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Abstract. This paper describes the iteration theory of finite Blaschke products using the
techniques of Fuchsian groups. In particular the Julia set is shown to decompose into points of
conical approach and parabolic points. We also use the hyperbolic geometry of the unit disc to
describe the construction and properties of conformal measures on the Julia set.

1. Introduction

It is a commonplace to remark the similarities between the theory of Kleinian
groups and the iteration of rational maps. Here we restrict our attention to finite
Blaschke products, those rational maps which fix a disc and examine their iteration
theory from the point of view of Fuchsian groups. The techniques will be derived
from the study of hyperbolic geometry and its influence on the geometry and
ergodic theory of Fuchsian groups, both classically and from the work of Patterson
and Sullivan [11], [13]. Though the results on conformal measures on S1 we
describe occur as special cases of the investigations of Denker and Urbanski [6],
[5], [1] and Sullivan [12], the hyperbolic approach gives a different insight.

2. Blaschke products

Let B be a finite Blaschke product of degree d > 1. It is easy to show that
JB , the set on which the iterates Bn fail to be normal on any neighbourhood
is either S1 , the unit circle, or a Cantor subset [2]. The Denjoy–Wolff theorem
shows that the iterates of B converge locally uniformly to a unique point z0 in
the closure of △ , the unit disc.

If z0 is contained in the open unit disc then it is an attracting fixed point for
B and |B′(z0)| < 1. Otherwise z0 ∈ S1 and either |B′(z0)| < 1 or B′(z0) = 1
and is a parabolic fixed point [2].

Each of the possible cases occur. If we write fr(z) = (z + r)/(1 + rz) and
Br = f2

r . One checks easily that B0 has JB0
= S1 , 0 fixed. B1/3 has JB1/3

= S1

parabolic point at 1, and B2/3 has 1 as an attractive fixed point and Julia set
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a Cantor subset of S1 . If we consider B(z) = z/(1 + z − z2) , we obtain a map
conjugate to a Blaschke product, with parabolic fixed point at the origin and JB

a Cantor subset of the extended real line [9].
We call those Blaschke products B with JB = S1 of the first kind by analogy

with Fuchsian groups, and those with JB 6= S1 of the second kind. A Blaschke
product B is parabolic if the fixed point z0 of the Denjoy–Wolff theorem satisfies
B′(z0) = 1.

3. Exponent of convergence

Write Pc for the closure of the forward orbit of the critical points and △c

for △ \ Pc . If z ∈ △c then there is a disc D , containing z , free of the images of
critical points of Bn . By the monodromy theorem we have well defined inverses
to Bn on D , and by shrinking D if necessary we may ensure that all pre-images
of D are disjoint. Denote by Bn the family of univalent inverses of Bn defined
on D and O−(z) for

⋃

n

⋃

f∈Bn
f(z) , O−(z) accumulates only at JB [2], for z

not fixed. Given z ∈ △c we form

SB,z,α =
∞
∑

n=1

∑

f∈Bn

|f ′(z)|α.

Define the exponent of convergence as

δB,z = inf
α
{SB,z,α < ∞}.

Lemma 3.1. Let B be a finite Blaschke product, then δB,z is constant, for

z ∈ △c .

Proof. For such z there is a disc D(z, ̺) ⊂ △c , so all inverse branches of all
iterates of B are defined on D . Let f be the inverse branch of some iterate of B ,
and let w be some point in D . By the distortion theorem there is a constant M
dependent on D , z , w but not on f for which 1/M |f ′(w)| < |f ′(z)| < M |f ′(w)| .
Thus the series SB,z,α converges independently of the choice of z in D . So δB,z,α

is constant off Pc .
We now use univalent function theory to replace our current definition of δB

with one which emphasises the non-Euclidean geometry.

Lemma 3.2. For z ∈ △c let

δ′B = inf
α

{

∑

n

∑

f∈Bn

(1 − |f(z)|)α < ∞

}

,

δ′′B = inf
α

{

∑

n

∑

f∈Bn

exp
(

−α̺(x, f(z))
)

< ∞

}

where x ∈ △ , and ̺ is the non-Euclidean metric on △ . Then δB = δ′B = δ′′B .
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Proof. Consider D(z, r) a Euclidean disc of radius r centred at z , which
misses Pc . Let f be a choice of inverse to Bm some iterate of B on △ . From the
Koebe 1

4 theorem we have 1 − |f(z)| > 1
4 |f

′(z)|r and the Schwarz–Pick lemma
asserts |Bm′(x)| ≤ (1 − |Bm(x)|2)/(1 − |x|2). So for x = f(z) ,

1 − |f(z)|2 ≤ |f ′(z)|(1 − |z|2),

and we have
2

1 − |z|
≤

|f ′(z)|

(1 − |f(z)|)
≤

4

r
.

This shows δ′B = δB . Now

2−s
(

1 − |f(x)|
)s

< exp−s̺
(

0, f(x)
)

<
(

1 − |f(x)|
)s

and varying the basepoint from which the hyperbolic distance is calculated only
contributes a constant term showing δ′′B = δ′B .

The same argument shows

Theorem 3.1. Let B be a finite Blaschke product acting on the unit disc,

so that the closed disc D = △(z, r) ⊂ △c . Let D′ be any pre-image of D , then

the hyperbolic area of D′ is bounded with bound only depending on B , D .

Then by analogy with the classical results on Fuchsian groups one easily proves

Lemma 3.3. 0 < δB ≤ 1 .

Proof. The upper estimate is a packing argument [10] in the hyperbolic metric.
The lower bound [7] follows easily from the density of repelling points in JB . If
B is of degree d , with K = supz∈JB

|B′(z)| then

δB ≥
log d

log K
.

4. A measure on the Julia set

Given a Blaschke product B a t -conformal measure µ for B is a Borel prob-
ability measure supported on the Julia set which satisfies the following equation

(4.1.1) µ
(

B(A)
)

=

∫

A

|B′(z)|t dµ(z)

on any Borel set A on which B is injective.
We follow Patterson’s original construction [11] as described in [10] (pp. 45–

55). Denoting the non-Euclidean distance ̺(x, y) by (x, y) we form the series

gs(x, y) =
∑

z∈O−(y)

exp
(

−s(x, z)
)
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which converges for s > δB and diverges for s < δB . It is important that our
series diverge at δB and to this end we introduce a weighting factor h

(

exp(x, z)
)

in gs(x, y) [10, Lemma 3.1.1] so that

g∗
s(x, y) =

∑

z∈O−(y)

exp−s(x, z)h
(

exp(x, z)
)

diverges for s ≤ δB and converges for s > δB . We now construct a set of measures,
for s > δ . Let

µx,s = 1/g∗
s(y, y)

∑

z∈O−(y)

exp−s(x, z)h
(

exp(x, z)
)

Dz

where Dz denotes the Dirac point mass at z .
We can control the variation of µx,s with the basepoint x by the following

simple estimate.

Lemma 4.1. Given x, x′ in △ and ξ ∈ ∂△ then

exp (x, w)

exp (x′, w)
−→

[

P (x, ξ)

P (x′, ξ)

]

as w −→ ξ . P (x, ξ) is the Poisson kernel (1 − |x|2)/(|x − ξ|2) .

Follow Nicholls [10, pp. 53–56] to estimate the behaviour of the measures un-
der change of basepoint and the action of B , a series of straightforward estimates.
To obtain a measure µx,δ we note that µx,s(△̄) is bounded as s → δ and apply
Helley’s theorem to deduce that for s → δ+ the measures µx,s converge weakly
to µx,δ on △̄ . Since the series g∗

s( · , · ) diverges at s = δ the measure must be
supported on the Julia set. Reading off the behaviour of µx,δ under the action of
B we get

Theorem 4.1. Let B be a Blaschke product with exponent of convergence

δ , and suppose µx,δ is obtained as a limit of µx,s as s → δ+ . Then µx,δ is a Borel

measure supported on the Julia set JB . Further if A is a Borel measurable subset

of JB on which B is injective then

µx

(

B(A)
)

=

∫

z∈A

[

P (x, Bz)

P (x, z)

]δ

|B′(z)|δ dµx,δ(z).

In particular µ0 satisfies

µ0

(

B(A)
)

=

∫

z∈A

|B′(z)|δ dµ0(z)

and so up to a constant multiple is a δ -conformal measure.



The exponent of convergence of a finite Blaschke product 249

We can also control the influence of the change of base point on the measure
we have constructed following the argument from Fuchsian groups. Denoting the
collection of measures µx,δ obtained as above by Mx we have

Theorem 4.2. Let B be a Blaschke product with exponent of convergence

δ . Choose x, x′ ∈ △ and for νx ∈ Mx define a new measure φ(νx) by

φ(νx)(E) =

∫

E

[

P (x′, ξ)

P (x, ξ)

]δ

dνx(ξ).

Then φ is a homeomorphism of Mx onto Mx′ . If νx,sj
converges weakly to

νx as sj → δ+ then νx′,sj
converges weakly to φ(νx) .

5. Conical and parabolic points

In the case of a Fuchsian group an important role is played by the way in
which orbits accumulate at the limit set. The orbits control the way in which the
Patterson measure accumulates on the limit set. We will make the same division
of the Julia set into conical and parabolic points and show that the measure µ0

respects this division.
A point z ∈ JB lies in the conical limit set of B if there is a sequence

{xn} ⊂ O−(x) such that |xn − z|/(1 − |xn|) is bounded. That is the conical limit
set consists of those points which are accumulated by pre-images in a Stolz angle.
By Theorem 3.1 the conical limit set is independent of x the point used to define
it.

We prove

Theorem 5.1. Let B be a finite Blaschke product with Julia set JB . Then

for z ∈ JB either z is a conical limit point or z lies in O−(z0) , where z0 is a

parabolic fixed point of B .

This is the analogue of the theorem of Beardon and Maskit [4] that the limit
set of a finitely generated Fuchsian group splits into conical and parabolic points.
In particular if B has no parabolic fixed point then every point in the Julia set
is conical. We show first that every point in the Julia set which does not lie in
O−(z0) is conical, and then show that no member of O−(z0) is conical.

First we observe if x ∈ JB \ O−(z0), then x has a forward limit point which is
not z0 . If not there is an n0 so that for n > n0 , Bn(x) ∈ △(z0, ε) for some ε > 0.
However the dynamics near z0 shows this cannot be, since in some neighbourhood
of a parabolic fixed point B maps points in JB away from the parabolic point [2].

To show x ∈ JB \ O−(z0) is conical. Choose x0 a forward limit point of x ,
not z0 , the parabolic fixed point. There is a disc △(x0, r) ⊂ △c , so all iterates
of B have inverses defined and injective on △(x0, r) . Let fn be a sequence
of such inverses so that fn(x0) → x . The functions fn are univalent and map
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S1 ∩△(x0, r) to a segment of S1 so each function fn is conformally conjugate
to a function defined and univalent on the unit disc which maps the real axis
to itself. Such a function is typically real. From [8] we have for f an analytic
function univalent on the unit disc fixing the origin with sign Im f(x) = sign Im(z)
for non-real z then

arg
z

(1 + z)2
≤ arg f(z) ≤ arg

z

(1 − z)2
.

It is easy to show that there is a disc D ⊂ H ∩△ and D ∩ I 6= 0, f(D) ∩ I 6= 0
where I is the imaginary axis. By expanding D in the upper-half plane we may
arrange that f(D) ∩ I + ε 6= 0 for all sufficiently small real ε .

Conjugating back to the unit disc and the Blaschke product, we consider the
small disc △(x0, r) on which inverses fm of iterates of B are defined, so that
fm(x0) accumulate at x . Choose a disc D centred on (0, x0) whose closure is
properly contained in △∩△(x0, r). As the inverses fm are conjugate to typically
real functions, and the radius

(

0, fm(y)
)

intersects fm(D) for all y sufficiently
close to x0 in S1 . We may choose the y = Bn(x) for n suitably large. So fm(D)
intersects the radius (0, x) for infinitely many m , by Theorem 3.1 fm(D) is of
bounded hyperbolic diameter. From which the result follows.

5.1. Parabolic points. We now discuss parabolic points, giving a hyperbolic
argument why pre-images of parabolic fixed points cannot be conical and then
using some analytic estimates to describe the behaviour at a parabolic point.

Lemma 5.1. Let B be a Blaschke product with z0 a parabolic fixed point

of B , then z0 is not a conical limit point.

Conjugate the Blaschke product so it acts on the upper-half plane with the
origin a parabolic fixed point. Classical analysis of parabolic behaviour [2] shows
the existence of Π the conformal image of a disc, such that Π ∩ H subtends an
angle π at the origin, and B(Π) ⊂ Π. Iterating we have Bn(Π) ⊂ Π so if x /∈ Π
then no pre-image B−n(x) ∈ Π. If z0 is conical then for any x ∈ △ we must have
B−n(x) ∈ Π for infinitely many n since Π contains any conical approach to z0 ,
a contradiction for x /∈ Π.

Let Bq(z) = z0 , z 6= z0 . If z is conical there is a point y so that a se-
quence of images B−m(y) converge in a cone to z . Bq is univalent in some fixed
neighbourhood of z and so the ratio

d
(

Bq(B−m(y)), z0

)

d
(

Bq(B−m(y), S1
) ≈

d
(

B−m(y), z
)

d
(

B−m(y), S1
) .

This is bounded above, just being the condition that z = B−q(z0) is conical, so
z0 is conical and we have reached a contradiction, proving that the pre-images of
a parabolic point are not conical.

Alternatively an induction shows
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Lemma 5.2. Let R(z) be an analytic function with Taylor expansion at the

origin given by R(z) = z + zp+1 + O(z2p+1) , and let f denote the inverse to R
which fixes the origin, then for z small real and positive

fn(z) = an−1/p + bn(n−2/p)

where a = 1/p1/p , and bn is bounded over n and

∞ > C > |fn′(z)|/n−(p+1)/p > c > 0.

This allows us to repeat a classic Fuchsian groups argument [3] which estab-
lished that groups with a parabolic generator have a definite bound below on their
exponent of convergence.

Corollary 5.1. Let B be a parabolic Blaschke product then

δB ≥ p/(1 + p) ≥ 1
2 .

Proof. We certainly require

∑

n>0

|fn′(z)|s < ∞

for s > δB . Each term is comparable to n−s(p+1)/p forcing s(p + 1) > p for all
s > δB , whence the result.

A stronger argument is required to counterpoint the Fuchsian group argument
that δ > 1

2 for a Fuchsian group with parabolics.

Theorem 5.2. If B is a Blaschke product, with a parabolic fixed point then

δB > 1
2
.

If B is of the first kind then the previous corollary gives δB ≥ 2
3 so we are

only concerned about Blaschke products of the second kind. Let f , g be branches
of B−1 defined in a neighbourhood N of z with f(z) = z and g(N) ∩ N = 0.
We consider images of a point y of the form

Fn1n2...nj
(y) = fn1gfn2g . . . fnj g(y).

We can now compute a lower bound for δB since

∑

n

∑

f∈Bn

|f ′(y)|s ≥
∑

j

∞
∑

n1,...,nj

|F ′
n1...nj

(y)|s.
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Now we estimate |F ′
n1...nj

(y)| by the chain rule. On some neighbourhood N of z ,

|g′(x)| > M and for n sufficiently large Lemma 5.2 tells us fn′
(

g(z)
)

> cn−2 . So

∑

j

∞
∑

n1,...,nj

|F ′
n1...nj

(y)|s ≥
∑

j

∑

n1...nj

|M jcjn−2
1 . . . n−2

j |s.

This is bounded below by

∑

j

[

(Mc)s
∞
∑

n=m

n−2s

]j

which diverges if M scs <
∑∞

n=1 n−2s , which certainly occurs for some s > 1
2 .

6. No atoms

Finally we show that the δ -conformal measure we constructed in Section 4 has
no atoms. The difficulty is with parabolic points of the second kind, and we treat
this following Patterson’s nifty argument in the Fuchsian case [10, §6.5], a different
argument to that of [1]. It is clear no conical limit point z can be charged by a
conformal measure otherwise |Bn′(z)| is uniformly bounded, which is impossible.

Lemma 6.1. Let B be a Blaschke product with JB = S1 , then

g1(x, y) =

∞
∑

n=1

∑

f∈Bn

exp−̺
(

x, f(y)
)

diverges.

Whence the conformal measure charges no single point.
Proof. Select any point y in the unit disc not fixed by the Blaschke product.

If the series in the lemma converges we may form the non-trivial infinite Blaschke
product B∞ with zeroes at O−(y) . This has non-tangential boundary values one
almost everywhere, but at all points save the countable pre-images of a parabolic
point there are zeroes of the function converging conically, a contradiction.

It is harder to show that for B a Blaschke product of the second kind the
critical series diverges. We sketch a proof exhibiting the non-Euclidean behaviour.
Conjugate B , a Blaschke product with a parabolic fixed point of the second kind
so it acts on the upper-half plane with the parabolic fixed point at infinity. We
assume that the series gδ(x, y) converges, and consider how the measure µx,δ varies
as x moves on the imaginary axis. We assume B has a power series expansion
at ∞ of the form z

(

1 − 1/z + O(1/z2)
)

. The inverse to this function which fixes
∞ is denoted by f , we may analytically continue it along the positive real axis
where it still satisfies the functional relation f(B) = identity. Then we have fn is
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the inverse to Bn fixing ∞ and estimates on the behaviour near parabolic points
are provided by [2], or inversion of Lemma 5.2 to give limn→∞ |fn(z) − z|/n = 1
for z real. So the long term behaviour of fn is roughly translation.

To mimic the Fuchsian argument we consider Y the set of points in O−(y)
so that {Re z < N : z ∈ O−(y)}, corresponding to a fundamental region for a sub-
group of a Fuchsian group generated by a translation. We claim that g∗

s(x, y) is
boundedly comparable to

Σs,N =
∑

z∈Y

∞
∑

n=1

exp−s̺
(

x, fn(z)
)

h
(

exp ̺(x, fn(z))
)

and so we may estimate the series g∗
s(x, y) by the behaviour of Σs,N . This we will

do by controlling the ‘iterates’ of f acting on a bounded part of the plane. Then
as we allow x = λi , λ real, to vary we will control gs(x, y) by comparing µx,s(∞)
as λ varies.

We estimate

(6.1.1)
µλi,s(∞)

µi,s(∞)
=

[

P (λi,∞)

P (i,∞)

]s

= λs.

Now we show that if N is chosen appropriately then g∗
s(λi, y) ≈ Σs,N . We

have g∗
s > cs,NΣs,N as the latter sum is over a subset of the former up to finite

multiplicity. The opposite inequality follows by comparing the mass left at ∞ by
the two series, which varies with λ as (6.1.1). As λ increases both series deposit
an increasing proportion of their total mass at ∞ . So an estimate at λ = 1 gives
an estimate of the ratio g∗

s/
∑

s,N independent of λ , s , and is non-zero if we
choose N sufficiently large.

The estimate we need is the following.

Theorem 6.1. For all ε sufficiently small there are constants A , A′ inde-

pendent of s , δ < s < δ + 1 , so that for λ > 1

g∗
s(λi, y) =

∑

ζ∈O−(y)

h
(

exp ̺(λi, ζ)
)

exp−s̺(λi, ζ)

≤ Aλε+1−s
∑

{ζ∈O−(y):Re ζ<N}

Im(ζ)sh
(

exp ̺(i, ζ)
)

≤ A′λε+1−sg∗
s(i, y).

The proof follows that given by Nicholls [10, Theorem 3.5.5] of Patterson’s
result, being careful to check that we only introduce bounded distortion on pre-
images, and the result is as in the Fuchsian case. We finish the proof of the absence
of parabolic point masses by computing

g∗
s(λi, y) < A′λε+1−sg∗

s(i, y)
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for ε sufficiently small. Taking a limit as s → δ

µλi,δ(H ) < A′λε+1−δµi(H ).

So for some constant C we have µλi(∞) < Cλε+1−δ . But (6.1.1) forces

λδ < Cλε+1−δ

for all ε sufficiently small, and λ > 1. But δ > 1
2 from Theorem 5.2 and we have

reached a contradiction, µ(∞) = 0, and hence by δ -conformality the support of
µ has empty intersection with the parabolic points.
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