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Abstract. We define a class of bounded domains 2 C R™ which we call (s, m)-uniform,
s>1and 0 < m < 1. In this class we show that every Sobolev function v € W1?(Q), 1 < p < oo,
satisfies

u(z) —u(y)| < Clo —y|* (A Vu(x) + .4V u(y))
for almost every z,y € Q with

a= %(n—s(n— 1)).

Our result extends the previous result for Sobolev extension domains by P. Hajlasz. Classical
bounded uniform domains or equivalently bounded (e, 00) domains form a proper subclass of the
(s, m)-uniform domains, when s > 1 or 0 < m < 1, but our class of domains allows more irregular
behavior for the boundary than in the classical case.

1. Introduction

P. Hajtasz showed that if 2 C R"™ is a Sobolev extension domain or 2 = R",
then every u € WHP(Q), 1 < p < oo, satisfies

(1.1) u(z) —u(y)| < Clo —y|* (A Vu(z) + .4 Vuly))

for almost every z,y € Q with o = 1, [H2]. Here .#Vu is the Hardy-Littlewood
maximal operator of a weak gradient of a function w. Hajlasz and O. Martio
proved that under a weak geometric condition the inequality (1.1) with o = 1
implies that the domain € is a Sobolev extension domain for 1 < p < oo, [HM].
A variant of the inequality (1.1) in the domain whose boundary is locally a graph
of a Lipschitz continuous function, and also the case {2 = R"™, has been studied
in [DS], [H1] and [HM].

We define a new class of bounded domains which we call (s, m)-uniform, s > 1
and 0 < m < 1. The special case s = m = 1 is the class of bounded uniform
domains defined by Martio and J. Sarvas, [MS] or equivalently the class of bounded
(e,00) domains defined by P.W. Jones, [J]. An example of (s, 1)-uniform domains
in the plane is an s-cusp, {(z,y) € R?: 0 <z <1, 0 <y < z°}, with s > 1.
The class of (s,m)-uniform domains is a proper subclass of the class of s-John
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domains. We prove that if ) is bounded and its boundary is locally a graph of
a A-Holder continuous function, 0 < A < 1, then 2 is (1/A, A)-uniform. In the
case A = 1 this result seems to be well known, although we have not been able
to find a reference. The converse does not hold. There exists a bounded domain
which is even a (1, 1)-uniform domain, but whose boundary fails to be a graph of
a continuous function.

Our main theorem shows that if 2 C R" is a bounded (s, m)-uniform domain,
1<s<n/(n—1) and 0 <m < 1, then every u € WHP(Q), 1 < p < oo, satisfies
the inequality (1.1) for almost every x,y € Q with a = m(n—s(n— 1))/5. Hajtasz
and Martio proved the case s = 1, [HM, Lemma 14, p. 243]. Our proof is based
on their proof. We calculate an upper bound for the exponent « of the inequality
(1.1) in the class of (s,m)-uniform domains: if 1 <s <n/(n —1) then

s(n—1)+1
n

0<a< (n—s(n—1)) <1

and if s > n/(n — 1) then the inequality does not hold with any a > 0 for every
1 <p<oo.

Acknowledgements. 1 wish to thank my teacher R. Hurri-Syrjanen for her
helpful guidance and kind advice.

2. Notation

Throughout this paper C' will denote a constant which may change even in
a single string of an estimate. We write C'(M) to denote that the constant C
depends on M. We let Q2 and D be bounded domains in the Euclidean n-space
R", n > 2. We denote the boundary of a domain by 0€2. By an open ball
centered at x and with a radius » > 0 we mean the set B"(x,r) = {y € R" :
ly — x| < r}. We write kB for the ball with the same center as B and dilated
by a factor k > 0. We let A denote the closure of a set A in R™. The Lebesgue
n-measure of a set A C R" is denoted by |A].

Following J. Véisala [V] we say that « is a curve if it is either a path or an
arc. A path is a continuous mapping from a closed interval to 2 C R™. A set
in € is an arc if it is homeomorphic to a closed interval. We assume that every
curve is rectifiable. A length of a curve ~ is denoted by |y|. If 47 is a curve from
a point x to a point z and v, is a curve from a point z to y then by v U, we
denote a curve from = to y via v; and ~s.

The set of p-integrable functions in D is denoted by LP(D), 1 < p < oco. We
denote by W1P(D), 1 < p < oo, the class of all functions in LP(D) whose first
weak derivatives are in LP(D). We equip the Sobolev space WP(D) with the
norm ||ullwe(py = ||ullzr(py + | VUl Lr (D), where Vu is the weak gradient,.

The class of A-Holder continuous functions, 0 < A < 1, in a domain D is
denoted by C%*(D): u € C%*(D) if there exists a constant C' > 0 such that

[u(z) = u(y)] < Cla —y|*
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for every x,y € D. If A =1 we say that the function w is a Lipschitz-continuous
function.
For a measurable function defined in a set A, |A| > 0, we write

Au(x) do — ﬁ/Au(:ﬂ) da.

Let v € LY(D) and x € D. We put v = 0 in the complement of the
domain D. For every 0 < R < oo we define

AMprv(x) = sup ][ lv(z)]dz.
B (z,r)

0<r<R

We let .#u denote .#.,u. The operator .# is the classical Hardy—Littlewood
maximal operator. Recall that for 1 < p < oo we have ||.Zu| r»py < Alul Lr(D),
where the constant A depends only on the dimension n and p, [St, Theorem 1,

p. 6].

3. (s,m)-uniform domains

We define a new class of domains. The definition was suggested to the author
by P. Hajtasz.

3.1. Definition. Let s > 1 and 0 < m < 1. A bounded domain 2 C R"
is an (s, m)-uniform domain if there exists a constant M > 1 such that each pair
x,y of points in € can be joined by a rectifiable curve v: [0,{] — Q parametrized
by arclength, such that v(0) =z, v(I) =y,

(3.2) I < M|z —y|™
and
(3.3) min(t,l — ¢)° < M dist ((t), 09).

The idea of (s, m)-uniform domains is that every two points in ) can be
joined by a twisted double cusp inside the domain 2. The exponent s describes
which kind of outer peaks are allowed and the exponent m which kind of inner
peaks. The special case s = m = 1 is the class of bounded uniform domains defined
by Martio and J. Sarvas, [MS]. The class of bounded uniform domains, and thus
the class of (1,1)-uniform domains, coincides with the class of bounded (e, 00)
domains defined by P.W. Jones, [J]. It is easy to see that the class of (s,m)-
uniform domains is a proper subset of the class of (s’,m’)-uniform domains if
s < s and m" < m orif s <s and m’ < m. The standard examples in the
plane are an s-cusp, {(z,y) € R?:0<z <1, 0 <y <z}, with s > 1 which is
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(s,1)-uniform, and the interior of its complement with respect to the ball B2(0,1),
which is (1, 1/s)-uniform.

We say that 02 is A-Holder, 0 < A\ < 1, if for every point = € 02 there
exists r(z) = (r1(z),...,rn(x)), ri(x) > 0 for every i, and a A-Hélder continuous
function ¢: R"~! — R such that, upon rotating and relabeling the coordinate
axes such that x is at the origin, we have

QNU(z,r(2)) ={y € R" : ¢(y1,- ., Yn—1) > yn} N U (z,7(x))

and
Lra(@) > ¢ > —iry(a)

where U(x,r(a:)) = {y eR™: |y, —xi| <ri(x), i=1,.. .,n} is an open rectangle.
If A =1 we say that 02 is Lipschitz.

In the case A =1 the following lemma seems to be well known, although we
have not been able to find a reference.

3.4. Lemma. Let 0 < A <1 and let Q2 C R™ be a bounded domain. If 02
is A-Hélder then the domain Q is (1/X, \)-uniform.

The converse does not hold. There exists even a (1, 1)-uniform domain, whose
boundary is not locally a graph of a continuous function at any point. An example
is the Koch snowflake domain. In Example 5.2 we construct for every s > 1 an
(s,1)-uniform domain whose boundary fails to be a graph of a continuous function.

Proof. Since 0 is bounded we may choose a finite covering of open rectangles
{U (zi, r(zz)) }le. Let ¢; be a A-Holder continuous function with a constant L;
related to U(zi,r(zi)). We write L = max;<;<x{L;}. For technical reasons we
assume that diam(2) = 1.

First we prove that every pair of points inside each U(z;,7(z;)) N Q can be
joined by a curve satisfying the conditions (3.2) and (3.3). Let = = (x1,...,2y)
and y = (y1,...,yn) be in U(z;,r(2)) N Q. We fix a two-coordinate axis in R"
so that z is the point (0,z,) and y is the point (I,y,),

l=v@1 —11)%+ ...+ (Tn-1 — yn_1)2.

We may assume that z,, > vy, . Let I; be a curve

{(&,6£):0<& <1, &=—LE + 1,

and I a curve

{(51752) : 0 S 51 S l7 €2 = _L‘gl - l|)\ +yn}7
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0.1 0.2 0.3 0.4 0.5

Figure 1. The curves I; and I5.

The curves I; and I, are presented in Figure 1 with L =1, A = 0.5, =, = 1,
yn = 0.75 and [ =0.5.

If the curve I intersects the curve I, as in Figure 1, we let J be a curve
connecting x and y via [; and Iy. Let £ be a point in I; with dist(ly,y) =
dist(&,y). Otherwise we let J be a curve connecting x to y via I; and a line
segment from ¢ to y. It is easy to see that [(J) < C|z —y|* here C is a constant,
depending on s, L and diam(2), and [(J) is the length of the curve J. Let J*
be a curve from z to y via the curves J; = {(51,52) & =0, & < a:n}, J’
and J5 = {(&1,&) 1 & = v — vy, & < y,}. Here J' is defined as follows: if
(&1,&2) € J then (&1,& — 45|z —y|) € J'. If necessary we replace a part of J* by
a line segment in the hyperplane

{(61,6) € U(2i,7(2)) NQ: & = =31, (2) }.

This yields
dist(&,0Q) > C(L)|x,, — &Y/

for every & € J7,
dist(¢,09) = C(L)|yn — &'

for every £ € J5 and
dist(£,00) > min{ |z — y|, 1ra(2i) }

for every ¢ € J'. It is easy to see that J* satisfies the conditions (3.2) and (3.3)
with s = 1/A\, m = X\ and a constant M depending on L, diam(U(zi,r(zi)))
and 7,(2;).

Let #; be a Whitney composition of €2, [St, Theorem 1, p. 167]. Let # be a
collection of cubes @; from %, dilated by a factor % with Q; ¢ Ule U(xi,r(zi)).
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There exists € > 0 depending on the collection {U (zi, r(zi)) }le such that for ev-

ery w € Q we have B"(w,e) C 3Q; for some 3Q; € # or B™(w,e) C U(z;,7(2;))
for some i = 1,...,k. Since every cube is a (1/A, A)-uniform domain we see that
each pair of points z,y € Q with |z — y| < & can be joined by a curve satisfying
the conditions (3.2) and (3.3) with the constant M.

To complete the proof we use the same method as in [HK1, Theorems 2.4
and 3.3, pp. 175 and 178].

Let z,y € Q with |x —y| > e. An elementary covering argument shows that
there exists a positive integer N, depending on diam(€2), € and n, such that
can be covered by balls B;, ¢« = 1,..., N, with radius %5. Now there exists a
chain of balls B;, i € {1,...,K} and K < N, such that x € By, y € Bx and
BiNB;iy1NQ#D foreach j=1,....,K —1. Weset © =21, y = zx and choose
z; € B;N§. Since |z; — z;11| < €, there exists a curve 7; joining z; to z;41 in €
with 1(v;) < M|z; — zi41|* < Me*. Thus we obtain

K
l() = Z(U %) < KMe* < KM|z —y|*
i=1

We choose points wi = x,ws, ..., w; =y on the curve v satisfying
o\ /A S\ /A
oM < |wi —wiga| < i
for i =1,2,...,l—1. Let 3; be a curve joining w; to w;4+; as in the definition of

s, m)-uniform domains, hence 1(3;) < M|w; — w;+1|* < ¢ and
(s,m) .

- DY
l( U1 @.) < Ms < Ql/AKMlJrl/)\gl—l/)\‘x —y*.
i=1

JNEYRY
2M

By the definition of (s,m)-uniform domains every curve [3; has arclength as its
parameter. We choose b; to be the arclength midpoint of 3;. Since |b; —b; 41| < €
there exists a curve «; joining b; to b;11 as in the definition of (s, m)-uniform
domains. We denote by (;(£1,&2) that part of the curve (; from the point & to
the point & . We write

a=[01(z,b1))Uar U...Ua;_2 U Bi—1(by,y).
This yields
l(@) < Clz —y|*,
where the constant C' dependson M, e, \, L, diam(U(zi,r(zi))) and r,(z;) for
each i =1,...,k. Since |3;| > %5 and since the point b; is the arclength midpoint

of (3; we obtain
. 1 1/A
dlSt(bi, 89) Z M (ig) .

Hence it is easy to see that the curve «a satisfies the conditions (3.2) and (3.3).
This completes the proof of Lemma 3.4. o
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Let s > 1. A domain 2 C R" is an s-John domain if there exists a distin-
guished point xy € 2 and a constant C' > 1 such that each point = € €2 can be
joined to z( by a rectifiable curve +: [0,]] — Q parametrized by arclength, such
that v(0) =z, y(I) = zo,

1<C

and
t* < Cdist(y(t),09).

The definition implies that every s-John domain is bounded. When s = 1 these
domains coincide with the class of John domains defined by Martio and Sar-
vas [MS]. The s-John domains for s > 1 are much wider than John domains.
If a domain 2 C R™ is an s-John domain with a distinguished point xy €  then
it is an s-John also with any other point z € ). This means that the distin-
guished point can be changed. Note that the constant C' depends on the distance
between the distinguished point and the boundary of 2. For more information
about s-John domains we refer to [SS], [HK2] and [KM].

3.5. Lemma. Let s > 1 and 0 <m < 1. A bounded (s, m)-uniform domain
is an s-John domain.

The case s = 1 of Lemma 3.5 is proved by F.W. Gehring and Martio, [GM,
Lemma 2.18, p. 209]. The case s > 1 is similar.

4. Main theorem

First we prove a chain condition for (s,m)-uniform domains. This is a modifi-
cation of the standard chaining argument for uniform domains and John domains,
see [HM] and [HK2].

4.1. Lemma. Let Q@ C R™ be a bounded (s, m)-uniform domain. Let
x,y € Q. Then there exists a sequence of balls {B;}°___, where B; = B™(x;,1;),

and constants C,d > 1 with the following properties:

(1) |Bi U Biy1| < C[B; N Bit1],

(2) dist(z, B;) < dr)’®, B; C B"(x,Clz—y|™*) if i <0 and r; — 0 as i — —o0,
(3) dist(y, B;) < drg/s, B; € B"(y,Clz —y|™/*) if i >0 and r; — 0 as i — oo,
(4) no point of the domain €2 belongs to more than C' balls B,;.

The constants depend only on s, m, the dimension n and the uniform constant
M of the domain €).

Proof. We may assume that diam(2) < 1. Fix z,y € Q and let v be a
curve joining x and y as in the definition of (s,m)-uniform domains, 7(0) =
z and () = y. Fix z9 = y(31). Let B = B"(xo, 1 dist(xo, 00 U {z})).
We let 4" be the subcurve of v from z to zo. We cover +' \ {z} with balls
as follows. Consider the collection of balls B™(y(t),  dist(v(t),00 U {z})), t €
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(0, %l), and B_(’). By Besicovitch covering theorem [M, Theorem 2.7, p. 30] we find

a sequence of closed balls B}, B}, BY, ... that cover '\ {z} and have uniformly
bounded overlap depending only on 7.
We define open balls B; = 2B., i = 0,1,2,.... Here 2B} is the ball with

same center as B] but twice the radius of the ball B;. We write x; = v(¢;) and
r; = % dist(z;, 00 U {z}).
If r; = |2; — 2| then dist(z, B;) = 2r; < 2rl.1/s. If r; = & dist(z;,09) then

the definition of an (s, m)-uniform domain yields
dist(z, B;) < dist(z, z;) < t; < MY* dist(a;, 0Q) /5 < 2/ 5p )/,

We choose d = max{2,2M'/%}. Since r; < t; properties of (s, m)-uniform do-
mains imply

1/s

i

MY (d + 2)|z — y™*.

dist(z, B;) + 2r; < dril/s +2r; < (d+2)r

<ld+2)t)/° <1

Hence, we obtain B; C B"(z,C|z — y|™/*) for every i, i = 0,1,..., where
C=2IMYs(d+2).

We renumber the balls. Let By be as above. If we have chosen balls B;,
i =0,1,...,m, then we choose a ball B, that is the ball for which z; € B,,
and t; < t,,. We recall that +'(t;) = z; and v/ () = @, . Hence r; — 0 and
T — x,as i — 00.

Next we prove that every point in the domain 2 belongs to a finite number
of balls B; only. The point x does not belong to any ball. Let 2’ be an arbitrary
point in the domain Q. Let » = |2’ — z|. The point 2’ cannot belong to those
balls B; for which r; < %|acZ — x| < %T. If ' € B; then dist(z,B;) < r and
furthermore |z — x;| < 2r. Thus we obtain that if 2’ € B; then %T <7r; <r. The
construction of the Besicovitch covering theorem [M, Theorem 2.7, p. 30] implies
that balls with radius of % of original balls are disjoint. Thus z’ belongs to less
than or equal to

n /
B 20| o
B0, 1)
balls B;. The constant C is from the Besicovitch covering theorem.

Finally we prove the property (1). Assume that r; = 3 dist(z;,09) and

Tit1 = %dist(a:iﬂ,aﬂ). Since ;1 € B(z;,r;) we obtain dist(z;y1,00Q) > r;.

This yields
Bl (1” ) —on,
| Bit1] 5T
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It r, = %|wz — x| and rj41 = %|xi+1 — x| then

n
Bl (1“ ) =2,
| Bit1] 5T

If r;, = %dist(:z:i,GQ) and r;1q = %‘xi+1 — x| we obtain

P () < (B e
|Bi—|—1| Ti4+1 Ti4+1

Similarly if r; = 1|z; — z| and riy1 = 3 dist(z;41,0Q) then

| B;|

< 2™,
|Bit1]

We have proved that |B;| < 2"|B;;1|. Similar arguments imply that |B;| >
37"|B;+1]|. This yields |B; U B;y1| < C|B; N B;4+1]|; here the constant C' depends
only on the dimension n.

Using again the same arguments for the point y imply Lemma 4.1. o

Next we prove our main theorem. In the proof we need only the chain of balls
constructed in Lemma 4.1, the Lebesgue differentiation theorem, the Poincaré
inequality in a ball and properties of the Riesz potential.

4.2. Theorem. Let 1 <s<n/(n—1),0<m <1 and 1 <p <oo. If
Q2 C R" is a bounded (s, m)-uniform domain then there exists a constant C' > 0
such that every u € WHP(Q) satisfies the inequality

(4.3) u(z) —u(y)| < Clz —y|* (A Vu(x) + A Vu(y)),

for almost every z,y € Q with « =m(n—s(n—1))/s. Here .#Nu is the Hardy—-
Littlewood maximal operator of the function Vu. The constant C' depends only
on n, s, m and the uniform constant of €.

Hajtasz and Martio proved that if 2 C R™ is a bounded uniform domain then
every u € WHP(Q) satisfies the inequality (4.3) for every 1 < p < oo, with a =1,
[HM, Lemma 14, p. 243]. Our proof is a modification of the proof of Hajtasz and
Martio.

Proof. We may assume that diam(Q2) < 1. Let {B;}32__ be a chain of balls
from the point x € ) to the point y € () as in Lemma 4.1. Then by the Lebesgue
differentiation theorem [St, Chapter 1, Section 1.8] we have up, — u(z), whenever
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i — —o0, and up, — u(y), whenever i — oo, for almost every z,y € 2. Thus we
have

]u(:c) - u(y)’ < Z ’/U/Bi - uBH»l’

1=—00

oo

< Z (‘uBz - uBiﬂBi+1| + ’uB¢+1 — UB;NB;4+1 |)

1=—00
][ ’"LL —UB; 14 ‘)
BiﬂBi+1

oo

=2 (oo

1=—00

and furthermore by Lemma 4.1

o0

)~ = Y (pap ju—us,

i——o00 BiﬁBi+1
F— | )
—_— U —upg,
|B; N Bj1] BiNBii1 o

= 1
Si;m(|BiﬂBi+1| /Bi v
—f—;/ |U_UBZ- 1|)
|Bi N Bit1| JB,,, +
C
= Z (|B|/ +W/B )

<2CZ][

1=—00

The Poincaré inequality in a ball with a radius r;, [GT, 7.45, p. 157], yields

u(z) —ul(y \<CZ7~2][ ’W|<CZ/ Vul

1= 1=—00

Lemma 4.1 implies that for each z € B;, |z — 2| < (d+ 2)r; Y% and B; C
B"(z,Cl|z — y|™/*), when i < 0 and |y — 2| < (d + 2)r 21/ and, when i > 0,
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B; ¢ B"(y,C|z — y|™*). We obtain

|Vu(z) |Vu
)~ uly \<CZ/ a0y [ o

\Y
<o v,
Bn(m’c|x_y|m/s) r — Z’S n
Vv
of LTI
B (y,Cla—y|m/s) [y — 27"

We put |Vu| = 0 in the complement of the domain Q. Since s(n — 1) < n
we obtain by [Z, Lemma 2.8.3, p. 85] that

u(z) = u(y)] < C(jz =y "D )y V()
+ o =y s Vu(y))
= C|z — y|mn—sr=1)/s (Ao ymrs V(@) + M)y ymss Vu(y)).
This completes the proof of Theorem 4.2. o

5. Sharpness of Theorem 4.2

Assume that a bounded domain 2 C R™ satisfies the inequality (4.3) for all
1 < p < oo with some exponent o > 0. We obtain by the inequality (4.3) that

@) - § ulw) dy\ < £ luta) = )l dy

(5.1) < Cdiam(Q)* <MVu ][MVU )dy)

= € diam(@)" <Mvu<x) + (]{2 (MVu(y))” dy) 1/p>

and the boundedness of the Hardy-Littlewood maximal operator, [St, Theorem 1,
p. 6], yields

|u —uq| Lro) < Cdiam(Q)*||MVu| rro) < Cdiam(Q)*(|Vul|1r )

as in [H2, Lemma 2, p. 407]. Thus Theorem 4.2 implies that a bounded (s, m)-
uniform domain @ C R™", 1 < s <n/(n—1) and 0 < m < 1, is a p-Poincaré
domain for every 1 < p < oo. W. Smith and D. Stegenga showed that an s-John
domain is a p-Poincaré domain for every 1 < p < 0o, if 1 < s <n/(n—1), [SS,
Theorem 10, p. 86]. Hajtasz and Koskela proved with a “mushroom” example that
the limit is sharp in the sense that s cannot be greater than n/(n — 1), [HK2,
Corollary 6.

We show that if s > n/(n — 1) then an (s, 1)-uniform domain is not necessar-
ily a p-Poincaré domain for every 1 < p < oco. The following rooms and passages
example is by R. Hurri [Hu, Chapter 5, p. 17].
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5.2. Example. Let Q = |J;2,(Roi—1 U P»;), where the sets Ry, and P,
are defined as follows. Let a > 1. Let h; = 27%, §9; =2-272% and d; = Z;Zl 277
for every i =1,2,.... We define

Ryi—1 = (dai—1 — hai—1,d2i—1) X (—5hai-1, %hzi—1)n_1,
Py = [d2i—17d2i—1 + hQi} X (—%521', %5%)”_1-

By Hurri [Hu, Remark 5.9, p. 19] the domain  is a p-Poincaré domain if and
only if p>(n—1)(a—1).

Since there exists a constant C' > 0 so that %522- > C(1 — dg;—1)* for every
i=1,2,..., the domain Q is an (a,1)-uniform domain. Let € > 0 be arbitrary.
If a = (n/(n—1)) +e¢, then the domain  is not a p-Poincaré domain for any
1<p<l+e(n—1).

5.3. Corollary. Let s > n/(n—1) and 0 < m < 1. There exists a
bounded (s, m)-uniform domain where the inequality (4.3) does not hold for all
l1<p<(s—1)(n—1) with any a > 0.

Proof. Let ¢ > 0. Let © C R" be the bounded (s, m)-uniform domain,
s = (n/(n—1)) 4+ € and m = 1, constructed in Example 5.2. Assume that there
exist constants C,« > 0 such that for every u € WHP(Q), 1 < p < oo, we have

(5.4) u(x) —u(y)| < Clo —y|* (A Vu(z) + .4 Vu(y)),

for almost every z,y € €. As in (5.1) this implies that the domain Q is a p-
Poincaré domain for all 1 < p < oo.

In Example 5.2 we showed that the domain €2 is not a p-Poincaré domain
for any 1 < p < 1+ e(n —1). Thus the inequality (5.4) cannot hold for all
l1<p<1l+e(n—1) with any a > 0 in the domain Q. o

Following Hajlasz, [H2], we say that a domain D is §-regular, § > 0, if there
exists a constant b > 0 such that

(5.5) |B"(z,7) N D| > br®
for every x € D and for every 0 < r < diam(D). It is easy to see that every
bounded (s, m)-uniform domain is (s(n — 1)+ 1)-regular.

Using the method of Hajlasz, [H2, Theorem 6, p. 410], it is easy to prove the

following Sobolev—Poincaré inequality. In the proof we need only the inequality
(4.3) and the property (5.5).

5.6. Lemma. Assume that 2 C R"™ is a bounded §-regular domain, § > 1,
which satisfies the inequality (4.3) with an exponent 0 < a < 1. If 1 <p < d/«,
then for every u € WHP(Q) we have

(5.7) lu = ugllLe () < ClIVullLr (o),
with p* = dp/(d — ap).
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Proof. We may assume that diam(2) < 1. Let
Ep ={z € Q: MVu(z) < 2F}, keZ.
There exists a constant C' > 0 such that
(5.8)  C' Y 2B\ Byl < / M|VulPdz < C Y~ 2"2|Ep \ Ey_l.
1=—00 Q 1=—00

Let ap = esssup,¢p, |u(x)|. We will estimate a, in terms of a_1. Let x € Ej.
Let B™(x,r) be a ball with a radius r = 2b=1/%|Q\ Ej_1|'/®. We obtain by the
d-regularity property (5.5)

|B"(z,7) N Q| > br’ > |Q\ Ex_1].

Hence there exists y € B"(z,7) N Ex_1. By the inequality (4.3) the function u|g,
is a-Holder continuous with a constant C2%+!. We obtain

u(@)] < Ju(@)—uly)|+|u(y)] < Cla—y|*2" +ap1 < C|Q\ By 1|25 a5 1.
The definition of Ej yields

(5.9) 2\ By 27 < ClaVull?,

hence we obtain that

ag < 02_kpa/5||///Vu||i%{g)2k+1 + ag—1

< CP | Tul B30 + ary.

(5.10)

We may assume that .#ZVu(xz) > 0 for every x € Q since otherwise |Vu| =0
which implies that u is a constant function almost everywhere in 2. Let b, =
essinf,ep, |u(z)|. It is clear that by < ||u||Lp(Q)|Ek|_1/p. Since A#Vu > 0 ev-
erywhere then there exists ko such that |Ey,_1| < 1|Q| and |Eg,| > 3|Q|. We
obtain by the inequality (5.9) that

Qko S CH%VUHLJJ(Q) ’Q \ Eko—l‘_l/p'

Since the function u|g, is a-Holder continuous with a constant C2F+! we
obtain ay < by + 2! diam(Q)*. This yields

(5.11) ary < ||ull o) Bro | 7P + C diam(Q)* || Vul| 1o 0y |22 7P
< Ol VP (Jlull o) + diam(2)* .22 Vul Lo (o))
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Since p < §/«, it follows, for k > kg, by the inequality (5.10) and the monotonicity
of ap that

k
ap < C’H//quHiiég) (Z 2i(1—(Pa/6))) + ap,

i=ko

(5.12) pass [ i(1—(pa/s))
SCH%VUHLP(Q) Z 2 g + ak,

1=—00

< Ot Vul [, 2K~ @) 4 gy .

Since p* = pd/(0 — ap) the inequalities (5.8), (5.11), (5.12) and the regularity
property (5.5) yield that

A\ /P o0 . . 1/p*
(/|u) s( S |Ek\Ek_1|+a%zO|Ekor)

k=ko+1

« * 5 > _ a *
e (AT SE LR

k=—o0

. 1/p"
B\ Bl + o 0]
ap® /8
< C (Il vulyre) |Vl o
+

. o * 1/p*
CIOI™7 ([[ull e + diam(Q)* AVl () [2])
< Ollulle oy + 12Vl Leq))-

Since u—ug € WHP(Q), Q is a p-Poincaré domain and the Hardy—Littlewood
maximal operator is bounded, [St, Theorem 1, p. 5], we obtain

lu —uallLr (@) < Cllu —uallLr) + 4V (u = ua)lLr ) < Cl[VullLr(o). o

We write § = s(n—1)+1. Hajtasz and P. Koskela have proved the inequality
(5.7) for s-John domains with a better exponent. Let @ C R™ be an s-John
domain, s > 1, then the inequality (5.7) holds with 1 < p < p* < np/(d —p),
[HK2, Corollary 6, p. 20]. The limiting case p* = np/(d — p) is by T. Kilpeldinen
and J. Maly [KM]. The exponent is the best possible in the class of s-John do-
mains, [HK2]. It is also the best possible in the class of (s, m)-uniform domains.
Let s > 1. Using the (s,1)-uniform domain constructed by Hurri, see Exam-
ple 5.2, we obtain as in [Hu, Remark 5.8, p. 19], by replacing the exponent —n/p
by the exponent —n/p*, that the exponent np/(d — p) is the best possible.

5.13. Corollary. Let Q C R"™ be a bounded (s, m)-uniform domain, with
1 <s<mn/(n—1) and 0 < m < 1. If there exists an « > 0 such that the
inequality (4.3) holds for all 1 < p < oo then
s(n—1)+1

agT(n—s(n—l))<1.
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If s =n/(n—1) then Q does not satisfy the inequality (4.3) for all 1 < p < o
with any a > 0.

Proof. Let 1 < s <n/(n—1). Lemma 5.6 shows that the inequality (4.3)
with an exponent « > 0 and the d-regular property (5.5), 6 = s(n—1)+1, implies
the Sobolev—Poincaré inequality with p* = dp/(d — ap).

The exponent dp/(d — ap) has to be less than or equal to the best possible
exponent np/(6 — p) for every 1 < p < oo. This gives

agi(n—5+p)
np

for every 1 < p < oo. As p— 1 we see that

a< é(n —60+1).
n
Let s = n/(n—1). Assume that ) is a bounded (s, m)-uniform domain
which satisfies the inequality (4.3) with some o > 0 for every 1 < p < 0.
By Lemma 5.6 we obtain that () satisfies the Sobolev—Poincaré inequality with
(n+1)p/(n+1— ap). Thus we obtain

()0

for every 1 < p < oo. As p — 1 we see that a < 0. Hence the domain 2 cannot
satisfy the inequality (4.3) with any « > 0 for small p > 1. This completes the
proof of Corollary 5.13. o
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