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Abstract. We study the duality properties of the well-known DFJP factorization of operators
[3] by means of a refinement of it. Given an operator T : X → Y we consider a decomposition T =
jUk , where U : E → F is an isomorphism, and j , Uk are the factors in the DFJP factorization.

If T ∗ is the conjugate operator of T , and T̄ : X∗∗/X → Y ∗∗/Y is the operator given by
T̄ (x + X) := T ∗∗x + Y (x ∈ X∗∗ ), then we show that the decompositions of T ∗ and T̄ are
precisely k∗U∗j∗ = (jUk)∗ and j̄Ū k̄ . From this result we derive several consequences. For
example, we detect new operator ideals with the factorization property, we characterize operators
whose conjugate is Rosenthal, and using a result of Valdivia [11] we show that an operator T such
that T̄ has separable range can be decomposed as T = S + K , where S∗∗ has separable range
and K is weakly compact.

0. Introduction

For a (continuous linear) operator T ∈ L(X, Y ) we shall introduce a decom-
position T = jUk in which U is an isomorphism, j is an injective tauberian
operator, and k is a cotauberian operator with dense range.

This decomposition is inspired by the equivalent versions of the real inter-
polation method of Banach spaces [2], and it is a refinement of the well-known
DFJP factorization introduced in [3] which factorizes T in two factors: j and
Uk . Moreover, the factorization of T in two factors jU and k was considered
in [5].

We show that k∗U∗j∗ coincides with the decomposition of the conjugate op-
erator T ∗ ∈ L(Y ∗, X∗) , and j̄Ū k̄ coincides with the decomposition of the operator
T̄ ∈ L(X∗∗/X, Y ∗∗/Y ) . Moreover, if T belongs to a closed operator ideal A , then
k and j belong to the injective hull and the surjective hull of A , respectively. In
this way the decomposition of an operator makes clear the duality properties and
the symmetry of the DFJP factorization.

As an application we obtain necessary conditions for the factorization prop-
erty for an operator ideal, and we show that some operator ideals defined in terms
of T ∗ or T̄ verify this property. Also we characterize the class of operators whose
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conjugate is Rosenthal as those operators which factor into a Banach space con-
taining no copies of l1 and no quotients isomorphic to c0 , and using a result of [11]
we show that an operator T such that T̄ has separable range can be decomposed
as T = S + K , where S∗∗ has separable range and K is weakly compact.

Notations. X , Y , Z will be Banach spaces, and BX the closed unit ball of
X . For an operator T ∈ L(X, Y ) we shall denote T ∗ ∈ L(Y ∗, X∗) the conjugate
operator, and T̄ ∈ L(X∗∗/X, Y ∗∗/Y ) the operator defined by

T̄ (z + X) := T ∗∗z + Y (z ∈ X∗∗).

The properties of T̄ have been studied in [12].
An operator ideal A is said to be closed if A (X, Y ) is closed in L(X, Y ) for

every pair of spaces X , Y .
A is injective if given T ∈ L(X, Y ) and an injection (isomorphism into)

J ∈ L(Y, Z) we have JT ∈ A implies T ∈ A .
A is surjective if given T ∈ L(X, Y ) and a surjection (surjective operator)

Q ∈ L(Z, X) we have TQ ∈ A implies T ∈ A .
A has the factorization property if every T ∈ A factors through a Banach

space Z such that the identity IZ belongs to A .
For an account of the theory of operator ideals we refer to [9].

1. Construction of the decomposition

In this section, given Banach spaces X and Y , and an operator T ∈ L(X, Y )
we shall construct the decomposition T = jUk .

For each positive integer n we denote

pn(x) := 2n ‖Tx‖ + 2−n ‖x‖ (x ∈ X),

qn the gauge of the set 2nTBX + 2−nBY .

Clearly pn and qn are norms in X and Y respectively, equivalent to the initial
ones.

We shall consider also the Banach spaces

l2(X, pn) :=
{

(xn)/xn ∈ X,
(

∞
∑

n=1

pn(xn)2
)1/2

< ∞
}

and l2(Y, qn)

endowed with its natural norms.

1.1. Lemma. For every (xk) ∈ l2(X, pn) , the series
∑

∞

n=1 Txn is absolutely

convergent in Y . Moreover

N :=
{

(xn) ∈ l2(X, pn)/

∞
∑

n=1

Txn = 0
}

is a closed subspace of l2(X, pn).
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Proof. Note that

‖Txk‖ < 2−k ‖(xn)‖ for every k and every (xn) ∈ l2(X, pn).

Hence the series
∑

∞

n=1 Txn is absolutely convergent, and N is closed.

The above lemma allows us to introduce the intermediate spaces E , F of the
decomposition, and two of the factors.

E := l2(X, pn)/N, and

k: x ∈ X → (x, 0, 0, . . .) + N ∈ E.

F :=
{

(yk) ∈ l2(Y, qn)/yk = y1 for every integer k
}

, and

j: (y, y, y, . . .) ∈ F → y ∈ Y.

Our next result will allow us to connect j and k .

1.2. Theorem. The map U : E → F defined by

U
(

(xn) + N
)

:=
(

∞
∑

n=1

Txn,
∞
∑

n=1

Txn, . . .
)

is an isomorphism of E onto F .

Proof. First we prove that U is well-defined and continuous.
Fix (xn) ∈ l2(X, pn) . Denoting

cm :=
∥

∥

∥
2−m

m
∑

k=1

xk

∥

∥

∥
=

∥

∥

∥

m−1
∑

k=0

2−k2−(m−k)xm−k

∥

∥

∥

we have
(

∞
∑

n=1

c2
n

)1/2

≤
∞
∑

k=0

2−k
(

∞
∑

n=1

‖2−nxn‖
)1/2

≤ 2
∥

∥(xn)
∥

∥.

Also, if

dm :=
∥

∥

∥
2m

∞
∑

k=m+1

Txk

∥

∥

∥
=

∥

∥

∥

∞
∑

k=1

2−k2m+kTxm+k

∥

∥

∥

we have
(

∞
∑

n=1

d2
n

)1/2

≤
∞
∑

k=1

2−k
(

∞
∑

n=1

‖2nTxn‖
2
)1/2

≤
∥

∥(xn)
∥

∥.

Note that
∑m

k=1 xk ∈ 2mcmBX ; hence
∑m

k=1 Txk ∈ 2mcmTBX . Analo-
gously,

∑

∞

k=m+1 Txk ∈ 2−mdmBY .
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Then we have qm

(
∑

∞

n=1 Txn

)

≤ max{cm, dm} ; hence

(

∞
∑

m=1

qm

(

∞
∑

n=1

Txn

)2)1/2

≤ 2 ‖(xn)‖ .

We conclude that

U
(

(xn) + N
)

=
(

∞
∑

n=1

Txn,
∞
∑

n=1

Txn, . . .
)

∈ l2(Y, qn) and ‖U‖ ≤ 2.

It follows immediately from the definition that U is injective. It remains only
to prove that U is surjective.

Given (y, y, y, . . .) ∈ F and denoting bn := qn(y) , for any ε > 0 we have
y ∈ (1 + ε)bn(2nTBX + 2−nBY ) .

Then we can write y = Tun + vn with ‖un‖ ≤ 2n(1 + ε)bn and ‖vn‖ ≤
2−n(1 + ε)bn .

Note that Tun converges to y , since bn converges to 0. We take x1 = u1

and xn := un − un−1 for n > 1.
Obviously

∑

∞

n=1 Txn converges to y in Y . Moreover, 2−n ‖xn‖ ≤ 2(1+ε)bn

and, since Txn = vn−1 − vn for n > 1, 2n‖Txn‖ ≤ 3(1 + ε)bn .

In this way we obtain
(
∑

∞

n=1 pn(xn)2
)1/2

≤ 4(1 + ε)
(
∑

∞

n=1 qn(y)2
)

< ∞ ;

hence (xn) ∈ l2(Xn, pn) and U
(

(xn) + N
)

= (y, y, y, . . .) .
The proof is finished.

1.3. Definition. We shall call jUk the decomposition of T .
It is immediate to check that jUkx = Tx for every x ∈ X .

X Y

E F

k

��

T //

U //

j

OO

Note that j , Uk are the factors, and F the intermediate space in the DFJP
decomposition [3], and jU , k are the factors, and E the intermediate space in
the factorization considered in [5].

Next we shall show the duality properties of the decomposition.
Given the conjugate T ∗ ∈ L(Y ∗, X∗) of T ∈ L(X, Y ) , for every positive

integer n we shall denote the equivalent norms associated with T ∗ in the following
way.

p∗n(g) := 2n‖T ∗g‖ + 2−n ‖g‖ (g ∈ Y ∗),

q∗n the gauge of the set 2nT ∗BY ∗ + 2−nBX∗ .
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Moreover, for subsets A ⊂ X and V ⊂ X∗ , we shall denote by A◦ and ◦V
the polar subsets given by

A◦ :=
{

f ∈ X∗/
∣

∣f(x)
∣

∣ ≤ 1 for x ∈ A
}

and
◦V :=

{

x ∈ X/
∣

∣f(x)
∣

∣ ≤ 1 for f ∈ V
}

.

1.4. Lemma. We have (X, pn)∗ = (X∗, q∗n) and (Y, qn)∗ = (Y ∗, p∗n) isomet-

rically.

Proof. Denoting Z := X × Y endowed with the norm ‖(x, y)‖ := ‖x‖ + ‖y‖ ,
we consider the auxiliary operator S ∈ L(X, Z) defined by Sx := (2−nx, 2nTx) ,
and its conjugate S∗ ∈ L(Z∗, X∗) , which is given by S∗(f, g) = 2−nf + 2nT ∗g .

We have that the unit ball of (X, pn) coincides with S−1BZ . Then, as Z∗ is
X∗ × Y ∗ with the supremum norm, the unit ball of (X, pn)∗ is

(S−1BZ)◦ = S∗BZ∗ = 2nT ∗BY ∗ + 2−nBX∗ ,

which coincides with the unit ball of (X∗, q∗n) .
The other part of the lemma can be proved in a similar manner.

Next we establish the main duality properties of the decomposition.

1.5. Theorem. Suppose jUk is the decomposition of T . Then k∗U∗j∗ is

the decomposition of T ∗ .

Proof. We begin showing that j∗ coincides with the first term of the decom-
position of T ∗ .

Considering F as a closed subspace of l2(Y, qn) , we have that j∗ acts from
Y ∗ into l2(Y, qn)∗/F ◦ .

By Lemma 1.4, we can identify l2(Y, qn)∗ and l2(Y
∗, p∗n) . Moreover it is not

difficult to check that under this identification

F ◦ =
{

(gk) ∈ l2(X
∗, p∗n)/

∞
∑

n=1

T ∗gn = 0
}

,

and for every g ∈ Y ∗ and (y, y, y, . . .) ∈ F we have

(j∗g)(y, y, y, . . .) = g(y) = (g, 0, 0, . . .)(y, y, y, . . .);

hence j∗g = (g, 0, 0, . . .) + F ◦ , as we wanted to prove.

Next we show that k∗ is the third term in the decomposition of T ∗ .
The operator k∗ acts from E∗ =

(

l2(X, pn)/N
)

∗

= N◦ , which can be identi-
fied with the subspace

{

(fk) ∈ l2(X
∗, q∗n)/fk = f1 for every integer k

}

,

into X∗ . Moreover, for every (f, f, f, . . .) ∈ l2(X
∗, q∗n) and x ∈ X we have

(

k∗(f, f, f, . . .)
)

(x) = f(x) ; hence k∗(f, f, f, . . .) = f .
Finally, U∗ is an isomorphism and verifies k∗U∗j∗ = T ∗ . Hence it is the

second term, since j∗ has dense range, and k∗ is injective.
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1.6. Theorem. Suppose jUk is the decomposition of T . Then j̄Ū k̄ is the

decomposition of T̄ .

Proof. If Zn is a sequence of Banach spaces, then the map

(wn) + l2(Zn) ∈ l2(Z
∗∗

n )/l2(Zn) → (wn + Zn) ∈ l2(Z
∗∗

n /Zn)

defines a bijective isometry.
Also, for a closed subspace M of X , we can identify

M∗∗/M = (M◦◦ + X)/X, and (X/M)∗∗/(X/M) = X∗∗/(M◦◦ + X).

The operator j̄ acts from F ∗∗/F into Y ∗∗/Y , and we have

F ◦◦ =
{

(zk) ∈ l2(Y
∗∗, qn)/zk = z1 for every k

}

and

F ∗∗/F =
{

(zk + Yk) ∈ l2
(

(Y, qn)∗∗
)

/l2(Y, qn) / zk = z1 for every k
}

;

hence j̄(z1 + Yk) = j∗∗(z1) + Y = z1 + Y , and we conclude that j̄ coincides with
the third term in the decomposition of T̄ .

Analogously, we can identify E∗∗/E with l2
(

(X, pn)∗∗)/(N◦◦ + l2(X, pn)
)

,
and for every z ∈ X∗∗ we have

k̄(z + X) = k∗∗z +
(

N◦◦ + l2(X, pn)
)

= (z, 0, 0, . . .) +
(

N◦◦ + l2(X, pn)
)

.

Hence k̄ is the first term in the decomposition of T̄ , and proceeding as in the last
theorem, we can show that Ū is the second term.

We finish the section showing some additional properties of j and k . Recall
that T : X → Y is tauberian if T ∗∗

−1

Y = X [8], and it is cotauberian if T ∗ is
tauberian [10]. We note that T is tauberian if and only if T̄ is injective [12], and
T is cotauberian if and only if T̄ has dense range [10].

1.7. Proposition. Suppose jUk is the decomposition of T . Then

(a) j is tauberian injective,

(b) k is cotauberian with dense range.

Proof. It is enough to note that j ∈ L(F, Y ) is injective, k ∈ L(X, E) has
dense range, and j̄Ū k̄ is the decomposition of T̄ .
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2. Applications

In this section we apply the decomposition to obtain some results for operator
ideals [9]. In particular we prove the interpolation property (stronger than the
factorization property) for some operator ideals.

2.1. Proposition. Let n be a positive integer.

(a) ‖kx‖ ≤ 2n‖Tx‖ + 2−n‖x‖ for every x ∈ X .

(b) jBF ⊂ 2nTBX + 2−nBY .

Proof. (a) It is enough to note that

(x, 0, . . . , 0, 0, . . .) = (0, 0, . . . , x, 0, . . .) + (x, 0, . . . ,−x, 0, . . .)

with (x, 0, . . . ,−x, 0, . . .) ∈ N .
(b) Clearly (y, y, y, . . .) ∈ BF implies qn(y) < 1 for every n ; i.e., y ∈

2nTBX + 2−nBY for every n .

Given operator ideals A and B , the product A ◦ B is an operator ideal
defined by

A ◦ B(X, Y ) :=
{

T ∈ L(X, Y )/T = AB for some A ∈ A , B ∈ B
}

.

2.2. Proposition. Let A , B be closed operator ideals.

(a) If A is injective and T ∈ A , then k ∈ A .

(b) If B is surjective and T ∈ B , then j ∈ B .

(c) If A is injective and B is surjective, then B ∩ A = B ◦ A .

Proof. (a) and (b) can be derived from the last proposition, using the char-
acterization of the closed injective hull of an operator ideal in [7; 20.7.3], and the
corresponding characterization of the closed surjective hull, respectively.

(c) is a consequence of (a) and (b):

If T ∈ A ∩ B then j ∈ B and k ∈ A ; hence jUk = T ∈ B ◦ A ,

and the converse implication is evident. This part was proved in [6].

We shall consider now for operator ideals a more restrictive property than the
factorization property.

2.3. Definition. An operator ideal A has the interpolation property if the
identity IF of the intermediate space in the DFJP factorization of T belongs to
A when T ∈ A .

The decomposition can be applied to show that some operator ideals have the
interpolation property, as in the following result, proved in [6] using real interpo-
lation techniques. The proof we shall give is more elementary.
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2.4. Theorem. Let A be an injective and surjective operator ideal verifying

the Σ2 -condition: For all sequences of Banach spaces (Xn) and (Yn) , an operator

S: l2(Xn) → l2(Yn) belongs to A when the component operators Smn: Xn → Ym

in the matricial representation of S belong to A .

Then A has the interpolation property.

Proof. Let Q and J denote the quotient map onto l2(X, pn)/N and the
injection of F into l2(Y, qn) respectively, and suppose jUk is the decomposition
of T .

An easy computation shows that the components of the matricial represen-
tation of the operator JUQ: l2(X, pn) → l2(Y, qn) coincide with T : (X, pn) →
(Y, qm) ; then JUQ ∈ A , because A satisfies the Σ2 -condition; hence U ∈ A ,
since A is injective and surjective.

Before continuing, we present some examples.

2.5. Examples. The following operator ideals have the interpolation prop-
erty.

(a) Operators with finite dimensional range.

(b) Operators with separable range.

(c) Weakly compact operators.

(d) Rosenthal operators.

(e) Banach–Saks operators.

(f) Decomposing operators.

Proof. (a) and (b) are immediate.
(c), (d), (e) and (f) follow Theorem 2.4 (see [6]).

As an application of the first part, we present two procedures of construction
of operator ideals which preserve the interpolation property.

2.6. Theorem. Let A be an operator ideal with the interpolation property.

The operator ideals defined by

A
d(X, Y ) :=

{

T ∈ L(X, Y )/T ∗ ∈ A (Y ∗, X∗)
}

and

A
co(X, Y ) :=

{

T ∈ L(X, Y )/T̄ ∈ A (X∗∗/X, Y ∗∗/Y )
}

have the interpolation property.

Proof. It is easy to verify that A d and A co are operator ideals, and the
interpolation property follows from Theorems 1.5 and 1.6, respectively.

We derive some consequences.
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2.7. Corollary. A quasi-weakly compact operator T ; i.e., an operator such

that T̄ has finite dimensional range, factors through a quasi-reflexive space.

This is the main result in [1].

2.8. Corollary. Let T ∈ L(X, Y ) . T ∗ is Rosenthal if and only if T factors

through a Banach space containing no subspaces isomorphic to l1 and no quotients

isomorphic to c0 .

Proof. It follows from the interpolation property of Rosenthal operators,
Theorem 1.5 and the fact [4] that E∗ contains no copies of l1 if and only if E
contains no copies of l1 and no quotients isomorphic to c0 .

2.9. Corollary. Let T ∈ L(X, Y ) . T̄ has separable range if and only it is

T = S + A , with A , S ∈ L(X, Y ) , R(S∗∗) separable and A weakly compact.

Proof. Since T̄ has separable range, the intermediate space E∗∗/E is sepa-
rable. Then E is isomorphic to E1 × E2 , with E1 reflexive and E∗∗

2 separable
[11]. Now denoting by P the projection onto E1 along E2 , it is enough to take
A := jUPk and S := jU(I − P )k , where jUk denotes the decomposition of T .
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