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Abstract. We show that the Hausdorff dimension of the limit set is a real analytic function
on the deformation space of a class of convex co-compact Kleinian groups which includes all convex
co-compact function groups. This extends a result of Ruelle [20] for quasifuchsian groups.

1. Introduction

Ruelle [20], making use of Bowen’s characterization of the Hausdorff dimension
of the limit set of quasifuchsian and Schottky groups [7], showed that the Hausdorff
dimension of the limit set is a real analytic function on the deformation space of
a quasifuchsian or Schottky group. Sullivan [22] asked whether this holds true
for any expanding, that is convex co-compact, Kleinian group Γ. In this note, we
extend the class of groups for which the answer to Sullivan’s question is affirmative
to a class which includes all convex co-compact function groups as a proper subset.

Our work builds on Ruelle’s approach. Roughly, given an expanding Markov
map for Γ, Ruelle shows that the Hausdorff dimension of the limit set is a real
analytic function on the deformation space of Γ. In Sections 2 and 3, we summarize
his approach and give a brief survey of basic facts about deformation spaces of
Kleinian groups.

It remains only to construct expanding Markov maps. Following Bowen and
Series [8], Rocha [19] gives a condition on the fundamental polyhedron P of Γ in
H3 which yields an expanding Markov map. This condition is that, in the tiling of
H3 by translates of P , the hyperplane supporting a side of P lies in Γ(∂P ) ; that
is, P is an even-cornered fundamental polyhedron for Γ. We summarize Rocha’s
work in Section 4.

We then go on to show, in Section 5, that up to suitable modification by qua-
siconformal deformation, the Klein combination of two groups with even-cornered
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fundamental polyhedra itself has an even-cornered fundamental polyhedron. Com-
bining Bowen’s observation that, up to quasiconformal deformation, quasifuchsian
groups always possess such fundamental polyhedra with the observation that lox-
odromic cyclic groups always possess such polyhedra gives our result.

The natural setting for this question is holomorphically varying families of
geometrically finite Kleinian groups. For Kleinian groups which are finitely gen-
erated but not geometrically finite, Bishop and Jones [6] have shown that the
Hausdorff dimension of the limit set is always equal to 2.

Astala and Zinsmeister [3], [4] have investigated this question for infinitely
generated quasifuchsian groups, and in particular have constructed a holomor-
phically varying family of infinitely generated quasifuchsian groups for which the
Hausdorff dimension of the limit set is not real analytic.

Our methods do not apply to the case of geometrically finite groups with
parabolics, though it is known that the Hausdorff dimension of the limit set is a
continuous function on the deformation space of any geometrically finite Kleinian
group; this follows from estimates of Gehring and Väisälä [14] from the theory
of quasiconformal mappings. We would like to thank Edward Taylor for bringing
this to our attention.

There is a large literature relating the Hausdorff dimension of the limit set
of a Kleinian group to properties of the corresponding hyperbolic manifold. In
particular, there is Sullivan’s exploration of the very deep relationship between the
Hausdorff dimension of the limit set of a convex co-compact Kleinian group and
the critical exponent of the Poincaré series of the group [23], [24]. Also of interest
is recent work of Canary, Minsky, and Taylor [9], which relates the Hausdorff
dimension of limit sets to the spectral theory and topology of the quotient 3-
manifolds.

We would also like to mention Furusawa [13] and Canary and Taylor [10],
who consider the relationship between Hausdorff dimension of limit sets, critical
exponents of Poincaré series, and Klein combination.

One can see the problem from a dynamical systems point of view if one uses
the work of Sullivan [24]. He shows that, for convex co-compact Kleinian groups,
the Hausdorff dimension of the limit set is equal to the topological entropy of
the geodesic flow, restricted to those geodesics whose end points are in the limit
set. Katok, Knieper, Pollicott and Weiss studied real analytic pertubations of
Anosov and geodesic flows on closed Riemannian manifolds. They showed that
the topological entropy varies as smoothly as the pertubations.

Acknowledgements. Both authors would like to thank the Mathematics Insti-
tute at the University of Warwick, where many of the early discussions leading to
this work were held. We would also like to thank Martin Dunwoody for pointing
out the proof of Lemma 5.5, and the referee for his/her useful comments.
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2. Markov partitions and deformation spaces

In this section, we describe the notion of an expanding Markov map for a
convex co-compact Kleinian group, and we show how such a map propogates
through the deformation space of the group.

We begin by defining our terms. A Kleinian group is a discrete subgroup
of PSL2(C) , which acts both on hyperbolic 3-space H3 via isometries and on
the Riemann sphere C via conformal homeomorphisms. We assume throughout
that a Kleinian group is torsion-free, that is, it contains no non-trivial elements
of finite order. The action of Γ partitions C into two sets. The domain of

discontinuity Ω(Γ) is the largest open subset of C on which Γ acts properly
discontinuously. Throughout this work, we always assume that Ω(Γ) is non-empty
and that ∞ ∈ Ω(Γ).

The limit set Λ(Γ) is the smallest non-empty closed subset of C which is
invariant under the action of Γ, and is the home of much of the interesting dy-
namical behavior of Γ. If Λ(Γ) is finite, it contains at most two points, and we say
Γ is elementary. If Λ(Γ) is infinite, it is a closed, perfect, nowhere dense subset
of C , and we say that Γ is non-elementary.

The convex hull of Γ is the smallest non-empty convex subset of H3 which
is invariant under Γ, and contains all lines in H3 both of whose endpoints lie
in Λ(Γ). The convex core of H3/Γ is the quotient of the convex hull by Γ. Say
that Γ is convex co-compact if its convex core is compact.

In the language of Sullivan, convex co-compact Kleinian groups are expanding,
in the sense that, for every x ∈ Λ(Γ), there is some γ ∈ Γ so that |γ′(x)| > 1;
actually, there are infinitely many such elements γ for each point of Λ(Γ).

We wish to encode the dynamics of the action of a convex co-compact Kleinian
group Γ on its limit set Λ(Γ) by a single map, and then study this map. Motivated
by the constructions given for quasifuchsian and Schottky groups in [7], we wish to
break C into a finite collection of closed sets which are well-behaved with respect
to the action of Γ. We then define a map f : C → C using Γ, in such a way as to
record the dynamics of the action of Γ.

To that end, let {c1, . . . , cs} be a finite collection of (not necessarily disjoint)
Jordan curves in C , such that C−(c1∪· · ·∪cs) has finitely many components. Let
P1, . . . , Pp be the closures of the components which contain points of Λ(Γ) in their
interiors, and let P0 be the union of the closures of the remaining components.
Let P = {P0, . . . , Pp} . Note that Pj is connected for 1 ≤ j ≤ p , that the
interior int(Pi) of Pi is disjoint from the interior int(Pj) of Pj for i 6= j , and
that P0 ∪ · · · ∪ Pp = C .

In order that P should reflect the action of Γ, we impose some conditions.

(MP0): P0 contains the closure of a fundamental domain for the action of Γ
on Ω(Γ).

(MP1): It is necessary to impose some condition on the size of the intersection
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∂Pj∩Λ(Γ) for all 0 ≤ j ≤ p , as these intersections cause ambiguity in the coding of
the action of Γ on Λ(Γ). For the purposes of this note, we assume that ∂Pj∩Λ(Γ)
is finite for all 0 ≤ j ≤ p .

We also suppose it is possible to define a map f : C → C which respects P

and which records the dynamics of Γ, and so we require that

(MP2): for 1 ≤ j ≤ p , there exists γj ∈ Γ so that f |Pj
= γj |Pj

; we set f |P0

to be the identity.

(MP3): the image under f of any element in the partition is a union of
elements of the partition; that is, given 0 ≤ i ≤ p , there exist j1, . . . , jn so that
f(Pi) = Pj1 ∪ · · · ∪ Pjn

.

We say that such an f has the Markov property with respect to the parti-
tion P .

We use the Markov map f to get a coding for the points in the limit set Λ(Γ)
of Γ. Specifically, given x ∈ C , consider a sequence (p0, p1, . . .) given by x ∈ Pp0

,
f(x) ∈ Pp1

, f2(x) ∈ Pp2
, etc. Notice that, if x ∈ Ω(Γ), then fn(x) ∈ P0 for some

n ≥ 0, and then pk = pn = 0 for all k ≥ n . Hence, we ignore those points which
end up in P0 .

Set

Σf =

{

p = (pk) ∈
∞
∏

k=0

{1, . . . , n} : f(Ppk
) ⊇ Ppk+1

}

,

and consider the (one-sided) subshift of finite type Σf having as alphabet the
elements in P .

Define σf : Σf → Σf by (σfp)k = pk+1 , and equip {1, . . . , n} with the dis-
crete topology, so that Σf with the product topology is compact.

A finite sequence (p0 · · · pm) is admissible if f(Ppk
) ⊇ Ppk+1

for 0 ≤ k ≤
m − 1, so that

fm(Pp0
) ⊇ fm−1(Pp1

) ⊇ · · · ⊇ Ppm
.

If (p0 · · · pm) is admissible, define

P (p0 · · · pm) =
m
⋂

i=0

f−i(Ppi
).

Note that, if (p0, . . . , pm) is admissible, then the restriction of fm+1 to the interior
of P (p0, . . . , pm) is equal to the restriction of γ = γpm

· · ·γp0
.

There are two additional conditions that we require a Markov partition satisfy.

(MP4): For each p ∈ Σf , we have that diam
(

P (p0 . . . pn)
)

−→ 0 as n → ∞ ,
where diam(X) is the Euclidean diameter of X .

(MP5): f is expanding ; that is, there exists an integer N > 0 and a constant
β > 1 such that |(fN)′(x)| ≥ β for all x ∈ P (p0, . . . , pN) for any admissible
sequence (p0, . . . , pN ) .
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These two conditions imply that the map πf : Σf → Λ(Γ) defined by

πf (p) =
∞
⋂

m=0
P (p0 · · ·pm)

is continuous and surjective. The relation between the shift map σf , the Markov
map f , and πf is that f ◦ πf = πf ◦ σf .

We say that a convex co-compact Kleinian group Γ supports an expanding

Markov map if there exists a partition P and a map f : C → C which satisfy
conditions (MP0)–(MP5).

We now give a brief description of the deformation space T (Γ) of Γ, and
review some basic facts which we will make use of later. Much of the background
material relating to this can be found in Bers [5] and Maskit [16].

Let M be the open unit ball in the complex Banach space of all complex
valued measurable functions on C , with the norm ‖µ‖ = ess sup(µ) . Given a
Kleinian group Γ, set

M (Γ) =
{

µ ∈ M | µ(γ(z)) ◦ γ′(z) = µ(z) ◦ γ′(z) for all γ ∈ Γ, a.e. z ∈ Ω(Γ)
}

,

and note that M (Γ) is again a complex Banach space, as it is a closed subspace
of M .

For each µ ∈ M (Γ), let ω = ωµ be the unique solution of the Beltrami
equation ω z = µωz fixing 0, 1, and ∞ . Note that the condition on the elements
of M (Γ) is exactly the condition needed to assert that ω ◦ γ ◦ ω−1 is again an
element of PSL2(C) . Hence, the group Γµ = ωµ ◦ Γ ◦ (ωµ)−1 is again a subgroup
of PSL2(C) . The discreteness of Γµ follows from the fact that there does not
exist a sequence in Γ converging to the identity, and so no such sequence can exist
in Γµ . We call Γµ a quasiconformal deformation of Γ. As we have assumed that
∞ ∈ Ω(Γ), we have that ∞ ∈ Ω(Γµ) for all µ ∈ M (Γ).

Say that an element σ ∈ M (Γ) is trivial if ωσ ◦ γ ◦ (ωσ)−1 = γ for all γ ∈ Γ.
Note that, if σ is trivial, then ωσ is the identity when restricted to Λ(Γ), as ωσ

fixes the fixed points of all non-trivial elements of Γ and these fixed points are
dense in Λ(Γ).

Say that two elements µ and τ of M (Γ) are equivalent, denoted µ ∼ τ , if
there is a trivial σ ∈ M (Γ) so that

ωµ = ωτ ◦ ωσ.

In particular, if µ ∼ τ , then ωµ|Λ(Γ) = ωτ |Λ(Γ) .
Denote the equivalence class of µ ∈ M (Γ) by [µ] . The quotient of M (Γ)

by this equivalence relation is the deformation space T (Γ) of Γ. The complex
structure on T (Γ) can be seen by embedding T (Γ) as an open set in a complex
manifold. Given µ ∈ M (Γ), consider the discrete, faithful representation ρµ: Γ →
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PSL2(C) given by ρµ(γ) = ωµ ◦γ ◦ (ωµ)−1 . Note that the representation depends
only on the equivalence class of µ , as trivial elements of M (Γ) induce the identity
representation. With the choice of a generating set γ1, . . . , γk for Γ, this gives a
holomorphic embedding of T (Γ) as a complex submanifold of X = (PSL2(C))k ,
namely

[µ] 7→
(

ρµ(γ1), . . . , ρ
µ(γk)

)

.

In particular, we may view the entries of the ρµ(γj) as (complex) coordinates
on T (Γ). The holomorphicity of this embedding follows from the Ahlfors–Bers
measurable Riemann mapping theorem [2].

We now have the necessary material to construct Markov maps associated to
groups in the deformation space T (Γ) of Γ. We use ωµ to transport the partition
P to a partition Pµ associated to Γµ = ρµ(Γ).

Given µ ∈ M (Γ), define fµ = ωµ ◦ f ◦ (ωµ)−1 and Pµ = {Pµ
i = ωµ(Pi) :

Pi ∈ P} ; note that the elements of Pµ are the complementary components of
a finite collection of Jordan curves, and that the satisfaction of conditions (MP0)
through (MP4) is unchanged by conjugation by a homeomorphism of C . The
proof that fµ is expanding mirrors the proof of Lemma 3 in Bowen [7]. Hence,
fµ is an expanding Markov map for Γµ with respect to the partition Pµ .

If we choose τ ∼ µ , then ωτ and ωµ are equal when restricted to Λ(Γ); in
particular, fµ = f τ as maps of C and ρµ(γ) = ρτ (γ) for all γ ∈ Γ, so that Γµ

and Γτ are equal, and fµ and f τ are the same Markov map when restricted to
Λ(Γµ) . Hence, fµ depends only on the equivalence class [µ] ∈ M (Γ).

3. The Hausdorff dimension of the limit set

Denote the Hausdorff dimension of a subset X in C by dimH(X) ; for a
definition and basic properties of Hausdorff dimension, see Falconer [12]. Given a
convex co-compact Kleinian group Γ, consider the function δH: T (Γ) → R , given
by δH([µ]) = dimH

(

Λ(Γµ)
)

. The purpose of this section is to demonstrate, given
an expanding Markov map f for Γ with respect to the partition P , that δH

is a real analytic function on T (Γ). The argument follows closely the argument
given by Ruelle [20] for Julia sets of hyperbolic rational maps and for quasifuchsian
groups, and is given for the sake of completeness.

Let C (Σf ) be the space of complex valued continuous functions on Σf , and
let C (Σf ,R) ⊂ C (Σf ) denote the subspace of all real valued functions. Define
the pressure function P : C (Σf ,R) → R by

(1) P (u) = sup

{

h(η, σ) +

∫

u dη : η is a σ -invariant probability measure

}

,

where h(η, σ) is the measure theoretic entropy of σ with respect to η .
Define φµ : Σfµ → R by φµ(p) = − log

∣

∣(fµ)′
(

π(p)
)
∣

∣ . We make use of the
fact that φµ is Hölder continuous on Σfµ ; that is, there are constants c > 0 and
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α < 1 such that |φµ(p) − φµ(q)| ≤ cαn for p and q in Σfµ with pj = qj for
0 ≤ j ≤ n . The proof of this fact mirrors the proof of Lemma 4 of Bowen [7].

We now show that δH is a real analytic function on T (Γ) when Γ supports
an expanding Markov map.

Theorem 3.1. Let Γ be a convex co-compact Kleinian group which supports

an expanding Markov map. Then, the Hausdorff dimension of the limit set is a

real analytic function on the deformation space T (Γ) of Γ .

Proof. Let f be an expanding Markov map for Γ with respect to the parti-
tion P . Given [µ] ∈ T (Γ), let fµ be the corresponding expanding Markov map
for Γµ with respect to the partition Pµ .

We follow the argument in [20]. Consider the Ruelle zeta function

(2) ζµ(u) = exp
∞
∑

n=1

un

n

∑

x∈Fix(fµ)n

exp

(n−1
∑

k=0

φµ

(

(fµ)k(x)
)

)

.

One then has that ζµ(u) converges for |u| sufficiently small, and extends to
a meromorphic function of u in the entire complex plane C with a unique simple
pole at exp

(

P (φµ)
)

> 0.
Recall, for [µ] ∈ T (Γ), the isomorphism ρµ: Γ → Γµ given by ρµ(γ) =

ωµ ◦ γ ◦ (ωµ)−1 , and let γµ = ρµ(γ) . Given a fixed point x of fn , it is easy to
see that there is some γ ∈ Γ so that x = fn(x) = γ(x) ; in particular, x is also a
fixed point of γ . The same holds true for the fixed points of (fµ)n .

Given a loxodromic γ ∈ PSL2(C) , let L (γ) denote the real translation length
of γ along its axis in H3 . It is an easy calculation that

L (γ) = log |γ′(x)|,

where x is the repelling fixed point of γ .
We use these facts to see that (2) can be rewritten as

(3) ζµ(u) = exp

∞
∑

n=1

un

n

∑

γµ

e−L (γµ)n,

where the second sum is taken over over all non-conjugate primitive loxodromic
elements γµ of Γµ ; recall that an element is primitive if it is not a proper power
of any element in the group.

Fixing γ ∈ Γ, consider the function [µ] 7→ L (γµ) . It follows from the
measurable Riemann mapping theorem [2] that wµ(z) varies as nicely as µ varies
for a fixed z ∈ C , and so the entries and multiplier of γµ vary as nicely as [µ] . In
particular, L (γµ) varies real analytically with [µ] , as L (γµ) is the real part of
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an analytic function of the entries of γµ . Hence, the coefficients of ζµ(u) depend
analytically on [µ] , and it follows that so does ζµ(u) .

Applying the implicit function theorem to the function ([µ], u) 7→ 1/ζµ(u) ,
we see that the function [µ] 7→ P (φµ) is real analytic. Bowen [7] showed that
there is a unique real number tµ such that P (tµφµ) = 0, and Ruelle [20] showed
that the Hausdorff dimension of Λ(Γµ) is equal to tµ .

Finally, consider the mapping from R × T (Γ) given by (a, µ) 7→ P (aφµ) .
Since the pressure function P has a unique zero at a = tµ , the implicit function
theorem yields that this zero varies real analytically with [µ] , and we are done.

We close this section with the following remark.

Remark 3.2. Let Γ be a convex co-compact Kleinian group, and let Γo be
a finite index subgroup of Γ. If Γo supports an expanding Markov map f with
respect to a partition P , then Γ also supports the same expanding Markov map
f with respect to the same partition P . This mirrors the fact that the limit set
of a finite index subgroup of Γ is equal to the limit set of Γ.

4. Even corners and expanding Markov maps

In this section, we describe the condition of having an even-cornered funda-
mental polyhedron, and show that the existence of such a fundamental polyhedron
yields the existence of an expanding Markov map. This section is an exposition of
some of the results appearing in Rocha [19].

This construction generalizes a construction originally given by R. Bowen and
C. Series [8] in their work on Markov partitions for Fuchsian groups. They show,
among other results, the existence of an expanding Markov map associated to
certain finitely generated Fuchsian groups Φ acting on the hyperbolic plane H2 ,
namely those having a fundamental polygon D in H2 with the even corners prop-

erty, that is, Φ(∂D) is a union of lines. Note that the fundamental group of any
compact surface of genus g ≥ 2 has a Fuchsian realization having a fundamental
polygon with this property [8].

A polyhedron in H3 is the intersection of a locally finite collection of closed
half spaces; in particular, polyhedra are convex. A fundamental polyhedron P for
a Kleinian group Γ is a polyhedron in H3 so that every point of H3 is a translate
of a point of P , the interior int(P ) of P is disjoint from all its translates, and the
sides of P are paired by elements of Γ. By this last condition, we mean that, for
every side s of P , there is a side s′ of P and an element γs ∈ Γ with γs(s) = s′ ;
we also require that γs′ = γ−1

s . We call γs a side pairing transformation.
A Kleinian group is geometrically finite if there exists a finite sided fundamen-

tal polyhedron for its action on H3 . It is a consequence of the Poincaré polyhedron
theorem (see [13]) that a geometrically finite Kleinian group is generated by its
side pairing transformations; in particular, geometrically finite Kleinian groups are
finitely generated. Convex co-compact Kleinian groups are geometrically finite.
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A Kleinian group Γ acting on H3 has the even corners property if there is a
fundamental polyhedron P for Γ so that

Γ(∂P ) =
⋃

γ∈Γ

γ(∂P )

is a union of geodesic planes. We sometimes refer to a fundamental polyhedron P
satisfying this condition as an even cornered fundamental polyhedron for Γ.

Given an even cornered fundamental polyhedron R for a convex co-compact
Kleinian group Γ, we use the planes in Γ(∂R) to construct a partition of C , and
use the generating set for Γ which comes from R to construct the map f .

Let R be a fundamental polyhedron for the convex co-compact Kleinian group
Γ, and set

ΓR =
{

γ ∈ Γ : γ(R) ∩ R is a side of R
}

.

This is a finite subset of Γ and is symmetric, in the sense that ΓR is closed
under inverses. Since ΓR consists of the side pairing transformations for Γ, it is
a generating set for Γ (though perhaps not minimal).

Let s be a side of R , let Ps be the geodesic plane containing s , and let γs

be the side pairing transformation for s . Label the side s of R by writing γs on
the inside of R and γs on the outside, where γs denotes γ−1

s . Each plane P (γs)
is the boundary of a half space H(γs) which does not contain R . Observe that
H3 = R

⋃

∪γ∈ΓR
H(γ) .

Let ΓR = {γ1, γ2, . . . , γn} . Define a map f : H3 → H3 as follows. Since
each P (γs) contains a side s of R , we use the corresponding side identification
γs to send a point x ∈ H(γs) to γ−1

s x , if the external label of s is γs . Clearly
this transformation is far from being well defined due to the fact that the point x
may be in more than one of the half-spaces H(γs) . In order to get a well defined
map, we choose an order on the generating set ΓR , say γ1 ≺ γ2 · · · ≺ γn , then,
if x ∈ H(γs1

) ∩ · · · ∩ H(γsl
) , define f(x) = γ−1

sk
x where γsk

is the least among
γs1

, . . . , γsl
. If x ∈ R , define f(x) = x .

Consider now the set of all planes in Γ(∂R) that intersect R in either a side,
an edge, or a vertex. The intersection of each plane in this collection with C is a
circle, and the closures of the components of the complement of the union of these
circles covers C , giving us a finite partition P = {Pi} of C . Observe that the
intersection of R with C is a union of elements of P .

It is immediate to verify that the map f defined in the last paragraph can be
extended to C in the same way it was defined. One is also able to show that this
partition satisfies conditions (MP4) and (MP5), and so is an expanding Markov
map.

Summarizing the analysis carried out in the last few paragraphs, we have the
following.
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Theorem 4.1 (see Rocha [19]). Let Γ be a convex co-compact Kleinian

group which has an even-cornered fundamental polyhedron. Then, Γ supports an

expanding Markov map.

5. Even corners, quasiconformal deformations, and Klein combination

The purpose of this section is two-fold. We begin by exploring some con-
nections between Klein combination, described below, and quasiconformal defor-
mations. Specifically, we show that, if Γ is formed from Γ1 and Γ2 by Klein
combination, and if Γ′

j is a quasiconformal deformation of Γj , then under some
mild conditions, Γ and the group Γ′ formed by Klein combination of Γ′

1 and
Γ′

2 are quasiconformally conjugate. We go on to apply this to show that a large
class of convex co-compact Kleinian groups, including all such function groups, are
quasiconformally conjugate to groups with even-cornered fundamental polyhedra.
This is sufficient to guarantee that the Hausdorff dimension of the limit set is a
real analytic function on the deformation space of such a Kleinian group.

As has already been stated, we work only with torsion-free convex co-compact
Kleinian groups. In the constructions we consider in this section, these restrictions
are not essential, but are made primarily for ease of exposition.

Let Γ1 and Γ2 be convex co-compact Kleinian groups. We wish to impose
topological conditions which imply that Γ = 〈Γ1, Γ2〉 is again a Kleinian group,
and which yield information about the structure of Γ. One of the first results of
this type is the Klein combination theorem. The version we give below is tailored
to the applications of this paper. Recall that a set X ⊂ C is precisely invariant

under the identity in a Kleinian group Γ if X ∩ γ(X) = ∅ for all γ ∈ Γ − {1} .

Theorem 5.1 (Klein combination [18]). Let Γ1 and Γ2 be convex co-compact

Kleinian groups.

In the case that Γ1 and Γ2 are both non-elementary, suppose there exists a

Jordan curve c ⊂ Ω(Γ1) ∩ Ω(Γ2) which bounds closed discs E1 and E2 in C ,

where Ej is precisely invariant under the identity in Γj . Then, Γ = 〈Γ1, Γ2〉 is a

Kleinian group isomorphic to Γ1 ∗ Γ2 ; moveover, c is contained in Ω(Γ) , and is

precisely invariant under the identity in Γ .

In the case that Γ2 = 〈γ2〉 is elementary, suppose there exists a pair of disjoint

Jordan curves c1 and c2 in Ω(Γ1) which bound disjoint closed discs E1 and E2

in Ω(Γ1) , so that E1 and E2 are both precisely invariant under the identity in

Γ1 , so that no translate of E1 by an element of Γ1 intersects E2 , and so that

γ2(c1) = c2 and γ2

(

int(E1)
)

∩ int(E2) = ∅ . Then, Γ = 〈Γ1, Γ2〉 is a Kleinian

group isomorphic to Γ1 ∗Γ2 ; moreover, c1 and c2 are contained in Ω(Γ) and each

is precisely invariant under the identity in Γ .

As an illustrative example of the use of the Klein combination theorem, con-
sider a Schottky group of genus two. That is, let c1 , c′1 , c2 , and c′2 be disjoint
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Jordan curves which bound a common region D , and let γj be a Möbius trans-
formation which maps cj to c′j so that γj(D) ∩ D = ∅ . Let Γj = 〈γj〉 and
Γ = 〈γ1, γ2〉 .

To build Γ using the first part of the Klein combination theorem, let c be a
Jordan curve in D which separates c1 ∪ c′1 from c2 ∪ c′2 . It is easy to see that
c lies in Ω(Γ1) ∩ Ω(Γ2) and bounds closed discs E1 and E2 in C , where Ej is
precisely invariant under the identity in Γj .

To build Γ using the second part of the Klein combination theorem, note
that c2 and c′2 satisfy the hypotheses of the combination theorem. That is, c2

and c′2 bound closed discs E2 and E′

2 , respectively, in Ω(Γ1) , namely the closed
discs determined by c2 and c′2 which are disjoint from D , both E2 and E′

2 are
precisely invariant under the identity in Γ1 , no translate of E2 by an element of
Γ1 intersects E′

2 , and γ2(c2) = c′2 and γ2

(

int(E2)
)

∩ int(E′

2) is empty.
Recall that a function group is a finitely generated Kleinian group Φ whose

domain of discontinuity contains a component ∆ which is invariant under the
action of Φ. The stabilizer of a component of the domain of discontinuity of a
finitely generated Kleinian group is the archetypal example of a function group.

For the duration of this section, we use the notation established in the state-
ment of Theorem 5.1.

Theorem 5.2. Let Γ be a Kleinian group formed from convex co-compact

Kleinian groups Γ1 and Γ2 using Klein combination. Let Γ′

j be a quasiconformal

deformation of Γj .

In the case that Γ1 and Γ2 are non-elementary, we are in the first case of the

Klein combination theorem. Let ∆j be the component of Ω(Γj) containing the

Jordan curve c , and let ∆′

j be the corresponding component of Ω(Γ′

j) . If Γ′ is

formed from Γ′

1 and Γ′

2 by Klein combination along a Jordan curve c′ in ∆′

1∩∆′

2 ,

then Γ′ is a quasiconformal deformation of Γ .

In the case that Γ2 = 〈γ2〉 is elementary, we are in the second case of the Klein

combination theorem. Let ∆1 and ∆2 be the components of Ω(Γ1) containing the

Jordan curves c1 and c2 , respectively, and let ∆′

1 and ∆′

2 be the corresponding

components of Ω(Γ′

1) . If Γ′ is formed from Γ′

1 and Γ′

2 by Klein combination along

Jordan curves c′1 and c′2 in ∆′

1 and ∆′

2 , respectively, then Γ′ is a quasiconformal

deformation of Γ .

Proof. Let wj : C → C be the quasiconformal mapping which conjugates Γj

to Γ′

j and let ρj: Γj → Γ′

j be the induced isomorphism.
Consider the isomorphism

ρ: Γ = Γ1 ∗ Γ2 → Γ′ = Γ′

1 ∗ Γ′

2

defined by setting ρ(γj) = ρj(γj) for γj ∈ Γj and by setting ρ(γn · · ·γ1) =
ρ2(γn) · · ·ρ1(γ1) , where γeven ∈ Γ2 and γodd ∈ Γ1 . We show that there exists a
quasiconformal homeomorphism w of C such that ρ(γ) = w ◦ γ ◦ w−1 .
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Marden’s isomorphism theorem [15] yields that an isomorphism between con-
vex co-compact Kleinian groups is induced by a quasiconformal homeomorphism
of C if there exists a quasiconformal homeomorphism between the domains of
discontinuity which induces the isomorphism. A theorem of Maskit [16] on iso-
morphisms between function groups states that an isomorphism between convex
co-compact function groups is induced by a homeomorphism between their invari-
ant components. Hence, it suffices to show, for any component ∆ of Ω(Γ), that
ρ
(

stΓ(∆)
)

is the stabilizer of a component of Γ′ .
In the case that Γ1 and Γ2 are non-elementary, any component ∆ of Ω(Γj)

which is not equivalent to ∆j is a component of Ω(Γ). Let ∆′ be the component
of Γ′

j corresponding to ∆. Then, the isomorphism ρ takes the stabilizer of ∆ to
the stabilizer of ∆′ .

The stabilizer of the component ∆ of Ω(Γ) containing c is the Klein combi-
nation of stΓ1

(∆1) and stΓ2
(∆2) along c , while the stabilizer of the component

of Γ′ containing c′ is the Klein combination of stΓ′

1
(∆′

1) and stΓ′

2
(∆′

2) along c′ .

Since ρ
(

stΓj
(∆j)

)

= stΓ′

j
(∆′

j) for both j , ρ takes the stabilizer of ∆ in Γ to the

stabilizer of ∆′ in Γ′ .
Hence, in the case that Γ1 and Γ2 are non-elementary, ρ is geometric.
In the case that Γ2 = 〈γ2〉 is elementary, any component of Ω(Γ1) which

is not equivalent to either ∆1 or ∆2 is a component of Ω(Γ), and ρ takes the
stabilizer of such a component of Γ to the stabilizer of such a component of Γ′ .

If ∆1 = ∆2 , then c1 and c2 lie in the same component ∆ of Ω(Γ), and the
stabilizer of this component is formed from stΓ1

(∆1) and Γ2 using the second part
of the Klein combination theorem. Since ∆′

1 = ∆′

2 , c′1 and c′2 lie in the component
∆′ of Ω(Γ′) , and the stabilizer of this component is the Klein combination of
stΓ′

1
(∆′

1) and Γ′

2 using the second part of the Klein combination theorem, and so
ρ takes the stabilizer of ∆ in Γ to the stabilizer of ∆′ in Γ′ . If ∆1 and ∆2 are
equivalent under Γ1 , we can make a change of generators, modifying Γ2 , so that
∆1 = ∆2 , and use the conjugating quasiconformal map to carry this to Γ′

1 .
If ∆1 6= ∆2 , then γ2 does not stabilize any component of Ω(Γ). In this case,

the stabilizer of the component ∆ of Ω(Γ) containing c1 is the Klein combination
of stΓ1

(∆1) and γ−1
2 stΓ1

(∆2)γ2 using the first part of the Klein combination
theorem. As before, the stabilizer of the corresponding component ∆′ of Ω(Γ′) is
similarly constructed, and ρ takes the stabilizer of ∆ in Γ to the stabilizer of ∆′

in Γ′ .
Hence, ρ is induced by a quasiconformal homeomorphism of C .

As an application of Theorem 5.2, we establish a link between Klein combi-
nation and quasiconformal deformations, and the existence of even-cornered fun-
damental polyhedra.

Proposition 5.3. Let Γ be a Kleinian group which is formed from convex

co-compact Kleinian groups Γ1 and Γ2 by Klein combination. Suppose, for both
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j , that Γj is quasiconformally conjugate to a Kleinian group Γ′

j which has an

even-cornered fundamental polyhedron. Then, Γ is quasiconformally conjugate

to a convex co-compact Kleinian group Γ′ with an even-cornered fundamental

polyhedron.

Proof. Let P ′

j ⊂ H3 be an even-cornered fundamental polyhedron for Γ′

j .
Let D′

j be the interior of the boundary at infinity of P ′

j , and note that D′

j is a
fundamental domain for the action of Γ′

j on Ω(Γ′

j) .
Suppose Γ1 and Γ2 are non-elementary, and let ∆j be the component of

Ω(Γj) containing the Jordan curve c . Taking a translate of P ′

j , if necessary,
suppose that ∆′

j contains a component of D′

j . Conjugating Γ′

2 by a Möbius
transformation, if necessary, we may assume that the circle c = {|z| = 1} induces
the Klein combination of Γ′

1 and Γ′

2 , and that the closed discs bounded by c
lie in D′

1 and D′

2 . Theorem 5.2 gives that Γ′ is a quasiconformal deformation
of Γ. Moreover, the intersection of the fundamental polyhedra of Γ′

1 and Γ′

2 is
a fundamental polyhedron for Γ′ , and it is easy to see that this polyhedron is
even-cornered.

There is a similar argument in the case that Γ2 is elementary.

It is known that the Klein combination theorem gives a decomposition of a
convex co-compact Kleinian group into subgroups which either have connected
limit set or are elementary, that is loxodromic cyclic. We begin the discussion of
this decomposition with a description of those convex co-compact Kleinian groups
whose limit sets are connected.

A quasifuchsian group is a convex co-compact Kleinian group Γ whose limit
set Λ(Γ) is a Jordan curve and which contains no element interchanging the com-
ponents of C − Λ(Γ). An extended quasifuchsian group is a convex co-compact
Kleinian group Γ whose limit set Λ(Γ) is a Jordan curve and which contains some
element interchanging the components of C − Λ(Γ). Every extended quasifuch-
sian group Γ contains a canonical quasifuchsian subgroup of index 2, consisting
of those elements which do not interchange the components of C − Λ(Γ).

A web group is a finitely generated Kleinian group Γ whose domain of discon-
tinuity Ω(Γ) contains infinitely many components so that the stabilizer stΓ(∆) of
any component ∆ is quasifuchsian.

It follows from work of Abikoff and Maskit [1] that, given a convex co-compact
Kleinian group Γ, there exists a finite collection Φ1, . . . , Φs of convex co-compact
subgroups, where each Φj is either loxodromic cyclic, quasifuchsian, extended
quasifuchsian, or web, so that Γ is formed from Φ1, . . . , Φs by s − 1 applications
of the Klein combination theorem. Moreover, this decomposition corresponds to a
maximal free product decomposition of Γ. Combining this with Proposition 5.3,
we have the following.

Proposition 5.4. Let Γ be a convex co-compact Kleinian group with a

maximal free product decomposition Γ = Φ1 ∗ · · · ∗ Φp . Suppose that each Φj is
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quasiconformally conjugate to a group Φ′

j which has an even-cornered fundamental

polyhedron. Then, Γ is quasiconformally conjugate to a group Γ′ which has an

even-cornered fundamental polyhedron.

Each loxodromic cyclic Kleinian group 〈γ〉 has the even corners property; let
H be any hyperplane in H3 which is orthogonal to the axis of γ and consider
the polyhedron whose sides are H and γ(H) . As noted by Bowen [7], every
quasifuchsian group is quasiconformally conjugate to a Fuchsian group which has
the even corners property.

It is not known whether an extended quasifuchsian or web group has a qua-
siconformal deformation which has an even-cornered fundamental polyhedron,
though by Remark 3.2 an extended quasifuchsian group always possesses an ex-
panding Markov map. We are unable to directly construct expanding Markov
maps for Klein combinations of groups from expanding Markov maps of the fac-
tors. To handle groups with extended quasifuchsian factors, we use the following
lemma.

Lemma 5.5. Let Γ = Γ1 ∗ · · · ∗ Γp be a non-trivial free product, and let Γ0
j

be a finite index normal subgroup of Γj . Then, there exists a finite index normal

subgroup Γ0 of Γ which is a free product Γ0 = Φ1 ∗ · · · ∗ Φq ∗ Θ , where each Φk

is conjugate to some Γ0
j , and Θ is a free group.

Proof. Consider the homomorphism from Γ to the direct product (Γ1/Γ0
1)×

· · · × (Γp/Γ0
p) . This direct product is finite, as each Γ0

j has finite index in Γj . By
the Kurosh subgroup theorem, the kernel has the desired form.

We are now ready to prove the main result of this section.

Theorem 5.6. Let Γ be a convex co-compact Kleinian group which is formed

from loxodromic cyclic, quasifuchsian, and extended quasifuchsian groups by Klein

combination. Then, the Hausdorff dimension of the limit set is a real analytic

function on T (Γ) .

Proof. The hypothesis gives that Γ has a maximal free product decomposi-
tion Γ = Φ1 ∗ · · ·∗Φp , where each Φj is either loxodromic cyclic, quasifuchsian, or
extended quasifuchsian. By Lemma 5.5, Γ has a finite index subgroup Γo which is
the free product of loxodromic cyclic and quasifuchsian groups. By Proposition 5.4,
Γo is quasiconformally conjugate to a group Γ′ which has an even-cornered fun-
damental polyhedron, and hence supports an expanding Markov map. Combining
Theorem 4.1 and Theorem 3.1, we see that δH is real analytic on T (Γ).

As convex co-compact function groups can always be constructed from lox-
odromic cyclic and quasifuchsian groups using Klein combination, we have the
following corollary.
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Corollary 5.7. Let Γ be a convex co-compact function group. Then, Γ is

quasiconformally conjugate to a Kleinian group with an even cornered fundamental

polyhedron. In particular, the Hausdorff dimension of the limit set is a real analytic

function on T (Γ) .
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[14] Gehring, F.W., and J. Väisälä: Hausdorff dimension and quasiconformal mappings. -
J. London. Math. Soc. 6, 1973, 504–512.

[15] Marden, A.:: The geometry of finitely generated Kleinian groups. - Ann. Math. 99, 1974,
383–462.

[16] Maskit, B.: Self-maps of Kleinian groups. - Amer. J. Math. 93, 1971, 840–856.

[17] Maskit, B.: Isomorphisms of function groups. - J. Analyse Math. 32, 1977, 63–82.

[18] Maskit, B.: Kleinian Groups. - Springer-Verlag, Berlin, 1989.

[19] Rocha, A.C.: Meromorphic extension of the Selberg zeta function via thermodynamic
formalism. - Math. Proc. Cambridge Philos. Soc. 119, 1996, 179–190.

[20] Ruelle, D.: Repellers for real analytic maps. - Ergodic Theory Dynamical Systems 2,
1982, 99–107.

[21] Series, C.: Geometrical Methods of Symbolic Dynamics. - In: Ergodic Theory, Symbolic
Dynamics and Hyperbolic Geometry, edited by T. Bedford, M. Keane and C. Series,
Oxford University Press, Oxford, 1991, 125-151.



364 J.W. Anderson and A.C. Rocha

[22] Sullivan, D.: The density at infinity of a discrete group of hyperbolic motions. - Inst.
Hautes Études Sci. Publ. Math. 50, 1979, 171–209.

[23] Sullivan, D.: Conformal dynamical systems. - In: Geometric Dynamics, edited by J.
Palis, Jr., Lecture Notes in Math. 1007, Springer-Verlag, Berlin, 1983, 725–752.

[24] Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically
finite Kleinian groups. - Acta Math. 153, 1984, 259–277.

Received 20 December 1995


