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THE PICK VERSION OF THE SCHWARZ LEMMA
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Abstract. Let a function f be analytic and |f | < 1 in the disk U = {|z| < 1} , and
let F be the family of all the Möbius maps T with T (U) = U . Pick’s version of the Schwarz
lemma is then that Γ(z, f) ≡ (1 − |z|2)|f ′(z)|/(1 − |f(z)|2) < 1 at all z ∈ U if f /∈ F , and
Γ(z, T ) ≡ 1 for T ∈ F . To improve the Pick version we first prove (1): (1−|z|2)|(∂/∂z)Γ(z, f)| ≤
1 − Γ(z, f)2 at each z ∈ U . The equality in (1) holds at a z ∈ U if and only if f ∈ F

or f is in the family G of all the products TS of T and S ∈ F . Our improvement is (2):
Γ(z, f) ≤ [Γ(0, f)(1 + |z|2) + 2|z|]/[(1 + |z|2) + 2Γ(0, f)|z|] (≤ 1) at each z ∈ U . The equality in
(2) holds at a point z 6= 0 if and only if f ∈ F ∪ G . For plane regions H and G such that H is
hyperbolic and G ⊂ H , G 6= H , the densities µG and µH of the Poincaré metrics µG(z)|dz| and
µH(z)|dz| in G and H , respectively, satisfy µH(z)/µG(z) < 1 for all z ∈ G . Among others, we
improve this with the aid of (1) in the form (3): µH(z)/µG(z) < [1−exp(−4dG,H(z))]1/2 (< 1) for
all z ∈ G , where dG,H(z) > 0 is the Poincaré distance in H of z ∈ G and the relative boundary
of G in H . Inequality (3) is sharp: we cannot replace −4 in exp(· · ·) in (3) by any constant C
with −4 < C < 0 . Bounded univalent functions are also considered and we have some results on
the Poincaré densities in case G is simply connected.

1. Introduction

Let B be the family of functions f analytic and bounded, |f | < 1, in the
disk U = {|z| < 1} and set for f ∈ B ,

(1.1) Γ(z, f) = (1 − |z|2)|f ′(z)|/
(

1 − |f(z)|2
)

, z ∈ U.

The family F of all the Möbius maps T (z) = ε(z − a)/(1 − āz) , where a ∈ U
and ε ∈ ∂U = {|z| = 1} , is contained in B and Γ(z, T ) ≡ 1 in U for all T ∈ F .
G. Pick’s differential version of the Schwarz lemma reads: Γ(z, f) < 1 everywhere
in U if f ∈ B \F (f in B , not in F ); see [P1], [Gl, p. 332, Theorem 3] and [A,
p. 3 et seq.]. We shall prove a more precise form of this. For f ∈ B and z ∈ U ,
we set

Ξ(z, f) =
[

Γ(0, f)(1 + |z|2) + 2|z|
]

/
[

(1 + |z|2) + 2Γ(0, f)|z|
]

.

Then Ξ(0, f) = Γ(0, f) and, further, Ξ(z, f) ≡ Γ(z, f) ≡ 1 for f ∈ F and
Ξ(z, f) < 1 everywhere in U for f ∈ B \ F . Let G be the family of all the
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products TS of T ∈ F and S ∈ F . Then functions ϕ ∈ G ⊂ B \ F can be
divided into two types:

ϕ(z) ≡ T (z2) for a T ∈ F ;(Type I)

ϕ(z) ≡ T
(

zS(z)
)

for T, S ∈ F with S(a) = 0, a 6= 0.(Type II)

The Pick version is improved in

Theorem 1. For f ∈ B and z ∈ U we have

(1.2) Γ(z, f) ≤ Ξ(z, f).

The equality in (1.2) holds at a point z 6= 0 if and only if f ∈ F ∪ G . For f ∈ G

the equality in (1.2) holds alternatively

(A) at each z of U if f is of Type I; or

(B) at each z of the radius {−ra/|a|; 0 ≤ r < 1} and at no other point of U if f
is of Type II: f(w) = T

(

wS(w)
)

with S(a) = 0 , a 6= 0 .

Hence, Γ(z, f) < Ξ(z, f) < 1 for all z 6= 0 if f ∈ B \ (F ∪ G ) . Applications
of (1.2) will be given in Note (b), Section 5, and in Notes (α) , (β) and (γ) ,
Section 6. Let ∂/∂z = 2−1∂/∂x − 2−1i∂/∂y , z = x + iy . Note that if f ∈ B

and f ′(z) = 0 6= f ′′(z) , then (∂/∂z)Γ(z, f) does not exist, whereas (∂/∂z)Γ(z, f)
does exist and is 0 if f ′(z) = 0 = f ′′(z) . If f ′(z) 6= 0, then

|(∂/∂z)Γ(z, f)| = 1 − |z|2
1 − |f(z)|2

∣

∣

∣

∣

−z̄f ′(z)

1 − |z|2 +
f ′′(z)

2
+
f(z)f ′(z)2

1 − |f(z)|2
∣

∣

∣

∣

.

Since this is continuous in the whole U , we hereafter define |(∂/∂z)Γ(z, f)| by
this formula at the point z with f ′(z) = 0 also; this is constantly zero if f is
constant. For f ∈ F we have

(1 − |z|2)|(∂/∂z)Γ(z, f)| ≡ 1 − Γ(z, f)2 ≡ 0 in U.

Theorem 1 follows from

Theorem 2. For f ∈ B and z ∈ U we have

(1.3) (1 − |z|2)|(∂/∂z)Γ(z, f)| ≤ 1 − Γ(z, f)2.

The equality in (1.3) holds at a point z ∈ U if and only if f ∈ F ∪ G . For

f ∈ F ∪ G the equality in (1.3) holds at each z ∈ U .
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It would be interesting to compare (1.3) with the Schwarz–Pick form in ∂/∂z
for f ∈ B :

(1 − |z|2)|(∂/∂z)f(z)| ≤ 1 − |f(z)|2, z ∈ U.

Theorem 2 has a corollary which will be described in Section 2, and applica-
tions of Theorem 2 and its corollary to comparisons of the Poincaré densities will
be given in Sections 3, 4, and 5. If f ∈ B is univalent in U , then Theorem 2
has its counterpart, namely, Lemma 2 in Section 6. Parallel considerations are
discussed in Section 7. Most of our results are also true for Riemann surfaces with
little modification; see Section 8.

Some of the Notes below contain new results with detailed proofs and detailed
arguments concerning the equality conditions. We propose here, among others, a
refinement of the original Schwarz lemma: |f(z)| ≤ |z| for f ∈ B with f(0) = 0.
For f ∈ B \ F with f(0) = 0 and for each z ∈ U , we have

|f(z)| ≤ |z|
[

2(1 − |f ′(0)|)|z|2 + |f ′′(0)| |z| + 2|f ′(0)|(1− |f ′(0)|)
]

2|f ′(0)|(1− |f ′(0)|)|z|2 + |f ′′(0)| |z|+ 2(1 − |f ′(0)|) .

The right-hand side is strictly less than |z| in case z 6= 0.

2. Proofs of Theorem 1 and 2

First of all we observe some properties of functions ϕ of G . Given b ∈ U , we
have |ϕ(z)| = 1 > |b| on ∂U . It follows from Rouché’s theorem that the equation
ϕ(z) = b has two roots in U . Hence ϕ(U) = U for each ϕ = TS ∈ G , the
Riemann covering surface of U by ϕ is two-sheeted, and it has exactly one branch
point. To find the point we rewrite ϕ(z) = T (z)W

(

T (z)
)

, where W = S ◦ T−1

(first the inverse of T , then S ) is in F , and W (a) = 0 for some a ∈ U . Then
ϕ′ vanishes at the only one point T−1(A) , where A = a/(1 + {1 − |a|2}1/2) ∈ U .
Therefore, the branch point is over the point A(S ◦ T−1)(A) ∈ U .

If ϕ ∈ G and T ∈ F , then ϕ ◦ T ∈ G . To prove that T ◦ ϕ ∈ G for
ϕ ∈ G and T ∈ F , it suffices to consider the case ϕ(z) = zS(z) , where S(z) =
ε(z − a)/(1 − āz) . Let T (z) = ε′(z + a′)/(1 + a′z) , a′ ∈ U , ε′ ∈ ∂U . If a′ = 0,
then T ◦ ϕ = ε′ϕ ∈ G , while if a′ 6= 0, we have T ◦ ϕ(z) = p(z)/q(z) , where p
and q are quadratic polynomials of z with

ε′p(z) = εz2q(1/z̄) = εz2 − (εa+ āa′)z + a′.

The polynomials p and q have no common factor. Otherwise, p(z0) = q(z0) = 0
and a′ 6= 0 show that z0 6= 0. We thus have p(1/z0) = 0. On the other hand,
it follows from p(z) = 0 that εz(z − a)/(1 − āz) = −a′ . Hence no root of the
equation p(z) = 0 lies on the circle ∂U . Consequently, z0 and 1/z0 are exactly
the two roots of p(z) = 0, and hence z0/z0 = ε̄a′ yields a contradiction that
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|a′| = 1. Let b ∈ U and c ∈ U be the roots of the equation ϕ(z) = −a′ in U .
Then bc 6= 0 because ϕ(0) = 0. It then follows that both b and c are roots of
p(z) = 0 and hence 1/b̄ and 1/c̄ are those of q(z) = 0. Consequently,

T ◦ ϕ(z) = εε′{(z − b)/(1 − b̄z)}{(z − c)/(1 − c̄z)}.

Hence T ◦ ϕ ∈ G .

To classify functions of G , we set ψ =
(

ϕ − ϕ(0)
)

/
(

1 − ϕ(0)ϕ
)

for ϕ ∈ G .
Then ψ ∈ G and ψ(0) = 0. Hence ψ(z) ≡ zS(z) , S ∈ F . If S(0) = 0, then
ψ(z) = εz2 , so that ϕ is of Type I with T (z) = ε

(

z + ε̄ϕ(0)
)

/
(

1 + εϕ(0)z
)

, while

ϕ is of Type II with T (z) =
(

z + ϕ(0)
)

/
(

1 + ϕ(0)z
)

if S(a) = 0, a 6= 0.
If T and S are in F , then

Γ(z, T ◦ f ◦ S) = Γ
(

S(z), f
)

, z ∈ U.

Proof of Theorem 2. We may assume that f is nonconstant. Fix z ∈ U and
consider the function

(2.1) g(w) =
f
(

(w + z)/(1 + z̄w)
)

− f(z)

1 − f(z)f
(

(w + z)/(1 + z̄w)
) of w ∈ U,

a member of B . Then, even in the case f ′(z) = 0, a calculation yields the
identities

(2.2) |g′(0)| = Γ(z, f) and |g′′(0)|/2 = (1 − |z|2) |(∂/∂z)Γ(z, f)|.

The Pick version at 0: |Φ′(0)| ≤ 1 − |Φ(0)|2 , applied to Φ(w) = g(w)/w in U ,
shows that |g′′(0)|/2 ≤ 1 − |g′(0)|2 . This, combined with (2.2), proves (1.3).

Suppose that the equality in (1.3) holds at a point z ∈ U for f ∈ B \ F .
Then Φ must be a constant of modulus one or a member of F . The former is
impossible because f is not a member of F . Hence f is in G . Conversely, let
f ∈ G . Then, g =

(

f − f(0)
)

/
(

1− f(0)f
)

∈ G and g(z) = zS(z) for S ∈ F with
S(a) = 0. It then follows that

Γ(z, f) = Γ(z, g) = |āz2 − 2z + a|/
(

1 − 2 Re(āz) + |z|2
)

and
(

1 − |z|2
)

|(∂/∂z)Γ(z, f)| = (1 − |z|2)|(∂/∂z)Γ(z, g)|
= (1 − |a|2)(1 − |z|2)2/(1 − 2 Re(āz) + |z|2)2 = 1 − Γ(z, g)2.

Hence the equality in (1.3) holds at each z ∈ U . This completes the proof of the
theorem.

Since the derivative of each member of G vanishes at exactly one point of U ,
we have:
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Let Z(f ′) be the total number of the roots of the equation f ′(z) = 0 in U
for f ∈ B \ F , 0 ≤ Z(f ′) ≤ ∞ . If Z(f ′) 6= 1 , the inequality in (1.3) is strict

everywhere in U .

Recall that the Poincaré distance of z1 and z2 in U is dU (z1, z2) = tanh−1 δ ≡
(1/2) log{(1 + δ)/(1 − δ)} , where δ = |z1 − z2|/|1 − z̄1z2| . We then have

Corollary to Theorem 2. Suppose that f ∈ B \ F . Then

(2.3) | tanh−1 Γ(z1, f) − tanh−1 Γ(z2, f)| ≤ 2dU (z1, z2)

for all z1 and z2 in U . If the equality holds in (2.3) for a pair z1, z2 with z1 6= z2 ,

then f ∈ G . For a fixed a ∈ U and for f ∈ G the equality

tanh−1 Γ(z, f) − tanh−1 Γ(a, f) = 2dU (z, a)

holds alternatively

(A∗ ) at each z of U if f = ϕ ◦ X , where ϕ ∈ G is of Type I and X ∈ F

with X(a) = 0 ; or

(B∗ ) at each z of the part of the geodesic X−1{−rb/|b|; 0 ≤ r < 1} and at

no other point of U if f = ϕ ◦ X , where ϕ(w) = T
(

wS(w)
)

∈ G is of Type II

with S(b) = 0 , b 6= 0 , and X ∈ F with X(a) = 0 .

Proofs of the Corollary to Theorem 2 and Theorem 1. We may suppose that
f is nonconstant and z1 6= z2 in (2.3). Let σU (z1, z2) be the geodesic segment
from z1 to z2 , namely, the subarc from z1 to z2 on a circle orthogonal to the unit
circle ∂U or that of a diameter of U , including z1 and z2 . Then (2.3) follows on
considering (1.3) in the following chain:

| tanh−1 Γ(z1, f)− tanh−1 Γ(z2, f)| =
∣

∣

∣

∫

σU (z1,z2)

grad tanh−1 Γ(ζ, f) · (dξ, dη)
∣

∣

∣

≤
∫

σU (z1,z2)

∣

∣grad tanh−1 Γ(ζ, f)
∣

∣ |dζ|(2.4)

≤
∫

σU (z1,z2)

2/(1 − |ζ|2) |dζ| = 2dU (z1, z2)

because 2|(∂/∂z)Φ(ζ)| = | gradΦ(ζ)| , and the inner product is

grad Φ(ζ) · (dξ, dη) = (∂/∂ξ)Φ(ζ) dξ+ (∂/∂η)Φ(ζ) dη

for a real-valued function Φ of ζ = ξ + iη . Without giving any details we have
the first identity in (2.4) even if zeros of f ′ lie on σU (z1, z2) where Γ vanishes.
We thus have (2.3). If the equality holds in (2.3) for a pair z1, z2 , z1 6= z2 , then
it holds in (1.3) for all points z ∈ σU (z1, z2) , so that f ∈ G .



296 Shinji Yamashita

Since
tanh−1 Γ(z, f) − tanh−1 Γ(0, f) ≤ 2dU (z, 0),

a calculation for

Ξ(z, f) = tanh
(

2dU (z, 0) + tanh−1 Γ(0, f)
)

, z ∈ U,

proves (1.2) for f not in F . If the equality in (1.2) holds for f ∈ B \F at z 6= 0,
then it holds in (1.3) for all ζ ∈ σU (0, z) , so that f ∈ G . Conversely, suppose
that f ∈ G . Then g =

(

f − f(0)
)

/
(

1 − f(0)f
)

∈ G and g(z) = zS(z) for S ∈ F

with S(a) = 0. Note that Γ(z, f) ≡ Γ(z, g) and Ξ(z, f) ≡ Ξ(z, g) in U . It then
follows that

1 − Γ(z, g)2 = (1 − |a|2)(1 − |z|2)2/
(

1 − 2 Re(āz) + |z|2
)2

and
1 − Ξ(z, g)2 = (1 − |a|2)(1 − |z|2)2/

(

1 + 2|az| + |z|2
)2
.

Since 1 − 2 Re(āz) + |z|2 > 0, it follows that Γ(z, f) = Ξ(z, f) if and only if
−Re(āz) = |az| . If a = 0, then f is of Type I and the last equality holds at each
z ∈ U , while if a 6= 0, then f is of Type II and the equality holds only at each
z ∈ {−ra/|a|; 0 ≤ r < 1} . Note that Ξ(z, f) ≡ 2|z|/(1 + |z|2) if f is of Type I.
The equality discussion containing conditions (A∗ ) and (B∗ ) in the Corollary is
now obvious.

Note. Let f ∈ B \ F . Suppose that f ′(0) 6= 0. Then,

(2.5) Γ(z, f) ≥
[

Γ(0, f)(1 + |z|2) − 2|z|
]

/
[

(1 + |z|2) − 2Γ(0, f)|z|
]

at all z with

(2.6) |z| ≤
[

1 −
(

1 − Γ(0, f)2
)1/2]

/Γ(0, f) ≡ τ(f)

is significant because 0 < τ(f) < 1 and Γ(0, f)(1 + |z|2) − 2|z| ≥ 0. This is a
consequence of the inequality

tanh−1 Γ(0, f) − tanh−1 Γ(z, f) ≤ 2dU (z, 0).

If the equality in (2.5) holds at z 6= 0 with (2.6), then f ∈ G because the
equality in (1.3) holds for all ζ ∈ σU (0, z) . Suppose that f ∈ G and consider
g(z) =

(

f(z) − f(0)
)

/
(

1 − f(0)f(z)
)

≡ zS(z) ∈ G , S ∈ F , S(a) = 0, so that
|a| = Γ(0, f) 6= 0. Now, Γ(z, f) = Γ(z, g) and

1 − Γ(z, g)2 = (1 − |a|2)(1 − |z|2)2/
(

1 − 2 Re(āz) + |z|2)2
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and, further, 1 minus the square of the right-hand side of (2.5) is

(1 − |a|2)(1 − |z|2)2/(1 − 2|az| + |z|2)2.

Since 1−2 Re(āz)+ |z|2 ≥ 1−2|az|+ |z|2 > 0, we have the equality in (2.5) under
(2.6) if and only if Re(āz) = |az| . Thus the equality in (2.5) holds at z ∈ U \ {0}
if and only if f is of Type II, f(z) ≡ T

(

zS(z)
)

, and z ∈ {ra/|a|; 0 < r ≤ τ(f)} .
The right-hand side of (2.5) decreases from Γ(0, f) to 0 as |z| increases from 0
to τ(f) .

It is not difficult to give detailed arguments concerning the conditions for the
equality

tanh−1 Γ(a, f) − tanh−1 Γ(z, f) = 2dU (z, a)

for a fixed a ∈ U with f ′(a) 6= 0 similarly to (A∗ ) and (B∗ ).

3. Poincaré density

A region R is a nonempty, open, and connected subset in the complex plane
C = {|z| < +∞} . It is called hyperbolic if its boundary ∂R in C contains at least
two points. Each hyperbolic region R has the Poincaré metric element µR(z) |dz| ,
z ∈ R . Namely, if f is an analytic, universal covering projection from the disk
U onto R , f ∈ Proj(R) in notation, then 1/µR(z) = (1 − |w|2)|f ′(w)| for the
Poincaré density µR(z) at z = f(w) , w ∈ U ; the choice of f and w is immaterial
as far as z = f(w) is satisfied. If f ∈ Proj(R) and T ∈ F , then f ◦T ∈ Proj(R) ,
and, if f ∈ Proj(R) and g ∈ Proj(R) , we have T ∈ F with g = f ◦ T . Note that
µR > 0 everywhere in R .

The principle of hyperbolic metrics is a comparison of Poincaré densities: If

G is a proper subregion of a hyperbolic region H (that is, G ⊂ H and G 6= H ) ,
then

(3.1) µH(z)/µG(z) < 1 for all z ∈ G;

see, for example, [Gl, p. 337, Corollary]. We shall improve this statement.
The Poincaré distance dR(z1, z2) of z1 and z2 in R is the infimum of all

the integrals
∫

γ
µR(z) |dz| along the rectifiable curves γ connecting z1 and z2

in R with zk ∈ γ , k = 1, 2. Then dR is a metric in R . In case R = U this
coincides with the distance already defined. For z1, z2 ∈ R we have dR(z1, z2) =
inf dU (w1, w2) for all pairs w1 , w2 with zk = f(wk) , k = 1, 2, for each fixed
f ∈ Proj(R) . The infimum is attained: for each fixed w1 with f(w1) = z1 , there
always exists w2 with f(w2) = z2 and dR(z1, z2) = dU (w1, w2) . Moreover, if
z1 6= z2 , there exists at least one γ0 such that dR(z1, z2) =

∫

γ0

µR(z) |dz| . Such
a curve γ0 is called a geodesic segment from z1 to z2 in the sense of dR and
is denoted by σR(z1, z2) ; observe that σR(z1, z2) is not necessarily unique, yet
σU (z1, z2) is unique and is just the segment defined in Section 2. For further
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information on dR we refer the reader to [Le, pp. 147–149] in particular. See also
Section 8 of the present paper. Returning to a proper subregion G of a hyperbolic
region H , we let dG,H(z) be the dH -distance of z ∈ G and the relative boundary
H ∩ ∂G of G in H , namely,

dG,H(z) = inf
b∈H∩∂G

dH(z, b).

Then dG,H(z) > 0 at each z ∈ G because, as will be proved, there exists b ∈
H ∩ ∂G with dG,H(z) = dH(z, b) .

Theorem 3. For a proper subregion G of a hyperbolic region H the strict

inequality holds:

(3.2) µH(z)/µG(z) <
[

1 − exp
(

−4dG,H(z)
)]1/2

(< 1) at each z ∈ G.

The constant −4 in exp(· · ·) on the right-hand side cannot be replaced by any

absolute constant C with −4 < C < 0 .

Theorem 3 actually follows from Theorem 4 proved in the next section.

Note. Let R be a hyperbolic region and let z ∈ R . Let A (R, z) be the
family of analytic functions f in U such that f(U) ⊂ R and f(0) = z . Let ωR(z)
be the supremum of |f ′(0)| , f ∈ A (R, z) . Then 1/µR(z) = ωR(z) ; this can
be regarded as another definition of 1/µR(z) without reference to the universal
covering surface. Thus, µH(z)/µG(z) = ωG(z)/ωH(z) , z ∈ G . For the proof
we first choose g ∈ Proj(R) with g(0) = z . Since g ∈ A (R, z) , it follows that
1/µR(z) = |g′(0)| ≤ ωR(z) . For the proof of the converse inequality, we let
f ∈ A (R, z) be arbitrary and we further let h be a single-valued branch of g−1 ◦f
in U . Since g′ never vanishes in U , such a branch does exist. To avoid annoying
repetition of words we shall hereafter write

h
#
=g−1 ◦ f

in such a case. For our purpose here, we further make h ∈ B definite by letting
h(0) = 0. Then |f ′(0)|/|g′(0)| = |h′(0)| ≤ 1. Hence 1/µR(z) = |g′(0)| ≥ ωR(z) .
We thus observe that ωR(z) is actually the maximum, ωR(z) = |g′(0)| attained
by each g ∈ Proj(R) with g(0) = z . To prove that this is attained by no other
element of A (R, z) we suppose that |f ′

0(0)| = ωR(z) for an f0 ∈ A (R, z) . Then

for h0
#
=g−1 ◦ f0 ∈ B with g ∈ Proj(R) , g(0) = z , and h0(0) = 0, we have

|h′0(0)| = 1, so that h0 ∈ F , or f0(w) = g(εw) ∈ Proj(R) , ε ∈ ∂U , with
f0(0) = z .
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4. Lipschitz continuity in µH

It is well known that µR(z) → +∞ as z ∈ R tends to b ∈ ∂R ; see, for
example, [J, p. 116]. We give here a more precise result. The reader may want to
go directly to the paragraph just before Theorem 4 for a rapid understanding of
the theorem, although the Hempel estimate will be considered later.

Lemma 1. Let R be a hyperbolic region and let b ∈ ∂R . Then

(4.1) lim
z→b

|z − b|λµR(z) = +∞ for all λ, 0 ≤ λ < 1.

For the proof we make use of J.A. Hempel’s estimate (see [H1, p. 443, (4.1)]):

1/µR0
(ζ) ≤ 2|ζ|

(
∣

∣log |ζ|
∣

∣ + cH
)

at each ζ in the region R0 = C \ {0, 1} , where

cH = Γ(1/4)4(4π2)−1 = 4.376 . . . .

Hempel adopted 2µR for the Poincaré density. Actually this estimate is sharp:
the equality holds if and only if ζ = −1, namely, 1/µR0

(−1) = 2cH . Let c ∈ ∂R ,
c 6= b . Then z = (c − b)ζ + b maps R0 onto R1 = C \ {b, c} , so that R ⊂ R1

shows the chain

1/µR(z) ≤ 1/µR1
(z) = |c− b|/µR0

(

(z − b)/(c− b)
)

≤ 2|z − b|
(
∣

∣log{|z − b|/|c− b|}
∣

∣ + cH
)

at all z ∈ R.

We therefore have (4.1).

Note. We cannot replace λ in (4.1) with 1 because

lim
x→1−0

(1 − x)µU (x) = 1/2.

Thus, in particular, µG(z) → +∞ , so that (µH/µG)(z) → 0 as z in a proper
subregion G of H tends to b ∈ H ∩ ∂G . Defining (µH/µG)(b) = 0 once and for
all for each b ∈ H ∩ ∂G , we now propose

Theorem 4. Let G be a proper subregion of a hyperbolic region H . Then

the strict inequality holds:

(4.2)
∣

∣log
(

1 − (µH/µG)2
)

(z1) − log
(

1 − (µH/µG)2
)

(z2)
∣

∣ < 4dH(z1, z2)

for all z1, z2 ∈ H ∩ (G∪∂G) with z1 6= z2 . The Lipschitz constant 4 on the right-

hand side of (4.2) cannot be replaced with any absolute constant C , 0 < C < 4 .



300 Shinji Yamashita

Proof. Let g ∈ Proj(G) , h ∈ Proj(H) , and let f
#
=h−1 ◦ g be a branch

in U . Then f ∈ B is not a member of F because G 6= H . Furthermore, f ′

never vanishes in U , so that f is not in G . Then for w ∈ U with z = g(w) =
h
(

f(w)
)

∈ G we have

Γ(w, f) = (1 − |w|2)|g′(w)|/
[(

1 − |f(w)|2
)
∣

∣h′
(

f(w)
)
∣

∣

]

= µH(z)/µG(z).

Setting Ω = µH/µG in G we have, in view of (∂/∂w)Γ(w, f) = {(∂/∂z)Ω(z)}g′(w) ,

(4.3)
(1 − |w|2)|(∂/∂w)Γ(w, f)| = |(∂/∂z)Ω(z)|/µG(z)

= Ω(z)|(∂/∂z)Ω(z)|/µH(z)

at each z ∈ G . Combining this with (1.3) of Theorem 2, which is strict everywhere
in U for the present f , we have the strict inequality

Ω(z)|(∂/∂z)Ω(z)|/µH(z) < 1 − Ω(z)2,

or

(4.4) | grad log(1 − Ω2)(z)| < 4µH(z) for all z ∈ G.

In case zk ∈ H ∩ ∂G , k = 1, 2, (4.2) is immediate. First we assume that
zk ∈ G , k = 1, 2. We choose a σH(z1, z2) = γ and we suppose that γ is not
contained in G . We then let γk be the connected component of γ ∩G containing
zk , k = 1, 2. Consequently, γ1 starts at z1 and ends at a point of H ∩ ∂G , while
γ2 starts at a point of H ∩ ∂G and ends at z2 . Then

− log
(

1 − Ω(z1)
2
)

=

∫

γ1

grad log(1 − Ω2)(z) · (dx, dy)

and

log
(

1 − Ω(z2)
2
)

=

∫

γ2

grad log(1 − Ω2)(z) · (dx, dy).

Now, (4.2) follows from (4.4), together with γ1 ∪ γ2 ⊂ γ , namely,

∣

∣log
(

1 − Ω(z1)
2
)

− log
(

1 − Ω(z2)
2
)
∣

∣ ≤
∫

γ1∪γ2

∣

∣grad log(1 − Ω2)(z)
∣

∣ |dz|

< 4

∫

γ1∪γ2

µH(z) |dz| ≤ 4dH(z1, z2).

The case where γ ⊂ G is now trivial. The proof of (4.2) in the case z1 ∈ G and
z2 ∈ H ∩ ∂G is similar.
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For the proof of the sharpness of the constant 4, we suppose that (4.2) with
4 replaced with a constant C > 0 is valid. We consider regions

H = D ≡ {z; Im z > 0} and G = ∆,

where ∆ is D cut from i to ∞ along the upper imaginary axis; actually, ∆
is the image of D by the function z/(1 − z2)1/2 (mapping i to i/

√
2). Then

1/µD(iy) = 2y and 1/µ∆(iy) = 2y(1 − y2) for 0 < y < 1, so that

8(1 − y2)/(2 − y2) =
∣

∣(d/dy) log
(

1 − (µD/µ∆)2
)

(iy)
∣

∣/µD(iy)

≤
∣

∣grad log
(

1 − (µD/µ∆)2
)

(iy)
∣

∣/µD(iy) ≤ C.

The first function of y tends to 4 as y tends to 0. Hence C ≥ 4, and this
completes the proof of the theorem.

Proof of Theorem 3. There exists b ∈ H ∩ ∂G such that dG,H(z) = dH(z, b) .
To prove this we choose h ∈ Proj(H) such that h(0) = z . Let a sequence bn ∈
H∩∂G (n = 1, 2, . . .) be such that dH(z, bn) → dG,H(z) as n→ +∞ . Then, there
exists wn ∈ U such that h(wn) = bn and dH(z, bn) = dU (0, wn) , n = 1, 2, . . ..
Hence {dU (0, wn)} is bounded, so that {wn} is contained in a disk {|w| ≤ r} ,
0 < r < 1. Suppose that {wn} accumulates at w . Then {bn} accumulates at
b = h(w) ∈ H ∩ ∂G , which is a requested point. Theorem 4, (4.2) for z1 = z and
z2 = b now shows (3.2). For the sharpness we again consider the pair D , ∆ with
0 < y < 1. Suppose that (3.2) with −4 replaced with C < 0 is valid. Then

(1 − y2)/(1 − y−C/2)1/2 = (µD/µ∆)(iy)/
[

1 − exp
(

Cd∆,D(iy)
)]1/2

< 1,

or
C <

[

−2 log
(

y2(2 − y2)
)]

/(log y).

The right-hand side tends to −4 as y tends to 0, so that C ≤ −4.

Note (I). The estimate (3.2) shows that, at each point b ∈ H ∩ ∂G ,

lim inf
z→b

dG,H(z)1/2µG(z) ≥ µH(b)/2 > 0.

Note (II). Let a region H be hyperbolic and let G ⊂ H , possibly G = H .
What role is played by the constant

µ(G,H) ≡ sup
z∈G

(µH/µG)(z)?

Let a region R be hyperbolic. Then each f ∈ Proj(R) is normal in the sense of
O. Lehto and K.I. Virtanen [LV], or

ν(R) ≡ sup
w∈U

[

(1 − |w|2|)|f ′(w)|/
(

1 + |f(w)|2
)]
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is strictly positive and finite, which we call the normal constant of R . This supre-
mum is independent of the particular choice of f ; indeed we observe that

ν(R) = 1/
[

inf
z∈R

µR(z)(1 + |z|2)
]

.

The extended plane C∗ = C ∪ {∞} can be identified, via the stereographic pro-
jection, with the sphere of diameter one touching C from above at the origin.
The integration of dm(z) = (1 + |z|2)−1 |dz| along the (or a) shorter arc on the
(or a) great circle cut by z1 and z2 , or the (or a) geodesic segment for the met-
ric dm , yields the distance ∆(z1, z2) = tan−1(|z1 − z2|/|1 + z̄1z2|) , z1, z2 ∈ C∗ ,
for which X(z1, z2) = sin ∆(z1, z2) = |z1 − z2|(1 + |z1|2)−1/2(1 + |z2|2)−1/2 is
the chordal distance with the obvious convention in case z1 or z2 = ∞ . Thus
dm(z) ≤ ν(R)µR(z) |dz| , z ∈ R , so that ∆(z1, z2) ≤ ν(R)dR(z1, z2) for z1, z2 ∈ R .
Note that

∆(z1, z2) cos ∆(z1, z2) ≤ X(z1, z2) ≤ ∆(z1, z2) ≤ X(z1, z2)
(

1 −X(z1, z2)
2
)−1/2

.

We shall soon prove

(4.5) ν(G)/ν(H) ≤ µ(G,H);

in particular, ν(G) ≤ ν(H) . We have, for example, ν
(

U(r)
)

= r for U(r) =
{|z| < r} , r > 0, and we further have ν(D) = ν(U) = 1 because D is a rotation
of U on the Riemann sphere. Moreover, Hempel’s estimate shows that

cH ≤ ν(R0) ≤ max
x≥1

2x(log x+ cH)/(1 + x2) = 2x0/(x
2
0 − 1) = 4.487 . . . ,

where x0 = 1.247 . . . is the unique root of the equation

(1 − x2)(log x+ cH) + 1 + x2 = 0, x > 1.

Our conjecture is that ν(R0) = cH . The normal constant is observed not to be a

conformal invariant. To prove (4.5) we let f
#
=h−1 ◦ g in U , where g ∈ Proj(G)

and h ∈ Proj(H) . Then f ∈ B and for each w ∈ U we have

(1−|w|2)|g′(w)|/
(

1+ |g(w)|2
)

= Γ(w, f)
(

1−|f(w)|2
)
∣

∣h′
(

f(w)
)
∣

∣/
(

1+
∣

∣h
(

f(w)
)
∣

∣

2)
,

which, together with Γ(w, f) = (µH/µG)(z) , z = g(w) , proves (4.5). Moreover,
for 0 < r1 < r2 , the equalities

ν
(

U(r1)
)

/ν
(

U(r2)
)

= µ
(

U(r1), U(r2)
)

= r1/r2
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hold. If G ∪ ∂G ⊂ H and G is bounded, µH/µG attains its maximum in G .
Hence, µ(G,H) < 1. The quantity µ(G,H) , for G 6= H , assumes all values
r , 0 < r < 1, because maxz∈U(r)

(

µU/µU(r)

)

(z) = r . A less precise but more
geometric quantity is

µ∗(G,H) = sup
z∈G

dG,H(z)

in case G 6= H , which is possibly +∞ (“less precise”), and for which

µ(G,H) ≤
[

1 − exp
(

−4µ∗(G,H)
)]1/2

by (3.2). For example, a calculation shows that µ∗
(

U(r1), U(r2)
)

= tanh−1(r1/r2)
for 0 < r1 < r2 .

Note (III). We let G be a proper subregion of a hyperbolic H , and we suppose
that Ω(z) = (µH/µG)(z) , z ∈ G , has a local maximum at z0 ∈ G , namely,
Ω(z0) ≥ Ω(z) in a neighborhood of z0 . Then Ω is superharmonic in the strict
sense: (∆Ω)(z) < 0 in a neighborhood of z0 . For the proof we again consider

f
#
=h−1 ◦ g (∈ B ) as in the proof of Theorem 4. Since Ω(z0) = Γ(w0, f) for a w0

with g(w0) = z0 , and since g′(w0) 6= 0, it suffices to prove that Γ(w) ≡ Γ(w, f)
is superharmonic in the strict sense in a neighborhood of w0 . By calculation we
have

(1 − |w|2)2(∆ log Γ)(w) = 4
(

Γ2(w) − 1
)

< 0

at each w ∈ U . Since (∂/∂w)Γ(w) = 0 at w = w0 , it follows that

(∆Γ)(w0)/Γ(w0) = (∆ log Γ)(w0) < 0.

Since ∆Γ is continuous in U , we have (∆Γ)(w) < 0 in a neighborhood of w0 .

5. Lipschitz continuity in µG

As another consequence of the Corollary to Theorem 2 the Lipschitz continuity
of the function tanh−1(µH/µG) = dU (0, µH/µG) with respect to dG follows in a
proper subregion G of H .

Theorem 5. For a proper subregion G of a hyperbolic region H , the strict

inequality holds:

(5.1) | tanh−1(µH/µG)(z1) − tanh−1(µH/µG)(z2)| < 2dG(z1, z2)

for all z1, z2 ∈ G with z1 6= z2 . The Lipschitz constant 2 on the right-hand side

of (5.1) cannot be replaced with any absolute constant C , 0 < C < 2 .
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Proof. Let g ∈ Proj(G) . For all z1 and z2 in G with z1 6= z2 , we have a pair
w1 and w2 in U such that zk = g(wk) , k = 1, 2, and dG(z1, z2) = dU (w1, w2) .

Let f
#
=h−1 ◦ g be as in the proof of Theorem 4. Then Γ(w, f) = µH(z)/µG(z) ,

z = g(w) . To obtain (5.1) we only have to apply (2.3) to the present f ∈ B \
(F ∪ G ) with wk instead of zk there, k = 1, 2; the inequality (2.3) is strict for
the present f .

Suppose that (5.1) with 2 replaced with a constant C > 0 is valid. We again
consider the regions H = D and G = ∆ with 0 < y < 1 to have, in this case,

4(1 − y2)/(2 − y2) = |(d/dy) tanh−1(µD/µ∆)(iy)|/µ∆(iy)

≤ | grad tanh−1(µD/µ∆)(iy)|/µ∆(iy) ≤ C.

The first function of y tends to 2 as y tends to 0. This completes the proof of
Theorem 5.

Note (a). As another proof of Theorem 5 we remember (4.3) for the µG part.
It then follows from Theorem 2 that

|(∂/∂z)Ω(z)|/µG(z) < 1 − Ω(z)2,

or
| grad(tanh−1 Ω)(z)| < 2µG(z) for all z ∈ G.

The remaining part is now routine on considering σG(z1, z2) .

Note (b). We consider two hyperbolic regions G and H , but we do not
necessarily assume that G ⊂ H here. Let F be an analytic function in G with
F (G) ⊂ H . Set

Γ(z, F ) ≡ µH

(

F (z)
)

|F ′(z)|/µG(z), z ∈ G.

Then Γ(z, F ) coincides with Γ(z, f) already defined in (1.1) in case G = H = U
and F = f ∈ B . The Pick differential form of the Schwarz lemma should be

(5.2) Γ(z, F ) ≤ 1 at each z ∈ G.

The equality in (5.2) at a point z ∈ G holds if and only if F ◦ g ∈ Proj(H) for a

(and hence for each) g ∈ Proj(G) . For the proof we let f
#
=h−1 ◦F ◦g in U , where

g ∈ Proj(G) and h ∈ Proj(H) . Then Γ(w, f) = Γ(z, F ) at each z = g(w) ∈ G .
Thus, (5.2) is nothing but Γ(w, f) ≤ 1. The equality holds if and only if f ∈ F ,
or F ◦ g ∈ Proj(H) for a (and hence for each) g ∈ Proj(G) . There is more to
follow with the aid of the Corollary to Theorem 2 in case f is not in F . By
means of (2.3) for f we have

| tanh−1 Γ(z1, F ) − tanh−1 Γ(z2, F )| ≤ 2dG(z1, z2)
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for all z1, z2 ∈ G . Again we have this by

(1 − |w|2)|(∂/∂w)Γ(w, f)| = |(∂/∂z)Γ(z, F )|/µG(z),

together with (1.3). Note that (1.3) is valid also for F : G→ H in the sense that

(1.3∗) |(∂/∂z)Γ(z, F )|/µG(z) ≤ 1 − Γ(z, F )2, z ∈ G.

This follows from (1.3) applied to f
#
=h−1 ◦ F ◦ g , g ∈ Proj(G) , h ∈ Proj(H) .

The equality condition for (1.3∗ ) can be given in terms of f , yet the meaning for
F is not necessarily clear in case f ∈ G . If the total number Z(F ′) of the roots
of the equation F ′(z) = 0 in G is not one, then f ∈ B \ G . In this case the
equality in (1.3∗ ) holds at a (and hence each) point z ∈ G if and only if f ∈ F .
Consequently, the equality holds if and only if F ◦ g ∈ Proj(H) for a (and hence
for each) g ∈ Proj(G) .

We can directly improve (5.2) with the assistance of (1.2). Fix a ∈ G and set

Ξa(z, F ) = tanh
(

2dG(z, a) + tanh−1 Γ(a, F )
)

(≤ 1), z ∈ G,

for an analytic F : G → H . We set Ξa(z, F ) ≡ 1 in case Γ(a, F ) = 1. Note that
Ξa(z, F ) coincides with Ξ(z, F ) already defined in case G = H = U , a = 0 and
F ∈ B . We have

(1.2∗) Γ(z, F ) ≤ Ξa(z, F ), z ∈ G.

For the proof we choose g ∈ Proj(G) such that g(0) = a . Then for each z ∈ G
we may find w ∈ U such that dG(a, z) = dU (0, w) , g(w) = z . Since Ξa(z, F ) =

Ξ(w, f) (≡ 1 in case f ∈ F ) for f
#
=h−1 ◦ F ◦ g , h ∈ Proj(H) , it follows that

(1.2∗ ) is precisely (1.2) for f . The equality condition in (1.2∗ ) can be given in case
Z(F ′) 6= 1. The equality in (1.2∗ ) holds at z 6= a if and only if F ◦ g ∈ Proj(H)
for a (and hence each) g ∈ Proj(G) .

Note (c). Let F : U → H be analytic. Then (1.2∗ ) for a = 0 should be

(5.3) (1 − |z|2)|F ′(z)|µH

(

F (z)
)

≤ Ξ0(z, F ), z ∈ U,

where, on the present assumptions,

Ξ0(z, F ) =
[

Γ(0, F )(1 + |z|2) + 2|z|
]

/
[

(1 + |z|2) + 2Γ(0, F )|z|
]

,

with Γ(0, F ) = |F ′(0)|µH

(

F (0)
)

.
Here we should remember that the Landau–Hempel estimate for analytic

F : U → R0 is

(1 − |z|2)|F ′(z)| ≤ 2|F (z)|
(
∣

∣log |F (z)|
∣

∣ + cH
)

≡ L(z, F ), z ∈ U.
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The equality at z ∈ U holds if and only if F ∈ Proj(R0) and F (z) = −1. For the
proof, see [H1, Theorem 2]. To improve this we let H = R0 in (5.3) and remember
the Hempel estimate of 1/µR0

(ζ) cited in Section 4 for ζ = F (z) . Then

(5.4) (1 − |z|2)|F ′(z)| ≤ L(z, F )Ξ0(z, F ), z ∈ U.

The equality in (5.4) at z 6= 0 holds if F (z) = −1 and F ∈ Proj(R0) , while at
z = 0 it does so if either (1) F ′(0) = 0 or else (2) F ∈ Proj(R0) and F (0) = −1.
For analytic F : U → R0 we can further prove that, at each z ∈ U ,

(5.5)

(

(1 − |z|)/(1 + |z|) ≤
)

(1 − |z|2)/
(

|z|2 + 2Γ(0, F )|z| + 1
)

≤
(
∣

∣log |F (z)|
∣

∣ + cH
)

/
(
∣

∣log |F (0)|
∣

∣ + cH
)

≤
(

|z|2 + 2Γ(0, F )|z| + 1
)

/(1 − |z|2)
( ≤ (1 + |z|)/(1 − |z|)).

We may suppose that F is nonconstant. Since

2
∣

∣(∂/∂z)
(
∣

∣log |F (z)|
∣

∣ + cH
)
∣

∣ = |F ′(z)/F (z)|

at each z ∈ U where |F (z)| 6= 1, it follows from (5.4) that

(1 − |z|2)
∣

∣grad log
(
∣

∣log |F (z)|
∣

∣ + cH
)
∣

∣ ≤ 2Ξ0(z, F )

for z ∈ U with |F (z) 6= 1. Since log
(
∣

∣log |F (z)|
∣

∣ + cH
)

is continuous in U , it
follows, at each z ∈ U and with α = Γ(0, F ) , that

∣

∣

∣
log

(
∣

∣log |F (z)|
∣

∣ + cH
)

− log
(
∣

∣log |F (0)|
∣

∣ + cH
)

∣

∣

∣

≤
∫ |z|

0

2(α̺2 + 2̺+ α)/[(̺2 + 2α̺+ 1)(1 − ̺2)] d̺

= log
[

(|z|2 + 2α|z| + 1)/(1 − |z|2)
]

,

whence (5.5). As a consequence of the upper estimate in (5.5) we have for F : U →
R0 at z ∈ U

|F (z)| ≤ exp
[(

(β + 2cH)|z|2 + 2α(β + cH)|z| + β
)

/(1 − |z|2)
]

,

where α = |F ′(0)|µR0

(

F (0)
)

and β =
∣

∣log |F (0)|
∣

∣. To eliminate |F ′(0)| appear-
ing in α on the right-hand side of this inequality, we recall the Landau–Hempel
estimate |F ′(0)| ≤ L(0, F ) cited above, for F at z = 0. For F : U → R0 at z ∈ U
we finally have

|F (z)| ≤ exp
[(

A|z|2 +B|z| + β
)

/(1 − |z|2)
]

,
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with all constants

A =
∣

∣log |F (0)|
∣

∣ + 2cH ,

B = 4|F (0)|
(
∣

∣log |F (0)|
∣

∣ + cH
)2
µR0

(

F (0)
)

,

β =
∣

∣log |F (0)|
∣

∣

only depending on F (0). The estimate is of Schottky type for F : U → R0 which
can be applied to prove the little Picard theorem (see [A, p. 20]; see also [H2] and
[LG, pp. 150–151] for Schottky-type estimates).

6. Univalent functions of B ; rediscovery of Pick’s inequality

We consider f ∈ B which is univalent in U . Let K(z) = z/(1 − z)2 , and let
K−1 be the inverse function of K in K(U) . Set JP (z) = K−1

(

PK(z)
)

, where P
is a constant, 0 < P < 1, and z ∈ U . Then JP maps U univalently onto U slit
along the left-open interval ΛP =

(

−1, (P − 2 + 2
√

1 − P )/P
]

⊂ (−1, 0).

Lemma 2. Let f ∈ B be univalent in U . Then

(6.1) (1 − |z|2)|(∂/∂z)Γ(z, f)| ≤ 2Γ(z, f)
(

1 − Γ(z, f)
)

at each point z ∈ U . Suppose that f is not a member of F . Then the equality

in (6.1) holds at a point z ∈ U if and only if f is of the form

(6.2) f(w) ≡
[

ψ
(

(w − z)/(1 − z̄w)
)

+Q
]

/
[

1 + Q̄ψ
(

(w − z)/(1 − z̄w)
)]

,

where ψ(w) = ε̄βJP (εw) for constants ε, β ∈ ∂U, P , 0 < P < 1 , and Q ∈ U ; for

this f we actually have

(6.3) (1 − |w|2)|(∂/∂w)Γ(w, f)| ≤ 2Γ(w, f)
(

1 − Γ(w, f)
)

if and only if w is on the geodesic Σ(z, ε) of U passing through z with terminal

points (z ± ε̄)/(1 ± ε̄z̄) on ∂U .

The equality in (6.1) holds everywhere in U for f ∈ F and the right-hand
side of (6.1) is strictly less than that of (1.3) for f ∈ B\F . Lemma 2 is essentially
due to G. Pick [P2, p. 256, (I) and p. 260], except for the detailed property of f of
(6.2). Pick’s result [P2, p. 256, (I)] was so far ahead of his time that it appears to
have been long forgotten. Since Pick’s expression is considerably different in style
from Lemma 2, and since access to the paper [P2] is nowadays not very easy, we
propose its detailed proof with the aid of the textbook [Go, Vol. I].

Let β = f ′(z)/|f ′(z)| , set Γ(z, f) = P , and consider the function g defined by
(2.1) for which (2.2) holds; in particular, g′(0) = Pβ . The function Ψ = g/g′(0)
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is univalent and bounded by P−1 in U and, moreover, Ψ(0) = Ψ′(0) − 1 = 0.
Pick’s familiar estimate can then be applied to Ψ:

(6.4) |Ψ′′(0)/2| ≤ 2(1 − P ),

whence (6.1); for the Pick estimate, see [P2, p. 252, (12)], and see also the concise
proof by A.W. Goodman [Go, Vol. I, Theorem 4 and its proof in pp. 38–39]. The
equality in (6.4) holds if and only if Ψ(w) ≡ ε̄P−1JP (εw) , ε ∈ ∂U . Hence,
g(w) = ε̄βJP (εw) . Consequently, f must be of the form (6.2) with Q = f(z) .
Conversely, if f is of the form (6.2), then Γ(z, f) = P , and for Ψ = ψ/ψ′(0),
ψ′(0) = Pβ , we have the equality in (6.4). Hence the equality holds in (6.1).

To prove the equality (6.3) for f of (6.2) on Σ(z, ε) we set J = JP and
ζ = T (w) = ε(w − z)/(1 − z̄w) for w ∈ U . It then follows that Γ(w, f) = Γ(ζ, J)
and hence

(1 − |w|2)|(∂/∂w)Γ(w, f)| = (1 − |ζ|2)|(∂/∂ζ)Γ(ζ, J)|, w ∈ U.

Our problem is therefore reduced to proving (6.3) for J instead of f , and for
each real variable w ∈ (−1, 1). To avoid laborious computations of J ′ , J ′′ , etc.,
starting from

J(η) = (2η)−1
[

P−1(η − 1)2 + 2η + (η − 1)
(

P−2(η − 1)2 + 4P−1η
)1/2]

for η ∈ U (J(0) = 0), we recall the identity K
(

J(η)
)

= PK(η) for η ∈ U . Note
that ζ = J(w) ∈ (−1, 1) \ ΛP and

J ′(w) = PK ′(w)/K ′(ζ) = P (1 + w)(1 − ζ)3/{(1 − w)3(1 + ζ)} > 0

for all w ∈ (−1, 1). A calculation then yields that

J ′′(w)/J ′(w) = (4 + 2w)/(1 − w2) −
(

(4 + 2ζ)/(1 − ζ2)
)

J ′(w)

for all real w ∈ (−1, 1). Hence, the value of

(1 − |η|2)|(∂/∂η)Γ(η, J)|/Γ(η, J) = (1 − |η|2)
∣

∣

∣

−η̄
1 − |η|2 +

J ′′(η)

2J ′(η)
+

J(η)J ′(η)

1 − |J(η)|2
∣

∣

∣

at η = w ∈ (−1, 1) is

2
∣

∣1 − (1 − w2)J ′(w)/(1 − ζ2)
∣

∣ = 2
(

1 − Γ(w, J)
)

.

To prove that (6.3) is false for w ∈ U \Σ(z, ε) for f of the form (6.2), we first
observe that f(U) is exactly U slit along the part Λ(Q, ε, β) between the points

(Q− ε̄β)/(1 − ε̄βQ̄) ∈ ∂U
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and

ζ(Q, ε, β) =
(

Q+ ε̄β(P − 2 + 2
√

1 − P )/P
)

/
(

1 + ε̄βQ̄(P − 2 + 2
√

1 − P )/P
)

∈ U

of the geodesic Σ#(Q, ε, β) of U passing through Q and ending at the points
(Q± ε̄β)/(1 ± ε̄βQ̄) ∈ ∂U . In other words, f(U) is the image of U \ ΛP by the
map (ε̄βζ + Q)/(1 + ε̄βQ̄ζ) ∈ F . Furthermore, the image f

(

Σ(z, ε)
)

is exactly
Σ#(Q, ε, β) \Λ(Q, ε, β) . Thus if the equality holds for w = z′ in (6.3), or at z′ in
(6.1), then z′ must lie on the geodesic Σ(z, ε) because Σ(z, ε) = Σ(z′, ε′) by

f
(

Σ(z, ε)
)

= Σ#(Q, ε, β) \ Λ(Q, ε, β) = f
(

Σ(z′, ε′)
)

,

where ε′ is for z′ . In other words, (6.3) holds only for w ∈ Σ(z, ε) , and this
completes the proof of Lemma 2.

Corollary 1 to Lemma 2. Let a function f ∈ B \ F be univalent in U .

Then

(6.5)
∣

∣

∣
log

Γ(w1, f)

1 − Γ(w1, f)
− log

Γ(w2, f)

1 − Γ(w2, f)

∣

∣

∣
≤ 4dU (w1, w2)

for all w1 and w2 in U and

(6.6) Γ(w, f) ≤ Γ(0, f)(1 + |w|)2
Γ(0, f)(1 + |w|)2 + (1 − Γ(0, f))(1− |w|)2 ;

(6.6∗)
Γ(0, f)(1− |w|)2

Γ(0, f)(1− |w|)2 + (1 − Γ(0, f))(1 + |w|)2 ≤ Γ(w, f)

for all w ∈ U . If f is not of the form (6.2) , then the inequality in (6.5) is strict

for all w1 and w2 in U with w1 6= w2 and the inequalities in (6.6) and (6.6∗)
are strict for all w 6= 0 .

The right-hand side of (6.6) is strictly less than 1 and the left-hand side of
(6.6∗ ) is strictly positive.

Pick obtained (6.5), (6.6) and (6.6∗ ) [P2, pp. 256–257, (18) and (19)]; note
that Pick adopted 2dU instead of dU . Detailed arguments on the equality must
be given.

The proof of the inequalities is obvious. If f is of the form (6.2), then (6.5)
is strict in the case where w1 6= w2 and at least one of w1 and w2 is not on
Σ(z, ε) , so that σU (w1, w2) 6⊂ Σ(z, ε) . Given w ∈ U \ {0} , we have strict (6.6)
and strict (6.6∗ ) if at least one of w and 0 is not on Σ(z, ε) . For the special
function J = JP (0 < P < 1) the equality in (6.6) holds at each w of the half-
open interval [0, 1), while for J#(w) ≡ −J(−w) , w ∈ U , the equality in (6.6∗ )
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holds at each w ∈ [0, 1). Since J ′(w) = P (1 + w)(1 − ζ)3/{(1 − w)3(1 + ζ)} > 0,
where ζ = J(w) , w ∈ (−1, 1), together with ζ/(1− ζ)2 = Pw/(1−w)2 , it follows
that

Γ(w, J) = P
(

(1 + w)/(1 − w)
)2
/
(

(1 + ζ)/(1 − ζ)
)2

= P
(

(1 + w)/(1 − w)
)2
/
(

1 + 4Pw/(1 − w)2
)

,

which is precisely the right-hand side of (6.6) in case w ∈ [0, 1). Now Γ(w, J#) =

Γ(−w, J) = P
(

(1−w)/(1+w)
)2
/
(

1−4Pw/(1+w)2
)

is exactly the left-hand side
of (6.6∗ ) in case w ∈ [0, 1).

Corollary 2 to Lemma 2. Let f ∈ B be univalent in U and suppose that

f(0) = 0 . Then

(6.7) |f(w)| ≤ JP (|w|)

for all w ∈ U , where P = |f ′(0)| . If f is not in F and neither of the form (6.2) ,
then the inequality in (6.7) is strict for all w 6= 0 .

The inequality in (6.7) is essentially equivalent to the upper estimate by Pick
[P2, p. 261, (IV ′ )] (see [Go, Vol. II, p. 55, Theorem 19]); comments on the equality
conditions will be added. For the proof we set r = |w| and a = |f ′(0)| and we
make use of (6.6) in the following calculation:

tanh−1 |f(w)| ≤
∫ r

0

|f ′(̺w/r)|/
(

1 − |f(̺w/r)|2
)

d̺

≤
∫ r

0

a(̺2 + 2̺+ 1)/
[(

̺2 + (4a− 2)̺+ 1
)

(1 − ̺2)
]

d̺

= log
[

(1 − r)−1/2
(

r2 + (4a− 2)r + 1
)1/4]

.

Hence (6.7). The remaining computation for (6.7) is omitted. If f is of the form
(6.2), then (6.7) is strict for w 6= 0 if at least one of w and 0 is not on Σ(z, ε) .
The equality in (6.7) holds for all w ∈ Σ(z, ε) .

Note (α). In view of the proof of Corollary 2 to Lemma 2 we have the estimate
of |f(z)| from (1.2) for f ∈ B , not necessarily univalent, but f(0) = 0. Namely,

(6.8) |f(z)| ≤ |z|
(

|z| + |f ′(0)|
)

/
(

1 + |f ′(0)z|
)

(≤ |z|)

at each z ∈ U . But the proof of (6.8) by integration from (1.2) is an absurd
detour; it is a textbook exercise to prove (6.8) directly. However, to arrive at the
nontrivial improvements of (6.8) described in (6.8∗ ) and (6.8∗∗ ) below we take a
short-cut in proving (6.8), together with the detailed arguments on the equality.
If f ∈ F , or f(z) ≡ εz , ε ∈ ∂U , then (6.8) is trivial, so that we exclude this case
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and suppose that f is nonconstant in our further proof. We shall then show that
the equality in (6.8) holds at z 6= 0 if and only if

(6.9) f(w) = w(εw +Q)/(1 + Q̄εw), ε ∈ ∂U, Q ∈ U,

an element of G . Set a = f ′(0) (∈ U ) and set

g(z) =
(

f(z)/z − a
)

/
(

1 − āf(z)/z
)

, z ∈ U,

so that g(0) = 0 and g ∈ B . Thus,

(

|f(z)/z| − |a|
)

/
(

1 − |af(z)/z|
)

≤ |g(z)| ≤ |z|

for all z ∈ U , from which (6.8) follows; if the equality in (6.8) holds at z 6= 0,
the first element on the left in the above chain of inequalities is equal to |z| ,
so that g(w) ≡ εw (ε ∈ ∂U ). Hence f is of the form (6.9) with Q = f ′(0).
Conversely, given f of the form (6.9), we observe: (1) if Q = 0, the equality in
(6.8) holds in the whole U , while (2) if Q 6= 0, the equality in (6.8) holds at all z
on {ε̄rQ/|Q|; 0 ≤ r < 1} and at no other point of U .

As a universal form of (6.8) for f ∈ B , not necessarily f(0) = 0, we have

(6.8∗)
∣

∣

∣

f(w) − f(z)

1 − f(w)f(z)

∣

∣

∣
≤

∣

∣

∣

w − z

1 − z̄w

∣

∣

∣

(
∣

∣

∣

w − z

1 − z̄w

∣

∣

∣
+ Γ(z, w, f)

)

1 + Γ(z, w, f)
∣

∣

∣

w − z

1 − z̄w

∣

∣

∣

(

≤
∣

∣

∣

w − z

1 − z̄w

∣

∣

∣

)

for all z, w ∈ U , where Γ(z, w, f) = min
(

Γ(z, f),Γ(w, f)
)

. The equality in (6.8∗ )
for a pair z, w ∈ U with z 6= w holds if and only if f ∈ F ∪ G . Note that we can
exchange z for w in (6.8∗ ). Furthermore, in the specified case w = 0 in (6.8∗ )
for f ∈ B with f(0) = 0, the estimate (6.8∗ ) slightly improves (6.8) because
Γ(z, 0, f) ≤ Γ(0, f) = |f ′(0)| .

We can replace Γ(z, w, f) in (6.8∗ ) with the quantity not containing |f(ζ)| ,
|f ′(ζ)| , ζ = z, w , but |f ′(0)/

(

1 − |f(0)|2
)

and ̺ ≡ min(|z|, |w|) only. Since

Ξ(z, w, f) ≡ min
(

Ξ(z, f),Ξ(w, f)
)

=
[

Γ(0, f)(1 + ̺2) + 2̺
]

/
[

(1 + ̺2) + 2Γ(0, f)̺
]

(≤ 1)

for z, w ∈ U and since Γ(z, w, f) ≤ Ξ(z, w, f) by (1.2), it follows from (6.8∗ ) that,
for f ∈ B and z, w ∈ U ,

(6.8∗a)
∣

∣

∣

f(w) − f(z)

1 − f(w)f(z)

∣

∣

∣
≤

∣

∣

∣

w − z

1 − z̄w

∣

∣

∣

(
∣

∣

∣

w − z

1 − z̄w

∣

∣

∣
+ Ξ(z, w, f)

)

1 + Ξ(z, w, f)
∣

∣

∣

w − z

1 − z̄w

∣

∣

∣

(

≤
∣

∣

∣

w − z

1 − z̄w

∣

∣

∣

)

.
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For the proof of (6.8∗ ) we apply (6.8) to

g(ζ) =
f
(

(ζ + z)/(1 + z̄ζ)
)

− f(z)

1 − f(z)f
(

(ζ + z)/(1 + z̄ζ)
) of B

with g(0) = 0 and |g′(0)| = Γ(z, f) for a variable ζ . Then at ζ = (w−z)/(1− z̄w)
we have in terms of f

∣

∣

∣

f(w) − f(z)

1 − f(w)f(z)

∣

∣

∣
≤

∣

∣

∣

w − z

1 − z̄w

∣

∣

∣

(
∣

∣

∣

w − z

1 − z̄w

∣

∣

∣
+ Γ(z, f)

)

1 + Γ(z, f)
∣

∣

∣

w − z

1 − z̄w

∣

∣

∣

.

Since w and z are exchangeable in the above inequality, we immediately have
(6.8∗ ). For f ∈ B \F the equality in (6.8∗ ) holds for z 6= w if and only if g ∈ G

is of type (6.9): g(ζ) ≡ ζ(εζ+Q)/(1+ Q̄εζ) with Q = (1−|z|2)f ′(z)/
(

1−|f(z)|2
)

or (1 − |w|2)f ′(w)/
(

1 − |f(w)|2
)

according as Γ(z, w, f) = Γ(z, f) or Γ(w, f) .
Thus, the equality in (6.8∗) holds if and only if

f(ζ) ≡
[

g
(

(ζ − η)/(1 − η̄ζ)
)

+ A
]

/
[

1 + Āg
(

(ζ − η)/(1 − η̄ζ)
)]

with A ∈ U , where η = z or w according as Γ(z, w, f) = Γ(z, f) or Γ(w, f) .
More detailed equality conditions are now obvious.

One can further obtain: for f ∈ B , and at each z ∈ U , we have

(6.10)

( |f(0)| − |z|
1 − |f(0)| |z| ≤

) |z|2 + Γ(z, 0, f)
(

1 − |f(0)|
)

|z| − |f(0)|
|f(0)| |z|2 + Γ(z, 0, f)

(

|f(0)| − 1
)

|z| − 1

≤ |f(z)| ≤ |z|2 + Γ(z, 0, f)
(

|f(0)|+ 1
)

|z| + |f(0)|
|f(0)| |z|2 + Γ(z, 0, f)

(

|f(0)| + 1
)

|z| + 1
(

≤ |f(0)| + |z|
1 + |f(0)| |z|

)

.

For the proof we only have to combine (6.8∗ ) for w = 0 with
∣

∣|f(z)| − |f(0)|
∣

∣/
(

1 − |f(0)f(z)|
)

≤ |f(z) − f(0)|/|1− f(0)f(z)|.
The equality conditions are rather complicated and hence omitted.

We can replace Γ(z, 0, f) in (6.10) with Γ(0, f) . The resulting estimate is

(6.10∗)

( |f(0)| − |z|
1 − |f(0)| |z| ≤

)

(

1 + |f(0)|
)

|z|2 + |f ′(0)| |z| − |f(0)|
(

1 + |f(0)|
)

|f(0)|
(

1 + |f(0)|
)

|z|2 − |f ′(0)| |z| −
(

1 + |f(0)|
)

≤ |f(z)|

≤
(

1 − |f(0)|
)

|z|2 + |f ′(0)| |z| + |f(0)|
(

1 − |f(0)|
)

|f(0)|
(

1 − |f(0)|
)

|z|2 + |f ′(0)| |z|+
(

1 − |f(0)|
)

(

≤ |f(0)|+ |z|
1 + |f(0)| |z|

)

.
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The upper estimate in case f(0) = 0 is again (6.8).
For f ∈ B \ F with f(0) = 0 we apply (6.10) to g(z) ≡ f(z)/z with

Γ(z, 0, g) = ∆(z, f) ≡ min
[ (1 − |z|2)|zf ′(z) − f(z)|

|z|2 − |f(z)|2 ,
|f ′′(0)|

2
(

1 − |f ′(0)|
)

]

.

Therefore, for f ∈ B \ F with f(0) = 0, we have at each z ∈ U

(6.8∗∗)

( |z|
(

|f ′(0)| − |z|
)

1 − |f ′(0)| |z| ≤
) |z|

[

|z|2 + ∆(z, f)
(

1 − |f ′(0)|
)

|z| − |f ′(0)|
]

|f ′(0)| |z|2 + ∆(z, f)
(

|f ′(0)| − 1
)

|z| − 1

≤ |f(z)|

≤ |z|
[

|z|2 + ∆(z, f)
(

|f ′(0)| + 1
)

|z| + |f ′(0)|
]

|f ′(0)| |z|2 + ∆(z, f)
(

|f ′(0)| + 1
)

|z| + 1
(

≤ |z|
(

|f ′(0)| + |z|
)

1 + |f ′(0)| |z|
)

.

The upper estimate yields an improvement of (6.8).
It is now easy to observe that we can replace ∆(z, f) in (6.8∗∗ ) with

|f ′′(0)|/
[

2
(

1 − |f ′(0)|2
)]

≤ 1.

The resulting estimate for f ∈ B \ F with f(0) = 0 at each z ∈ U is

(6.8∗∗a)

( |z|
(

|f ′(0)| − |z|
)

1 − |f ′(0)| |z| ≤
)

|z|
[

2
(

1 + |f ′(0)|
)

|z|2 + |f ′′(0)| |z| − 2|f ′(0)|
(

1 + |f ′(0)|
)]

2|f ′(0)|
(

1 + |f ′(0)|
)

|z|2 − |f ′′(0)| |z| − 2
(

1 + |f ′(0)|
)

≤ |f(z)| ≤ |z|
[

2
(

1 − |f ′(0)|
)

|z|2 + |f ′′(0)| |z| + 2|f ′(0)|
(

1 − |f ′(0)|
)]

2|f ′(0)|
(

1 − |f ′(0)|
)

|z|2 + |f ′′(0)| |z| + 2
(

1 − |f ′(0)|
)

(

≤ |z|
(

|f ′(0)| + |z|
)

1 + |f ′(0)| |z|
)

.

Note (β) . We suppose that f(0) = 0 and f ′(0) 6= 0 for f ∈ B , not necessarily
univalent, and we estimate |f ′(z)| from below. If f ∈ F , then |f ′(z)| ≡ 1.
Suppose that f ∈ B \ F . Then we have

(6.11) |f ′(z)| >
[

(1 + |z|2) + 2|f ′(0)z|
][

|f ′(0)|(1 + |z|2) − 2|z|
]

[

(1 + |z|2) − 2|f ′(0)z|
](

1 + |f ′(0)z|
)2
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for all z with 0 < |z| ≤ τ(f) , where τ(f) is defined in (2.6) with Γ(0, f) = |f ′(0)|
in the present case. Note that the right-hand side of (6.11) is |f ′(0)| at z = 0. For
the proof of the weak form of (6.11), where “>” is replaced with “≥”, it suffices
to combine (2.5) with (6.8). Suppose that the equality holds in the weak form at z
with 0 < |z| ≤ τ(f) . Since the equality in (2.5) holds at z and f(0) = 0, we have
g(w) = f(w) = wS(w) ∈ G , S(a) = 0, a 6= 0, and z ∈ {ra/|a|; 0 < r ≤ τ(f)} ; g
is considered in the Note discussing (2.5). On the other hand, since the equality
in (6.8) holds at z , we have (6.9) and z ∈ {ε̄r′Q/|Q|; 0 < r′ < 1} . By comparison
we have Q = −εa , which causes a contradiction to z 6= 0.

If f ∈ B satisfies f(0) = 0, then J. Dieudonné’s lower estimate of |f ′(z)| [D,
p. 352, (24)] (see [Go, Vol. II, p. 78, Problem 17]) is

|f ′(z)| ≥
(

|f(z)| − |z|2
)(

1 + |f(z)|
)

/
[

|z|(1 − |z|2)
]

≡ R
−(z, f)

for all z ∈ U . The function R−(z, f) is increasing with respect to |f(z)| , so
that a further analysis for eliminating |f(z)| on the right-hand side seems difficult
without additional restrictions on f and |z| . Dieudonné’s upper estimate (see the
same references) is

|f ′(z)| ≤
(

|f(z)| + |z|2
)(

1 − |f(z)|
)

/
[

|z|(1 − |z|2)
]

≡ R
+(z, f)

for z ∈ U . Here, R−(0, f) = R+(0, f) = |f ′(0)| . Both estimates are trivial in
case f ∈ F . They can be improved in case f ∈ B \ F ; namely, if f(0) = 0 for
f ∈ B \ F , then at each z ∈ U one obtains

R
−(z, f) + S (z, f) ≤ |f ′(z)| ≤ R

+(z, f) − S (z, f),

where

S (z, f) ≡ (1 − α)(1 − |z|)
(

|z|2 − |f(z)|2
)

|z|(1 + |z|)(|z|2 + 2α|z| + 1)
≥ 0

with S (0, f) = 0 and

α = |f ′′(0)|/
[

2
(

1 − |f ′(0)|2
)]

≤ 1.

The equalities at z hold if and only if f(w) ≡ wϕ(w) , ϕ ∈ G , for example at each
z ∈ U for f(w) ≡ w3 . We set g(z) = f(z)/z in U , so that Γ(0, g) = α . It then
follows from (1.2) for the present g that

∣

∣ |zf ′(z)| − |f(z)|
∣

∣ ≤ |zf ′(z) − f(z)| = |z2g′(z)|
≤

(

|z|2 − |f(z)|2
)

Ξ(z, g)/(1 − |z|2), z ∈ U.

Setting
S (z, f) =

(

|z|2 − |f(z)|2
)(

1 − Ξ(z, g)
)

/
[

|z|(1 − |z|2)
]
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for z ∈ U we finally have the requested estimates.
If f ∈ B \ F is univalent and f(0) = 0, then the combination of (6.6∗ ) and

(6.7) yields

|f ′(z)| ≥ P (1 − |z|)
(

1 − JP (|z|)2
)

/
[

(1 + |z|)
{

(1 + |z|2) + 2(1 − 2P )|z|
}]

at all z ∈ U , where P = |f ′(0)| . Given P , 0 < P < 1, the equality above holds
for the function JP at all z ∈ [0, 1). Pick says, among other things, that the
right-hand side is “ziemlich umfängliche Formel”; see [P2, p. 262]. With the aid
of JP the expression is considerably “nicht umfänglich”.

Note (γ) . Let F be an analytic and univalent function in U with F (0) =
F ′(0) − 1 = 0. Let f be analytic and subordinate to F in U in the sense that
f = F ◦ g for a g ∈ B with g(0) = 0. The well-known upper estimate of |F ′(z)|
in the distortion theorem,

(6.12) |F ′(z)| ≤ (1 + |z|)/(1 − |z|)3, z ∈ U,

is also valid for f subordinate to F in U ; see [Go, Vol. I, p. 65, Theorem 3], [Gl,
p. 50, (8)], and for the latter see [S, p. 236], [Lo, pp. 249–250, Theorem 1], [Go,
Vol. II, p. 215, Problem 14], and [Gl, p. 371, Theorem 4]. We improve it as

(6.13) |f ′(z)| ≤ D(z, f)(1 + |z|)/(1 − |z|)3, z ∈ U,

where

D(z, f) =

[

(1 + |z|2) + 2|f ′(0)z|
][

|f ′(0)|(1 + |z|2) + 2|z|
]

(1 + |z|)4 (≤ 1).

To prove (6.13) we note that g′(0) = f ′(0) and Γ(0, g) = |f ′(0)| . We then apply
(1.2) to g to have

(6.14) |g′(z)| ≤
(

1 − |g(z)|2
)

(1 − |z|2)−1Ξ(z, g), z ∈ U.

It then follows from (6.12) (for F and g(z) instead of z ) and (6.14) that

|f ′(z)| ≤
[(

1 + |g(z)|
)

/
[

1 − |g(z)|
)]2

(1 − |z|2)−1Ξ(z, g), z ∈ U,

which, combined with (6.8) for g , yields (6.13). One can easily check that the
equality in (6.13) holds for all z ∈ (−1, 1) for the function K(z2) . It immediately
follows from (6.13) that

|f(z)| ≤ (|z|/4)
([1 + |f ′(0)|

1 − |z|
]2

−
[1 − |f ′(0)|

1 + |z|
]2)

≤ |z|/(1 − |z|)2
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at each z ∈ U . This improves the upper part in the growth theorem (see, for
example, [Go, Vol. I, p. 68, Theorem 8], [Gl, p. 52, (10)]) because, in the case
where |f ′(0)| = 1, the last inequality on the right becomes the equality.

For f subordinate to F in U we further have

(6.15) f({|z| < r}) ⊂ F
(

{|z| < ̺(r, f)}
)

, 0 < r < 1,

where ̺(r, f) = r
(

r + |f ′(0)|
)

/
(

1 + |f ′(0)|r
)

≤ r , 0 < r < 1. This is an improve-
ment of the Lindelöf principle (see [Go, Vol. I, p. 86, Theorem 10]):

f({|z| < r}) ⊂ F ({|z| < r}), 0 < r < 1.

For the proof of (6.15) we only apply (6.8) to g to have

g({|z| < r}) ⊂ {|z| < ̺(r, f)}, 0 < r < 1.

If f = εF (εz2) , ε ∈ ∂U , the equality holds in (6.15) for all r and ̺(r, f) = r2 .
Applying a suitable version of (6.8∗∗ ) in case the present g is not in F , one
obtains a further improvement, yet the formulation is rather complicated.

7. Simply connected subregions

We return to the comparison of µG andµH , where we further assume that a
proper subregion G of H is simply connected.

Theorem 6. Let G be a proper, simply connected subregion of a hyperbolic

region H . Then the inequality holds:

(7.1)
∣

∣log
(

1 − (µH/µG)
)

(z1) − log(1 − (µH/µG)
)

(z2)
∣

∣ ≤ 4dH(z1, z2)

for all z1, z2 ∈ H ∩ (G ∪ ∂G) . The Lipschitz constant 4 on the right-hand side of

(7.1) cannot be replaced with any absolute constant C , 0 < C < 4 .

Corollary. For a proper, simply connected subregion G of a hyperbolic

region H , the inequality holds:

(7.2) µH(z)/µG(z) ≤ 1 − exp
(

−4dG,H(z)
)

at each z ∈ G.

We cannot replace the constant −4 in exp(· · ·) on the right-hand side of (7.2)
with any absolute constant C , −4 < C < 0 .

Theorem 7. For a proper, simply connected subregion G of a hyperbolic

region H , the inequality holds:

(7.3)
∣

∣log
(

µH/(µG − µH)
)

(z1) − log(µH/(µG − µH)
)

(z2)
∣

∣ ≤ 4dG(z1, z2)

for all z1, z2 ∈ G . The Lipschitz constant 4 on the right-hand side of (7.3) cannot

be replaced with any absolute constant C , 0 < C < 4 .
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In “most” cases the inequalities (7.2), and (7.1) and (7.3) for z1 6= z2 are
strict. See Note (iv) in this section.

For the proofs we recall the notation in the proof of Theorem 4. So, f
#
=h−1◦g

is univalent in U and for f the identities in (4.3) hold at each z ∈ G . We now
apply Lemma 2 to the present f . There are two ways to prove Theorem 7: via

Corollary 1 to Lemma 2 or via the µG part in
∣

∣grad log
(

1 − (µH/µG)
)

(z)
∣

∣ ≤ 4µH(z)

and
∣

∣grad log
(

µH/(µG − µH)
)

(z)
∣

∣ ≤ 4µG(z)

for z ∈ G . For the sharpness the same pair D,∆ is available.
For Theorem 6,

(7.4)
4 ≡

∣

∣(d/dy) log
(

1 − (µD/µ∆)
)

(iy)
∣

∣/µD(iy)

≤
∣

∣grad log
(

1 − (µD/µ∆)
)

(iy)
∣

∣/µD(iy) ≤ C, 0 < y < 1.

For the Corollary to Theorem 6, the estimate

(1 − y2)/
(

1 − y−C/2
)

= (µD/µ∆)(iy)/
[

1 − exp
(

Cd∆,D(iy)
)]

≤ 1,

0 < y < 1, shows that C ≤ −4.
For Theorem 7,

(7.5)
4 ≡

∣

∣(d/dy) log
(

µD/(µ∆ − µD)
)

(iy)
∣

∣/µ∆(iy)

≤
∣

∣grad log
(

µD/(µ∆ − µD)
)

(iy)
∣

∣/µ∆(iy) ≤ C, 0 < y < 1.

Note (i). As a consequence of (7.2) we have

lim inf
z→b

dG,H(z)µG(z) ≥ µH(b)/4 > 0

at each point b ∈ H ∩ ∂G if a proper subregion G of H is simply connected. To
show the sharpness we consider ∆ and D with 0 < y < 1 to have

d∆,D(iy)µ∆(iy) = −(log y)/
(

4y(1 − y2)
)

,

which tends to 1/8 as y tendds to 1. This, together with µD(i)/4 = 1/8, shows
that

lim inf
z→i

d∆,D(z)µ∆(z) = µD(i)/4.

We cannot drop the simple connectivity of a proper subregion G of H . For
example, let B = U \{0} , so that 1/µB(z) = −2|z| log |z| , z ∈ B . Hence, for each
constant λ ≥ 1, we have

dB,U (z)λµB(z) = (tanh−1 |z|)λ/(−2|z| log |z|) → 0 as z → 0 ∈ ∂B,

while µU (0)/4 = 1/4. The case λ = 1 yields a counterexample.



318 Shinji Yamashita

Note (ii). Suppose that G and H are hyperbolic regions but not necessarily
G ⊂ H . Suppose further that G is simply connected. Then a note similar
to Note (b) at the end of Section 5 for analytic and univalent F : G → H in
conjunction with (6.5) is obvious. For the present case (6.1) should be

(6.1∗) |(∂/∂z)Γ(z, F )|/µG(z) ≤ 2Γ(z, F )
(

1 − Γ(z, F )
)

, z ∈ G.

Note (iii). Suppose that F : U → H is analytic and univalent. Applying (6.6)

(note that (6.6) itself is true for f ∈ F also) to f
#
=h−1 ◦F , h ∈ Proj(H) , we have

an improvement of (5.3) in Note (c) in the present case. The situation is the same
for H = R0 if we want an improvement of (5.4) for univalent F : U → R0 . For

h ∈ Proj(R0) the function f
#
=h−1 ◦F is univalent and in B , yet not in F . With

the aid of (6.6) we have the following, strict inequality by the same reasoning as
in Note (c), together with some detailed remarks which will be described soon:

(7.6) (1−|z|2)|F ′(z)| < λ0L(z, F )(1+ |z|2)/
[

(1+ |z|2)+(4λ0 −2)|z|
]

, z ∈ U,

where λ0 = µR0

(

F (0)
)

|F ′(0)| and L(z, F ) is the same as in Note (c). If the
equality in (7.6) held at z = 0, it would mean F ∈ Proj(R0) and F (0) = −1,
which is impossible. Suppose that the equality in (7.6) holds at a point ζ ∈ U \{0} .
Then f = h−1 ◦F is of the form (6.2), so that f(U) is U slit along Λ = Λ(Q, ε, β)
as described in the proof of Lemma 2. Thus h(Λ) = R0 ∩ ∂F (U) = h(Λ) is a
curve starting at a point h

(

ζ(Q, ε, β)
)

∈ R0 . The curve h(Λ) must be bounded;
otherwise F (U) is not simply connected. Hence 0 and 1 are nonisolated boundary
points of F (U) and h(Λ) must “end” at 0 and 1 in the sense that the terminal
part of h(Λ) is contained in a region including 0 and 1. This violates the simple
connectivity of F (U) . Thanks to (7.6) we have the estimate of

(
∣

∣log |F (z)|
∣

∣ + cH
)

/
(
∣

∣log |F (0)|
∣

∣ + cH
)

in a manner similar to the proof of (5.5), yet the expression is rather complicated
and so omitted.

Note (iv). Let g , h and f
#
=h−1 ◦ g be the same as in the proof of Theo-

rem 4, where G is a simply connected, proper subregion of a hyperbolic region H .
Suppose that the equality in (6.1) holds at z ∈ U for the present f , so that
f is of the form (6.2). Using the same notation as in the proof of Lemma 2,
we then have H \ G = h(Λ), where Λ = Λ(Q, ε, β) . Note that the curve h(Λ)
has no self-intersection and has one end-point h

(

ζ(Q, ε, β)
)

in H because G is
simply connected. Furthermore, H must be simply connected and h(Λ) lies on
the geodesic h(Σ#) of H , where Σ# = Σ#(Q, ε, β) . The pair D,∆ is a typical
example. In view of (6.3) one has

(7.7)
∣

∣grad log
(

1 − (µH/µG)
)

(ζ)
∣

∣ = 4µH(ζ)
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and
∣

∣grad log
(

µH/(µG − µH)
)

(ζ)
∣

∣ = 4µG(ζ)

at each point ζ of G ∩ h(Σ#) = g
(

Σ(z, ε)
)

. Thus, (7.4) and (7.5) for D and ∆
with ζ = iy are immediate. At other points ζ ∈ G \h(Σ#) , the equalities in (7.7)
should be replaced with “<”. If, for example, at least one of the distinct points
zk ∈ G , k = 1, 2, does not lie on G∩ h(Σ#) , the inequality (7.1) is strict because
the geodesic segment σH(z1, z2) which is unique in the present case does not meet
h(Σ#) except possibly for one point. We next observe that a geodesic of a region
U slit along Λ has the intersection of linear measure zero with each geodesic of
U except for Σ# \Λ; in fact, this follows from the special case JP (U) which is U
slit along the interval ΛP , for which only one geodesic (−1, 1) \ ΛP lies on that
of U . Thus, the conclusion is the same for (7.3) if at least one of the distinct
points zk ∈ G , k = 1, 2, does not lie on G ∩ h(Σ#) . The inequality in (7.2) is
strict for each z ∈ G \ h(Σ#) .

If f is not of the form (6.2), the inequality (6.1) is strict everywhere, so that
(7.1) and (7.3) for z1 6= z2 and (7.2) for all z ∈ G are strict. Such cases are: (A)
H \ G contains an inner point; (B) H \ G has more than two components; (C)
H \G is connected, yet not an analytic arc; (D) H is not simply connected; and
so on.

Note (v). A hyperbolic region R is said to be of finite type if

κ(R) ≡ inf
z∈R

δR(z)µR(z) > 0,

where δR(z) = infw∈∂R |z−w| is the Euclidean distance of z ∈ R and ∂R (see [Y,
p. 116]); it is known that κ(R) ≤ 1. For example, if R 6= C is simply connected,
then κ(R) ≥ 1/4, so that R is of finite type while B is not. Suppose that H is
a hyperbolic region of finite type, and G is a proper subregion of H . Then, (3.2)
yields

1/µG(z) < κ(H)−1δH(z)
[

1 − exp
(

−4dG,H(z)
)]1/2

at each z ∈ G , while if G is simply connected further, (7.2) yields

1/µG(z) ≤ κ(H)−1δH(z)
[

1 − exp
(

−4dG,H(z)
)]

at each z ∈ G . A merit is that the right-hand sides are expressed by purely
geometric quantities δH and dG,H .
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8. Riemann surfaces

A Riemann surface R (see [Le, p. 130 et seq.]) is called UC-hyperbolic if it
has U as its universal covering surface. (Note that a Riemann surface is hyperbolic
if it admits a Green function; a UC-hyperbolic Riemann surface is not necessarily
hyperbolic.) Let Proj(R) be the set of all the analytic, universal covering pro-
jections from U onto a hyperbolic R . Let u be a local parameter at P ∈ R ,
u(P ) = z ∈ C , and set

(8.1) 1/µR,u(z) = (1 − |w|2)|(u ◦ f)′(w)|,

where f ∈ Proj(R) and P = f(w) . The right-hand side of (8.1) is independent
of the particular choice of f and w as long as P = f(w) is satisfied. We have
µR,v(ζ)/µR,u(z) = |dz/dζ| for another local parameter v , v(P ) = ζ , so that the
differential µR,u(z) |dz| is independent of the choice of a local parameter u at
P , which we denote by µR(z) |dz| and call the Poincaré metric element of R at
P ∈ R . The Poincaré distance, geodesic segments, etc., are defined in a manner
similar to Section 3 with some minor changes.

For a complex-valued function Φ defined on a UC-hyperbolic Riemann surface
R , the differential (∂/∂z)(Φ ◦ u−1)(z) dz (z = u(P )) is independent of the choice
of u , so that |(∂/∂z)(Φ ◦u−1)(z)|/µR,u(z) is a function of P ∈ R and denoted by
M (z,Φ) = |(∂/∂z)Φ(z)|/µR(z) . For a function F analytic and bounded, |F | < 1,
on R , we observe that

ΓF (z) ≡ Γ(z, F ) ≡ M (z, F )/
(

1 − |F (P )|2
)

= Γ(w, F ◦ f)

is a function of P = f(w) , f ∈ Proj(R) , and satisfies

M (z,ΓF ) = (1 − |w|2)|(∂/∂w)Γ(w, F ◦ f)|.

Hence (1.3) for F ◦ f now reads

|(∂/∂z)Γ(z, F )|/µR(z) ≤ 1 − Γ(z, F )2,

the counterpart of (1.3) on R , P identified with z . If R is simply connected, we
may consider the case where F is univalent on R further. The counterpart of (6.1)
on R is immediate. Note that F ◦ f ∈ F if and only if R is simply connected
and F is a conformal homeomorphism from R onto U .

Let G be a proper subsurface of a UC-hyperbolic Riemann surface H . Then
Ω(P ) = µH(z)/µG(z) is a function of P ∈ G . After similar analyses on Ω in terms

of f
#
=h−1 ◦g ∈ B for g ∈ Proj(G) and h ∈ Proj(H) , one can extend Theorems 3,

4, 5, 6, 7, and the Corollary to Theorem 6 to Riemann surfaces.
Suppose that R is a UC-hyperbolic Riemann surface and that there exists a

conformal homeomorphism χ from R into C∗ . Then the normal constant νχ(R)
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with respect to χ is defined as follows, and, in the special case where R ⊂ C and
χ is the identity mapping, the definition coincides with the one given in Note (II).
Let G∞ be the universal covering surface of G = χ(R) which we identify with C∗ ,
C , or U , and let g be a universal covering projection from G∞ onto G . Then,

for each f ∈ Proj(R) , an analytic function h
#
=(χ ◦ f)−1 ◦ g is bounded in G∞ , so

that the Liouville theorem, applied to h in case G∞ 6= U , yields a contradiction.
Hence G∞ = U and C∗ \G contains at least three points. Consequently, χ ◦ f is
normal in the sense of Lehto and Virtanen in U . We can define

(χ ◦ f)#(w) = |(χ ◦ f)′(w)|/
(

1 + |(χ ◦ f)(w)|2
)

at each w ∈ U , where (χ ◦ f)#(w) =
∣

∣

(

1/(χ ◦ f)
)′

(w)
∣

∣ in case (χ ◦ f)(w) = ∞ .
Set

νχ(R) = sup
w∈U

(1 − |w|2)(χ ◦ f)#(w).

The right-hand side is independent of the particular choice of f ∈ Proj(R) . It is
now routine to prove νχ(G)/νχ(H) ≤ µ(G,H) , where µ(G,H) = supP∈G Ω(P ) ,
Ω(P ) = µH(z)/µG(z) , and G is a subsurface of a UC-hyperbolic Riemann sur-
face H admitting a conformal homeomorphism into C∗ . Here the restriction
of χ: H → C∗ to G is considered. One can actually prove that the quotient
νχ(G)/νχ(H) is independent of the particular choice of a conformal homeomor-
phism χ: H → C∗ .

Note. Let R be a Riemann surface, not necessarily UC-hyperbolic, and let
P ∈ R . Let A (R,P ) be the family of analytic mappings f from U into R and
f(0) = P . Let u be a local parameter at P , u(P ) = z ∈ C . Let ωR,u(P ) be
the supremum of |(u ◦ f)′(0)| , f ∈ A (R,P ) . Then ωR,u(P ) > 0 because there
is a conformal mapping ϕ from U onto the image u

(

N(P )
)

of a neighborhood
N(P ) of P , which can be regarded as a disk of center z , and ϕ(0) = z . It suffices
to consider u−1 ◦ ϕ ∈ A (R,P ) to have ωR,u(P ) > 0. Now,

(

1/ωR,u(P )
)

|dz| =
(

1/ωR,v(P )
)

|dζ| for another local parameter v , v(P ) = ζ ; we may denote this
differential simply by ωR(z)−1 |dz| . Suppose further that R is UC-hyperbolic. We
then have µR(z) |dz| = ωR(z)−1 |dz| at each P ∈ R . This is another definition
of µR(z) |dz| without reference to the universal covering surface of R . For the
proof, let g ∈ Proj(R) with g(0) = P . Then g ∈ A (R,P ) , so that µR,u(z) |dz| =
|(u ◦ g)′(0)|−1 |dz| ≥ ωR,u(z)−1 |dz| . On the other hand, for each f ∈ A (R,P )

we have |h′(0)| ≤ 1, where h
#
=g−1 ◦ f . Hence µR,u(z) |dz| = |(u ◦ g)′(0)|−1 |dz| ≤

|(u ◦ f)′(0)|−1 |dz| , so that µR,u(z) |dz| ≤ ωR,u(z)−1 |dz| . One can prove that
ωR,u(P ) = |(u◦f)′(0)| for f ∈ A (R,P ) if and only if f ∈ Proj(R) and f(0) = P .
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