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Abstract. We establish local and global higher integralibity results for the derivatives of
the solutions to obstacle problems associated with the second order degenerate elliptic partial
differential equation div &/ (x, Vu(z)) =0, where |« (z,£)| ~ (P71, p> 1.

1. Introduction

In this paper we consider the obstacle problem associated with the second
order degenerate elliptic equation

(1.1) div o/ (z, Vu(z)) = 0

with |« (z,£)| < B1¢[P~! and & (x,€) - & > a|¢[P for some 0 < o < B < oo and
p > 1, see 2.1. The prototype of equation (1.1) is the p-harmonic equation

(1.2) div (|Vu[P~2 Vu) = 0.

Suppose that €2 is a bounded open set in R'™, that v is any function in
Q with values in R U {—00,00}, and that § € WP(Q). The function ¢ is an
obstacle and 6 determines the boundary values. Let

Hypo={veWP(Q):v>¢ae andv—0 € Wol’p(Q)}.

A solution to the %, g-obstacle problem is a function u € J# ¢ such that
(1.3) / o (x,Vu)-V(v—u)de >0
Q

whenever v € 9.

For solutions u of equation (1.1) it is known ([GM], [Str 1-2], [I], [RZ]) that
u € WI})Cq(Q) where ¢ = q(p,n, /) > p. Our first result generalizes this to the
solution of the %, g-obstacle problem.
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Theorem A. Suppose that ¢ € Wﬁ)j(Q), s > p. Then a solution u to the
.9 -obstacle problem belongs to Wéf(Q) where q = q(p, s,n,a/3) > p.

For variational extremals the global higher integrability of the derivative Vu
has been studied by S. Granlund [G] in the case p = n. For this it seems necessary
to impose a regularity condition for 0€2. We say that OS2 is p-Poincaré thick if
there is v < oo such that for all open cubes Q(r) C R™ with side length r > 0 it
holds

1/p (p+n)/pn
(1.4) < / |u|pdm) < 7< / |Vau|P/ (PFm) dx)
Q(2r) Q(2r)

whenever u € W'P(Q(2r)), u=0 a.e. on (R"\Q)NQ(2r), and Q(3r)NCQ # 0;
here, and in the following, Q(Ar), A > 0, means a cube parallel to Q(r) with
the same center as Q(r) and with side length Ar. Theorem 2.3 and Corollary 2.7
below give simple sufficient conditions such that (1.4) holds for p > n/(n —1).

Theorem B. Suppose that a bounded domain ) has a p-Poincaré thick
boundary and that p > n/(n —1). Let 6 and 1 belong to W1*(Q), s > p.
Then a solution u to the ¥y g-obstacle problem belongs to W%(Q)) where q =
q(p,s,n,a/B,7v) > p and 7 is the constant of (1.4).

In Section 2 the assumptions on 7 together with some preliminary lemmas
are presented. Section 3 is devoted to the proofs of Theorems A and B. In Re-
mark 3.14 some variants of Theorems A and B are discussed. In particular, local
and global higher integrability for the derivatives of solutions of (1.1) is a con-
sequence of Theorems A and B, respectively. Theorems A and B also imply the
corresponding results for variational obstacle problems.

The higher integrability of solutions of (1.1) were first considered by Meyers
and Elcrat [ME] in 1975. See also [Str 1-2]. For obstacle problems and for differ-
ential and variational inequalities most of the regularity studies have been devoted
to prove the Holder continuity of the solutions u to the .# g-obstacle problem
for Holder continuous obstacles 1 [Gi]. Michael and Ziemer [MZ] proved the con-
tinuity of w if v is just continuous. For p-harmonic equations (1.2) the higher
regularity, i.e. the C1:*-regularity, has been much studied, see [L]. For equations
(1.1) the Holder continuity and higher integrability of the derivatives are different
aspects of regularity, although for p > n there is an obvious connection via the
Sobolev imbedding theorem.

When our work was completed, T. Kilpeldinen and P. Koskela [KK] replaced
the Poincaré thickness in Theorem B by a capacitary condition on 0f).
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2. Equation (1.1) and preliminary results

2.1. Equation div </ (z, Vu) = 0. We consider mappings «/: R” x R” — R"
which satisfy the following assumptions for some p > 1 and 0 < a < (:

(a) the mapping =z — o/ (z,£) is measurable for all £ € R™ and the mapping
£ — o/ (x,€) is continuous for a.e. x € R";

for all £ € R™ and a.e. z € R"

(b) #(2,8)- &= al¢]P and

(c) |o/(z,8)] < Bl

The constant p is always associated with <7 as in (b) and (c).

The assumptions (a)—(c) are not strong enough to give a unique solution to
the 7, g-obstacle problem. However, if &7 satisfies the monotonicity condition

(%($,£1> - "Q{(mvéé)) ) (61 - £2) > 0, £1 7é 627

for a.e. x € R™, then it can be shown that the %, g-obstacle problem has a unique
solution provided that .7y g # (). For this result see [HKM].

In [HKM] the relation between ., g-obstacle problems and variational ob-
stacle problems is explained.

2.2. A sufficient condition for (1.4). Here we show that condition (1.4) follows
from a measure-theoretic property of CQ; this observation is due to Granlund [G]
for p=n.

2.3. Theorem. Suppose that there is > 0 such that each cube Q(r) with
Q(3r)NCQ # O satisties
(2.4) m((R"\ Q) NQ(2r)) > um(Q(2r)).

Then CQ) is p-Poincaré thick for each p > n/(n — 1) and the constant ~ in (1.4)
depends only on n, p, and .

Proof. Let Q(r) be a cube with Q(r) N 9Q = 0 and let u € WHP(Q(2r))
satisfy u = 0 on Q(2r) \ (R™\ ). By [Mor, Theorem 3.6.5, p. 83] we have for
each ¢ > 1

(2.5) [t < et [ vl
Q(2r) Q(2r)

Next let

1
Cy = ———— wdz
m(Q(2r)) /Q(?r)
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be the mean value of u in Q(2r). For the following Sobolev-Poincaré inequality

1/p
(2.6) (/ lu — cyl? da:) < Cg(ﬂ,p)(/ VP P+ gy
Q(2r) Q(2r)

see [GT, p. 174]; note that p is the Sobolev conjugate exponent of ¢ = pn/(p+n)
and that ¢ < n.
Combining (2.5) and (2.6) we obtain

1/p 1/p 1
</ |u|? dx) < (/ lu — cu|p) +m(Q(2r)) el
Q((2r) Q(2r)
1/q L 1/q
< cz</ |Vu|qu) +m(Q(2r)) M(/ |u|qu)
Q(2r) Q(2r)
1/q 1/q
< 02(/ |Vu|qu) —|—c’1</ |Vu|qu)
Q(2r) Q(2r)
1/q
< ’y(/ |Vu|? dx)
Q((2r)

where the Minkowski and Holder inequality has also been used. The theorem
follows.

) (p+n)/pn

An open set  is c-coplump, ¢ > 1, if for each x € R™\ 2 and r > 0 there
is z € B(z,r) such that
B(z,r/e)NQ =10.

If Q is c-coplump, then € clearly satisfies condition (2.4) for some p = u(c) > 0.
Hence we obtain from Lemma 2.3

2.7. Corollary. If Q is c-coplump, then 0Q is p-Poincaré thick for all
p=n/(n—1).

2.8. Reverse Holder inequality. To obtain the higher integrability we use the
following semilocal reverse Holder inequality due to Giaquinta and Modica [GM,

p. 164]; a new and rather simple proof for Lemma 2.9 can be derived from the
work of Kinnunen [K].

2.9. Lemma. Suppose that ¢ > 1 and that g € Lq(Q(Qro)) and f €
L*(Q(2ro)), s > q. If for every x € Q(2r¢) and r < 1d(z,0Q(2r0)) we have the

estimate .
foowlase|(f ) f ipad
Q(r) Q(2r) Q(2r)

for some ¢ > 0 independent of the cube Q(r) with center at x, then g €
L (Q(2rg)) for some t =t(n,q,s,c) > q.

loc
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3. Proofs for Theorems A and B

3.1. Proof for Theorem A. Let u be a solution to the J#, g-obstacle problem
and let Q(2r) C Q be a cube. Fix a cutoff function ¢ € C§°(Q(2r)) such that
0<¢p<1,|Vp| <c¢/r,and ¢ =1 on Q(r). Consider the function

v:u—cu—gpp(u—cu—(w—cw));

here ¢, and ¢, denote the mean values of the functions u and 9, respectively, in

Q(2r), ie.

1
Cy :][ udmzi/ udx.
Q) m(Q(2r)) Joer

Now v € Hy_c, gc,; indeed, v — (0 — c,) € WyP(Q) because p € C3°(€) and
since ¢, > ¢y, we obtain

v=(1=-¢")(u—=cu) + (W —cy) > (1= @) (u—cu) + 9" = cu)
> (1 =) —cu) + " —cu) =9 —cu

a.e. in €. Since

Vo= (1-¢") V(u—c,) + ¢ V(W —cp) + 0" Vol —cp) — (u—c,)]

and since u — ¢, is a solution to the J#;_., ¢, -obstacle problem, we have
/;)JZ%(CE,V'LL) -Vudr < /QJZ%(CL’,V’LL) -Vudx
< /Q(l — P) o (x,Vu) - Vudx-l—/ggppxzf(:v, Vu) - Vi dz
+08 [ Va9l (6= ol + fu—cal) da

where we have also used assumption (c). Using (b) and (c) again we obtain from
the above inequality

a/cpp|Vu|pdx§/gopgz%(ac,Vu)-Vudx
Q Q

(3:2) <3 / o [VulP~1 V| de + pB / Vufpt P!
Q Q

X [Vl (¢ = eyl + |u = eu]) da.

Next we use Young’s inequality

/ 1
(3.3) ab < ea? + C(g,p)bP, . +—==1,
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valid for all a, b >0, € >0, and p > 1. Now (3.2) yields
a/cpp |[VulP de < 5ﬂ/ P |Vu|pdm+0(5,p)ﬁ/ oP VY|P dx
Q Q Q

+ ppe / VulP o dz + 2°C(=, p)pf / Vol? (1 — colP + fu— cul?) da
Q Q

and choosing
o

28(1 +p)

we obtain from the above inequality

5 [ wp|Vu|pdec[ [ 1vupdn+ [ 19ap (0 - ol + = cul?) do
Q Q Q

where ¢ is a (generic) constant which depends only on n, p, and a/F. Next we
estimate the last integral in (3.4) using the ordinary Poincaré inequality [GT, 7.45,
p. 164]

(3.5) / v — ¢p|Pdx < crp/ |VoulP dx
Q(2r) Q(2r)

valid for all functions v € W?(Q(2r)) and the Sobolev—Poincaré inequality (2.6).
Together with |Vy| < ¢/r these give

/lewlp(ltb—%lpﬂu—culp) dz

c (p+n)/n
< c/ V[P da 4+ — </ |Vu|pn/(p+n) d:z;)
Q(2r) "\ JQ(r)

and hence we obtain from (3.4) the estimate

/ |Vu|P dz < / OP|Vul|P dz
Q(r) Q

c (p+n)/n
< c/ V[P da + — (/ |Vu|pn/(p+n) d:z;) i
Qe "\ JQen
This implies

(pt+n)/n
][ |Vul? do < c(][ |Vu|p”/(p+”) dm) + c][ |Vp|P de.
Q(r) Q(2r) Q(2r)

Setting g = [Vu|P/®PT7) | f = |Vy|P?/®PT™) and ¢ = (p 4+ n)/n we obtain from
Lemma 2.9 that |Vu| € L () for some t = t(p,s,n,a/3) > p.

loc

The Sobolev imbedding theorem [GT, p. 164] yields u € an/(n_p)(Q) if

loc

p<n,ueLl (Q) forall ¢ >11if p=mn,and u e L2 () if p > n. Hence

loc

we LY (), t' =t (p,n) > p, and choosing ¢ = min(¢, ') > p we have proved

loc

Theorem A.
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3.6. Proof for Theorem B. Since () is bounded, we can choose a cube Qo =
Q(2rg) such that Q C Q(rg). Next let Q(2r) C Q. There are two possibilities:

(i) Q(3r) c Q or (ii) Q(2r) NCQ # 0. In the case (i) we can follow the proof for
Theorem A to obtain the estimate

(p+n)/n
][ |Vu|P dz < c[(f | V| P/ (PFm) d:z;) +][ VP d:z;}
Q(r) Q(3r) Q(37)

and then choosing g = |Vu|™?/P+n) | f = ||/ (P+7) in Q(%,«) and g= f =0
in Q(2r) \ Q(%T) with ¢ = (p+ n)/p we arrive at the inequality

q
(3.7) ][ gldr < c[(f gdx) +][ 1 d:z;}
Q(r) Q(2r) Q(2r)

where ¢ = ¢(p, s,n,a/f) < 0.

In the case (ii) note that replacing 6 by 67 = max(6, 1) we may assume that
the boundary function 6 satisfies § > ¢ in Q. Indeed, 6; = (¢ — )" + 0 and
since

0< (-0 <(u—-0)"eW,"(Q),

the function (¢ —#)T, and hence u — 6, belongs to W, *(2). Next let
v=u—¢’(u—2~0)

in 2 where ¢ € C§° (Q(Qr)) is a similar cutoff function as in the proof of Theo-
rem A. Now v € J£ g because v —0 € Wol’p(Q) and u >, 0 > 1 a.e. yields

v=(1—pP)u+ P8 > (1 — ") + QP = 1)

a.e. Since
Vo= (1-¢")Vu+¢"V+ppP™ (0 —u) Vo,

we have the estimate
/ o (x,Vu) - Vudr < / o (x,Vu) - Vudz
0 o)
< /(1 —P) o (x,Vu) - Vu + ﬁ/ |VulP~ 1P| V0| dx
o) 9

+ Bp / VulP P10 — | |V da
Q
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where assumption (c) has also been used. From this and from (b) we obtain
oz/ﬂgop |VulP dx < /Qgppszf(:v, Vu) - Vudx
<5 [ [VuP i VOl de -+ p [ Va0~ ul [Vl da
< ﬁa/ﬂgo”WuP’ dx +ﬁC(5,ﬁ)/ﬂgpP|V9\pdx
+ e [ @I do + 5pCle.p) [ VP10 P do

here we have also used Young’s inequality (3.3) twice. Now we choose

B Q@
26(1+p)
Then the above inequality yields
(3.8) / P |VulP de < c{/ ©P|VOP dx —|—/ IV|P|0 — ul? d:z;}
Q Q Q

where ¢ is a (generic) constant depending only on p, s, o/, n, and .
To estimate the last integral in (3.8) we use the p-Poincaré thickness of 0f2.
Indeed, the function § —u can be continued as 0 to 02 and hence (1.4) implies

(p+n)/n
39 [Ivers-ard<ar( [ ve- ot a)
Q Q(2r)NQ

note that V(6 —u) =0 a.e. in Q. The Minkowski and Hélder inequalities yield

(p+n)/n
P </ }V(e _ U) ’pn/(p—l—n) dx)
Q(2r)NQ
(p+n)/pn
< pP {(/ |v9|pn/(p+n) dx)
Q(2r)NQ
(p+n)/pnyp
+ (/ |vu|pn/(p+n) dm) }
Q(2r)NQ
1/p (p+n)/pnp
<P {r(/ Vo d:z:) + (/ ‘vu‘pn/(ln-l-n)) ]
Q(2r)NQ Q(2r)NQ

(p+n)/n
o[ opaerr([ o)™
Q(2r)NQ Q(2r)NQ
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From (3.8) and (3.9) we thus obtain

OP|Vul|P dz

(p+n)/n
< c[/ |V9\pdx—|—r_p</ |Vu|pr/ (PFm) d:z;) }
Q(2r)N& Q(2r)NQ

If we now set g = |Vu|P"/ P+ and f = |VO|PY/®P+") in QNQ(2r), g= f =0 in
Q(2r)\ 2, and ¢ = (p+n)/n, then (3.10) yields

q
(3.11) ][ quxgc[][ fldx + (][ gdx) }
Q(r) Q(2r) Q(2r)

where ¢ = ¢(p, s,n,a/B,7) < 0o.
Lemma 2.9 together with inequalities (3.7) and (3.11) implies that |Vu| €
L*(Q) for some t = t(p,s,n,a/B,7) > p.

(3.10)

It remains to show that u € L°() for some § = &(n,p) > p. Continuing
u—6 as 0 to R"™ we obtain from the ordinary Sobolev imbedding theorem that

for p<n, p* :pn/(n_p)7

(3.12) </Q\u—9‘p* dx)”p* Sc(/ﬂ\V(u—Hﬂpd:p)l/p < .

If now § = min(s,p*) > p, then by the Minkowski and Hélder inequalities

5 1/6 1/6
(/ |u|5dx) < (/ |0|5dx) + (/ |u—0|5dx)
Q Q Q
1/6 1/p*
< </ |9|5dx> +01</ lu — 6|P dx)
Q Q

where ¢; depends on diam 2, p, and n.

Since § € L*(2), we obtain from (3.13) that u € L°(Q). Setting ¢ =
min(t,6) > p we see that u € WH4(Q) in the case p < n. If p > n, then
we can apply the above reasoning for any p* < oo together with Hélder’s inequal-
ity to conclude that v € L¥(2) and hence v € W9(Q2) with ¢ = min(t,s) > p in
this case. The theorem follows.

(3.13)

3.14. Remarks. Here we present some variants of Theorems A and B.
(a) A slight modification of the proof of Theorem A shows that if u € WP(Q)
is a solution of div.#(z, Vu) = 0 in Q, then u € W,24(Q), ¢ = q(n,p,a/B) > p.

loc

This situation has already been considered in [GM], [Str 1-2], and [I]. In fact, this
situation corresponds to the case 1) = —o0.
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(b) If in Theorem B it is assumed that 0, ¢ € WP (Q) with V@, Vi € L(Q),
s>p>n/(n—1), then it follows from the proof of Theorem B that Vu € L(£2),
q = q(n,p,s,a/B,v) > p. Granlund proved this result for variational obstacle
problems in the case p =n [G, Theorem 1.5].

(c) A simplified version of the proof for Theorem B shows that if u is a
solution of V - .o/ (z,Vu) = 0 in Q with u — 60 € WyP(Q) and if § € W5(Q),
s >p>n/(n—1), then uc WH(Q), ¢ = q(p,s,n,a/8,7) > p.

[Gi]
[GM]

[GT]
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