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Abstract. A new geometric characterization of hyperelliptic Riemann surfaces is given. It
is proved that a closed Riemann surface of genus g ≥ 2 is hyperelliptic if and only if M has a
set of at least 2g − 2 simple closed geodesics which all intersect in the same point (and mutually
intersect in no other point).

1. Introduction

From a classical point of view the hyperelliptic surfaces are the most simple
Riemann surfaces. They can be defined by an algebraic curve

y2 = F (x)

where F (x) is a polynomial of degree 2g + 1 or 2g + 2 with distinct roots (g
is the genus of the surface); the automorphism (x, y) → (x,−y) then defines the
so-called hyperelliptic involution.

Equivalently, we can define that a Riemann surface M is hyperelliptic if there
exists a holomorphic map M → P 1 of degree 2.

Here is a more geometric, again equivalent definition. A Riemann surface M
of genus g is hyperelliptic if M has an involution with exactly 2g+2 fixed points.

Finally, hyperelliptic surfaces of genus g are characterized by the fact that
the number of different Weierstrass points is minimal, namely 2g + 2 (the fixed
points of the hyperelliptic involution), while on the other hand, the weight of each
Weierstrass point is maximal, namely 1

2g(g − 1).
For basic information on hyperelliptic surfaces the reader may consult for

example Farkas and Kra [2], Miranda [3].
The main result of this paper is the following theorem (in the sequel, a surface

will be a Riemann surface equipped with a metric of constant curvature −1).

Theorem A. A closed surface M of genus g ≥ 2 is hyperelliptic if and only
if M contains 2g − 2 different simple closed geodesics which all intersect in the
same point and mutually intersect in no other point.
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This is an example that a local property can imply a global property of a
surface. The proof will be given in Section 3. In Section 2, some results of
topological properties of sets of simple closed curves are proved, in particular the
following result which generalizes the fact that a closed surface has non-separating
and separating simple closed geodesics.

Theorem B. Let M be a closed surface of genus g ≥ 2 . Let k be an integer
with 1 ≤ k ≤ 2g . Let Sk be a set of k simple closed curves which intersect
(transversally) in the same point such that the elements of Sk have no further
intersection point. Then there is only one equivalence class of sets Sk if and only if
k is even (Sk and S′k are in the same equivalence class if M has a homeomorphism
mapping the homotopy classes of the elements of Sk to those of S′k ).

2. On sets of simple closed curves

Definition. (i) A surface is a Riemann surface equipped with a metric of
constant curvature −1.

(ii) A (g, n)-surface is a surface of genus g with n boundary components
which are simple closed geodesics, called boundary geodesics.

(iii) A star set is a set Sk of k simple closed curves on a surface M which
all intersect (transversally) in the same point such that among the elements of Sk
there are no further intersection points. Sk is called a geodesic star set if the k
simple closed curves are simple closed geodesics.

(iv) Let M and M ′ be two (g, n)-surfaces. Let F be a set of simple closed
curves on M , let F ′ be a set of simple closed curves on M ′ . Then F and F ′ are
called equivalent if there exists a homeomorphism φ from M to M ′ which maps
the homotopy classes of the elements of F to those of F ′ . This relation gives rise
to equivalence classes of sets of simple closed curves on M .

(v) Let M be a surface and u a simple closed geodesic of M . Then u is
called separating if M \ u has two connected components, otherwise, u is called
non-separating.

Lemma 1. Let M be a (g, 2)-surface with boundary geodesics u and v ,
u 6= v . Let t be a simple geodesic in M relying u and v . Then M has a unique
simple closed geodesic z and a unique embedded (0, 3)-surface Y such that u, v, z
are the boundary geodesics of Y and t lies in Y .

Proof. Obvious.
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Figure 1. On the left hand side, a (g, 1) -surface M with a simple geodesic t such that M \ t
is not connected. On the right hand side, M \ t is connected.

Lemma 2. Let g ≥ 2 and let M be a (g, 1)-surface with boundary
geodesic z . Let t be a simple geodesic in M , starting and ending on z . Then
either M \ t is not connected or M \ t is connected and has a unique pair (u, v) of
simple closed geodesics and a unique embedded (0, 3)-surface Y such that z, u, v
are the boundary geodesics of Y and t lies in Y . Moreover, both cases are possible
for every M .

Proof. Obvious by Figure 1.

Theorem 1. Let M be a closed surface of genus g ≥ 2 . Let k be an integer
with 1 ≤ k ≤ 2g . Then M has only one equivalence class of star sets Sk if and
only if k is even.

Proof. (i) Recall that two (g, n)-surfaces are homeomorphic (by the classifi-
cation of compact surfaces).

(ii) The case k = 1 is obvious since M has separating and non-separating
simple closed curves. So assume that k ≥ 2. It follows that all elements of Sk are
non-separating. We therefore may assume that the elements of Sk are geodesic
loops. Let u ∈ Sk . Cut M along u , the result is a surface M1 of genus g−1 with
two boundary components (in the proof of Theorem 1 we allow that the boundary
components are only piecewise geodesic). Let v ∈ Sk , v 6= u . Then, by Lemma 1,
M1 \ v is a surface M2 of genus g− 1 with one boundary component. By (i), this
proves the theorem for k = 2. Assume that k ≥ 3. Let w ∈ Sk \ {u, v} . If k = 3,
then, by Lemma 2, M3 = M2 \w is connected or not connected which proves the
theorem for k = 3 (Lemma 2 proves this if the genus of M2 is at least 2; if M2

has genus 1, then the fact remains true since the boundary component of M2 is
only piecewise geodesic). If k > 3, then M3 must be connected and is therefore
(by Lemma 2) a surface of genus g − 2 with two boundary components.
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(iii) The general case follows by induction.

Corollary 1. Let M be a closed surface of genus g . Let k be an integer
with 1 ≤ k ≤ 2g . Let Ck = {u1, u2, . . . , uk} be a set of k simple closed curves of
M such that ui and ui+1 intersect exactly once, i = 1, . . . , k − 1 , and such that
ui and uj are disjoint if j /∈ {i − 1, i, i + 1} . Then M has only one equivalence
class of sets Ck if and only if k is even.

Proof. The proof is completely analogous to the proof of Theorem 1.

3. Hyperelliptic surfaces

Definition. (i) An involution φ 6= id on a surface M is an isometry with
φ2 = id where id is the identity.

(ii) A (g, n)-surface M is hyperelliptic if M has an involution with exactly
2g + 2 fixed points if n is even, and with exactly 2g + 1 fixed points if n is odd.
Such an involution will be called a hyperelliptic involution.

Remarks. (i) It is well known that for closed surfaces the above given defi-
nition is equivalent to the usual one.

(ii) Let M be a hyperelliptic (g, n)-surface. It is easy to show that M has a
unique hyperelliptic involution if n ≤ 2. However, if n ≥ 3, then a hyperelliptic
involution is not unique, in general.

(iii) In the cases (g, n) = (1, 1) and (g, n) = (2, 0) all (g, n)-surfaces are
hyperelliptic. If all boundary geodesics have equal length, then also in the cases
(g, n) ∈ {(0, 3), (0, 4), (1, 2)} all (g, n)-surfaces are hyperelliptic.

(iv) Let M be a hyperelliptic (g, n)-surface and ψ a hyperelliptic involution.
If n is odd, then ψ(u) = u for a unique boundary geodesic of M . If n ≥ 2 is
even, then ψ(u) 6= u for all boundary geodesics of M .

Theorem 2. Let M be a closed surface of genus g . Then M is hyperelliptic
if and only if M has a geodesic star set Sk with k ≥ 2g − 2 .

Proof. (i) Let M be hyperelliptic. Let Ai , i = 1, . . . , 2g + 2, be the fixed
points of the hyperelliptic involution ψ of M . Let A = A1 . Let h1 be a simple
geodesic from A to A2 . Then u1 = h1 ∪ ψ(h1) is a simple closed non-separating
geodesic of M . Cut M along u1 , the result is a (g − 1, 2)-surface M1 with
boundary geodesics u1(L) and u1(R) . Let A(L) be the copy of A on u1(L) and
let A2(R) be the copy of A2 on u1(R) . Then M1 has a simple geodesic h2 from
A(L) to A2(R) . It follows that u2 = h2 ∪ ψ(h2) is a simple closed geodesic of
M which intersects u1 only in A . Cut M1 along h2 , the result is a surface M2

of genus g − 1 with one boundary component b , see Lemma 1. It follows that
M2 has a simple geodesic h3 between a copy of A on b and a copy of A3 on
b such that M2 \ h3 is connected (this is possible by Lemma 2). It follows that
u3 = h3∪ψ(h3) is a simple closed geodesic of M and that {u1, u2, u3} is a geodesic
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star set of M . Repeating this argument we can construct a geodesic star set of
order 2g + 1 on M .

(ii) Assume now that M has a geodesic star set Sk with k = 2g−2. It follows
by Theorem 1 and its proof that M has an embedded (g− 1, 1)-surface N which
contains all elements of Sk . Denote by z the boundary geodesic of N . In M , z
is separating and is also the boundary geodesic of an embedded (1, 1)-surface X .
As noted above, X is hyperelliptic with a unique hyperelliptic involution ψX . In
order to prove that M is hyperelliptic, it is therefore sufficient to show that N
is hyperelliptic since N then has a unique hyperelliptic involution ψN which acts
on z in the same manner as ψX .

We now prove that N is hyperelliptic by induction with respect to g . If
g = 2, then N is hyperelliptic since all (1, 1)-surfaces are hyperelliptic. Let u
and v be two different elements of Sk and let Sk−2 = Sk \ {u, v} . By Theorem 1,
N has an embedded (g− 2, 1)-surface P which contains all elements of Sk−2 . By
induction, P is hyperelliptic with a unique hyperelliptic involution ψP . Denote by
z′ the boundary geodesic of P . Let Sk−1 = Sk−2∪{u} . Again by Theorem 1 and
its proof it follows that M has an embedded (g−2, 2)-surface R containing Sk−1 ;
denote by x and y the two boundary geodesics of R . Denote by Y the, in M ,
embedded (0, 3)-surface with boundary geodesics z′, x, y . Then Y is separated by
u into two connected components, denote them by Y (x) and Y (y) . Remember
that P is hyperelliptic and that u passes through a fixed point of ψP (namely,
the intersection point of the elements of Sk ). It follows that the two angles in the
two intersection points of u with z′ are equal and that z′ ∩ Y (x) and z′ ∩ Y (y)
have equal length. This implies by hyperbolic trigonometry (see for example [1])
that Y (x) and Y (y) are isometric. In particular, x and y have the same length.
Therefore, Y has a hyperelliptic involution ψY which interchanges x and y . This
implies that ψP extends to a hyperelliptic involution ψR on R (since the action
on z′ is the same for ψP and for ψY ).

Let T = N \ R . T is an embedded (0, 3)-surface with boundary geodesics
z, x, y . Since x and y have the same length, T has a hyperelliptic involution
ψT which interchanges x and y . It remains thus to prove that the action of ψT
and ψR is the same on x ∪ y . This again follows by the argument that v passes
through a fixed point of ψR and therefore intersects x and y by the same angle
and such that ψT (v ∩ T ) = v ∩ T (by Theorem 1 and its proof v intersects x and
y only once). This proves that the involutions ψR and ψT induce a hyperelliptic
involution on N .

Corollary 2. (i) Let M be a (g, 1)-surface. Then M is hyperelliptic if and
only if M has a geodesic star set Sk with k = 2g .

(ii) Let M be a (g, 2)-surface. Then M is hyperelliptic if and only if M has
a geodesic star set Sk with k = 2g + 1 .

Proof. The proof of Theorem 2 applies to this situation.
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Corollary 3. All closed surfaces of genus 2 are hyperelliptic.

Proof. This was shown during the proof of Theorem 2 using the fact that all
(1, 1)-surfaces are hyperelliptic. After the proof of Theorem 2, we could also argue
that all closed surfaces have a star set Sk with k = 2.
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