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Abstract. It is proved that the embeddings of Teichmüller spaces of cofinite Fuchsian groups
of distinct moduli are discrete in the universal Teichmüller space.

0. Introduction

It is well-known that the set of quasisymmetric functions does not form a
topological group in the quasisymmetric topology (cf. [4, III.3] ). A quasisymmet-
ric function f : R → R is a strictly increasing and surjective function for which
there is a constant M such that

M−1 ≤
f(x+ t) − f(x)

f(x) − f(x− t)
≤M

for every symmetric triple, x − t , x and x + t . This condition is called the
M-condition. The quasisymmetric norm of f is defined by

‖f‖q = inf{logM | f satisfies the M-condition for a constant M ≥ 1}.

Quasisymmetric functions are boundary values of quasiconformal automorphisms
of the upper half plane H = {z | Im z > 0} . Therefore the set of all the quasisym-
metric functions that fix 0 and 1 (we denote this set by QS∗ ) is identified with the
universal Teichmüller space T(1) which is the set {[f ]} of the equivalent classes
of quasiconformal automorphisms f of H . T(1) is equipped with the Teichmüller
distance. For [f ], [g] ∈ T(1), it is defined by

τ([f ], [g]) = inf
{

log K(G ◦ F−1) | G ∈ [g], F ∈ [f ]
}

,

where K(·) is the maximal dilatation. It is known that the Teichmüller distance
induces the same topology as the quasisymmetric topology (cf. [4, I.5]). Further,
when T(1) is identified with a bounded domain of the Banach space B(1) of
holomorphic functions on H by the Bers embedding, that topology is equivalent
to the topology of B(1) (cf. [4, III.4]).
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The set QS∗ is preserved under the inverse f−1 (we define a map Φ: QS∗ →
QS∗ by f 7→ f−1 ), but there exist points of QS∗ where Φ is not continuous.
Recently, Gardiner and Sullivan observed that the set S∗ of points where Φ is
continuous turned out to be a closed topological subgroup, which they called the
characteristic topological subgroup (see [3, Section 1]). Further, they characterized
the elements of S∗ in terms of M-conditions, quasiconformal extensions, quasicir-
cles and holomorphic quadratic differentials. By their result, it can be seen that,
for a non-elementary Fuchsian group Γ, every non-trivial Γ-compatible quasisym-
metric function does not belong to S∗ (see [3, Theorem 4.1]). In other words, the
map Φ: QS∗ → QS∗ is not continuous at each point of the Teichmüller space T(Γ)
(⊂ T(1) ≃ QS∗ ) of Γ.

In this paper, we consider this discontinuity via the Bers embeddings. (This
observation is due to H. Tanigawa. For details, see [5]). T(Γ) is mapped by
Φ into the family of Teichmüller spaces with different base surfaces. Thus, to
see the discontinuity, we investigate the discreteness of Teichmüller spaces with
variable bases in the universal Teichmüller space. Broadly speaking, a bundle over
the Teichmüller space with fibers of holomorphic quadratic differentials cannot be
effected in the universal Teichmüller space at all. The precise formulations of our
theorems are done in the next section.

The author would like to express his sincere thanks to the referee and the
editor.

1. Statement of the results

We begin with fixing notations. Let H be the upper half plane. We introduce
the hyperbolic L∞ -norm ‖ ‖ on H : For a measurable function ϕ on H , it is
defined by ‖ϕ‖ = ess.sup ̺(z)−2|ϕ(z)| , where ̺(z) = Im z . We denote by B(1)
the Banach space of holomorphic functions on H with the norm ‖ ‖ finite. Further,
for a Fuchsian group Γ acting on H which may contain elliptic elements, we define
a closed subspace of automorphic forms as

B(Γ) =
{

ϕ ∈ B(1) | ϕ
(

γ(z)
)

γ′(z)2 = ϕ(z) for each γ ∈ Γ
}

.

Note that the function ̺(z)−2|ϕ(z)| is Γ-automorphic for ϕ ∈ B(Γ). The qua-
siconformal automorphism of H which has a complex dilatation µ and whose
extension to the real axis fixes three points, 0, 1 and ∞ , is denoted by fµ . It
is called the normalized quasiconformal automorphism with the complex dilata-
tion µ . It is uniquely determined by µ . We say that fµ is compatible with Γ
(or Γ-compatible) if fµΓ(fµ)−1 is Fuchsian. In this case, we denote the Fuchsian
group fµΓ(fµ)−1 by Γµ .

The Teichmüller space T (Γ) with the center Γ is the set of certain equivalent
classes of all Γ-compatible normalized quasiconformal automorphisms. We regard
fµ and fν as equivalent if they have the same boundary value on R . Since
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fµ is determined by µ , the equivalent class may be represented by [µ] . The
Teichmüller space T (Γ) = {[µ]} is considered as a topological space with the
Teichmüller distance. The (Riemann) moduli space M(Γ) is the quotient space
of T (Γ) by the Teichmüller modular group. Since each element of M(Γ) is an
equivalent class of the set {[µ]} , we use the notation [[µ]] to represent it. M(Γ) is
equipped with the quotient topology from T (Γ). By the Bers embedding, T (Γ) is
mapped homeomorphically into B(Γ). The image is a bounded domain in B(Γ),
also denoted by T (Γ) under this identification. As regards fundamental facts on
Teichmüller spaces, consult [4].

For a Fuchsian group Γ, we define a relative moduli space of Γ with respect
to another Fuchsian group G as

MG(Γ) =
{(

[[µ]], [α]
)

∈M(Γ) ×
(

PSL(2,R)/G
)}

.

The [[µ]] and α determine the subspace B(α−1Γµα) . But, we should regard
B(Γ1) and B(Γ2) as equivalent with respect to B(G) if there is β ∈ PSL(2,R)
such that β∗ fixes each point of B(G) and maps B(Γ1) to B(Γ2) . Here, β∗

is the isometric automorphism of B(1) defined by ϕ 7→ β∗ϕ = (ϕ ◦ β) × (β′)2 .
Thus, MG(Γ) is identified with the set of the equivalent classes of {B(Γ′)}Γ′ by
this equivalence relation, where Γ′ moves on all Fuchsian groups of the same type
as Γ. In other words, the relative moduli space parametrize the relative situations
of {B(Γ′)}Γ′ to B(G) . In the case where we put G = PSL(2,R) , MG(Γ) is equal
to the usual moduli space.

When we assume G = Γ, the following theorem implies that Teichmüller
spaces of a cofinite Fuchsian group are embedded in the universal Teichmüller
space T (1) ⊂ B(1) discretely while the center varies.

Theorem A. Let G and Γ be cofinite Fuchsian groups acting on H . We

define a subset of MG(Γ) as

DG(Γ) =
{(

[[µ]], [α]
)

∈MG(Γ) | 〈G, α−1Γµα〉 is discrete
}

.

Then

inf
{

dist
(

B(G)unit, B(α−1Γµα)
)

|
(

[[µ]], [α]
)

∈MG(Γ) −DG(Γ)
}

is positive, and the number of elements in DG(Γ) is finite. Here B(G)unit is the

unit sphere {ϕ ∈ B(G) | ‖ϕ‖ = 1} , and dist means the distance with respect to

the norm ‖ ‖ on B(1) .

Next, we show the discontinuity of the embeddings. This is a weaker condition
than the discreteness, but valid for every non-elementary Γ.

Theorem C. Let Γ be a non-elementary Fuchsian group. Then, for every

ϕ ∈ B(Γ) − {0} , there exist a sequence {[[µn]]} ⊂ M(Γ) (n ∈ N) converging to

[[0]] and a positive constant δ such that dist
(

ϕ,B(Γµn)
)

> δ for every n .
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2. Reduction of Theorem A

We reduce Theorem A to other theorems (Theorems B-1, B-2) which claim
that similar distributions of the orbits imply similar moduli for Fuchsian groups.
First, we put Theorem A in another way:

Theorem A
′
. For any ϕ ∈ B(G)unit , there is a positive constant δ(ϕ) with

the following property: If ([[µ]], [α]) satisfies the condition

(a) dist
(

ϕ,B(α−1Γµα)
)

< δ(ϕ) ,
then 〈G,α−1Γµα〉 is discrete, and a finite number of elements ([[µ]], [α]) in MG(Γ)
satisfy (a).

(Theorem A ′ implies Theorem A) Since B(G)unit is compact, we can choose
a finite set {ϕi}i=1,...,m such that δ(ϕi)-neighborhoods of {ϕi} cover B(G)unit .
Then the infimum in the statement of Theorem A is not less than min{δ(ϕi) |
i = 1, . . . , m} (> 0). If 〈G,α−1Γµα〉 is discrete for ([[µ]], [α]) ∈ MG(Γ), then
B(α−1Γµα) ∩B(G)unit 6= ∅ , and B(α−1Γµα) intersects with the δ(ϕi)-neighbor-
hood of some ϕi . Theorem A ′ says that a finite number of elements ([[µ]], [α])
satisfy this condition.

Below, we use the following notations: U(W, d) = {q ∈ S | d(q, w) ≤ d, w ∈
W} for a subset W in a hyperbolic surface S , where d(·, ·) is the hyperbolic
distance, and Γ(Z) = {γ(z) | γ ∈ Γ, z ∈ Z} for a subset Z in H .

Theorem B-1. Let G and Γ be cofinite Fuchsian groups, S the hyper-

bolic orbifold H/G and π: H → S the canonical projection. For distinct points

p1, . . . , pk on S , there is a positive constant e1 = e1(G,Γ; p1, . . . , pk) with the

following property: If Γ′ = α−1Γµα satisfies the condition

(b-1) π
(

Γ′
(
⋃k

i=1
π−1(pi)

))

⊂
⋃k

i=1
U(pi, e1) ,

then 〈G,Γ′〉 is discrete, and a finite number of elements ([[µ]], [α]) in MG(Γ)
satisfy (b-1).

A parallel statement is true for the distribution of cusped regions. We say
a closed once-punctured disk in S is a cusped region if it is the projection of a
horodisk in H .

Theorem B-2. Let G and Γ be cofinite Fuchsian groups, S the hyperbolic

orbifold H/G and π: H → S the canonical projection. For disjoint cusped regions

W1, . . . ,Wm on S , there is a positive constant e2 = e2(G,Γ;W1, . . . ,Wm) with

the following property: If Γ′ = α−1Γµα satisfies the condition

(b-2) π
(

Γ′
(
⋃m

j=1
π−1(Wj)

))

⊂
⋃m

j=1
U(Wj , e2) ,

then 〈G,Γ′〉 is discrete, and a finite number of elements ([[µ]], [α]) in MG(Γ)
satisfy (b-2).

(Theorems B-1 and B-2 imply Theorem A ′ ) We divide the proof into two
cases, Case 1: S is compact, and Case 2: S is not compact.
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Case 1. The ϕ ∈ B(G)unit is projected onto the holomorphic quadratic
differential ϕdz2 on S . Let us denote the points on S where ϕdz2 takes zero by
p1, . . . , pk . We define

δ(ϕ) = 1

2
inf

{

|̺−2ϕ(q)| | q ∈ S −
k
⋃

i=1

U(pi, e1)
}

,

where e1 = e1(G,Γ; p1, . . . , pk) is the constant in Theorem B-1.
Suppose that dist

(

ϕ,B(Γ′)
)

< δ(ϕ) . Then there exists ψ ∈ B(Γ′) such that

‖ϕ − ψ‖ < δ(ϕ) . Let z be any point in
⋃k

i=1
π−1(pi) . Since |̺−2ϕ(z)| = 0,

we have |̺−2ψ(z)| < δ(ϕ) ; thus |̺−2ψ(γz)| < δ(ϕ) for any γ ∈ Γ′ . Again, by
‖ϕ−ψ‖ < δ(ϕ) , we know |̺−2ϕ(γz)| < 2δ(ϕ) . This implies that |̺−2ϕ(q)| < 2δ(ϕ)

for any q ∈ π
(

Γ′
(
⋃k

i=1
π−1(pi)

))

. By the definition of δ(ϕ) , such q must be in
⋃k

i=1
U(pi, e1) . Applying Theorem B-1, we have the desired result.

Case 2. As q goes to a cusp of S , |̺−2ϕ(q)| tends to zero. Moreover, for
each cusp of S , we can take a cusped region W ′

j (j = 1, . . . , m) so small that the

strict inclusion W
′′′

j ⊂W
′′

j (⊂W ′

j ) of cusped subregions implies that

min
{

|̺−2ϕ(q)| | q ∈ ∂W
′′′

j

}

< min
{

|̺−2ϕ(q)| | q ∈ ∂W
′′

j

}

.

Around the zeros {pi}i=1,...,k of ϕdz2 , we take small neighborhoods Ui and define

τ = inf
{

|̺−2ϕ(q)| | q ∈ S −
( k

⋃

i=1

Ui ∪
m
⋃

j=1

W ′

j

)}

.

Further, we take a cusped subregion Wj in W ′

j such that

σ :=max
{

|̺−2ϕ(q)| | q ∈
m
⋃

j=1

Wj

}

< τ and

min
{

|̺−2ϕ(q)| | q ∈ ∂Wj

}

> 0 for every j.

Then we choose the constant e2 = e2(G,Γ;W1, . . . ,Wm) in Theorem B-2. If
necessary, we may replace e2 with a smaller positive constant so that U(Wj, e2)
is contained in W ′

j . Finally, we define

δ(ϕ) = 1

2
min

[

τ − σ,min
{

|̺−2ϕ(q)| | q ∈
m
⋃

j=1

∂U(Wj , e2)
}

− ε
]

.

Consider ψ ∈ B(Γ′) such that ‖ϕ − ψ‖ < δ(ϕ) . Let z be any point of a
cusped horodisk D of

⋃m

j=1
π−1(Wj) and γ any element of Γ′ . Then, having

|̺−2ϕ(z)| ≤ σ , we see that |̺−2ψ(γz)| < σ + δ(ϕ) , and thus

|̺−2ϕ(γz)| < σ + 2δ(ϕ) ≤ τ.
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The definition of τ itself informs us that π(γD) is contained in
⋃k

i=1
Ui∪

⋃m

j=1
W ′

j ,

but from this we find that π(γD) must be in
⋃m

j=1
W ′

j as a cusped subregion.
Next, we select the particular z ∈ ∂D ⊂ D such that π(z) takes the minimal

value of |̺−2ϕ| on ∂D . Since |̺−2ϕ(z)| = ε , we have |̺−2ϕ(γz)| < ε + 2δ(ϕ) .
The definition of δ(ϕ) implies that

|̺−2ϕ(γz)| < min
{

|̺−2ϕ(q)| | q ∈
m
⋃

j=1

∂U(Wj, e2)
}

.

Then we know that π(γz) is contained in
⋃m

j=1
U(Wj , e2) , due to the monotony

of the minimal value. Since π(γz) is on the boundary of the cusped region π(γD) ,
all points of this region must be in

⋃m

j=1
U(Wj, e2) . Therefore we have derived

the condition (b-2) and can apply Theorem B-2 to get Theorem A ′ .

3. Proofs of Theorems B-1 and B-2

Proof of Theorem B-1. For a non-negative constant t , we consider the set

N(t) =
{

(

[[µ]], [α]
)

∈MG(Γ) | π
(

α−1Γµα
( k

⋃

i=1

π−1(pi)
))

⊂
k
⋃

i=1

U(pi, t)
}

.

Let L be the minimum of the hyperbolic distances between two distinct points of
⋃k

i=1
π−1(pi) . Then, setting t = 1

3
L , we have

Lemma 1. N( 1

3
L) is relatively compact in MG(Γ) .

Proof. As the first step, we will prove that proj
(

N( 1

3
L)

)

is relatively compact

in M(Γ), where proj is the projection MG(Γ) → M(Γ). If proj
(

N( 1

3
L)

)

is not
relatively compact, then, by Mumford–Bers compactness theorem [1], there exists
[[µ]] ∈ proj

(

N( 1

3
L)

)

such that a hyperbolic element h in the conjugation of Γµ

satisfies d
(

h(z), z
)

< 1

3
L for every point z within the distance s0 of the axis

Ah for h . As the constant s0 , we choose the supremum of d
(
⋃k

i=1
pi, c

)

, where
the supremum is taken over all complete geodesic lines c on S . Then there is
a point z0 ∈

⋃k

i=1
π−1(pi) within s0 of the axis Ah . Since d

(

h(z0), z0
)

< 1

3
L ,

iteration of h yields an integer n such that hn(z0) /∈
⋃k

i=1
π−1

(

U(pi,
1

3
L)

)

. This

is a contradiction, and thus proj
(

N( 1

3
L)

)

is relatively compact.
Next, we prove that N( 1

3
L) is relatively compact. In case G is cocompact,

PSL(2,R)/G is compact. Then obviously N( 1

3
L) is relatively compact. Thus

we only treat the case where G is not cocompact. If N( 1

3
L) is not relatively

compact while proj
(

N( 1

3
L)

)

is, there is [α] ∈ PSL(2,R)/G such that a point of

α−1Γµα
(
⋃k

i=1
π−1(pi)

)

is contained in a small cusped horodisk of G . But this is
impossible and thus N( 1

3
L) is relatively compact.
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As a next step, we will find a constant t (> 0) smaller than 1

3
L so that

#N(t) < ∞ . Suppose that #N(t) = ∞ for any t > 0. Then there is an
element ([[µn]], [αn]) in N(L/3n) for each integer n . Since N( 1

3
L) is relatively

compact, we may assume that the sequence
{

([[µn]], [αn])
}

n=1,2,...
converges to

some ([[µ0]], [α0]) in MG(Γ). It is easy to see that ([[µ0]], [α0]) ∈ N(0). Note
that N(0) ⊂ DG(Γ). Let Γn be α−1

n Γµnαn (n = 0, 1, 2, . . .). We can fix the
isomorphisms θn: Γ0 → Γn such that γn = θn(γ) converges to γ for any γ ∈ Γ0 .
Below we shall show that for each hyperbolic element γ ∈ Γ0 there is an integer
n(γ) such that if n ≥ n(γ) , then γn = γ . After showing this, we know that
Γn = Γ0 for sufficiently large n because Γ0 is finitely generated. Then it is clear
that there exists a required positive constant e1 such that N(e1) = N(0) and that
this set is finite.

In order to prove the above statement, take an arbitrary hyperbolic γ ∈ Γ0

and fix it. Further, set
R = logλ(γ) + 2s0,

where λ(γ) is the multiplier of γ . We take two distinct points x and y in
⋃k

i=1
π−1(pi) . For constants R and 1

3
L we choose a constant e as in the next

lemma.

Lemma 2. For two distinct points x and y in H , there exists a constant

e ∈ (0, 1

3
L) which holds the following property: If a conformal automorphism f

of H satisfies d
(

x, f(x)
)

< e and d
(

y, f(y)
)

< e , then d
(

z, f(z)
)

< 1

3
L for every

z ∈ U(x,R) and U(y, R) .

Proof. If a sequence {fn} of conformal automorphisms of H satisfies
d
(

x, fn(x)
)

< 1/n and d
(

y, fn(y)
)

< 1/n , then {fn} converges to the iden-
tity uniformly on each compact subset of H . Thus we can choose the required
constant e .

We choose an integer n(γ) which satisfies the following two conditions: (i) if
n ≥ n(γ) , then d

(

γ(x), γn(x)
)

< e and d
(

γ(y), γn(y)
)

< e ; (ii) L/3n(γ) < e . For
simplicity, we denote any γn for n ≥ n(γ) by h . Then we can rewrite (i) as

(1) d
(

γ(x), h(x)
)

< e and d
(

γ(y), h(y)
)

< e,

or, setting f = h ◦ γ−1 , we have d
(

f ◦ γ(x), γ(x)
)

< e and d
(

f ◦ γ(y), γ(y)
)

< e .
By the definition of R , it is easy to see that γ2(x) is within R of γ(x) . Applying
Lemma 2 for γ(x) and γ(y) , we have

d
(

f ◦ γ2(x), γ2(x)
)

< 1

3
L.

On the other hand,

d
(

f ◦ γ2(x), h2(x)
)

= d
(

γ(x), h(x)
)

< e.



34 Katsuhiko Matsuzaki

Therefore, d
(

γ2(x), h2(x)
)

< e+ 1

3
L . But, due to

γ2(x) ∈
k
⋃

i=1

π−1(pi), h2(x) ∈
k
⋃

i=1

π−1
(

U
(

pi, L/3n(γ)
))

,

and (ii), h2(x) must be within e of γ2(x) . The same is true for y , and we thus
obtain

(2) d
(

γ2(x), h2(x)
)

< e and d
(

γ2(y), h2(y)
)

< e.

For the same reason as above we inductively see that d
(

γn(x), hn(x)
)

< e for any
integer n .

From this we can first see that the hyperbolic elements γ and h have the
same fixed points and also that they have the same multiplier. This shows that
h = γ , that is, γn = γ for any n ≥ n(γ) .

Proof of Theorem B-2. Similarly to the previous proof, let L be the min-
imum of the hyperbolic distances between two points in distinct components of
⋃m

j=1
π−1(Wj) , and set

N ′(t) =
{

(

[[µ]], [α]
)

∈MG(Γ) | π
(

α−1Γµα
( m

⋃

j=1

π−1(Wj)
))

⊂
m
⋃

j=1

U(Wj , t)
}

.

Then, for the same reason as in the proof of Lemma 1, we see that N ′( 1

3
L) is

relatively compact in MG(Γ).

If #N ′(t) = ∞ for any t > 0, there is an element ([[µn]], [αn]) in N ′(L/3n)
for each integer n . We may assume that the sequence

{

([[µn]], [αn])
}

n=1,2,...

converges to some ([[µ0]], [α0]) ∈ N ′(0) by the relative compactness of N ′( 1

3
L) .

Again it is obvious that N ′(0) ⊂ DG(Γ). Let Γn be α−1

n Γµnαn (n = 0, 1, 2, . . .)
and θn: Γ0 → Γn the isomorphisms such that γn = θn(γ) converges to γ for any
γ ∈ Γ0 .

In the present case, we easily see that Γn = Γ for sufficiently large n as follows:
Take a generator γ ∈ Γ0 and consider a cusped horodisk D of

⋃m

j=1
π−1(Wj)

tangential at a parabolic fixed point x . When γn(D) intersects γ(D) , they must
be in the same component of

⋃m

j=1
π−1

(

U(Wj,
1

3
L)

)

, which implies that γn(x) =
γ(x) . If this occurs at three distinct, parabolic fixed points x , then γn coincides
with γ . Hence we know that Γn = Γ0 for sufficiently large n .

The above argument proves the existence of a positive constant e2 such that
N ′(e2) = N ′(0). In addition, this set is finite. Now the proof is complete.
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4. Proof of Theorem C

First, we pick up a hyperbolic fixed point which moves under the deformation
of Γ. For each hyperbolic element γ of Γ, we define a function aγ : T (Γ) → R ∪
{∞} by the correspondence [µ] 7→

(

the attracting fixed point of fµγ(fµ)−1
)

. The
function aγ is real analytic with respect to the complex structure of T (Γ). Since
Γ is non-elementary, it has infinitely many hyperbolic fixed points, and thus there
is γ ∈ Γ such that aγ is non-constant. Hereafter we fix this γ . By conjugating
some ω ∈ PSL(2,R) , we normalize γ so that ω−1γω(z) = λz (0 < λ < 1).

By the way, depending on the boundary behavior of a holomorphic function
ϕ on H , R is divided into two kinds of sets Q and P up to null sets: Q is the set
of points where ϕ has a finite non-tangential limit, and P is the set of Plessner
points of ϕ . Here we say that ξ ∈ R is a Plessner point of ϕ if the cluster set
for ϕ in any angular region at ξ is the whole extended complex number (see [2,
Chapter 8]). We can choose a sequence {[µn]} ⊂ T (Γ) such that [µn] converges
to [0] and aγ([µn]) ∈ Q ∪ P for any n ∈ N .

We take a 〈γ〉 -invariant angular region

A = ω
(

{z | 0 < τ1 ≤ arg z ≤ τ2 < π}
)

(τ1 < τ2)

such that ϕ does not vanish in A . Put

2δ = min
{

|̺−2ϕ(z)| | z ∈ A
}

(> 0).

Let us denote fµnγ(fµn)−1 by γn and the attracting (repelling) fixed point of γn

by xn (yn , respectively). For each n we define a 〈γn〉 -invariant region

An = ωn

({

z | 0 < (2τ1 + τ2)/3 ≤ arg z ≤ (τ1 + 2τ2)/3 < π
})

,

where ωn is an element of PSL(2,R) such that ωn(0) = xn and ωn(∞) = yn .
Suppose that there exists a sequence {φn} such that φn ∈ B(Γµn) and

‖ϕ − φn‖ → 0 as n → ∞ . Then φn converges to ϕ uniformly on each compact
set. Hence, for each sufficiently large n ∈ N , |̺−2ϕ(z)| is not less than δ on An .
But we know that

inf
{

|̺−2ϕ(z)| | z ∈ An

}

= 0 (for each n
)

.

Indeed, for each n , there is a sequence {zk} ⊂ An such that zk → xn as k → ∞
and {ϕ(zk)} is bounded, because xn ∈ Q ∪ P . This is a contradiction, which
completes the proof.
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