
Annales Academiæ Scientiarum Fennicæ
Series A. I. Mathematica
Volumen 20, 1995, 401–418
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Abstract. Compact Riemann surfaces with large automorphism groups have been studied
extensively. Here we treat genus 2 case in a geometric way. The three surfaces with exceptional
symmetry are Wiman curves of types I and II and an Accola–Maclachlan surface. By considering
the location of Weierstrass points, we exhibit Dirichlet fundamental polygons for these surfaces
and calculate their period matrices. A list of orbifolds covered by closed surfaces of genus 2 is also
obtained, leading to the list of triangle groups having a normal subgroup of genus 2 and to their
arithmeticity.

1. Introduction

This paper presents examples of symmetric closed Riemann surfaces of
genus 2. As all surfaces of genus 2 are hyperelliptic, they can be realized as double
coverings of the Riemann sphere with Weierstrass points as six branch points of
order two. By the sheet interchange, the automorphism group of a genus 2 surface
is reduced to a finite automorphism group of the Riemann sphere. Following ideas
of Hurwitz [9] and Wiman [20] we first determine the automorphism groups and
respective symmetric Riemann surfaces. The uniformizing Fuchsian groups are
then derived using hyperbolic geometry, and their Riemann period matrices are
determined by the method of Rauch and Lewittes [17].

Using the list of orbifolds covered by closed surfaces of genus 2, obtained in
Section 6, we derive:

Theorem. The triangle groups having a torsion free normal subgroup of

genus 2 are: (2, 3, 8) , (2, 4, 6) , (2, 4, 8) , (2, 5, 10) , (2, 6, 6) , (2, 8, 8) , (3, 3, 4) ,
(3, 4, 4) , (3, 6, 6) , (4, 4, 4) , (5, 5, 5) . All of them are arithmetic subgroups of

SL(2,R) .

The utilization of Weierstrass points in our geometric approach to determine
the maximally symmetric surfaces was suggested by T. Jörgensen and J.M. Mon-
tesinos. The pictures have been prepared by J. Haataja. A good bibliography of
the results obtained in the field since 1890 can be found in [4] and [8].
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2. Basic facts

The set W of Weierstrass points on a closed Riemann surface X of genus
g ≥ 2 consists of all points p ∈ X such that X admits a meromorphic function
with a single pole of order less than g + 1 at p . By a classical result of Hurwitz
([9], cf. also Farkas–Kra [7, III.5.11]), a closed surface of genus g ≥ 2 has at least
2g + 2 Weierstrass points, where the lower bound is attained if and only if X is
hyperelliptic. In this case the field of meromorphic functions of X is generated by
two functions z and w satisfying an algebraic equation

(1) w2 = (z − e1) · · · (z − e2g+2).

The hyperelliptic function z determines the surface X as a ramified double cover
of the Riemann sphere S , the distinct branched values e1, . . . , e2g+2 of z being
the images of the corresponding Weierstrass points of X . We denote by W also
the set of the spherical Weierstrass points e1, . . . , e2g+2 ∈ S . Using the imbedding

(z, w): X → S2

we define the hyperelliptic sheet interchange P : X → X by (z, w) 7→ (z,−w) .
Weierstrass points are the only fixed points of P , and the hyperelliptic function
z defines the projection z: X → S = X/〈P 〉 .

3. Reduced automorphism groups of hyperelliptic surfaces

By a theorem of H.A. Schwarz the group AutX of holomorphic automor-
phisms of a closed Riemann surface X of genus g ≥ 2 is finite. For a hyperelliptic
surface, a lemma of Hurwitz [9] states that if T ∈ AutX has more than 4 fixed
points, then T is either the sheet interchange mapping P or the identity. (Choose
a hyperelliptic function z with two simple poles outside the fixed point set of T .
Then the difference z − z ◦ T has more zeros than poles, and must be identically
zero.) Now if T ∈ AutX is any automorphism of the hyperelliptic surface X ,
T ◦ P ◦ T−1 has at least 2g + 2 ≥ 6 fixed points, so that T ◦ P ◦ T−1 = P . Thus
P commutes with T , so that any automorphism T ∈ AutX projects to a Möbius
transformation Ts: S → S of the Riemann sphere S = X/〈P 〉 . Each automor-
phism Ts maps the set W ⊂ S of spherical Weierstrass points onto itself, hence
the reduced automorphism group Aut X/〈P 〉 can be thought of as the symmetry
group of the Riemann sphere with Weierstrass points as distinguished points; for
classification of finite rotation groups see [2, 5.1].

All closed surfaces X of genus 2 are hyperelliptic with 6 Weierstrass points,
and as we shall see, the above considerations lead to a complete determination
of automorphism groups in this case. The first observation is that if a rotation
group S does not preserve any axis of rotation, an orbit of order 6 consists of
the vertices of a regular octahedron. Thus besides cyclic and dihedral groups,
the only remaining choice for the reduced automorphism group AutX/〈P 〉 is the
octahedral group S(4).
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4. Fuchsian groups and fundamental polygons

We begin by classifying all maximal cyclic Möbius groups 〈Ts〉 6= {I} of the
reduced automorphism group Aut X/〈P 〉 . Since Ts maps the set of spherical
Weierstrass points onto itself, the order of 〈Ts〉 is the length of a cycle of S(6),
i.e. 2, 3, 4, 5 or 6. The possible maximal cyclic Möbius groups 〈Ts〉 6= {I} are
listed alphabetically in Table 1 for further reference. The second column gives
the order of the generator Ts , the third the number of fixed points of the elliptic
Möbius transformation Ts in W , the fourth lists the induced permutation of W ,
consisting of cycles of equal length, and the fifth gives the explicit form of the
rotation Ts with 0 and ∞ as fixed points, and denoting εn = ei2π/n the first root
of unity of order n . The case Ts = I corresponds to T = P or T = I and is not
listed.

Table 1.

A 2 2 (1 2)(3 4) Ts = −I

B 2 0 (1 2)(3 4)(5 6) Ts = −I

C 3 0 (1 2 3)(4 5 6) Ts = ε3I

D 4 2 (1 2 3 4) Ts = iI

E 5 1 (1 2 3 4 5) Ts = ε5I

F 6 0 (1 2 3 4 5 6) Ts = ε6I

As already done in Wiman [20], it is easy to find an algebraic equation (1) rep-
resenting a hyperelliptic surface X with a cyclic symmetry. In each case, the
automorphism T inducing Ts and of maximal order, is then easily found in the
form

(2) (z, w) 7→ (Tsz, w′).

The equations in cases A–F are given in Table 2. For simplicity, the equations
are normalized so that the fixed points of Ts are 0 and ∞ and the roots lie
symmetrically with respect to the equator of the Riemann sphere. This is possible
except for the cases B and E. In cases A and C we suppose a 6= 0, 1,−1, and in case
B that a, b, c ∈ C∗ are three distinct complex numbers. The third column gives the
action of T on X , the fourth the order of the symmetry group 〈T, P 〉 . The last two
columns list the number Nν of fixed points of multiplicity ν , ν = ν(p) being the
order of the stabilizer of a point p ∈ X . The fixed points and their multiplicities
are realized geometrically in cases D, E, F after finding their fundamental polygons,
shown in Figures 2 and 4–7.
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Table 2.

Case Equation T : (z, w) 7→ (Tsz, w′) Ord Nν ν

A w2 = z(z2 − a)(z2 − a−1) (z, w) 7→ (−z, iw) 4 2 4

4 2

B w2 = (z2 − a)(z2 − b)(z2 − c) (z, w) 7→ (−z, w) 4 10 2

C w2 = (z3 − a)(z3 − a−1) (z, w) 7→ (ε3z,−w) 6 4 3

6 2

D w2 = z(z4 − 1) (z, w) 7→ (iz, ε8w) 8 2 8

4 2

E w2 = z5 − 1 (z, w) 7→ (ε5z,−w) 10 1 10

2 5

5 2

F w2 = z6 − 1 (z, w) 7→ (ε6z, w) 12 4 6

6 2

In cases A, C, D, and E the generator T is chosen so that P is a power of T ,
hence the group 〈T, P 〉 is cyclic. In case B, 〈T, P 〉 is Z2 ×Z2 , in case F Z2 ×Z6 .
In cases D, E, and F the surface is completely determined.

Due to the location of Weierstrass points on S , in case A the reduced automor-
phism group Aut X/〈P 〉 contains the dihedral group D2 and in case C the dihedral
group D3 . In case D the reduced group Aut X/〈P 〉 is the octahedral group, in
case E the cyclic group Z5 , and in case F the dihedral group D6 . Furthermore,
both D and F are special cases of A, B, and C. If in case B AutX/〈P 〉 ! Z2 , then
case B is included in the cases A or C.

The full automorphism group AutX is the linear group GL(2,Z3) in case
D, the cyclic group Z10 in case E, and the group (4, 6 | 2, 2) of order 24 (cf.
Coxeter–Moser [5]) in case F. The groups D4, D2 and D6 being the smallest
possible automorphism groups in cases A, B, and C, the following exhaustive list
of automorphism groups for genus 2 surfaces X is obtained:

〈P 〉 = Z2
//

��
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

D2
//

��
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

D4

$$III
II

III
II

**UUUUUUUUUUUUUUUUUUUUU

(4, 6 | 2, 2) GL(2,Z3)

Z10 D6

::ttttttttt

44hhhhhhhhhhhhhhhhhhhhh

having orders 2, 4, 8, 10, 12, 24, and 48, see [3], [8], [11], [12] and [20].
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Here the case E, i.e. the group Z10 , is an isolated case: If M2 denotes the
moduli space of closed Riemann surfaces of genus 2 and B2 = {X ∈ M2 | Aut X 6=
〈P 〉} , then E is the only isolated point of B2 , see e.g. [11].

The surface E has the largest possible cyclic automorphism group of order
10 = 4g + 2, and is hence a Wiman curve of type I. The surface D , which is
also called Bolza’s surface, has a cyclic automorphism group of order 8 = 4g ,
(and also the largest automorphism group) and is thus a Wiman curve of type II.
The surface F is an Accola–Maclachlan surface: If Xg varies over all compact
Riemann surfaces of genus g , then the maximum of the order of its automorphism
groups is at least 8(g+1). For Accola–Maclachlan surfaces this bound is attained,
see [11] for related results.

The surface D is also the unique hyperbolic surface (for g = 2) with the
property that the length of its shortest simple closed geodesic is maximal [18,
Th. 5.2].

As is shown below, the surfaces D , E , F have Dirichlet polygons with 8, 10
and 12 sides, respectively, i.e. the center of the Dirichlet polygon can be chosen
so that the number of sides degenerates from 18 to the above, see [10].

We use hyperbolic geometry to determine fundamental domains with identifi-
cation patterns for surfaces D , E , F : The Riemann sphere S inherits from X a
hyperbolic orbifold metric with singularities of order 2 at the branched values, i.e.
Weierstrass points, see [14]. If S is cut by connecting, say 0, with geodesic arcs
to all points e ∈ W , e 6= 0, a simply connected domain with no branched values is
obtained. Hence this domain can be lifted to a geodesic polygon in the universal
cover of X , which is supposed to be the unit disc. The angles are preserved at all
vertices except for the Weierstrass points, where they are halved. Two lifts of the
domain are glued to get a Dirichlet polygon, which is then used to determine the
generators of the uniformizing Fuchsian group.

To determine fundamental domains for the surfaces in the cases D, E and
F, we use the well known fact that the fixed point set of an antiholomorphic
automorphism of a closed surface is a disjoint union of simple closed geodesics.

We treat the case D first to present the ideas.

Case D. The equation is w2 = z5 − z , Tsz = iz and W = {0,∞,±1,±i}
⊂ S .

Figure 1 presents the Riemann sphere S with cuts to connect 0 to ±1,±i
via the coordinate axes. The complement of the induced cross is simply connected
but ∞ is a branch point. We cut further along the ray [∞, 1] and uniformize one
sheet of the remaining surface so that the ray [∞, 1] is lifted into the negative real
axis, starting from 0, see Figure 2, where points are labelled by their projections
in S . As observed above, due to reflectional symmetry all these cuts are geodesic
arcs. To get the lift, consider a walk in Figure 1 once around ∞ so that the cut is
to the right; start at ∞ , go along the dotted line to 1, the angle π at 1 is halved
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on the lift, continue to 0, where the angle is π/4 on the lift, then to −i where the
angle is halved to π , then continue similarly to 0,−1, 0, i, 0, 1 and return to ∞ .
The lower part of the regular octagon with angles π/4 at vertices is obtained.
The other sheet in the double cover gives the other half of the fundamental set,
presented in Figure 2 as the upper part of the octagon. By symmetry, the regular
octagon, with diagonal pairings, is a Dirichlet polygon for the group (see [15],
[16]). The inner and outer radii of the octagon fulfil, respectively, cosh r = 1+

√
2,

cosh R = (1 +
√

2 )2 . The group has generators Ti , i = 1, . . . , 4, with

T1(x) =
az + c

cz + a
, a = 1 +

√
2, c = −

√
2 + 2

√
2

Tk+1 = g−kT1g
k, k = 1, 2, 3, g(z) = ei5π/4z.

The relation is T1T2T3T4T
−1
1 T−1

2 T−1
3 T−1

4 = I .

The sheet interchange P lifts to P̃ , P̃ z = −z . The Weierstrass points are
the center of the octagon, its vertices (all equivalent) and the centers of the sides.
They triangulate the octagon into 16 isosceles triangles with angles π/4 and sides
of hyperbolic length r . This triangulation is depicted in Figure 10 (where the
regular octagon is marked with heavier lines) and used in Section 5 to calculate
the Riemann period matrix.

Case E. The equation is now w2 = x5 − 1, Ts(z) = ε5z , and W =
{ε5, . . . , ε

5
5 = 1,∞} . We connect infinity to other points of W by rays as in

Figure 3, and get a simply connected domain with no branched values. Lifting the
leaf with center 0+ yields a regular pentagon with angles π/5. This is completed
to a fundamental 10-gon with all angles 2π/5 by adjoining a lift of the leaf with
center 0− , cut into five triangles with vertices 0−,∞,∞ , see Figure 4. The lifts
of W in the fundamental polygon are

ẽk = Rei2πk/5, R =

√√
5 − 2, k = 1, . . . , 5.

The sheet interchange mapping P lifts to an elliptic mapping Pk of period 2 with
ẽk as fixed points. The mapping Tk = Pk+1Pk , (k mod 5) is a lift of the identity
and identifies a pair of sides of the fundamental polygon. The identifications are
presented in Figure 5. We obtain for the generators matrices

Tk =




3 +
√

5
2 ω2 i

√
10 + 6

√
5

2 wk−2

−i

√
10 + 6

√
5

2 w2−k 3 +
√

5
2 ω−2


 , w = ei2π/5.

Due to the regularity of the fundamental polygon, it is the Dirichlet polygon with
center 0. The side-pairings give the relations

Tk+8Tk+6Tk+4Tk+2Tk = I (k mod 5).
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The additional relation

T5T4 · · ·T1 = P6P1 = P 2
1 = I

implies that any four of the mappings Tk can be chosen as generators for the
Fuchsian group. For example T1, . . . , T4 are generators satisfying the relation

T4T3T2T1 = T3T1T4T2.

Case F. The equation of X is w2 = z6 − 1 and W = {eikπ/3 | k = 1, . . . , 6} .
Now 0 and ∞ are ordinary points. We make cuts as before to connect W to ∞ .
By lifting the leaf with center 0+ we get a regular hexagon with angles π/3. This
is completed to a fundamental 12-gon with angles π/3 and 2π/3, respectively, by
adjoining six triangles with vertices 0−,∞+,∞− , see Figure 6. The lifts for W
in the fundamental polygon are

ẽk = Reikπ/3, R =

√
2 −

√
3, k = 1, . . . , 6.

The sheet interchange mapping P lifts to rotations by π about the points ẽk ;
these elliptic mappings of period 2 have matrices

Pk =

[
i
√

3 −iwk
√

2

iw−k
√

2 −i
√

3

]
, w = eiπ/3 =

1 + i
√

3

2
.

As before the side-pairing mappings are obtained as Tk = Pk+1Pk , k = 1, . . . , 6.
The identification pattern is presented in Figure 7. Due to the regularity of the
fundamental polygon, it is the Dirichlet polygon with center 0.

When examining the images of the interval [0+∞+] in Figure 7 under suc-
cessive rotations Pk we get P6P5 · · ·P2P1 = I , or generally Pk+5Pk+4 · · ·Pk = I
(k mod 6). This yields the relations

Tk+4Tk+2Tk = I.

As generators can be chosen for example T1, T2, T4, T5 , then T3 = T−1
5 T−1

1 , T6 =
T−1

2 T−1

4 . The matrices are

Tk =

[
2 − i

√
3 −wk−1

√
6

−w1−k
√

6 2 + i
√

3

]
, w =

1 + i
√

3

2
.

On the other hand

T6T5 · · ·T1 = (P1P6)(P6P5) · · · (P2P1) = I,

hence the relation for the generators is

T−1

4 T5T4T
−1

5 T−1

1 T2T1T
−1

2 = I.



408 T. Kuusalo and M. Näätänen

5. Period matrices

In this section we calculate Riemann period matrices for the hyperelliptic
surfaces X corresponding to cases D, E and F above. For basic facts about period
matrices we refer to [7].

H. Rauch observed in [17] (see also [6]) that knowing sufficiently many sym-
metries f ∈ Aut X of a surface X enables one to determine explicitly the Rie-
mann period matrix Π with respect to a given homology basis of X : If B =
{a1, a2, b1, b2} is a canonical homology basis for a surface of genus 2, an automor-
phism f ∈ Aut X induces a matrix

θ(f) =

[
P Q
R S

]
,

which is symplectic, i.e. the intersection matrix

J =

[
0 I2

−I2 0

]

is preserved by θ(f) :
θ(f)T Jθ(f) = J.

Considering how the periods of Abelian differentials are transformed by f , leads
to the equation

(3) PΠ − ΠS + ΠRΠ = Q,

which is used to solve Π.

Case D. We choose a homology basis a1 , a′

2 , b1 , b′2 as in Figure 8. Then the
intersection numbers are χ(a1, b1) = 1, χ(a′

2, b
′

2) = 1, χ(a′

2, a1) = −1, χ(a′

2, b1) =
1, χ(b1, b

′

2) = 1, χ(a1, b
′

2) = 1 and we transform the basis as follows

a2 = b′2 + a1 − b1,

b2 = a′

2 − a1 − b1.

For the basis a1 , a2 , b1 , b2 the intersection matrix is J , hence it is a canonical
homology basis. It is presented in Figure 9, and we can solve after numbering the
sides of the regular octagon as in Figure 9

(4)

a1 = −1 + 3 + 4

a2 = 3

b1 = −1 − 2 − 3

b2 = 1

1 = b2

2 = −a2 − b1 − b2

3 = a2

4 = a1 − a2 + b2.
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If f1 is the rotation around 0 by π/4, then the images of the basis vectors a1 , a2 ,
b1 , b2 are, respectively, a′

2 , 4 , b′2 , 2 , i.e. a1 + b1 + b2 , a1−a2 + b2 , −a1 +a2 + b1 ,
−a2 − b1 − b2 and the matrix θ(f1) is




1 1 −1 0
0 −1 1 −1
1 0 1 −1
1 1 0 −1


 .

For f2 we choose the rotation by 2π/3 around the center P of a triangle in
Figure 10. To calculate θ(f2) , we notice that f2 = f3 ◦ f4 , where f4 is the
reflection in L1 and f3 the reflection in L2 . Then L2 is the angle-bisector and
also a median of the triangle. If ā1 , ā2 , b̄1 , b̄2 denote the images of a1 , a2 ,
b1 , b2 under f4 , we have, by using a similar technique as in [17] with the aid of
Figure 10,

ā1 = 2 + 3

ā2 = 2 + 3 + 4

b̄1 = −3 − 4

b̄2 = 1.

Correspondingly, for the images of ā1 , ā2 , b̄1 , b̄2 under f3 we get, using also (4)

¯̄a1 = −2 − 3 = b1 + b2

¯̄a2 = −1 − 2 − 3 = b1

¯̄b1 = 1 + 2 = −a2 − b1

¯̄b2 = −4 = −a1 + a2 − b2.

Hence the matrix θ(f2) is 


0 0 0 −1
0 0 −1 1
1 1 −1 0
1 0 0 −1


 .

If

Π =

[
a b
b d

]
,

(3) gives with θ(f2)

(5)

a + 2b = −1

d =
b2 − 1

a
.
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Using in the same way θ(f1) and combining with the equations (5) we get

3b2 + 4b + 2 = 0.

Solving this and using the condition that Im π is positive definite so that Im a > 0,
we get for the entries of π

a = d =
1

3
+

2i

3

√
2

b = −2

3
− i

3

√
2.

Case E. We choose generators for the canonical homology basis (see Fig-
ure 11)

a1 = c1

a2 = c1 + c3

b1 = c2

b2 = c4.

Let f be the rotation around 0+ by 2π/5. Then ck is mapped to ck+1 (k mod 5),
and θ(f) is 



0 0 −1 0
0 0 1 −1
1 1 0 −1
0 1 0 −1


 .

If

Π =

[
a b
b d

]
,

then using (3), and θ(f)2 in order to facilitate computations, we get after elimi-
nation

d4 − d3 + d2 − d + 1 =
d5 + 1

d + 1
= 0,

hence d is a 10th primitive root of unity. The elimination yields also

b = − d2

d − 1
= d3 − 1, a = −d3 − d2 = −(d2 − d̄2) = −2i Im d2.

Since Im π is positive definite, Im a > 0, hence Im d2 < 0 and we get for the
entries of π

a =
i
√

10 − 2
√

5

2

b =
−3 +

√
5 − i

√
10 − 2

√
5

4

d =
1 −

√
5 + i

√
10 + 2

√
5

4
.

For treating the remaining case F, the following lemma is useful:
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Lemma. If X admits a canonical homology basis a1 , a2 , b1 , b2 and a

symmetry f ∈ AutX such that f(ai) = aj , f(bi) = bj , i 6= j , then the period

matrix is of the form [
a b
b a

]
.

Proof. Under the assumptions, the matrix of f is

θ(f) =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 .

From (3), it follows for the period matrix

[
a b
b d

]
that a = d .

Case F. We choose a1 , b1 , a2 , b2 corresponding to the mappings T6 , T1 ,
T3 , T4 for the homology basis, see Figure 12. This basis has intersection numbers
χ(a1, a2) = χ(b1, b2) = 0, χ(ai, bj) = δij , hence it is a canonical homology basis.

Let f be the rotation by π/3 around 0. Then f3 fulfils the conditions of the
Lemma, hence a = d . The matrix θ(f) with respect to the basis a1 , a2 , b1 , b2 is

θ(f) =




0 0 −1 0
0 0 0 −1
1 0 0 −1
0 1 −1 0


 .

and using θ(f) in (3) we get

a = d =
i
√

3

2

b = −1

2
.

6. Orbifolds

An orientable hyperbolic 2-orbifold is a generalization of a Riemann surface.
For a general definition of an orbifold see [14]. Here we encounter only hyperbolic
orbifolds with conical singularities: such an orbifold O is a closed surface |O| of
genus g with distinguished points x1, . . . , xn , each endowed with a natural number
ν1, . . . , νn ≥ 2, so that |O| admits a branched regular covering by the hyperbolic
plane H , with order νi at xi, i = 1, . . . , n . The complex structure on O comes
from H by natural projection. In appropriate local coordinates the projection at
xi is equivalent to z 7→ ζ = zνi . Geometrically, the orbifold O is a closed surface
endowed with singular hyperbolic metric, having angles 2π/νi at the distinguished
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points xi, i = 1, . . . , n . We finish by listing all orientable hyperbolic 2-orbifolds
regularly covered by a closed surface of genus 2.

Let XD, XE, XF denote the surfaces discussed in Section 4. In each case, the
full automorphism group gives a sphere S with three cone points regularly covered
by the surface: S2,3,8 by the surface XD , S2,5,10 by XE and S2,4,6 by XF . By
determining the subgroup lattices and noticing that the subgroups are in 1 − 1
inverse lattice preserving correspondence with intermediate branched coverings,
(i.e. orbifolds), we can list all orbifolds regularly covered by a closed surface of
genus 2. The normal subgroups of Aut XE , AutXE and AutXF correspond to
intermediate orbifolds which cover regularly S2,3,8 , S2,5,10 and S2,4,6 , respectively.

T denotes the torus in the list below. The ramification indices are given for
each branch point. After each orbifold, the cases D, E, F covering it are given with
the multiplicity of the covering, and if the quotient orbifold is a regular covering
of one of the minimal orbifolds S2,3,8 , S2,5,10 or S2,4,6 , the subindex r appears
in the list. The same list was obtained in [12] by algebraic methods.

Orbifolds covered by a closed surface of genus 2

T2,2 D F 2

S2,2,2,2,2,2 Dr Er Fr 2

S2,2,2,2,2 D F 4

S3,3,3,3 D Fr 3

S2,2,3,3 D Fr 6

S2,2,2,3 D Fr 12

S2,2,4,4 D F 4

S2,2,2,4 D Fr 8

S4,4,4 Dr 8

S3,3,4 Dr 24

S2,3,8 Dr 48

S2,8,8 D 8

S2,4,8 D 16

S3,6,6 F 6

S2,6,6 Fr 12

S2,4,6 Fr 24

S3,4,4 Fr 12

S5,5,5 Er 5

S2,5,10 Er 10

In Figure 13, the 3-fold covering of S3333 by XD is presented and in Figure 4,
the 5-fold covering of S5,5,5 by XE is obtained by rotation of order 5 around 0+ .
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In Figure 14, the tessellation of the hyperpolic plane and Dirichlet polygon
of D by (2, 3, 8)-triangle group, with a reflection added, is depicted, similarly in
Figure 15, E by (2, 5, 10)-triangle group and in Figure 16, F by (2, 4, 6)-triangle
group.

In case D, let T be a triangle with angles π/8, π/2, π/3, with the angle
π/8 at the origin, see Figure 14. Denote by h the rotation of order 2 around the
vertex with angle π/2 and by g the positive rotation of order 8 around 0. Then
the uniformizing Fuchsian group for case D is a normal subgroup N ⊂ (2, 3, 8)
of index 48. The quotient group (2, 3, 8)/N is the group of automorphisms and
is obtained from (2, 3, 8) by imposing the additional relation hg4 = g4h . The
uniformizing Fuchsian group in case E is a normal subgroup of index 10 of (2, 5, 10)
and the automorphism group is obtained from (2, 5, 10) by adding the relation
hg = gh , where the order of g is now 10. The uniformizing Fuchsian group in
case F is a normal subgroup of order 24 of (2, 4, 6) and the automorphism group
is obtained from (2, 4, 6) by adding the relation hg4 = g2h , where the order of g
is 6.

The triangle groups connected to the last 11 orbifolds in the list above appear
in the list of arithmetic triangle groups [19]. This gives:

Theorem. The triangle groups having a torsion free normal subgroup of

genus 2 are: (2, 3, 8) , (2, 4, 6) , (2, 4, 8) , (2, 5, 10) , (2, 6, 6) , (2, 8, 8) , (3, 3, 4) ,
(3, 4, 4) , (3, 6, 6) , (4, 4, 4) , (5, 5, 5) . All of them are arithmetic subgroups of

SL(2,R) .
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