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Abstract. We study the duality properties of the well-known DFJP factorization of operators
[3] by means of a refinement of it. Given an operator T: X — Y we consider a decomposition T' =
jUk, where U: E — F is an isomorphism, and j, Uk are the factors in the DFJP factorization.

If T* is the conjugate operator of T, and T: X**/X — Y**/Y is the operator given by
T(x+ X) :=T"x+Y (z € X*), then we show that the decompositions of T* and T are
precisely k*U*j* = (jUk)* and jUk. From this result we derive several consequences. For
example, we detect new operator ideals with the factorization property, we characterize operators
whose conjugate is Rosenthal, and using a result of Valdivia [11] we show that an operator T' such
that T' has separable range can be decomposed as T = S + K, where S** has separable range
and K is weakly compact.

0. Introduction

For a (continuous linear) operator 7' € L(X,Y’) we shall introduce a decom-
position T' = jUk in which U is an isomorphism, j is an injective tauberian
operator, and k is a cotauberian operator with dense range.

This decomposition is inspired by the equivalent versions of the real inter-
polation method of Banach spaces [2], and it is a refinement of the well-known
DFJP factorization introduced in [3] which factorizes T in two factors: j and
Uk. Moreover, the factorization of 71" in two factors jU and k was considered
in [5].

We show that £*U*j* coincides with the decomposition of the conjugate op-
erator T* € L(Y*, X*), and jUk coincides with the decomposition of the operator
T € L(X**/X,Y*/Y). Moreover, if T belongs to a closed operator ideal <7 , then
k and j belong to the injective hull and the surjective hull of o/, respectively. In
this way the decomposition of an operator makes clear the duality properties and
the symmetry of the DFJP factorization.

As an application we obtain necessary conditions for the factorization prop-
erty for an operator ideal, and we show that some operator ideals defined in terms
of T* or T verify this property. Also we characterize the class of operators whose
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conjugate is Rosenthal as those operators which factor into a Banach space con-
taining no copies of I; and no quotients isomorphic to ¢y, and using a result of [11]
we show that an operator 7' such that T has separable range can be decomposed
as T'= S+ K, where S** has separable range and K is weakly compact.

Notations. X, Y, Z will be Banach spaces, and Bx the closed unit ball of
X. For an operator T' € L(X,Y) we shall denote 7" € L(Y™, X*) the conjugate
operator, and 7' € L(X**/X,Y**/Y) the operator defined by

T(z4+X)=T"24Y  (z€X*).

The properties of T' have been studied in [12].

An operator ideal &7 is said to be closed if &/ (X,Y) is closed in L(X,Y) for
every pair of spaces X, Y.

o/ is injective if given T' € L(X,Y) and an injection (isomorphism into)
J e L(Y,Z) we have JT € o/ implies T € &7 .

o/ is surjective if given T € L(X,Y) and a surjection (surjective operator)
Q€ L(Z,X) we have TQ € « implies T € o .

o/ has the factorization property if every T € &/ factors through a Banach
space Z such that the identity Iz belongs to o .

For an account of the theory of operator ideals we refer to [9].

1. Construction of the decomposition

In this section, given Banach spaces X and Y, and an operator T' € L(X,Y)
we shall construct the decomposition T' = jUk.
For each positive integer n we denote
po(x) = 2" |Te| + 27" |z (2 € X),
qn the gauge of the set 2" T Bx + 2™ " By.
Clearly p, and g, are norms in X and Y respectively, equivalent to the initial

ones.
We shall consider also the Banach spaces

Io(X, pn) = {(mn )/ xn € X, (an )1/2 < oo} and 12(Y, qn)

endowed with its natural norms.

1.1. Lemma. For every (zy) € lo(X, p,), the series >~ Tz, is absolutely
convergent in Y . Moreover

N — {(xn) c la(X,pn)/ ZTxn = O} is a closed subspace of la2(X, py,).

n=1
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Proof. Note that
| Tze|| < 275 ||(z0)] for every k and every (z,) € l2(X, pp).

Hence the series Y - Tz, is absolutely convergent, and N is closed.

The above lemma allows us to introduce the intermediate spaces E, F' of the
decomposition, and two of the factors.

E :=13(X,p,)/N, and

k:xe X — (x,0,0,...)+ N € E.

F:={(yx) € 1o(Y,qn)/yr = y1 for every integer k}, and
Jj: (y,y,y,..) € F—yeY.

Our next result will allow us to connect j and k.

1.2. Theorem. The map U: E — F defined by

U((CEn -I—N (ZTxn,ZTxn,...>

is an isomorphism of E onto F'.

Proof. First we prove that U is well-defined and continuous.
Fix (x,) € l2(X, p,). Denoting

we have
oo 1/2 oo
(>Xa) = (Z 2eall) < 2 )
n=1 k=0
Also, if
d,, = H:zm 3 Tka - H 22—k2m+kam+kH
k=m-+1 =
we have

(T @) <ot (T lran)” < e
n=1 k=1 n=1

Note that > ",z € 2™¢,,Bx; hence Y . Txy € 2M¢,,TBx. Analo-
gously, EZO:mH Txy, € 2=™d,, By .
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Then we have qm(zzozl Tmn) < max{c¢y,, d, }; hence

(% qm(im)?)m < 2|(z,)|

m=1 =

We conclude that
U((zn) + N) = (Z T2,y Tz, .. ) clo(Y,qn) and  |U| <2
n=1 n=1

It follows immediately from the definition that Uis injective. It remains only
to prove that U is surjective.

Given (y,v,v,...) € F and denoting b,, := ¢,(y), for any € > 0 we have
y e (1+e)b,(2"TBx +2 "By).

Then we can write y = Tu, + v, with [|u,|] < 2"(1 4+ €)b, and |jv,| <
27"(1+¢)by,.

Note that Tu,, converges to y, since b, converges to 0. We take 1 = u;
and z, := U, — U,—1 for n > 1.

Obviously >~ | T, converges to y in Y. Moreover, 27" ||z, || < 2(1+¢)b,
and, since Tz, = v,—1 — v, for n > 1, 2""||Tx,| < 3(1+¢€)b,.

In this way we obtain (> 7, pn(xn)2)1/2 <A1+ e) (X0 an(y)?) < oo;
hence (2y,) € l2(Xn,pn) and U((zy) + N) = (y,9,9,--.).

The proof is finished.

1.3. Definition. We shall call jUk the decomposition of T'.
It is immediate to check that jUkx = Tz for every = € X.

X—Tsy

l ]
E—Y>F

Note that j, Uk are the factors, and F' the intermediate space in the DFJP
decomposition [3], and jU, k are the factors, and E the intermediate space in
the factorization considered in [5].

Next we shall show the duality properties of the decomposition.

Given the conjugate T* € L(Y*, X*) of T € L(X,Y), for every positive
integer n we shall denote the equivalent norms associated with 7 in the following
way.

pu(g) =2"T"g +27" gl (g€Y7),
g, the gauge of the set 2"T* By« + 2 " Bx-~.
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Moreover, for subsets A C X and V C X*, we shall denote by A° and °V
the polar subsets given by
A°:={feX*/|f(x)| <1forze A} and
°Vi={zeX/|f(z)|<1for feV}.
1.4. Lemma. We have (X,p,)* = (X*,¢}) and (Y, q,)* = (Y*,p) isomet-
rically.

Proof. Denoting Z := X XY endowed with the norm ||(z,y)| := ||z| + ||y,
we consider the auxiliary operator S € L(X,Z) defined by Sz := (27"z,2"Tx),
and its conjugate S* € L(Z*, X*), which is given by S*(f,g) =2""f +2"T"g.

We have that the unit ball of (X,p,) coincides with S™!B. Then, as Z* is
X* x Y* with the supremum norm, the unit ball of (X, p,)* is

(S7'B2)° = S*By« = 2"T*By- +2 "Bx-~,
which coincides with the unit ball of (X*,¢}).
The other part of the lemma can be proved in a similar manner.
Next we establish the main duality properties of the decomposition.

1.5. Theorem. Suppose jUk is the decomposition of T'. Then k*U*j* is
the decomposition of T .

Proof. We begin showing that j* coincides with the first term of the decom-
position of T™.

Considering F' as a closed subspace of I5(Y, g,), we have that j* acts from
Y* into lo(Y, qn)*/F°.

By Lemma 1.4, we can identify l2(Y, ¢,)* and lo(Y™,p’). Moreover it is not
difficult to check that under this identification

o= {(g) € z2<X*,p:;>/ij*gn =0},

and for every g € Y* and (y,v,y,...) € F we have

U)Wy, =9) =(9.0,0,.. )W 9,9, - - );
hence j*g = (g,0,0,...) + F°, as we wanted to prove.

Next we show that k* is the third term in the decomposition of 7.
The operator k* acts from E* = (lg(X,pn)/N)* = N°, which can be identi-
fied with the subspace

{(frx) € 12(X*,q})/fx = f1 for every integer k},

into X*. Moreover, for every (f,f, f,...) € l2(X*,q}) and * € X we have
(K*(f, f. f,-.))(z) = f(z); hence k*(f, f, f,...) = f.

Finally, U* is an isomorphism and verifies k*U*j* = T™. Hence it is the
second term, since j* has dense range, and k* is injective.
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1.6. Theorem. Suppose jUFk is the decomposition of T'. Then jUEk is the
decomposition of T'.

Proof. If Z,, is a sequence of Banach spaces, then the map
(wn) +12(Zn) € 12(27)/12(Zn) = (wn + Zn) € 12(2,7 /Zn)

defines a bijective isometry.
Also, for a closed subspace M of X, we can identify

M* /M =M+ X)/X, and (X/M)*™)(X/M) = X**/(M°° + X).
The operator j acts from F**/F into Y**/Y | and we have
F°° = {(z1) € lo(Y™,qn) /2 = 21 for every k}
and
F™/F = {(z4 + Yi) € (Y 00)™") /1a(Yy ) | 24 = 21 for every k}:

hence j(z1 + Yx) = j**(21) + Y = 21 + Y, and we conclude that j coincides with
the third term in the decomposition of T'.

Analogously, we can identify E**/E with lo((X,p,)**)/(N°° + l2(X,pn)),
and for every z € X** we have

Bz 4+ X) = k™2 4 (N°° +15(X,pn)) = (2,0,0,...) + (N + 15(X, p,)).

Hence k is the first term in the decomposition of T, and proceeding as in the last
theorem, we can show that U is the second term.

We finish the section showing some additional properties of j and k. Recall
that T: X — Y is tauberian if T** 'Y = X [8], and it is cotauberian if T* is
tauberian [10]. We note that T is tauberian if and only if T' is injective [12], and
T is cotauberian if and only if T has dense range [10].

1.7. Proposition. Suppose jUk is the decomposition of T'. Then
(a) j is tauberian injective,
(b) k is cotauberian with dense range.

Proof. It is enough to note that j € L(F,Y) is injective, k € L(X, F) has
dense range, and jUk is the decomposition of T'.
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2. Applications

In this section we apply the decomposition to obtain some results for operator
ideals [9]. In particular we prove the interpolation property (stronger than the
factorization property) for some operator ideals.

2.1. Proposition. Let n be a positive integer.
(a) ||kz|| < 2™||Tz| + 27"||z| for every x € X.
(b) JBp C2"TI'Bx +2 "By .

Proof. (a) It is enough to note that

with (z,0,...,—2,0,...) € N.
(b) Clearly (y,vy,y,...) € Bp implies g,(y) < 1 for every n; ie., y €
2"T'Bx + 27" By for every n.

Given operator ideals .o/ and %, the product &/ o % is an operator ideal
defined by

o o B(X,Y):={T € L(X,Y)/T = AB for some A € &/, B € #}.

2.2. Proposition. Let o7, # be closed operator ideals.
(a) If o is injective and T € </ , then k € <7 .
(b) If A is surjective and T € A, then j € AB.
(¢) If & is injective and A is surjective, then BN o = KB o o .

Proof. (a) and (b) can be derived from the last proposition, using the char-
acterization of the closed injective hull of an operator ideal in [7; 20.7.3], and the
corresponding characterization of the closed surjective hull, respectively.

(c) is a consequence of (a) and (b):

fTeaNABthen j€ Band k € &/; hence jlUL=T € Bo

and the converse implication is evident. This part was proved in [6].

We shall consider now for operator ideals a more restrictive property than the
factorization property.

2.3. Definition. An operator ideal &7 has the interpolation property if the
identity Ir of the intermediate space in the DFJP factorization of 1" belongs to
&/ when T € of .

The decomposition can be applied to show that some operator ideals have the
interpolation property, as in the following result, proved in [6] using real interpo-
lation techniques. The proof we shall give is more elementary.
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2.4. Theorem. Let </ be an injective and surjective operator ideal verifying
the Yo -condition: For all sequences of Banach spaces (X,,) and (Y,,), an operator
S: 15(X,,) — 12(Y,) belongs to o/ when the component operators Sy,n: X, — Y,
in the matricial representation of S belong to < .

Then < has the interpolation property.

Proof. Let @ and J denote the quotient map onto l3(X,p,)/N and the
injection of F' into I5(Y, gy,) respectively, and suppose jUk is the decomposition
of T.

An easy computation shows that the components of the matricial represen-

tation of the operator JUQ: l2(X,p,) — [2(Y,q,) coincide with T: (X,p,) —
(Y, qm); then JUQ € o7, because o satisfies the Y5-condition; hence U € 7,

since .o/ is injective and surjective.

Before continuing, we present some examples.

2.5. Examples. The following operator ideals have the interpolation prop-
erty.

a) Operators with finite dimensional range.

)
b)

(

(b) Operators with separable range.
(c) Weakly compact operators.
(

(

(

d) Rosenthal operators.
e) Banach-Saks operators.

f) Decomposing operators.

Proof. (a) and (b) are immediate.
(c), (d), (e) and (f) follow Theorem 2.4 (see [6]).

As an application of the first part, we present two procedures of construction
of operator ideals which preserve the interpolation property.

2.6. Theorem. Let o/ be an operator ideal with the interpolation property.
The operator ideals defined by

FUX,Y):={T € L(X,Y)/T* € 7 (Y*, X*)}
and
AdC°(X,Y) = {T € L(X,Y)/T e JZ%(X**/X,Y**/Y)}
have the interpolation property.

Proof. 1t is easy to verify that &/¢ and &/ are operator ideals, and the
interpolation property follows from Theorems 1.5 and 1.6, respectively.

We derive some consequences.
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2.7. Corollary. A quasi-weakly compact operator T'; i.e., an operator such
that T has finite dimensional range, factors through a quasi-reflexive space.

This is the main result in [1].

2.8. Corollary. Let T € L(X,Y). T* is Rosenthal if and only if T factors
through a Banach space containing no subspaces isomorphic to l; and no quotients
isomorphic to cq.

Proof. 1t follows from the interpolation property of Rosenthal operators,
Theorem 1.5 and the fact [4] that E* contains no copies of [; if and only if E
contains no copies of /; and no quotients isomorphic to cg.

2.9. Corollary. Let T € L(X,Y). T has separable range if and only it is
T=S+A,with A, Se€ L(X,Y), R(S*) separable and A weakly compact.

Proof. Since T has separable range, the intermediate space E**/E is sepa-
rable. Then E is isomorphic to E; x Ey, with E; reflexive and E3* separable
[11]. Now denoting by P the projection onto F; along Fs, it is enough to take
A:=jUPk and S := jU(I — P)k, where jUk denotes the decomposition of T'.
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