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CHARACTERIZATIONS OF BALAYAGES
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Abstract. We consider balayages in H -cones. Any pair of elements in an H -cone has mixed
envelopes formed relative to two partial orders. Our main result characterizes balayages in terms
of mixed envelopes. We state an explicit formula of a balayage in an H -cone admitting a certain
type of unit.

Introduction

Mappings called balayages are important objects in the theory of harmonic
spaces ([4]). An axiomatic counterpart of the cone of positive superharmonic
functions on a harmonic space is an H -cone ([3, Section 2]). We consider balayages
in H -cones.

Any pair of elements of an H -cone has mixed envelopes, studied by Arsove
and Leutwiler ([2]), defined in terms of two partial orders. Using mixed envelopes
it is possible to extend the Freudental spectral theorem of vector lattices (or Riesz
spaces) for H-cones [1]. In our main theorem (Theorem 2.4) we use mixed en-
velopes to characterize balayages. This result leads to an explicit formula of a
balayage in an H -cone admitting a special unit (Theorem 2.8).

1. Preliminaries
We review the basic concepts.

Definition 1.1. Let E be an ordered vector space and S be a convex cone
in E such that S € ET and F =S — S. The cone S is called an H -cone if it
possesses the following properties:

(A1) any upward directed and dominated subset F' of S has a least upper bound
in E denoted by VF and VF € S,

(A2) any subset F' of S has a greatest lower bound in E denoted by AF and
AF €8,

(A3) for any s and t in S the greatest lower bound of the set {ue€ S |s—t<wu}
in E denoted by R(s—t) satisfies R(s—t) € S and s — R(s—1t) € S.
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The equivalence of the preceding definition and the original definition of an
H -cone [3, p. 37) is proved in [6].
The partial order < in an H -cone is called the initial order. Another partial
order called specific order denoted by < is defined in an H -cone by
s<t if and only if t=s+ s for some s’ € S.

Proposition 1.2. If S is an H -cone in an ordered vector space E then E
is an Archimedean vector lattice with respect to the initial order. Moreover, the
set E is a conditionally complete vector lattice with respect to the specific order.

Proof. See [3, Proposition 2.1.1] and [3, Theorem 2.1.5].
Any pair of elements in an H -cone has mixed envelopes introduced by Arsove
and Leutwiler in algebraic potential theory ([1, 2]).

Theorem 1.3. Let S be an H -cone. Then for any elements s and t in S
there exist a mixed lower envelope

sot=max{zeS|zr=xs <t}
and a mixed upper envelope
s~t=min{z €s|z=s x>t}
satisfying the equality
SAt +t~s=s+41t.
Proof. See [2, Theorem 2.5].

We use the following properties of mixed lower envelopes in H -cones stated
in [2, Section 3|:

(1.1) t <s if and only if sot=t
(1.2) t <s if and only if tos=t
(1.3) a+sat=(a+s)(a+1t)
(1.4) (s+t)au < su+tau
(1.5) uA(s+ 1) <uds+ut

Two types of units, defined next, are important in the theory of H -cones.

Definition 1.4. Let S be an H-cone. An element e € S is called a weak
unit if s = Vyen(ne) As for all s € S. An element p € S is called a generator if
s =\ en(np)s for all s € S.

Note that a generator is also a weak unit. If the initial order and the specific
order coincide, then an element is a weak unit if and only if it is a generator.
Moreover, an H -cone possessing a weak unit and a countable order dense set has
a generator [6, Theorem 2.8].



Characterizations of balayages 61

2. Characterizations of balayages of H-cones

We are going to state some new characterizations of balayages in terms of
mixed lower envelopes. We start by recalling the main concepts.

Definition 2.1. Let S be an H-cone and B be a mapping from S into S'.
The mapping B is called left order continuous if for any s € S the property

B(s)=\/ B(1)

holds for all upward directed subsets F' of S such that s = VF'. The mapping
B is called idempotent if B> = B and contractive if B(s) < s for all s € S.
Moreover, the mapping B: S — S is called a balayage if it is additive, left order
continuous, idempotent and contractive.

A partial ordering in the set of left order continuous additive mappings in S
is defined by ¥ < ¢ if ¥(s) < p(s) for all s € S.

Note that if B: S — S is left order continuous then B is increasing.
The pointwise least upper bound of an arbitrary set of balayages is surprisingly
a balayage as proved in [5, Proposition 2.1].

Lemma 2.2. Let S be an H -cone. If B; is a balayage for each i in an index
set I then a mapping B: S — S defined by

B(s) = \/ Bi(s)
el
is a balayage.
Lemma 2.3. Let S be an H-cone and B: S — S be a balayage. Then the
set B(S) is a specifically solid convex cone in S. Moreover, the equality
B(u)ow = B(u)\B(v)
holds for all w and v in S.

Proof. Assume that B: S — S is a balayage. Since B is idempotent and
additive we have

B(s) + B(t) = B*(s) + B*(t) = B(B(s) + B(t)).
Hence B(S) is a convex cone. It is also specifically solid. Indeed from w < s for
s € B(S) it follows that w+w’ = s = B(s) = B(w)+ B(w'). Then the properties
B(w) <w and B(w') < w' imply that B(w) = w.
Assume that u, v € S. Obviously,
B(u)-\w > B(u)\B(v).

To prove the reverse inequality, let ¢ € S be such that t  B(u) and t < v. As
B(S) is specifically solid we infer t = B(t). But then the inequality ¢t < v results
in t = B(t) < B(v). Consequently B(u)-v < B(u)-B(v) completing the proof.
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The preceding lemma gives a characterization of balayages. The first assertion
of this result is also proved by Popa in [7].

Theorem 2.4. Let S be an H -cone. Suppose that a mapping ¢: S — S is
left order continuous and admits the property

(2.1) Y(u)w = p(u) P (v)

for all w and v in S. Then 1 is idempotent, contractive, subadditive and the set
Y (9S) is specifically solid. Moreover the mapping By: S — S defined by

(2.2) Bw(s):\/{zw(si)\Zsigs, nEN,siES}

is a balayage and therefore satisfies (2.1).

Proof. Assume that ¢: S — S is left order continuous and satisfies (2.1).
Using (2.1) we find out that

u > p(u)Au = p(u)Ap(u) = P(u).

Hence v is contractive and so 12 < 1. Moreover applying (2.1) twice we obtain

Y(u) = P(u)2(u) = P(u)29®(u) < ¢*(u).

Hence v is idempotent.
Suppose that w € S and w < ¥(t) for some t € S. Then applying (2.1) we
observe that

w = Y(t)w = P(t) 2\ (w) < P(w) < w,

which leads to w = ¢ (w) € ¥(S). Thus the set ¥(S) is specifically solid.
The mapping B, is well defined, since Y -, ¥(s;) < >0 s < s for all
s € S and therefore the least upper bound on the right side of the equality (2.1)

exists and By(s) < s. To prove additivity assume that v and v are arbitrary
elements of S. Then by (1.5) and (2.1) we have

P(u+v) =(u+v)A(u+v) <Put+o)du+Plu+v)Aw
= P(u+0)2P(u) + ¢ (u+v)2g(v) <P(u) +9p(v).

Hence ) is subadditive. Applying [3, Proposition 2.2.4] we note that the mapping
By, is additive and left order continuous. Moreover since the mapping 1 is idem-
potent and ¢ < By we have ¢ < Bi. As Bi is additive and increasing we infer
from (2.2) that By < Bi < By, completing the proof.
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Corollary 2.5. If the function 1,: S — S defined by 1,(u) = a\u is left
order continuous for some a € S then the mapping B, defined by (2.2) is a
balayage and By, (s) = Vpen(na)s for all s € S.

Proof. Assume that the function ¥,: S — S given by ¥, (u) = a—\u for some
a € S is left order continuous. The preceding theorem asserts that the mapping
By, defined by (2.2) is a balayage. Let s be an arbitrary element of S. Assume
that s; are elements of S such that E?Zl s; < s. Then we infer that

Zau\si < (na)2\s < n(a(s/n)) < By, (s).

Hence we conclude By, (s) = Vpen(na)-s.

Corollary 2.6. Let S be an H-cone. Then the mapping B: S — S is a
balayage if and only if B is left order continuous, idempotent and the set B(.S) is
a specifically solid subsemigroup of S'.

Proof. The assertion is obvious for a balayage. To prove the converse state-
ment assume that B: S — S satisfies the required conditions. Since the set B(S)
is a semigroup and B is idempotent we infer

B(s) = B(g B(Si)) = gB(Si)

for all s; € S and s € S with Y " ; s; < s. Hence we only have to verify the
equality (2.1) for B. Let u and v be elements in S. Suppose that w < B(u)
and w < v. Since B(S) is specifically solid we have w = B(t) for some t € S.
As B is idempotent and increasing we obtain w = B(w) < B(v). Hence the
fact that w is an arbitrary element such that w < B(u) and w < v implies
B(u)-w < B(u)\B(v). Thus noting that B(v) < v we conclude

B(u)-w < B(u)B(v) < B(u)w

completing the proof.

Proposition 2.7. Let S bean H -cone and u in S. If the mapping B: S — S
defined by

B(s) = \/ (nu)s

neN

is left order continuous then it is a balayage.
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Proof. Applying (1.4) and (1.5) we note that
(nu) 2z + (mu) Ay < (m+nju(z +y) < (m+n)uz + (m+ njuy

and so B is additive. From (1.1) and (1.2) it easily follows that B is also idem-
potent and contractive. Hence B(S) is specifically a solid subsemigroup of S. By
the preceding corollary B is a balayage.

Our main theorem gives a new presentation of a balayage. Moreover it shows
how the value of a balayage at a point is obtained from its value at a generator.

Theorem 2.8. Let S be an H -cone possessing a generator p and B a
mapping from S into S. Then B is a balayage if and only if B is left order
continuous and

23) B(x) = \/ (nB(p) -
forall t € S.

Proof. Assume first that B: S — S is a balayage. Let p be a generator in S
and x € S. Since B is order continuous we have

5) = B( \/ () = \/ B((nw)a).
neN neN
Hence by Lemma 2.3 we conclude
B(z) = \/ B((np)2z) < \/ B(np)oz = \/ (nB(p))2B(z) < B(=),
neN neN neN
which implies

B(z) = \/ (nB(p))-w.

neN
To prove the converse assume that B: S — S is left order continuous and

B(z)="\/ (nB(p))-=.

neN
Since by (1.5) the relation
(nB(p)) >z + (mB(p)) -y < ((m+n)B(p))A(z +y)
< ((m+n)B(p))2z + ((m+n)B(p)) -y

holds for all n, m € N the mapping B is additive. Moreover B is idempotent
since

B a) = \/ (nB(p)2B@) = \/ (nB<p>>v\( \ (nB<p>>w\x)

neN neN neN
= \/ (nB(p)-z).
neN
Hence B is a balayage.
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Corollary 2.9. Let S be an H -cone possessing a generator p. If By and
By are balayages from S into S such that Bi(p) < By(p) then B; < Bs.

Proof. Assume that B;: S — S and By: S — S are balayages with By (p) <
By(p). Lemma 2.2 assures us that the mapping B: S — S defined by B(s) =
Bi(s) V By(s) is a balayage and B(p) = Bz(p). Hence by the theorem above
B = Bs establishing the result.

The mapping B satisfying (2.3) is left order continuous if and only if B is
left order continuous at B(p). Generally the following result holds.

Theorem 2.10. Let S be an H -cone and u be an element of S. Then
B: S — S defined by

(2.4) B(s) = \/ (nu)\s

neN

is a balayage if and only if w = Ve B(f) for all upward directed families F' with
u=VEF.

Proof. For a balayage B satisfying (2.4) the assertion is clear. To verify
the converse assume that B defined by (2.4) satisfies the required condition. Let
x € S and F be an upward directed family with x = VF. Suppose first that
x < u. As the family v — x + F' is upward directed with V(v —x + F) = u, we
have by (1.3)

r+u—r=u= \/ Blu—xz+f)=u—x+ \/ B(f).
fer feF

Hence the mapping B is left order continuous at x with < nu for any n € N.
Assume next that z is arbitrary. Since (nu)\z < nu we obtain B((nu)-\x)
= (nu)-x and therefore the relation

(nu)oz = \/ B(((nw)-2) A 1) < \/ B(f) < B(w)
fer feF
holds for n € N. Consequently B is left order continuous.

A characterization of balayages in terms of their images follows from Theorem
2.8 and Theorem 2.10.

Theorem 2.11. Let S be an H -cone possessing a generator and T be a
specifically solid subset of S. Then there exists a balayage B — T such that
B(S) =T if and only if T admits a generator u satisfying

u= \ ()
neN
feF

for all upward directed families F' with VF = u.
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An H-cone S is a positive cone of the Dedekind complete vector lattice with
respect to the specific order by Proposition 1.2. Hence balayages with respect to
the specific order are just specific band projections [8, Theorem 2.10]. In addition
they have the following simple characterization.

Theorem 2.12. Let S be an H -cone in which the specific and initial order
coincide. Then B: S — S is a balayage if and only if there exists a subset F' of
S such that
(2.5) B(s)= \/ (nt)As

neN
teF

for all s € §S.

Proof. Assume that a mapping B: S — S satisfies (2.5) for some subset
F of S. Since by Proposition 1.2 the cone S is a positive cone of a Dedekind
complete vector lattice, the mapping s — ¢t A s is left order continuous for all
t € F. Hence Lemma 2.2 and Corollary 2.5 imply that B is a balayage.
Conversely, assume that B is a balayage. Applying Theorem 2.4 we find out
that
B(t) A s = B(t) A B(s)
for all s and ¢ in S. Thus we conclude
\/ B(t) As=B(s)
tesS
for all s € S and the condition (2.4) holds for F' = B(S5).
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