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SOME HOMEOMORPHISMS OF THE SPHERE
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Abstract. We give an example of a flexible curve, i.e., a closed curve Γ so that for any other
closed curve Γ′ and ε > 0 there is a homeomorphism Φ of the sphere, conformal off Γ, so that
Φ(Γ) lies in an ε neighborhood of Γ′ . Moreover, for any guage function h such that h(t) = o(t)
as t→ 0 , we may take Γ to have zero Hausdorff measure with respect to h . This extends a result
of Robert Kaufman on removable sets. We also survey some known results on removable sets and
give a totally disconnected version of the example above.

1. Introduction

A curve Γ in the plane is called conformally rigid (or removable for conformal
homeomorphisms) if any homeomorphism of the Riemann sphere C∞ which is
conformal off Γ must be a Möbius transformation. Morera’s theorem implies that
a circle is rigid, for example. Other examples include rectifiable curves and quasi-
circles. In this note we are interested in curves with the opposite behavior. For
convenience we will let CH(E) denote the homeomorphisms of C∞ to itself which
are conformal off E . We shall say Γ is flexible if given any other curve Γ′ and any
ε > 0 there is a homeomorphism Φ ∈ CH(Γ) of C∞ to itself which is conformal
off Γ and so that

̺
(

Φ(Γ),Γ′
)

< ε,

where ̺(E, F ) is the Hausdorff metric,

̺(E, F ) = sup
z∈E

inf
w∈F

|z − w| + sup
w∈F

inf
z∈E

|z − w|.

The main purpose of this note is to show such things exist.

Theorem 1. There exists a closed Jordan curve Γ which is flexible.
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Equivalently, there is a curve Γ such that the restriction of CH(Γ) to Γ is
dense in the collection of all homeomorphisms to Γ into C (up to reparameteriza-
tions of the curve). In fact our proof will actually show something stronger: there
is a Γ so that given any conformal mappings Φ1,Φ2 on the two complementary
components Ω1,Ω2 of Γ which have disjoint images and any ε > 0, there is a
Φ ∈ CH(Γ) which approximates Φi to within ε on { z ∈ Ωi : dist(z,Γ) > ε) } for
i = 1, 2. A modification of the proof also shows that flexible arcs exist. If CH(E)
consists of just the Möbius transformations we shall call CH(E) trivial or say E
is CH-removable. Otherwise E is called non-removable. Building non-removable
curves is not hard. For example, a curve of positive area has this property, as
can be seen by taking a quasiconformal mapping whose dilatation lives on the
curve. At the other extreme a curve with σ -finite length is removable. Robert
Kaufman has constructed examples of non-removable sets which are “close” to σ -
finite length and removable sets which are “close” to positive area in the sense of
Hausdorff measures (the precise results will be described in the next section). Our
proof will also show that flexible curves can be taken as close to σ -finite length as
we wish:

Theorem 2. For any Hausdorff measure function h such that h(t) = o(t) as

t→ 0 , there is a flexible curve Γ such that Λh(Γ) = 0 .

The construction will also show how to build a curve Γ and non-Möbius Φ
so that both Λh(Γ) = Λh

(

Φ(Γ)
)

= 0. Moreover, Γ itself may be taken in an ε
neighborhood of any preassigned closed curve. I do not know if an example of
a non-removable curve where both Γ and Φ(Γ) have small dimension has been
recorded before. In Kaufman’s example, Φ(Γ) has positive area, though possibly
his argument could be modified to give Φ(Γ) small as well. Zheng-Xu He asked
me about an analogue of this for totally disconnected sets. A modification of the
proof of Theorems 1 and 2 gives

Theorem 3. For any Hausdorff measure function h such that h(t) = o(t) as

t → 0 , there is a totally disconnected E and a non-Möbius Φ ∈ CH(E) so that

Λh(E) = Λh

(

Φ(E)
)

= 0 .

Finally, let us mention an alternative form of Theorem 1. Given a closed
curve Γ in C∞ with complementary components Ω1,Ω2 and Riemann mappings
ϕ1, ϕ2 from the unit disk to Ω1,Ω2 , the homeomorphism of the circle to itself
defined by ψ = ϕ−1

1 ◦ ϕ2 is called a conformal welding associated to Γ (and is
determined up to composition with Möbius transformations preserving the disk).
A well studied problem is to try to relate properties of Γ to those of ψ and try
to determine which homeomorphisms ψ arise as conformal weldings. For “nice”
ψ , there is such a Γ and it is unique up to Möbius transformations. Note that
two curves Γ,Γ′ have the same welding map if and only if Φ(Γ) = Γ′ for some
Φ ∈ CH(Γ). Thus non-removable curves correspond to conformal welding maps
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for which the corresponding curve is not unique (up to Möbius transformations).
In fact, Theorem 1 implies

Corollary 1. There is a homeomorphism ψ of the circle so that the set of

corresponding Γ ’s is dense in the set of all closed Jordan curves (with the Hausdorff

metric) .

The idea behind Theorems 1, 2 and 3 is very simple. If the curve Γ was ac-
tually a thin strip of some positive width, there would be no problem constructing
Φ by letting it be any conformal map on either side of the strip and interpolating
these maps continuously across the strip. We will show that if the strip is “filled
up” by a highly oscillating curve (e.g., a curve which is ε-dense in the strip) then
conformal maps on either side of curve can still be continuously interpolated in
some sense. The construction makes this precise.

This paper is a revised version a preprint first written in 1987 and has ben-
efitted from several sources. I would particularly like to thank Peter Jones and
Robert Kaufman for a variety of discussions on topics related to removable sets.

2. Summary of related results

In this section I will attempt to summarize what is known (at least to me)
about removable sets for conformal mappings. Given a closed set E and its com-
plement Ω it is natural to consider several related spaces of functions

H∞(Ω) = {bounded holomorphic functions on Ω}

S(Ω) = {1 − 1, (Schlicht) analytic maps on Ω}

D(Ω) = W 1,2(Ω) = {analytic functions such that

∫∫

Ω

|f ′|2 dx dy <∞}

AE = {elements of C(E) with analytic extensions to C∞ \ E}

CH(E) = {homeomorphisms of C∞ to itself which are conformal off E}

QCH(E) = {homeomorphisms of C∞ to itself which are quasiconformal off E}.

These satisfy some obvious inclusions such as, AE ⊂ H∞(Ω) and CH(E) ⊂ S(Ω).
Functions in S(Ω) and CH(E) are not bounded, but if normalized so that ∞ is
in Ω and Φ(∞) = ∞ , then Φ(z) − z is bounded and also is in D(Ω). We say
that the set E is removable for the class in question if every element of the class
agrees with some element of the corresponding class for E = ∅ , Ω = C∞ , i.e., if
the functions in question cannot distinguish E from the empty set.

For none of these classes is there a geometric characterization of the removable
sets. What follows is a list of propositions concerning removable sets for the various
classes. The references given are not necessarily the original ones.
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We call h a measure function if it is a continuous increasing function from
[0,∞) to itself with h(0) = 0 and we define the associated Hausdorff measure by

Λδ
h(Γ) = inf

{

∑

j

h(rj) : Γ ⊂
⋃

jD(xj , rj), rj ≤ δ

}

Λh(Γ) = lim
δ→0

Λδ
h(Γ).

If h(t) = tα we simply denote the measure Λα . We set

dim(E) = inf{α : Λα(E) = 0 }.

A countable union of sets of finite measure is called σ -finite.

Proposition 1 ([4]). If Λ1(E) = 0 , E is removable for H∞(Ω) . If E has

σ -finite Λ1 measure it is removable for AE . If dim(E) > 0 it is not removable

for AE (hence not for H∞(Ω)) .

This is essentially a “folk-theorem”. Details are also recorded in [16] among
other places. For sets E with dim(E) = 1 or even stronger, 0 < Λ1(E) < ∞ ,
there are a wide variety of results, counterexamples and conjectures. See [12], [16],
[19], [22], [23], [24].

One other interesting related fact is that if E has no interior and f ∈ AE

then an application of the argument principle (see [9, Lemma 3.6.4]) shows that
f(E) = f(C∞) , i.e., f takes on E every value it takes anywhere on the sphere.
(For a closed curve the proof is particularly easy: suppose f has no zeros on Γ.
Then the winding number of f(Γ) around zero is well defined and counts the
number of zeros of f on one side of Γ. But its negative counts the number of
zeros on the other side, hence both must be zero, i.e, f has no zeros on C∞ .)
In particular, if f is non-constant then f(E) covers an open set. If Φ ∈ CH(E)
is not Möbius and satisfies Φ(0) = 0, Φ(∞) = ∞ then f(z) = Φ(z)/z ∈ AE

and so maps E to a set with interior. This says such examples must be fairly
complicated. If dim(E) = 1 it says that Φ is at best Hölder of order 1/2.

A better result is possible, as was pointed out to me by Peter Jones. Suppose
Γ is a curve and Γ(ε) = { z : dist(z,Γ) < ε } . If Φ is Hölder of order α , then Φ
can be aprroximated by a smooth function F which agrees with Φ outside Γ(ε)
and satisfies |∇F | ≤ εα−1 . The deviation of F from a Möbius transformation can
be measured by the integral,

∫∫

|∂F | dx dy ≤ εα−1|Γ(ε)|.

In our examples the area of Γ(ε) tends to zero faster than ε1+δ for any δ > 0, so
non-trivial elements of CH(Γ) cannot be Hölder of any order. For a general curve,
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Jones’ argument would imply that any non-trivial Φ is Hölder of order at most
dim(Γ) − 1. If Γ has positive area, this is correct; by a result of Nguyen Xuan
Uy [29], there is a Lipschitz function f , analytic on the complement of Γ. Thus
Φ(z) = z + εf(z) is a bi-Lipschitz homeomorphism, analytic off Γ, if ε is small
enough. In general though, the construction in this note can be modified to give
a curve Γ with any Hausdorff dimension between 1 and 2 so that any non-trivial
Φ ∈ CH(Γ) is not Hölder of any positive order. (See the remark at the end of
Section 5.)

Proposition 2. CH(E) and QCH(E) have the same removable sets. Qua-

sicircles are removable for both.

A quasicircle is the image of the unit circle under a quasiconformal map. These
curves are geometrically characterized by the following condition: γ is a quasicircle
if there is a C > 0 so that the shorter arc between two points z, w ∈ γ has diameter
at most C|z − w| . Proposition 2 is another well known result and follows easily
from the measurable Riemann mapping theorem, e.g., [1, Theorem V.3]. Since
quasicircles can have dimension > 1 they are not necessarily removable for AE .

Proposition 3 ([28], [2],[3, Theorem IV.2.d]). The removable sets for the

classes S(Ω) and D(Ω) are the same.

Proposition 4 ([2], [3, Theorem IV.2.b]). E is removable for D(Ω) if and

only if it has absolute measure zero, i.e., for every Φ ∈ S(Ω) the complement of

Φ(Ω) has zero measure.

Proposition 5 ([18]). If U is a John domain (see below) and E = ∂U then

E is removable for D(Ω) ∩ C(C∞) (and hence removable for CH(E)) .

A John domain U is a connected open set so that there exists ε > 0 and a
base point z0 ∈ U so that any point z ∈ U can be connected to z0 by a curve γ
in U which satisfies

dist(w, ∂U) ≥ εdist(w, z), w ∈ γ.

A curve Γ is a quasicircle if and only if both its complementary domains are John
domains so that Proposition 5 contains Proposition 2 as a special case. It also
covers sets E which are not curves but which have some sort of self similarity,
such as certain Julia sets arising in iteration theory.

Proposition 6 ([11]). If F ⊂ R is compact then E = F × [0, 1] is removable

for QCH if and only if F is uncountable.

The proof involves considering a quasiconformal mapping of the form

z → z + g(y)µ({−∞, x}),
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where µ is a continuous measure on F and g is a smooth function supported on
[0, 1] . The image of E under such a map clearly has positive area, so E cannot be
removable. Using a more sophisticated version of this argument Robert Kaufman
proved

Proposition 7 ([20]). If F is uncountable then F × [0, 1] contains a graph

E which is not removable for QCH .

A graph means that for each x ∈ F , E contains at most one point with first
coordinate x . By choosing F correctly we can find E so that Λh(E) = 0 for any
prechosen h with h(t) = o(t) . Kaufman has also shown (personal communication):
suppose E has the property that for any δ > 0 there is a covering of E by
squares {Qj} of size ≤ δ so that the doubles {2Qj} are disjoint. Then E is
removable for S(Ω). (This is a special case of a more general result of his on
removable sets for meromorphic functions. This version for conformal maps also
follows from Proposition 4.) Using this, and given any increasing function h
so that h(t)/t2 ր ∞ as t → 0, he builds a totally disconnected set E with
Λh(E) > 0, but E removable for S(E) (and so removable for CH). Thus in
terms of Hausdorff measures alone, positive area is the best possible sufficient
condition for non-removability and σ -finite length is the best possible sufficient
condition for removability.

The idea of a “flexible” curve in the introduction says that CH(Γ) contains,
in some sense, as many homeomorphisms as possible. The relation of this property
to the class CH is thus analogous to the relation between Dirichlet sets and the
class AE . Recall that AE is called a Dirichlet algebra if the real parts of functions
in AE are uniformly dense in CR(E) , the collection of all real valued functions
on E . E is a Dirichlet set if AE is a Dirichlet algebra. Since a holomorphic
function is determined (up to constants) by it real parts, the Dirichlet algebras
are thus those which are as “large as possible” in the sense that almost any real
function can occur (up to epsilon) as the real part of something in the algebra.
Oddly, although we cannot characterize the curves for which AΓ is non-trivial,
there is a characterization of the curves which are Dirichlet sets.

Proposition 8. The following are equivalent for a closed curve Γ :

(1) AΓ is a Dirichlet algebra.

(2) If ω1 and ω2 are the harmonic measures with respect to? points on opposite

sides of Γ then ω1 ⊥ ω2 ( i.e., there exists E ⊂ Γ with ω1(E) = ω2(E
c) = 0) .

(3) If Φ1,Φ2 are conformal maps from the unit disk to the two complementary

components of Γ then ψ = Φ−1
1 ◦ Φ2 is a singular homeomorphism of the

circle to itself ( i.e., there exists E ⊂ {|z| = 1} so that |E| = |ψ(Ec)| = 1) .

(4) The set of tangent points of Γ has zero Λ1 measure.

A point x ∈ Γ is a tangent of Γ if there is a line L passing though x such
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that
dist

(

Γ ∩D(x, r), L
)

= o(r).

The equivalence of (2) and (3) is just a matter of unwinding the definitions. (1)
if and only if (2) is due to Browder and Wermer [10] and (2) if and only if (4) is
in [8]. Also see [6], [7], [14] for generalizations from curves to arbitrary compact
sets. As in the remark following Proposition 7, Dirichlet curves can be constructed
with Λh(Γ) = 0 for any preassigned h . There are additional characterizations of
Dirichlet sets in terms of continuous analytic capacity and pointwise bounded
approximations (see [6] and its references). It is not too hard to see that a flexible
curve must also be Dirichlet.

Numerous questions about removable sets remain open, the most basic to
be to characterize as geometrically as possible the removable sets for each class.
Below we list some other questions (old and new) which may be more accessible
(some may even be easy or known).

Question 1 (P. Jones). If E is removable for D(Ω)∩C(C∞) then it is known
to be removable for CH(E) (see [18]). Is the converse true?

Question 2. If E is not removable for S then Proposition 4 says there
is a conformal map of Ec to the complement of a set of positive area. If E is
non-removable for CH is there an element Φ ∈ CH(E) so that Φ(E) has positive
area?

Question 3. Every planar domain can be conformally mapped to the com-
plement of a set of area zero (but this map need not be continuous on the entire
sphere). If E has positive area and no interior is there a Φ ∈ CH(E) so that Φ(E)
has zero area?

Question 4. Suppose Γ is a non-removable curve for CH. Does Γ contain
a totally disconnected subset which is not removable for CH? Does Γ contain
a proper closed subset which is not removable? Is the property of removability
(flexibility) local? It would be very surprising if this failed.

Question 5. Is there a characterization of the conformal welding maps which
correspond to flexible curves? It should say that the circle homeomorphism is very
singular. If the mapping is? even quasisymmetric then the curve Γ is a quasicircle,
and thus removable for CH. (Quasisymmetric means |ψ(x+ t)− ψ(x)| ∼ |ψ(x)−
ψ(x− t)| with constants independent of x and t .)

Question 6. Is a subarc of a flexible arc another flexible arc? (They are for
the examples constructed here.)

Question 7 (R. Kaufman). In [20] Kaufman showed that the graph of a
continuous, real-valued function could be non-removable for CH. He has also asked
if such a function f can be taken arbitrarily close to Lipschitz. More precisely, if
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ω is an increasing function on [0,∞) such that ω(t) = o(t) is there a function f
with modulus of continuity ω whose graph is a non-removable set?

3. Flexible curves

Before stating our main lemma we introduce some notation. First, for a set
S and an ε > 0 we let

S(ε) = { z : dist(z, S) < ε }.

Next, if ϕ1 and ϕ2 are uniformly continuous mappings of Ω1 and Ω2 respectively
onto the complementary components of a curve Γ′ , we set

jump(ϕ1, ϕ2) = sup
x∈Γ

distΓ′

(

ϕ1(x), ϕ2(x)
)

,

where the distance is measured by arclength along Γ′ . We will prove the theorem
by an iterative construction using:

Lemma 1. Suppose Γ is a smooth, closed Jordan curve with complementary

components Ω1 and Ω2 . Suppose F is a compact family of pairs of smooth

conformal maps on Ω1,Ω2 whose images have disjoint interiors. Also suppose

α > 0 , δ > 0 and η > 0 are given. Then there exists a smooth, closed Jordan curve

γ with complementary components ω1 , ω2 so that the following holds. Suppose

(Φ1,Φ2) ∈ F normalized so A = C\
(

Φ1(Ω1)∪Φ2(Ω2)
)

had diameter ∼ 1 . Then

there exist conformal mappings ϕ1 and ϕ2 on ω1 and ω2 such that

(1) γ′ = ϕ1(γ) = ϕ2(γ) is a smooth curve.

(2) γ ⊂ Γ(α) , γ′ ⊂ A(α) .
(3) |Φi(z) − ϕi(z)| < δ for z ∈ Ωi \ Γ(α) and i = 1, 2 .

(4) jumpγ′(ϕ1, ϕ2) < η .

First we will show how to build a non-removable curve for CH with “small”
dimension using the lemma. Then we will show how to build a flexible one. Sup-
pose {εn} is a sequence of positive numbers decreasing to 0 (to be chosen later).
Start with any smooth curve Γ0 and univalent, conformal maps Φ0

1 and Φ0
2 on

the complementary components with disjoint, smooth images. (In this case we are
taking F to just be one pair of functions.) Using the lemma, approximate them
with a curve Γ1 and maps Φ1

1 and Φ1
2 such that Γ1 ⊂ Γ0(ε1) and

jump(Φ1
1,Φ

1
2) <

1
2
.

In general, we replace Γn−1 and Φn−1
i , i = 1, 2, with Γn and Φn

i satisfying
Γn ⊂ Γn−1(εn) , Φn(Γn) ⊂ Φn−1(Γn−1)(εn) and

jump(Φn
1 ,Φ

n
2 ) < 2−n.
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Then Γ = limn Γn , Φi = limn Φn
i exist, and Φ1 and Φ2 agree on Γ so they

define a continuous function on the sphere which is analytic off Γ. Since it is
the uniform limit of univalent, analytic functions it is also univalent off Γ. If we
choose εn small enough (depending on γn−1 ) one can verify that Γ is a Jordan
curve. Since Φ1 and Φ2 are analytic, they cannot be constant on any subarc of Γ.
Using this and continuity, one can prove that they are both injective on Γ, and
therefore define a homeomorphism of the sphere which is conformal off Γ. Since
this map uniformly approximates Φ0

1 and Φ0
2 away from Γ we can easily arrange

for Φ not to be Möbius. To show that Λh(Γ) = Λh

(

Φ(Γ)
)

= 0, take εn so small
that both Γn−1 and Φn−1(Γn−1) can be covered by N disks of radius εn and
Nh(εn) < 2−n . This is possible since the curves are smooth and h(t) = o(t) .
Then clearly Λh(Γ) = Λh

(

Φ(Γ)
)

= 0.
To construct a flexible curve, first choose sequences {ηn} tending to zero and

{δn} summable. At the nth stage αn is chosen so that Γn−1 can be covered by
N disks of radius αn where Nh(αn) < 1/n . This guarantees that the limiting
curve will satisfy Λh(Γ) = 0. There is a compact family of smooth curves Γ′′ so
that any closed curve Γ′ of diameter 1 can be approximated to within αn/100
(in the Hausdorff metric) by some member of the family. At the nth stage we
will also wish to apply the lemma with a compact family Fn of conformal maps
determined by mapping Γn−1 onto this compact family of smooth approximating
curves.

Define a sequence of curves {Γn} as above using these sequences. Now we
show the resulting curve Γ is flexible. Suppose we are given the target curve Γ′ .
Rescale so Γ′ has diameter around 1. Choose n so that αn < ε/4. Let Γ′′ be
a smooth curve in our compact family which approximates Γ′ to within ε/4 and
let let Φ1,Φ2 be conformal maps from the complements of Γn−1 to the comple-
mentary components of Γ′′ . By the lemma there are conformal mappings ϕ1, ϕ2

on the complementary components of Γn so that the image of Γn is a smooth
curve approximating Γ′′ to within αn < ε/4 and so that the “jump” is < ηn .
Now pass to the limit as above, perturbing the image curve by at most ε2−m at
the mth stage (which we can do if αn tends to 0 fast enough). The resulting
map Φ ∈ CH(Γ) as desired and Φ(Γ) approximates Γ′′ to within ε/2 (and hence
approximates Γ′ to within ε). That proves Theorem 2.

4. Proof of the lemma

It only remains to prove the lemma. We start by approximating Γ to within
α/100 on either side by two smooth curves, Γ1 and Γ2 . We choose them so that
on small scales Γ, Γ1 and Γ2 look like three parallel lines (see Figure 1). We
normalize so that dist(Γ1,Γ2) ∼ 1 and draw line segments {Lj} perpendicular to
Γ connecting Γ1 and Γ2 . The endpoints of adjacent segments should be within ε
of each other (ε to be chosen later).

The curves Γ1 and Γ2 bound disjoint domains Ω̂1 and Ω̂2 . Let K1 consist
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Figure 1.

Figure 2.

Figure 3.

of the union of the closure of Ω̂1 and an alternating collection of the {Lj} (see

Figure 2). K2 is defined similarly using Ω̂2 and the remaining {Lj} .
We will now define a bi-Lipschitz function f on K = K1 ∪ K2 such that

f = Φ1 on Ω̂1 and f = Φ2 on Ω̂2 and for

z, w ∈ K, |z − w| < 2ε⇒ |f(z) − f(w)| < η/10.

If z, w ∈ Ω̂1∪Ω̂2 this holds for ε small enough, so we only have to define f on each
on the segments Lj . One (of many) ways to do this is to note that the region A
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Figure 4.

between Γ1 and Γ2 is a topological annulus, so there is a smooth diffeomorphism
H from A \ L0 to a rectangle R with an identification of the segment L0 with
two opposite sides of R . If we let aj = Φ1(Lj ∩ Γ1) and bj = Φ2(Lj ∩ Γ2) and
parameterize Lj by t , 0 ≤ t ≤ 1 (going from Γ1 to Γ2 ) then we can set

f(t) = H−1
(

(1 − t)H(aj) + tH(bj)
)

.

Then f is bi-Lipschitz on K and will satisfy the condition above if ε is small
enough. See Figure 3.

We now observe that f can be uniformly approximated on K1 and K2 by
functions g1 and g2 which are holomorphic and univalent on open neighborhoods
of K1 and K2 respectively, and which have disjoint images. One way to see this
is to use Mergelyan’s theorem (e.g., [25], [27, Chapter 20]). It says that if K
is a compact set not dividing the plane then any function continuous on K and
holomorphic on its interior can be uniformly approximated on K by polynomials.
Thus we can approximate f ′ uniformly on Ki by a function holomorphic on a
neighborhood of Ki . Taking then an appropriate primitive of that function gives
the desired approximation since f is bi-Lipschitz.

Also note that if we are given not just one function f , but a compact family
of functions, then we can choose a fixed neighborhood of K1 and K2 on which
each member of the family can be approximated. Given the α in the lemma,
any curve of diameter 1 can be approximated to within α by a member of some
compact family of smooth curves (which depends on α of course). Thus we take
our neighborhoods with this property. Next we define two smooth curves Γ̃1 and
Γ̃2 by adjoining to Γ1 and Γ2 “thickened” versions of the line segments {Lj}

on which g1 and g2 are defined (see Figure 4). We let Ω̃i , for i = 1, 2, denote
the domains bounded by these curves. We are essentially done now, except that
Ω̃1 and Ω̃2 are not bounded by a common curve. However, this is easy to fix.
Consider the curve γ in Figure 5 and let ω1 and ω2 denote the complementary
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components. The point is that “conformally” ω1 and ω2 look like Ω̃1 and Ω̃2 .
More precisely, we can find domains Ki ⊂ ω̃i ⊂ Ω̃i (see Figure 6) and conformal
maps Ψi: ωi → ω̃i , for i = 1, 2, such that

z, w ∈ ωi, |z − w| < ν ⇒ |Ψi(z) − Ψi(w)| ≤ 2ε, i = 1, 2

for ν small enough. Thus ϕi = gi ◦ Ψi satisfy the lemma.

Figure 5.

Figure 6.

Finally, the images ϕ1(ω1) and ϕ2(ω2) bound disjoint smooth domains, but
are not bounded by a common curve. This is easily fixed by “filling in” the region
between the domains by a curve, each side of which can be mapped conformally to
the corresponding domain by a map which approximates the identity away from
the curve. See Figure 7.
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Figure 7.

5. Non-removable Cantor sets

In this section we modify the preceding discussion to construct non-removable
Cantor sets such that both E and Φ(E) are small. We remind the reader that
similar examples were first constructed in [20] (but in that paper Φ(E) had positive
area).

We start back at the beginning to Section 4 with a curve Γ and smooth
conformal maps defined on either side of Γ and mapping onto disjoint domains.
As before, approximate Γ on either side by smooth curves Γ1,Γ2 and define a
collection of “crosscuts ” {Lj} . The difference is that instead of dividing the
crosscuts into alternating subsets and associating one family with one side of the
curve and the other family with the other side, we simply take one set K equal
to the closure of Ω̂1 ∪ Ω̂2 ∪ · · · ∪j Lj . As before we find a smooth, bi-Lipschitz
function f of K which we then approximate by a conformal map on some open
neighborhood of K . Instead of invoking Mergelyan’s theorem for sets not dividing
the plane (K obviously does divide the plane) we use his theorem that if K has
only finitely many complementary components then any function continuous on
K and holomorphic on its interior can be uniformly approximated by a rational
function with poles of K (e.g., [15]). Thus our original maps Φ1,Φ2 have been
approximated by a single conformal map Φ which is defined on a neighborhood Ω
of K . Each complementary component of Ω can be “filled in” by an oscillating
curve, in a way which the reader is by now familiar with. See Figure 8. Similarly
the complementary components of Φ(Ω) may be filled in by curves.

Now repeat the construction. The only difference is that we are now starting
with a collection of Jordan arcs rather than closed Jordan curves. However, this
does not cause any problems. One way to see this is to extend each arc slightly at
both endpoints so that it goes into the region where Φ is analytic. Now approx-
imate the arc on either side by smooth arcs Γ1,Γ2 and form the new set K by
removing the thin strip between Γ1,Γ2 and adding the crosscuts. Now proceed as
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Figure 8.

before. It is fairly clear that a similar argument allows one to construct flexible
arcs (rather than just flexible closed curves).

In Section 2 we mentioned that one could modify our construction to produce
curves Γ with dim(Γ) = d for any 1 < d < 2, but such that any Hölder homeo-
morphism in CH(Γ) must be Möbius. This follows from the techniques of Jones’
paper [18]. The argument sketched in Section 2 showed that if Γ looked like a
straight line on many small scales then Γ did not have any non-trivial, Hölder
elements of CH(Γ). In some sense this is because straight lines are removable
for CH. Quasicircles are also removable for CH and using an idea from [18] we
can show that if Γ looks like a quasiarc on many small scales, then it has no
non-trivial, Hölder homeomorphims. Jones’ arguments in [18] easily imply that if
Γ looks like a quasiarc between scales ε0 to ε1 , (i.e., there is a C so that any
subarc of Γ of diameter < ε0 can be approximated to within ε1 by a quasiarc
of constant C ), and if Φ is a homeomorphism conformal off Γ(ε) and Hölder of
order α then there is a smooth F which equals Φ off Γ(ε) and which satisfies

∫∫

C

|∇F |2 dx dy ≤ C

∫∫

C\Γ(ε0)

|Φ′|2 dx dy + Cεα
1 ,

where C depends on the quasicircle constant. If ε1 is small enough, the second
term is dominated by the first. If this happens on infinitely many scales, then we
get that Φ can be approximated in the W 1,2(C) norm by smooth functions, which
implies Φ is Möbius (this is Weyl’s lemma, see e.g. [18]). Thus to produce the
desired Γ we only need insure that there are sufficiently many scales on which Γ
looks like a quasicircle. In Section 4, we did this by making Γ look like a straight
line on infinitely many scales. Here we simply choose some self-similar quasi-arc
of the desired dimension (say one based on some polygonal construction like the
von Koch snowflake) and make Γ look like this arc on scales between the scales
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where the lemma is used. If these “correction” scales are chosen small enough at
each stage, the resulting curve will have the correct dimension and no non-trivial
Hölder homeomorphisms in CH(Γ).
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