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Abstract. We consider balayages in H -cones. Any pair of elements in an H -cone has mixed
envelopes formed relative to two partial orders. Our main result characterizes balayages in terms
of mixed envelopes. We state an explicit formula of a balayage in an H -cone admitting a certain
type of unit.

Introduction

Mappings called balayages are important objects in the theory of harmonic
spaces ([4]). An axiomatic counterpart of the cone of positive superharmonic
functions on a harmonic space is an H -cone ([3, Section 2]). We consider balayages
in H -cones.

Any pair of elements of an H -cone has mixed envelopes, studied by Arsove
and Leutwiler ([2]), defined in terms of two partial orders. Using mixed envelopes
it is possible to extend the Freudental spectral theorem of vector lattices (or Riesz
spaces) for H -cones [1]. In our main theorem (Theorem 2.4) we use mixed en-
velopes to characterize balayages. This result leads to an explicit formula of a
balayage in an H -cone admitting a special unit (Theorem 2.8).

1. Preliminaries

We review the basic concepts.

Definition 1.1. Let E be an ordered vector space and S be a convex cone
in E such that S ⊂ E+ and E = S − S . The cone S is called an H -cone if it
possesses the following properties:

(A1) any upward directed and dominated subset F of S has a least upper bound
in E denoted by ∨F and ∨F ∈ S ,

(A2) any subset F of S has a greatest lower bound in E denoted by ∧F and
∧F ∈ S ,

(A3) for any s and t in S the greatest lower bound of the set { u ∈ S | s− t ≤ u }
in E denoted by R(s− t) satisfies R(s− t) ∈ S and s−R(s− t) ∈ S .
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The equivalence of the preceding definition and the original definition of an
H -cone [3, p. 37) is proved in [6].

The partial order ≤ in an H -cone is called the initial order. Another partial
order called specific order denoted by 4 is defined in an H -cone by

s 4 t if and only if t = s+ s′ for some s′ ∈ S.

Proposition 1.2. If S is an H -cone in an ordered vector space E then E
is an Archimedean vector lattice with respect to the initial order. Moreover, the

set E is a conditionally complete vector lattice with respect to the specific order.

Proof. See [3, Proposition 2.1.1] and [3, Theorem 2.1.5].
Any pair of elements in an H -cone has mixed envelopes introduced by Arsove

and Leutwiler in algebraic potential theory ([1, 2]).

Theorem 1.3. Let S be an H -cone. Then for any elements s and t in S
there exist a mixed lower envelope

s⌣\t = max{ x ∈ S | x 4 s, x ≤ t }

and a mixed upper envelope

s⌢/t = min{ x ∈ s | x < s, x ≥ t }

satisfying the equality

s⌣\t+ t⌢/s = s+ t.

Proof. See [2, Theorem 2.5].
We use the following properties of mixed lower envelopes in H -cones stated

in [2, Section 3]:

(1.1) t 4 s if and only if s⌣\t = t

(1.2) t ≤ s if and only if t⌣\s = t

(1.3) a+ s⌣\t = (a+ s)⌣\(a+ t)

(1.4) (s+ t)⌣\u 4 s⌣\u+ t⌣\u

(1.5) u⌣\(s+ t) ≤ u⌣\s+ u⌣\t

Two types of units, defined next, are important in the theory of H -cones.

Definition 1.4. Let S be an H -cone. An element e ∈ S is called a weak

unit if s = ∨n∈N(ne) ∧ s for all s ∈ S . An element p ∈ S is called a generator if
s =

∨

n∈N
(np)⌣\s for all s ∈ S .

Note that a generator is also a weak unit. If the initial order and the specific
order coincide, then an element is a weak unit if and only if it is a generator.
Moreover, an H -cone possessing a weak unit and a countable order dense set has
a generator [6, Theorem 2.8].
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2. Characterizations of balayages of H -cones

We are going to state some new characterizations of balayages in terms of
mixed lower envelopes. We start by recalling the main concepts.

Definition 2.1. Let S be an H -cone and B be a mapping from S into S .
The mapping B is called left order continuous if for any s ∈ S the property

B(s) =
∨

t∈F

B(t)

holds for all upward directed subsets F of S such that s = ∨F . The mapping
B is called idempotent if B2 = B and contractive if B(s) ≤ s for all s ∈ S .
Moreover, the mapping B: S → S is called a balayage if it is additive, left order
continuous, idempotent and contractive.

A partial ordering in the set of left order continuous additive mappings in S
is defined by ψ ≤ ϕ if ψ(s) ≤ ϕ(s) for all s ∈ S .

Note that if B: S → S is left order continuous then B is increasing.
The pointwise least upper bound of an arbitrary set of balayages is surprisingly

a balayage as proved in [5, Proposition 2.1].

Lemma 2.2. Let S be an H -cone. If Bi is a balayage for each i in an index

set I then a mapping B: S → S defined by

B(s) =
∨

i∈I

Bi(s)

is a balayage.

Lemma 2.3. Let S be an H -cone and B: S → S be a balayage. Then the

set B(S) is a specifically solid convex cone in S . Moreover, the equality

B(u)⌣\v = B(u)⌣\B(v)

holds for all u and v in S .

Proof. Assume that B: S → S is a balayage. Since B is idempotent and
additive we have

B(s) +B(t) = B2(s) +B2(t) = B
(

B(s) +B(t)
)

.

Hence B(S) is a convex cone. It is also specifically solid. Indeed from w 4 s for
s ∈ B(S) it follows that w+w′ = s = B(s) = B(w)+B(w′) . Then the properties
B(w) ≤ w and B(w′) ≤ w′ imply that B(w) = w .

Assume that u, v ∈ S . Obviously,

B(u)⌣\v ≥ B(u)⌣\B(v).

To prove the reverse inequality, let t ∈ S be such that t 4 B(u) and t ≤ v . As
B(S) is specifically solid we infer t = B(t) . But then the inequality t ≤ v results
in t = B(t) ≤ B(v) . Consequently B(u)⌣\v ≤ B(u)⌣\B(v) completing the proof.
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The preceding lemma gives a characterization of balayages. The first assertion
of this result is also proved by Popa in [7].

Theorem 2.4. Let S be an H -cone. Suppose that a mapping ψ: S → S is

left order continuous and admits the property

(2.1) ψ(u)⌣\v = ψ(u)⌣\ψ(v)

for all u and v in S . Then ψ is idempotent, contractive, subadditive and the set

ψ(S) is specifically solid. Moreover the mapping Bψ: S → S defined by

(2.2) Bψ(s) =
∨

{

n
∑

i=1

ψ(si) |

n
∑

i=1

si ≤ s, n ∈ N, si ∈ S
}

is a balayage and therefore satisfies (2.1) .

Proof. Assume that ψ: S → S is left order continuous and satisfies (2.1).
Using (2.1) we find out that

u ≥ ψ(u)⌣\u = ψ(u)⌣\ψ(u) = ψ(u).

Hence ψ is contractive and so ψ2 ≤ ψ . Moreover applying (2.1) twice we obtain

ψ(u) = ψ(u)⌣\ψ(u) = ψ(u)⌣\ψ2(u) ≤ ψ2(u).

Hence ψ is idempotent.
Suppose that w ∈ S and w 4 ψ(t) for some t ∈ S . Then applying (2.1) we

observe that
w = ψ(t)⌣\w = ψ(t)⌣\ψ(w) ≤ ψ(w) ≤ w,

which leads to w = ψ(w) ∈ ψ(S) . Thus the set ψ(S) is specifically solid.
The mapping Bψ is well defined, since

∑n
i=1

ψ(si) ≤
∑n
i=1

si ≤ s for all
s ∈ S and therefore the least upper bound on the right side of the equality (2.1)
exists and Bψ(s) ≤ s . To prove additivity assume that u and v are arbitrary
elements of S . Then by (1.5) and (2.1) we have

ψ(u+ v) = ψ(u+ v)⌣\(u+ v) ≤ ψ(u+ v)⌣\u+ ψ(u+ v)⌣\v

= ψ(u+ v)⌣\ψ(u) + ψ(u+ v)⌣\ψ(v) ≤ ψ(u) + ψ(v).

Hence ψ is subadditive. Applying [3, Proposition 2.2.4] we note that the mapping
Bψ is additive and left order continuous. Moreover since the mapping ψ is idem-
potent and ψ ≤ Bψ we have ψ ≤ B2

ψ . As B2
ψ is additive and increasing we infer

from (2.2) that Bψ ≤ B2
ψ ≤ Bψ completing the proof.
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Corollary 2.5. If the function ψa: S → S defined by ψa(u) = a⌣\u is left

order continuous for some a ∈ S then the mapping Bψa
defined by (2.2) is a

balayage and Bψa
(s) = ∨n∈N(na)⌣\s for all s ∈ S .

Proof. Assume that the function ψa: S → S given by ψa(u) = a⌣\u for some
a ∈ S is left order continuous. The preceding theorem asserts that the mapping
Bψa

defined by (2.2) is a balayage. Let s be an arbitrary element of S . Assume
that si are elements of S such that

∑n
i=1

si ≤ s . Then we infer that

n
∑

i=1

a⌣\si ≤ (na)⌣\s ≤ n
(

a⌣\(s/n)
)

≤ Bψa
(s).

Hence we conclude Bψa
(s) = ∨n∈N(na)⌣\s .

Corollary 2.6. Let S be an H -cone. Then the mapping B: S → S is a

balayage if and only if B is left order continuous, idempotent and the set B(S) is

a specifically solid subsemigroup of S .

Proof. The assertion is obvious for a balayage. To prove the converse state-
ment assume that B: S → S satisfies the required conditions. Since the set B(S)
is a semigroup and B is idempotent we infer

B(s) ≥ B

( n
∑

i=1

B(si)

)

=
n

∑

i=1

B(si)

for all si ∈ S and s ∈ S with
∑n
i=1

si ≤ s . Hence we only have to verify the
equality (2.1) for B . Let u and v be elements in S . Suppose that w 4 B(u)
and w ≤ v . Since B(S) is specifically solid we have w = B(t) for some t ∈ S .
As B is idempotent and increasing we obtain w = B(w) ≤ B(v) . Hence the
fact that w is an arbitrary element such that w 4 B(u) and w ≤ v implies
B(u)⌣\v ≤ B(u)⌣\B(v) . Thus noting that B(v) ≤ v we conclude

B(u)⌣\v ≤ B(u)⌣\B(v) ≤ B(u)⌣\v

completing the proof.

Proposition 2.7. Let S be an H -cone and u in S . If the mapping B: S → S
defined by

B(s) =
∨

n∈N

(nu)⌣\s

is left order continuous then it is a balayage.
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Proof. Applying (1.4) and (1.5) we note that

(nu)⌣\x+ (mu)⌣\y ≤ (m+ n)u⌣\(x+ y) ≤ (m+ n)u⌣\x+ (m+ n)u⌣\y

and so B is additive. From (1.1) and (1.2) it easily follows that B is also idem-
potent and contractive. Hence B(S) is specifically a solid subsemigroup of S . By
the preceding corollary B is a balayage.

Our main theorem gives a new presentation of a balayage. Moreover it shows
how the value of a balayage at a point is obtained from its value at a generator.

Theorem 2.8. Let S be an H -cone possessing a generator p and B a

mapping from S into S . Then B is a balayage if and only if B is left order

continuous and

(2.3) B(x) =
∨

n∈N

(

nB(p)
)

⌣\x

for all x ∈ S .

Proof. Assume first that B: S → S is a balayage. Let p be a generator in S
and x ∈ S . Since B is order continuous we have

B(x) = B

(

∨

n∈N

(np)⌣\x

)

=
∨

n∈N

B
(

(np)⌣\x
)

.

Hence by Lemma 2.3 we conclude

B(x) =
∨

n∈N

B
(

(np)⌣\x
)

≤
∨

n∈N

B(np)⌣\x =
∨

n∈N

(

nB(p)
)

⌣\B(x) ≤ B(x),

which implies

B(x) =
∨

n∈N

(

nB(p)
)

⌣\x.

To prove the converse assume that B: S → S is left order continuous and

B(x) =
∨

n∈N

(

nB(p)
)

⌣\x.

Since by (1.5) the relation
(

nB(p)
)

⌣\x+
(

mB(p)
)

⌣\y ≤
(

(m+ n)B(p)
)

⌣\(x+ y)

≤
(

(m+ n)B(p)
)

⌣\x+
(

(m+ n)B(p)
)

⌣\y

holds for all n, m ∈ N the mapping B is additive. Moreover B is idempotent
since

B2(x) =
∨

n∈N

(

nB(p)
)

⌣\B(x) =
∨

n∈N

(

nB(p)
)

⌣\

(

∨

n∈N

(

nB(p)
)

⌣\x

)

=
∨

n∈N

(

nB(p)⌣\x
)

.

Hence B is a balayage.
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Corollary 2.9. Let S be an H -cone possessing a generator p . If B1 and

B2 are balayages from S into S such that B1(p) ≤ B2(p) then B1 ≤ B2 .

Proof. Assume that B1: S → S and B2: S → S are balayages with B1(p) ≤
B2(p) . Lemma 2.2 assures us that the mapping B: S → S defined by B(s) =
B1(s) ∨ B2(s) is a balayage and B(p) = B2(p) . Hence by the theorem above
B = B2 establishing the result.

The mapping B satisfying (2.3) is left order continuous if and only if B is
left order continuous at B(p) . Generally the following result holds.

Theorem 2.10. Let S be an H -cone and u be an element of S . Then

B: S → S defined by

(2.4) B(s) =
∨

n∈N

(nu)⌣\s

is a balayage if and only if u = ∨f∈FB(f) for all upward directed families F with

u = ∨F .

Proof. For a balayage B satisfying (2.4) the assertion is clear. To verify
the converse assume that B defined by (2.4) satisfies the required condition. Let
x ∈ S and F be an upward directed family with x = ∨F . Suppose first that
x 4 u . As the family u − x + F is upward directed with ∨(u − x + F ) = u , we
have by (1.3)

x+ u− x = u =
∨

f∈F

B(u− x+ f) = u− x+
∨

f∈F

B(f).

Hence the mapping B is left order continuous at x with x 4 nu for any n ∈ N .
Assume next that x is arbitrary. Since (nu)⌣\x 4 nu we obtain B

(

(nu)⌣\x
)

= (nu)⌣\x and therefore the relation

(nu)⌣\x =
∨

f∈F

B
(

(

(nu)⌣\x
)

∧ f
)

≤
∨

f∈F

B(f) ≤ B(x)

holds for n ∈ N . Consequently B is left order continuous.

A characterization of balayages in terms of their images follows from Theorem
2.8 and Theorem 2.10.

Theorem 2.11. Let S be an H -cone possessing a generator and T be a

specifically solid subset of S . Then there exists a balayage B → T such that

B(S) = T if and only if T admits a generator u satisfying

u =
∨

n∈N

f∈F

(nu)⌣\f

for all upward directed families F with ∨F = u .
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An H -cone S is a positive cone of the Dedekind complete vector lattice with
respect to the specific order by Proposition 1.2. Hence balayages with respect to
the specific order are just specific band projections [8, Theorem 2.10]. In addition
they have the following simple characterization.

Theorem 2.12. Let S be an H -cone in which the specific and initial order

coincide. Then B: S → S is a balayage if and only if there exists a subset F of

S such that

(2.5) B(s) =
∨

n∈N

t∈F

(nt) ∧ s

for all s ∈ S .

Proof. Assume that a mapping B: S → S satisfies (2.5) for some subset
F of S . Since by Proposition 1.2 the cone S is a positive cone of a Dedekind
complete vector lattice, the mapping s 7→ t ∧ s is left order continuous for all
t ∈ F . Hence Lemma 2.2 and Corollary 2.5 imply that B is a balayage.

Conversely, assume that B is a balayage. Applying Theorem 2.4 we find out
that

B(t) ∧ s = B(t) ∧B(s)

for all s and t in S . Thus we conclude
∨

t∈S

B(t) ∧ s = B(s)

for all s ∈ S and the condition (2.4) holds for F = B(S) .
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