$, so that $f(z)\in \mathrm{BC}$.

It follows from (1) that

(6)
$$\sup_{q < |w| < 1} T(1, w, f) \le \sup_{|w| < 1} T(1, w, f) < +\infty$$

for every q, 0 < q < 1. Combining (6) with [5], Theorem 1, we conclude that $f(z) \in N$.

- **2.** Following S. Yamashita ([4]), a meromorphic function f(z) defined in D is called a function with uniformly bounded characteristic if $\sup_{w \in D} T(1, f_w)$. The class of such functions is denoted by \cup BC. The inclusion \cup BC \subset BC \cap N, proved by S. Yamashita in [4], now follows immediately from our Theorem 1.
- **3.** For a meromorphic function f(z) defined in D we introduce the differentiable form $d\mu_f(z) = (1-|z|^2) [f^{\#}(z)]^2 dx dy$ and the measure $\mu_f(E) = \iint_E d\mu_f(z)$ generated by $d\mu_f(z)$ on a Borel set $E \subset D$. Let

$$Q(\mu_f, w) = \frac{1}{2\bar{u}} \mu_f(R(w)) (1 - |w|)^{-1},$$

where $R(w) = \{z \in D; |w| < |z| < 1, |\arg z - \arg w| < \pi(1 - |w|)\}$ for $w \neq 0$, and R(w) = D for w = 0. The measure μ_f is called the Carleson measure if $\sup_{w \in D} Q(\mu_f, w) < +\infty$ (cf. [6], p. 38).

Theorem 2. A meromorphic function f(z) belongs to the class \cup BC if and only if f(z) is normal and μ_f is the Carleson measure.

In fact, the necessity in Theorem 2 follows from [4], Theorem 3.1 and [6], Theorem 2. The sufficiency in Theorem 2 is contained in the proof of Theorem 3 from [6], pp. 42–43.

4. In the paper [7], S. Yamashita posed the following problem: Does a meromorphic function f(z) belong to the class \cup BC if the measure μ_f is the Carleson measure?

The solution of this problem is contained in part 5, Theorem 3.

We prove the following

Lemma. If the measure μ_f for a meromophic function f(z) in D is the Carleson measure, f(z) is normal (i.e. $f(z) \in N$).

Proof. Let $a, \frac{1}{4} < a < 1$, be fixed. Then $\frac{1}{4} < |z - w||1 - \bar{w}z|^{-1}$ for any $z \in D$, for which $|z| < r = r(a) = \frac{1}{5}(4a - 1)$, and for any w with a < |w| < 1.

Since $\log\left(|z|^{-1}\right) \le c\left(1-|z|^2\right)$ for $|z|>\frac{1}{4}$ (cf. for instance [1], p. 238), we have

$$\log|1 - \bar{w}z||z - w|^{-1} \le c\left(1 - \left(|1 - \bar{w}z|^{-1}|z - w|\right)^2\right) = c\frac{\left(1 - |z|^2\right)\left(1 - |w|^2\right)}{|1 - \bar{w}z|^2}$$

for all z, |z| < r(a), and w, a < |w| < 1, with $\frac{1}{4} < a < 1$. It is known ([4]) that

$$T(r, f_w) = \iint\limits_{|z| < r} \left[f^{\#}(z) \right]^2 \log \left| \frac{1 - \overline{w}z}{z - w} \right| dx \, dy, \qquad 0 < r \le 1.$$

We hence have, for any w, a < |w| < 1, and a, $\frac{1}{4} < a < 1$, and $r = r(a) = \frac{1}{5}(4a-1)$,

(7)
$$T(r, f_w) \le c \sup_{w \in D} \iint_{|z| < 1} \frac{\left(1 - |w|^2\right)\left(1 - |z|^2\right)}{|1 - \bar{w}z|^2} \left[f^{\#}(z)\right]^2 dx \, dy \le cc_1 < +\infty,$$

where

$$c_1 = \sup_{w \in D} \iint_{|z| \le 1} \frac{\left(1 - |w|^2\right)\left(1 - |z|^2\right)}{|1 - \bar{w}z|^2} \left[f^{\#}(z)\right]^2 dx \, dy$$

and $c_1 < +\infty$ since μ_f is the Carleson measure (see [1], Lemma 3.3, p. 239). For every $w \in D$ and any r_1 , $0 < r_1 < 1$, the estimate

(8)
$$(1 - |w|^2) f^{\#}(w) \le \frac{1}{r_1^2} (\exp 2T(r_1, f_w) - 1)^{1/2}$$

is proved by S. Yamashita ([8], p. 193, the inequality (3.5)). Combining (7) and (8), we obtain the inequality

(9)
$$(1 - |w|^2) f^{\#}(w) \le \frac{1}{r^2} (\exp 2cc_1 - 1)^{1/2} = M < +\infty$$

valid for any w, a < |w| < 1, and r = r(a).

Since $f^{\#}(z)$ is a positive continuous function in D, we have for any a_1 , $a < a_1 < 1$, and any w, $|w| \le a_1$,

(10)
$$(1 - |w|^2) f^{\#}(w) \le f^{\#}(w) \le m < +\infty,$$

where $m = \max_{|w| \le a_1} f^{\#}(w)$.

Combining (9) and (10) we get

$$\sup_{w \in D} (1 - |w|^2) f^{\#}(w) \le \max(M, m) < +\infty,$$

that is, $f(z) \in N$. The Lemma is proved.

Remark 1. Our Lemma essentially improves a result in [6], p. 42.

Remark 2. Let f(z) be a holomorphic function in the disk D and let $d\lambda_f(z)$ be the differential form $d\lambda_f(z) = (1-|z|^2) |f'(z)|^2 dx dy$. If, in the proof of the Lemma, we put |f'(z)| instead of $f^{\#}(z)$, we obtain a new proof of the following well-known result: If the measure $\lambda_f(z)$ for a holomorphic function f(z) in D is the Carleson measure, then $\limsup_{|z|\to 1} (1-|z|) |f'(z)| < +\infty$; i.e., it is a Bloch function (cf. for instance [7], p. 481).

5. Theorem 3. A meromorphic function f(z) belongs to the class \cup BC if and only if μ_f is a Carleson measure.

This theorem immediately follows from Theorem 2 and the Lemma.

Corollary. A meromorphic function f(z) belongs to the class \cup BC if and only if

$$\sup_{w \in D} \iint_{|z| \le 1} \frac{(1 - |w|^2)(1 - |z|^2)}{|1 - \bar{w}z|^2} [f^{\#}(z)]^2 dx \, dy \le cc_1 < +\infty.$$

6. Theorem 4. A meromorphic function f(z) belongs to the class \cup BC if and only if

$$\sup_{w \in D} \iint_{|z| \le 1} T(1, f_z) \big| \varphi'_w(z) \big|^2 dx \, dy < +\infty.$$

This theorem follows from Theorem 3 and a result in [3], Theorem 4.

7. A well-known result states that a holomorphic function f(z) in D belongs to the class BMOA if and only if the measure λ_f , $d\lambda_f(z) = \left(1-|z|^2\right) \left|f'(z)\right|^2 dx \, dy$, is the Carleson measure (see for instance [7], p. 481). We note that the proof of Theorem 3 presents a new proof of this result if in the proof of Theorem 3 one uses |f'(z)| instead of $f^{\#}(z)$ and the inequality (3.5.3) in [8], p. 194 instead of (8).

I wish to express my gratitude to V.I. Gavrilov and S. Yamashita for their valuable advice.

References

- [1] GARNET, B.J.: Bounded analytic functions. Academic Press, 1981.
- [2] LEHTO, O., and K.I. VIRTANEN: Boundary behaviour and normal meromorphic functions.
 Acta Math. 97, 1957, 47-65.
- [3] PAVIĆEVIĆ, Ž.: The Carleson measure, Ahlfors-Shimizu characteristic and classes BMO and BMOA. Dokl. Akad. Nauk SSSR (to appear).
- [4] YAMASHITA, S.: Functions of uniformly bounded characteristic. Ann. Acad. Sci. Fenn. Ser. A I Math. 7, 1982, 349-367.
- [5] YAMASHITA, S.: Normality and the Shimizu-Ahlfors characteristic function. Ann. Acad. Sci. Fenn. Ser. A I Math. 11, 1986, 207-213.
- [6] YAMASHITA, S.: Image area and functions of uniformly bounded characteristic. Comment. Math. Univ. St. Paul. 34, 1985, 37-44.
- [7] YAMASHITA, S.: Some unsolved problems on meromorphic functions of uniformly bounded characteristic. Internat. J. Math. Math. Sci. 8, 1985, 477-482.
- [8] YAMASHITA, S.: Estimates of the derivatives by the Shimizu-Ahlfors characteristic functions. Comment. Math. Univ. St. Paul. 35, 1986, 189-199.

University of Titograd
Faculty of Mathematical Sciences
Cetinjski put b.b.
P.O. Box 176
81000 Titograd
Yugoslavia

Received 3 September 1990