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CARLESON MEASURE, ATOMIC DECOMPOSITION

AND FREE INTERPOLATION FROM BLOCH SPACE

Jie Xiao

Peking University, Department of Mathematics

Beijing 100871, P.R. China

Abstract. Several characterizations, Carleson measures and atomic decomposition for the
Bloch space B are given. For their applications, free interpolations from B are also discussed.

1. Introduction

Let D =
{

z : |z| < 1
}

be the unit disk in the finite complex plane C and

dmα(z) =
(

1 − |z|2
)α

dm(z) the two-dimensional Lebesgue measure with weight
(

1 − |z|2
)α

, α > −1. Denote by A and H∞ the sets of functions analytic and
boundedly analytic on D , respectively. For f ∈ A we say f ∈ B if

(1.1) ‖f‖B =
∣

∣f(0)
∣

∣ + sup
z∈D

(

1 − |z|2
)
∣

∣f ′(z)
∣

∣ < ∞;

also f ∈ A1
α if

(1.2) ‖f‖1,α =

∫

D

∣

∣f(z)
∣

∣ dmα(z) < ∞.

B and A1
α are the so-called Bloch space and the Bergman space weighted by

(

1 − |z|2
)α

, [6], [15].
It is well known that the dual space of A1

0 is identified with B under the
following inner product:

(1.3)

〈f, g〉 =
1

π
lim
t→1

∫

tD

f(z)g(z)dm(z)

=
1

π

∫

D

(∨f)(z)
(

1 − |z|2
)

g′(z) dm(z) + f(0)g(0)

for f ∈ A1
0 and g ∈ B , where t ∈ (0, 1), tD =

{

z : |z| < t
}

and (∨f)(z) =
[

f(z) − f(0)
]

/z ; see [3].
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In [11] we discussed the atomic decomposition and the free interpolation on
the Bergman space A1

0 . Since (A1
0)

∗ = B , it is very natural to consider similar
problems on the Bloch space. As far as we know, these questions have not been
thoroughly dealt with yet ([8], [13]), which is what we try to do in this paper. First,
in Section 2, we give several characterizations of B as well as relations between B
and Carleson measure. Next, in Section 3, we obtain an atomic decomposition
of B by means of the pseudohyperbolic metric. Finally, in Section 4, we study the
free interpolations by functions from B by means of the direct construction and
the operator theory.

We wish to express our deepest gratitude to Professor X.C. Shen for help-
ful suggestions, especially during his illness. Also, we are grateful to Professors
R. Aulaskari and O. Martio for their kind help. Besides, we would like to thank
the referee for his/her comments, and the secretary of Department Mathematics
of the Joensuu University for her dedicated typing.

2. Bloch space and Carleson measure

There are many works on the Bloch space, [1], e.g. [2], [7], [10]. Here we will
give several interesting characterizations, some of which are new.

For z and w in D , let ϕw(z) = (w − z)/(1 − wz) , ̺(w, z) =
∣

∣ϕw(z)
∣

∣ and

d(w, z) = 1
2 log

{

[1+̺(w, z)]/[1−̺(w, z)]
}

. Here ̺( · , · ) and d( · , · ) are called the
pseudohyperbolic and hyperbolic distances, respectively. Also, denote the measure
of set E ⊂ D , relative to dmα(z) , by mα(E) =

∫

E
dmα(z) =

∫

E

(

1−|z|2
)α

dm(z) .
Then we have the following result.

Theorem 2.1. Let f ∈ A . Then the following statements are equivalent:

(i) f ∈ B ;

(ii) supw,z∈D

∣

∣f(w) − f(z)
∣

∣/d(w, z) < ∞ ;

(iii) there is a constant C > 0 such that

sup
w∈D

∫

D

exp
[

C
∣

∣(f ◦ ϕw)(z) − f(w)
∣

∣

]

dmα(z) < ∞.

Proof. We will show this fact according to (i) =⇒ (ii) =⇒ (iii) =⇒ (i).
Firstly, (i) =⇒ (ii). Let f ∈ B , and gw(λ) = (f ◦ ϕw)(λ) − f(w) , λ, w ∈ D .

Then gw(0) = 0 and ‖gw‖B = supz∈D

(

1 − |z|2
)
∣

∣f ′(z)
∣

∣ ≤ ‖f‖B < ∞ . Further,

∣

∣gw(λ)
∣

∣ =

∣

∣

∣

∣

∫ λ

0

g′
w(ζ) dζ

∣

∣

∣

∣

≤ 1
2
‖f‖B log

1 + |λ|

1 − |λ|
.

Setting z = ϕw(λ) we obtain

∣

∣f(z) − f(w)
∣

∣ ≤ 1
2‖f‖B log

1 + ̺(z, w)

1 − ̺(z, w)
= ‖f‖Bd(z, w),

i.e., (ii) holds.
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Secondly, (ii) =⇒ (iii). Suppose that

0 < ‖f‖′B = sup
w,z∈D

∣

∣f(w) − f(z)
∣

∣/d(w, z) < ∞;

then for t ≥ 0,

{

z : z ∈ D, |gw(z)| > t
}

⊂

{

z : z ∈ D, |z| >

[

exp
( 2t

‖f‖′B

)

− 1

]

/

[

exp
( 2t

‖f‖′B

)

+ 1

]}

.

Moreover, when 0 < C <
[

2(α + 1)/‖f‖′B
]

,

∫

D

exp
[

C|gw(z)|
]

dmα(z) = C

∫ ∞

0

(exp Ct) · mα

(

{ z : z ∈ D, |gw(z)| > t }
)

dt

≤ C

∫ ∞

0

(exp Ct)
4π

α + 1
exp

(

−
2(α + 1)t

‖f‖′B

)

dt

=
4πC · ‖f‖′B

(α + 1)
[

2(α + 1) − C‖f‖′B
] .

Thirdly, (iii) =⇒ (i). Let

‖f‖′′B = sup
w∈D

∫

D

exp
[

C|(f ◦ ϕw)(z) − f(w)|
]

dmα(z) < ∞

for some constant C > 0. Then

∥

∥(f ◦ ϕw)(z) − f(w)
∥

∥

1,α
≤

‖f‖′′B
C

< ∞.

Since gw has a Taylor series
∑

n anzn which converges uniformly on tD (0 < t
< 1), a simple calculation gives

a1 = g′
w(0) =

(α + 1)(α + 2)

1 −
[

1 + (α + 1)t2
]

(1 − t2)α+1

∫

tD

gw(z)z dmα(z).

By letting t → 1 we get

∣

∣g′
w(0)

∣

∣ ≤ (α + 1)(α + 2)

∫

D

∣

∣gw(z)
∣

∣ dmα(z),

i.e.,
(

1 − |w|2
)
∣

∣f ′(w)
∣

∣ ≤
[ (α + 1)(α + 2)

C

]

· ‖f‖′′B.

So, f ∈ B .
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Remark. This theorem tells us that B is Lipschiz’s class, relative to the
hyperbolic metric d( · , · ) . However, we know that B can be identified with the
Zygmund class (see [1], [5]). Hence our result is much clearer than the one in [1].

In what follows we characterize connection between the Bloch space and Car-
leson measure.

For w ∈ D let D(w, r) = { z : z ∈ D, ̺(w, z) < r } , r ∈ (0, 1). D(w, r)
is called the pseudohyperbolic disk. It is more convenient to use D(w, r) (not
Carleson square) for discussing Borel measure on the Bergman space A1

α ; see [6],
[12]. Similarly, we have the following theorem.

Theorem 2.2. Let p ∈ (0,∞) and r ∈ (0, 1) , and let µ be a nonnegative

Borel measure on D . Then the following statements are equivalent:

(i) sup
w∈D

0 6≡f∈B

[

1

‖f‖p
B

∫

D

∣

∣f(z) − f(w)
∣

∣

p

(

1 − |w|2
)2+α

|1 − wz|4+2α
dµ(z)

]1/p

< ∞ ;

(ii) sup
w∈D

[ µ
(

D(w, r)
)

mα

(

D(w, r)
)

]

< ∞ ;

(iii) sup
w∈D

[
∫

D

(

1 − |w|2
)2+α

|1 − wz|4+2α
dµ(z)

]

< ∞ .

Proof. (ii) ⇔ (iii) has been derived in [13], so we only need to claim (i)⇔(ii).

On the one hand, if (ii) is true, it follows by Theorem 2.1 that

[
∫

D

∣

∣(f ◦ ϕw)(z) − f(w)
∣

∣

p
dmα(z)

]1/p

≤ C‖f‖B

for f ∈ B , where C > 0 is a constant independent of f . Further, by [15], [12]
and [6] it yields another constant C0 depending on the condition (ii) such that

[
∫

D

∣

∣f(z) − f(w)
∣

∣

p

(

1 − |w|2
)2+α

|1 − wz|4+2α
dµ(z)

]1/p

≤ C0

[
∫

D

∣

∣f(z) − f(w)
∣

∣

p

(

1 − |w|2
)2+α

|1 − wz|4+2α
dmα(z)

]1/p

= C0

[
∫

D

∣

∣(f ◦ ϕw)(z) − f(w)
∣

∣

p
dmα(z)

]1/p

≤ C0C‖f‖B.

On the other hand, let (i) hold. Taking f0(z) =
[

1/(1 − w0z)
]

− 1 for w0 =
(

−1
2
(r + 1) + w

)

/(1 − 1
2
(r + 1) · w) , 1

2
(r + 1) 6= w ∈ D , r ∈ (0, 1), we get
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‖f0‖B = |w0|/
(

1−|w0|
2
)

,
∣

∣f0(z)−f0(w0)
∣

∣ = |w0||z−w0|/|1−w0z|
(

1−|w0|
2
)

and

sup
z∈D(w,r)

|1 − w0z| = sup
λ∈rD

∣

∣

∣

∣

1 −

(

w − 1
2(r + 1)

1 − w 1
2
(r + 1)

)

·
( w − λ

1 − wλ

)

∣

∣

∣

∣

≤
(2 + r2 + r)

(

1 − |w|2
)

(1 − r)2
.

Also, there are two constants C1 > 0 and C2 > 0 depending only on α and r
such that (see [14])

C1 ·
(

1 − |w|2
)2+α

≤ mα

(

D(w, r)
)

≤ C2 ·
(

1 − |w|2
)2+α

.

We also have

∞ > sup
λ∈D

0 6≡f∈B

[

1

‖f‖p
B

·

∫

D

∣

∣f(z) − f(λ)
∣

∣

p
·

(

1 − |λ|2
)2+α

|1 − λz|4+2α
dµ(z)

]1/p

≥

[

1

‖f0‖
p
B

·

∫

D

∣

∣f0(z) − f0(w0)
∣

∣

p
·

(

1 − |w0|
2
)2+α

|1 − w0z|4+2α
dµ(z)

]1/p

≥

[

(1 − |w0|
2

|w0|

)p

·

∫

D(w,r)

(

|w0|

1 − |w0|2

)p
[

̺(z, w0)
]p

·
(1 − r)4(2+α)

(2 + r + r2)4+2α

·
1

(

1 − |w|2
)2+α dµ(z)

]1/p

≥

[

(1 − r)4(2+α)

44+2α
·

∫

D(w,r)

[

̺(w0, w) − ̺(z, w)
]p

·
1

(1 − |w|2)2+α
dµ(z)

]1/p

≥
(1 − r)(4α+8+p)/p

2(4α+8+p)/p
C

1/p
2 ·

[

µ
(

D(w, r)
)

mα

(

D(w, r)
)

]1/p

.

Therefore

sup
w∈D

[

µ
(

D(w, r)
)

mα

(

D(w, r)
)

]

< ∞.

The measure µ satisfying one of the three statements in Theorem 2.2 is said
to be α -Carleson measure. The following fact is interesting.

Theorem 2.3. Let f ∈ A . Then the following statements are equivalent:

(i) f ∈ B ;

(ii)
∣

∣f ′(z)
∣

∣

2(
log 1/|z|

)2
dm(z) is 0 -Carleson measure;

(iii)
∣

∣f ′(z)
∣

∣

2(
1 − |z|2

)2
dm(z) is 0 -Carleson measure.
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Proof. We will give the whole claim in accordance with the order (i) =⇒ (ii)
=⇒ (iii) =⇒ (i).

First of all, (i) =⇒ (ii). Under f ∈ B , we consider the integral below:

I1 =

∫

D

(

1 − |w|2
)2

|1 − wz|4
·
∣

∣f ′(z)
∣

∣

2
(

log
1

|z|

)2

dm(z) =

(
∫

{|z|> 1

4
}

+

∫

{|z|≤ 1

4
}

)

{· · ·} dm(z).

Since log(1/|z|) ≤ C1

(

1 − |z|2
)

when |z| > 1
4 ,

∫

{|z|> 1

4
}

{· · ·} dm(z) ≤ C2
1

∫

{|z|> 1

4
}

∣

∣f ′(z)
∣

∣

2(
1 − |w|2

)2(
1 − |z|2

)2

|1 − wz|4
dm(z)

≤ C2
1 · ‖f‖2

B

∫

D

(

1 − |w|2
)2

|1 − wz|4
dm(z) ≤ πC2

1‖f‖
2
B,

where C1 > 0 is an absolute constant. At the same time
∫

{|z|≤ 1

4
}

{· · ·} dm(z) ≤
(16

15

)2

‖f‖2
B

∫

{|z|≤ 1

4
}

(

1 − |w|2
)2

|1 − wz|4

(

log
1

|z|

)2

dm(z)

≤
(16

15

)2

·
44

34
‖f‖2

B

∫

{|z|≤ 1

4
}

(

log
1

|z|

)2

dm(z) = C2‖f‖
2
B,

where C2 > 0 is an absolute constant. Consequently

I1 ≤ (πC2
1 + C2)‖f‖

2
B.

So, from Theorem 2.2 (iii) we see that
∣

∣f ′(z)
∣

∣

2(
log(1/|z|)

)2
dm(z) is 0-Carleson

measure.
Next (ii) =⇒ (iii). This is obvious, since

(

1 − |z|2
)2

≤ 4
(

log(1/|z|)
)2

for all
z ∈ D .

Finally (iii) =⇒ (i). Assuming that
∣

∣f ′(z)
∣

∣

2(
1 − |z|2

)2
dm(z) is 0-Carleson

measure, we have

I2 = sup
w∈D

∫

D

∣

∣f ′(z)
∣

∣

2
·

(

1 − |z|2
)2(

1 − |w|2
)2

|1 − wz|4
dm(z) < ∞,

and obviously ∞ > I2 ≥
∫

D

∣

∣f ′(z)
∣

∣

2(
1 − |z|2

)2
dm(z) . Moreover,

(

f ′(w)
)2

=
3

π

∫

D

(

f ′(λ)
)2

·

(

1 − |λ|2
)2

(1 − wλ)4
dm(λ).

Hence

(

1 − |w|2
)2∣

∣f ′(w)
∣

∣

2
≤

3

π

∫

D

∣

∣f ′(λ)
∣

∣

2
·

(

1 − |λ|2
)2(

1 − |w|2
)2

|1 − wλ|4
dm(λ) ≤ I2 < ∞,

i.e., f ∈ B .

Supposing gD(z, w) = log |(1−wz)/(w− z)| (the Green’s function on D ), we
just have
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Corollary 2.4. Let f ∈ A . Then f ∈ B if and only if

(2.1) sup
w∈D

∫

D

∣

∣f ′(z)
∣

∣

2
g2

D(z, w) dm(z) < ∞.

Proof. This fact is readily derived from the equivalence between ‖f ◦ ϕw‖B

and ‖f‖B , and Theorem 2.3 (ii). Nevertheless, the result can also be shown by
Theorem 2.1 and 2.3.

3. Atomic decomposition

To begin with, we let 11 and 1∞ stand for the usual sequence spaces as
follows:

11 =
{

{cn} : {cn} ⊂ C, ‖{cn}‖1 =
∑

n

|cn| < ∞
}

,(3.1)

1∞ =
{

{cn} : {cn} ⊂ C, ‖{cn}‖∞ = sup
n

|cn| < ∞
}

.(3.2)

Both are Banach spaces. Also, suppose that {zn} is a sequence of points on D . A
sequence of points {zn} is called δ -weakly separated if δ = infm 6=n ̺(zm, zn) > 0
and η -uniformly separated if η = infn

∏

m 6=n ̺(zm, zn) > 0. Clearly an η -
uniformly separated sequence must be δ -weakly separated. A sequence of points
{zn} is said to be ε-dense if D = ∪nD(zn, ε) , where D(zn, ε) = { z : z ∈
D, ̺(zn, z) < ε } and ε ∈ (0, 1).

Luecking [6] and Xiao [12] proved the quasi-atomic decomposition theorem
of A1

α as follows.

Lemma 3.1. Let {zn} be a sequence of points on D , α > −1 and f ∈ A1
α .

If {zn} is δ -weakly separated, there is a constant C1 > 0 depending only on δ
and α so that

(3.3) ‖f‖1,α ≥ C1 ·
∑

n

(

1 − |zn|
2
)2+α∣

∣f(zn)
∣

∣.

Furthermore, there are an ε0 > 0 and a constant C2 > 0 depending only on δ
and α so that

(3.4) ‖f‖1,α ≤ C2

∑

n

(

1 − |zn|
2
)2+α∣

∣f(zn)
∣

∣

if {zn} is also ε-dense with 0 < ε ≤ ε0 .
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After the above lemma, we can state an atomic decomposition theorem on
the Bloch space.

Theorem 3.2. Let {zn} be a sequence of points on D . If {zn} is δ -weakly

separated, the function of the form (3.5) is in B for any {cn} ∈ 1∞

(3.5) f(z) =
∑

n

cn ·
(1 − |zn|

2

1 − znz

)2

.

Moreover, there is an ε0 > 0 such that every f ∈ B has the form (3.5) for some

{cn} ∈ 1∞ if {zn} is also ε-dense with 0 < ε ≤ ε0 .

Proof. Let {zn} be δ -weakly separated. Then T , defined as follows, is a
bounded linear operator from A1

0 to 11 ,

(3.6) Tf =
{

(Tf)n

}

=
{(

1 − |zn|
2
)2

f(zn)
}

,

in that (3.3) holds under {zn} being δ -weakly separated. Thus T∗ , the adjoint
operator of T given by (3.7), is a bounded linear operator from 1∞ (= (11)∗ )
to B (= A1

0)
∗ ),

(3.7) 〈Tf, y〉 = 〈f,T∗y〉, f ∈ A1
0, y ∈ 1∞,

where the left 〈·, ·〉 is just the usual inner product between 11 and 1∞ .
To compute T∗ , we take

y = en, (en)m =

{

1, m = n
0, m 6= n,

so
〈Tf, en〉 = (Tf)n =

(

1 − |zn|
2
)2

f(zn) =
(

1 − |zn|
2
)2
〈f, Kzn

〉,

where Kzn
(z) = 1/(1 − znz)2 is the reproducing kernel for A1

0 . Hence

T∗en =
(

1 − |zn|
2
)2

Kzn
(z)

and

T∗y =
∑

n

cn ·

(

1 − |zn|
2
)2

(1 − znz)2
for y = {cn} ∈ 1∞,

i.e., the function in the form (3.5) is in B . Indeed, it is easy to derive T∗y ∈ B
by means of the direct computation.

Now we turn to showing the second part of Theorem 3.2. In fact, it is only
necessary to claim T∗ to be surjective. However, T∗ is onto if and only if T is
bounded below. By Lemma 3.1, there exists an ε0 > 0 such that T is bounded
below if {zn} is ε-dense with 0 < ε ≤ ε0 . That is to say, there is an ε0 > 0 such
that every f ∈ B has the form (3.5) for some {cn} ∈ 1∞ as {zn} is ε-dense with
0 < ε ≤ ε0 . Therefore the proof is completed.
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4. Free interpolation

As is well-known, a given sequence of points {zn} on D is called an H∞ -
interpolating sequence if for any {cn} ∈ 1∞ there exists f ∈ H∞ satisfying
f(zn) = cn for all n . Carleson stated in [4] that {zn} is an H∞ -interpolating
sequence if and only if {zn} is η -uniformly separated. Here we want to extend
this fact to the Bloch space. Yet, it is unfortunate that the η -uniformly separated
property is only a sufficient condition for B . A sequence of points {zn} is said to
be a B -interpolating sequence if there is f ∈ B such that f(zn) = cn for all n
and any {cn} ∈ 1∞ .

Theorem 4.1. Let {zn} be a sequence of points on D . If {zn} is a B -

interpolating sequence, {zn} is δ -weakly separated. Conversely, if {zn} is δ -

weakly separated and (4.1) or (4.2) is true, then {zn} is a B -interpolating se-

quence where

sup
n

∑

m 6=n

(

1 − |zm|2
)(

1 − |zn|
2
)

|1 − znzm|2
< ∞,(4.1)

sup
n

∑

m 6=n

(

1 − |zm|2
)2

|1 − znzm|2
< 1.(4.2)

Proof. Firstly, if {zn} is a B -interpolating sequence, then 1∞ ⊂ T∞B , where
T∞f =

{

f(zn)
}

. Since B is a Banach space, relative to ‖ · ‖B , it follows from
the open mapping theorem that there is a uniform constant C1 > 0 and f ∈ B so
that ‖f‖B ≤ C1 with f(zn) = wn for all n and

∥

∥{wn}
∥

∥

∞
≤ 1. Picking wm = 0,

m 6= n ; wm = 1, m = n , there exist fn ∈ B , ‖fn‖B ≤ C1 satisfying fn(zn) = 1;
fn(zm) = 0, m 6= n . Theorem 2.1 yields

∣

∣fn(zn) − fn(zm)
∣

∣

d(zn, zm)
≤ C1, m 6= n,

and so infm 6=n d(zn, zm) ≥ 1/C1 > 0, i.e.,

δ = inf
m 6=n

̺(zm, zn) ≥ (e2/C1 − 1)/(e2/C1 + 1) > 0.

Conversely, let {zn} be δ -weakly separated. If (4.1) is true, {zn} is η -
uniformly separated and hence 1∞ = T∞H∞ ⊂ T∞B since H∞ is a proper
subspace of B . Furthermore, if (4.2) holds, we consider the linear operator T∗ ,

given by T∗
(

{cn}
)

=
∑

n cn ·
(

(1− |zn|
2)/(1− znz)

)2
, {cn} ∈ 1∞ . Clearly, T∗ is

bounded from 1∞ to B (by Theorem 3.2), while

∥

∥(T∞T∗ − I){cn}
∥

∥

∞
= sup

n

∣

∣

∣

∣

∑

m 6=n

cm ·
(1 − |zm|2

1 − zmzn

)2
∣

∣

∣

∣

≤
∥

∥{cn}
∥

∥

∞
· sup

n

∑

m 6=n

( 1 − |zm|2

|1 − znzm|

)2

.
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So,
∥

∥(T∞T∗ − I)
∥

∥ < 1, where I is the identify operator, i.e., T∞T∗ has an
inverse, denoted by (T∞T∗)−1 . Further, T∞ has a right inverse T∗(T∞T∗)−1 ,
that is to say, T∞

(

T∗(T∞T∗)−1
)

= I , and thus 1∞ ⊂ T∞B . So, {zn} is a
B -interpolating sequence.

Note that T∞H∞ ( T∞B . In general, it is necessary to take into considera-
tion the generic free interpolation problem from B . That is, for which {wn} ⊂ C

there is f ∈ B satisfying
{

f(zn)
}

= T∞f = {wn} . For this we obtain the
following fact.

Theorem 4.2. Let {zn} be a δ -weakly separated sequence of points on D .

If {f(zn)} = T∞f = {wn} is solvable in B for {wn} ⊂ C , the following asser-

tions (i) and (ii) hold:

(i) there are a constant C1 > 0 and a function β(z) such that

(4.3) sup
z∈D

∑

n

[

1 − ̺2(z, zn)
]γ

exp
[

C1|wn − β(z)|
]

< ∞

for γ > 1 ;

(ii) there is a constant C2 > 0 such that

(4.4) sup
z∈D

∑

n

[

1 − ̺2(z, zn)
]γ

exp
[

C1|wn − h(z)|
]

< ∞

for γ > 1 , where h(z) =
{
∑

n wn

[

1 − ̺2(z, zn)
]γ}/

∑

n

[

1 − ̺2(z, zn)
]γ

.

Conversely, if (i) or (ii) holds for γ = 1 , then
{

f(zn)
}

= T∞f = {wn} is

solvable in B .

Proof. First we consider the case (i). If
{

f(zn)
}

= T∞f = {wn} is solvable
in B , then Theorem 2.1 yields

sup
z∈D

∫

D

exp
[

C1|gz(w)|
]

dmα(w) < ∞

for C1 < 2(α + 1)/‖f‖B (‖f‖B > 0 is naturally assumed), where gz(w) =
(f ◦ ϕz)(w) − f(z) . The above statement means that exp(C1gz) is in A1

α . Con-
sequently, by Lemma 3.1,

(4.5) sup
z∈D

∑

n

exp
[

C1|gz(z̃n)|
](

1 − |z̃n|
2
)α+2

≤ C sup
z∈D

‖ expC1gz‖1,α < ∞,

where {z̃n} = {ϕz(zn)} , C > 0 is a constant independent of gz , and {z̃n} is
also a δ -weakly separated sequence of points on D since {zn} is such a sequence.
Thus (4.5) means that (i) holds for γ = α + 2 > 1 and β(z) = f(z) .

Now let us consider (ii).
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Because {zn} is δ -weakly separated, we get
∑

n

[

1 − ̺2(z, zn)
]α+2

< ∞ by
Lemma 3.1. By (4.5) we further have

∑

{n:|wn−f(z)|>t}

[

1 − ̺2(z, zn)
]α+2

≤ C2 exp(−C1t)

for t ≥ 0, where C1 and C2 are constants with C1 < 2(α + 1)/‖f‖B , ‖f‖B > 0,
and f is the interpolating function for T∞f = {wn} in B .

Thus, for γ = α + 2 > 1

∣

∣h(z) − f(z)
∣

∣ ≤
1

∑

n

[

1 − ̺2(z, zn)
]γ

∑

n

∣

∣wn − f(z)
∣

∣

[

1 − ̺2(z, zn)
]γ

=
1

∑

n

[

1 − ̺2(z, zn)
]γ

∫ ∞

0

{

∑

{n:|wn−f(z)|>t}

[

1 − ̺2(z, zn)
]γ

}

dt

≤
1

∑

n

[

1 − ̺2(z, zn)
]γ

∫ ∞

0

min

{

∑

n

[

1 − ̺2(z, zn)
]γ

, C2 exp(−C1t)

}

dt

≤
1

C1

{

1 + log
C2

∑

n

[

1 − ̺2(z, zn)
]γ

}

and, consequently,

sup
z∈D

∑

n

[

1 − ̺2(z, zn)
]γ

exp
[C1

2

∣

∣wn − h(z)
∣

∣

]

≤ sup
z∈D

∑

n

[

1 − ̺2(z, zn)
]γ

exp
[C1

2

∣

∣wn − f(z)
∣

∣

]

exp
[C1

2

∣

∣f(z) − h(z)
∣

∣

]

≤ sup
z∈D

{{

∑

n

[

1 − ̺2(z, zn)
]γ

exp
[

C1|wn − f(z)|
]

}1/2

·

{

∑

n

[

1 − ̺2(z, zn)
]γ

}1/2

·
(

exp 1
2

)

{

C2
∑

n

[

1 − ̺2(z, zn)
]γ

}1/2}

=
√

C2e ·

{

sup
z∈D

∑

n

[

1 − ̺2(z, zn)
]γ

exp
[

C1|wn − f(z)|
]

}1/2

< ∞.

That is to say, (ii) is true for γ = α + 2 > 1.

Next we show the contrary assertion. If (i) or (ii) holds for γ = 1, then it
follows from (4.4) that

sup
z∈D

∑

n

[

1 − ̺2(z, zn)
]

< ∞.
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This, together with {zn} being δ -weakly separated, shows that {zn} is η -
uniformly separated. Also, it follows by [9] that there is f ∈ BMOA(∂D) to
make T∞f =

{

f(zn)
}

= {wn} for {wn} ⊂ C which is satisfied with (4.3)
or (4.4) for γ = 1. Since BMOA(∂D) ( B , there exists f ∈ B such that
T∞f =

{

f(zn)
}

= {wn} under the previous assumption. Thus the theorem is
proved.
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