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Abstract. In this paper we examine implications of a mapping being bilipschitz with re-
spect to the Apollonian metric. The main results are improvements of results by Gehring and
Hag which aim at describing Apollonian isometries. We also derive results on quasi-isotropy and
quasiconvexity of the Apollonian metric.

1. Introduction

This paper continues the investigation by the author on the Apollonian met-
ric started in [12], which in turn was a continuation of work by A. Beardon [3],
A. Rhodes [19], P. Seittenranta [20], F. Gehring and K. Hag [9] and Z. Ibragi-
mov [15]. The same metric has also been considered, from a different point of
view, in [1], [4], [5] and [16]. This section contains the statements of the main
results, which concern Apollonian bilipschitz mappings. We start by presenting
some previous results from the above-mentioned papers. The notation used con-
forms largely to that of [2] and [24], the reader can consult Section 2 of this paper,
if necessary.

We will be considering domains (open connected non-empty sets) G in the
Möbius space Rn := Rn ∪ {∞} . The Apollonian metric, for x, y ∈ G Ã Rn , is
defined by

(1.1) αG(x, y) := sup
a,b∈∂G

log
|a− x|
|a− y|

|b− y|
|b− x|

(with the understanding that if a =∞ then we set |a−x|/|a−y| = 1 and similarly
for b). It is in fact a metric if and only if the complement of G is not contained
in a hyperplane or sphere, as was noted in [3, Theorem 1.1].

In the paper [3] Alan Beardon speculated that the isometries of the Apollonian
metric are only the Möbius mappings, at least for many domains. He proved that
conformal mappings of plane domains whose boundary is a compact subset of the
extended negative real axis which are Apollonian isometries are indeed Möbius
mappings, [3, Theorem 1.3]. The next step in the investigation of Apollonian
isometries was taken in [9], where the following theorem was proved:
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Theorem 1.2 ([9, Theorem 3.11]). Let G ⊆ R2 be a quasidisk and f :G →
R2 be an Apollonian bilipschitz mapping. The following conditions are equivalent:

(1) f(G) is a quasidisk.
(2) f is quasiconformal in G .

Moreover, if either of the two conditions holds then f = g|G , where g: R2 → R2

is quasiconformal.

Remark 1.3. Gehring and Hag actually considered Apollonian isometries
instead of Apollonian bilipschitz mappings. Their proof carries over directly to
the bilipschitz case, however.

If we replace quasidisks, quasiconformal mappings and bilipschitz mappings
by disks, conformal mappings and isometries in the previous theorem we get the
following result, from the same paper.

Theorem 1.4 ([9, Theorem 3.16]). Let G ⊆ R2 be a disk and let f :G→ R2

be an Apollonian isometry. The following conditions are equivalent:

(1) f(G) is a disk.
(2) f is a Möbius mapping of G .

Moreover, if either of the two conditions holds then f = g|G , where g: R2 → R2

is a Möbius mapping.

As a last result from the paper of Gehring and Hag we quote the following
theorem, which is a stronger version of the previous one:

Theorem 1.5 ([9, Theorem 3.29]). If G ⊆ R2 is a disk and f :G → R2 is
an Apollonian isometry then

(1) f(G) is a disk and
(2) f = g|G , where g: R2 → R2 is a Möbius mapping.

Note that this result solves Beardon’s problem for the disk. 1 In the paper
[12] the first step was taken in generalizing these results to Rn . Specifically, it
was proven that the implication (1) ⇒ (2) of Theorem 1.2 holds in Rn as well.

Theorem 1.6 ([12, Corollary 1.7]). Let G ⊆ Rn be a quasiball and f :G→
Rn be an Apollonian bilipschitz mapping. If f(G) is a quasiball then f = g|G
where g: Rn → Rn is quasiconformal.

In this paper we complement these results by three new ones, two in space
and one in R2 . Our first result is the strong version of Theorem 1.2 and is valid
only in the plane.

1 After the completion of this paper the author was informed that Zair Ibragimov has consid-
ered this problem in his thesis, [15]. He concentrates on domains that are complements of so-called

constant width sets and thus his results are complementary to those derived here.
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Theorem 1.7. If G ⊆ R2 is a quasidisk and f :G → R2 is an Apollonian
bilipschitz mapping then

(1) f(G) is a quasidisk and
(2) f = g|G , where g: R2 → R2 is quasiconformal.

The next result is an extension of Theorem 1.2, which is, however, not stated
in terms of quasiballs but in terms of A-uniform domains. A-uniform domains
are introduced in Definition 6.5 of this paper and are defined as those domains
that satisfy the relation kG ≤ KαG for some fixed K ≥ 1, where kG denotes
the quasihyperbolic metric from [11]. We show that in general quasiballs are A-
uniform domains (Corollary 6.9) and that in the plane these two concepts define the
same class of simply connected domains (Corollary 6.10). Whether these classes
of domains coincide in space is an open problem. It follows, then, that the next
result implies Theorem 1.2, although it is not the most natural generalization of
that result.

Theorem 1.8. Let G ⊆ Rn be A-uniform and let f :G → Rn be an Apol-
lonian bilipschitz mapping. The following conditions are equivalent:

(1) f(G) is A-uniform.
(2) f is quasiconformal in G .

Notice that we are not able to prove the last statement of Theorem 1.2 (that
f would be a restriction of a quasiconformal mapping from Rn onto Rn ) for the
case n ≥ 3.

Our last result along this line of investigation is a generalization of [9, The-
orem 3.29] to Rn , which is also proved quite similarly, although the geometry
becomes a bit more complicated in space.

Theorem 1.9. If G ⊆ Rn is a ball and f :G→ Rn is an Apollonian isometry
then

(1) f(G) is a ball and
(2) f = g|G , where g: Rn → Rn is a Möbius mapping.

We present a schema of the results in Table 1, where the results from this
paper are in boldface. We consider the results as varying in three dichotomic
dimensions. One dimension is whether they are valid in the plane or in space, a
second is whether we consider quasiballs, quasiconformal mappings and Apollonian
bilipschitz mappings or balls, conformal mappings and Apollonian isometries and
a third is whether the result is weak (i.e. implies the equivalence of the conditions)
or strong (i.e. implies the conditions). Notice that the results for quasiballs are
lacking.

As a final result the following theorem summarizes several characterizations
of planar quasidisks in terms of the Apollonian metric. These add to the legion of
equivalent conditions given e.g. in [8].
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Disk Quasidisk Ball Quasiball

Weak Th. 1.4 Th. 1.2 Th. 1.8 (Ths. 1.6, 1.9)

Strong Th. 1.5 Th. 1.7 Th. 1.8

Table 1. A schematic representation of the main results.

Theorem 1.10. Let G be a simply connected planar domain. The following
statements are equivalent:

(1) The domain G is a quasidisk.

(2) There exists a constant K such that hG ≤ KαG , where hG denotes the
hyperbolic metric [9, Theorem 3.1].

(3) The domain G is A-uniform, i.e. there exists a constant K such that kG ≤
KαG (Corollary 6.10).

(4) The metric αG is quasiconvex, i.e. there exists a constant K such that for
every x, y ∈ G there exists a path γ connecting x and y in G with lαG(γ) ≤
KαG(x, y) (Corollary 7.4).

Remark 1.11. Notice that of the conditions in the previous theorem the
fourth one involves only the Apollonian metric.

The structure of the rest of this paper is as follows. In the next section we
review the terminology and notation that is in common use; this section can be
skipped or merely perused by the reader acquainted with the field. In Section 3
we present notation and terminology that is not as well known, a large part of
which is specific to the Apollonian metric. In Section 4 we introduce the concept
of quasi-isotropy, consider its connection to the comparison property and derive
some preliminary results that are used in later sections. In Section 5 we introduce
the inner metric approach and consider two methods of deriving estimates for
the inner metric of the Apollonian metric. In Section 6 we introduce A-uniform
domains, which allow us to use the results on quasi-isotropy and inner metrics to
prove Theorem 1.8. In Section 7 we prove Theorem 1.7 combining the inner metric
approach with an estimate of the hyperbolic metric and a lemma from [12]. In
Section 8 we prove Theorem 1.9 using lemmata from [9]. In an appendix we prove
some simple results relating to Ferrand’s and Seittenranta’s metrics.

2. Common notation and terminology

As mentioned in the introduction, the notation used conforms largely to that
in [2] and [24]. We denote by {e1, e2, . . . , en} the standard basis of Rn and by n
the dimension of the Euclidean space under consideration and assume that n ≥ 2.
We denote by xi the ith coordinate of x ∈ Rn . The following notation will be
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used for balls, spheres and the upper half-space (x ∈ Rn and 0 < r <∞):

Bn(x, r) := {y ∈ Rn: |x− y| < r},
Sn−1(x, r) := ∂Bn(x, r),

Bn := Bn(0, 1),

Sn−1 := Sn−1(0, 1),

Hn := {y ∈ Rn: yn > 0}.

We use the notation Rn := Rn ∪ {∞} for the one point compactification
of Rn . We define the spherical (chordal) metric q in Rn by means of the canonical
projection onto the Riemann sphere, hence

q(x, y) :=
|x− y|√

1 + |x|2
√

1 + |y|2
, q(x,∞) :=

1√
1 + |x|2

.

We consider Rn as the metric space (Rn, q) , hence its balls are the (open) balls
of Rn , complements of closed balls and half-spaces. If G ⊆ Rn we will denote
by ∂G , Gc and G its boundary, complement and closure, respectively, all with
respect to Rn . In contrast to topological operations, we will always consider
metric operations with respect to the ordinary Euclidean metric, unless specified
otherwise.

Let (G, d) and (G′, d′) be metric spaces. The mapping f : G→ G′ is said to
be K-bilipschitz if

d(x, y)/K ≤ d′
(
f(x), f(y)

)
≤ Kd(x, y)

for all x, y ∈ G . If no metric spaces are specified then K-bilipschitz is understood
to mean K-bilipschitz when considered a mapping from (G, | · |) to (G′, | · |) . A
mapping is bilipschitz if it is K-bilipschitz for some 1 ≤ K <∞ . The expression
“f is bilipschitz with respect to the Apollonian metric in G” means that f is
bilipschitz when considered as a mapping from (G,αG) to

(
f(G), αf(G)

)
and

similarly for other domain dependent metrics.
Let G ⊆ Rn be a domain and f : G → Rn be an embedding. The linear

dilatation of f at x ∈ G \ {∞, f−1(∞)} is defined by

H(f, x) := lim sup
r→0

sup{|f(x)− f(y)| : |x− y| = r}
inf{|f(x)− f(z)| : |x− z| = r} .

The linear dilatation constant of f , H(f) , is the essential supremum of H(f, x)
over x ∈ G\{∞, f−1(∞)} . A mapping is said to be quasiconformal if supH(f, x)
<∞ , where the supremum is again over G\{∞, f−1(∞)} . For the connection be-
tween different constants of quasiconformality, see [6]. Clearly every K-bilipschitz
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mapping is quasiconformal with linear dilatation constant less than or equal to K2 .
For basic theory of quasiconformal mappings see e.g. [17] for n = 2 and [21] for
n ≥ 2. We say that a domain G ⊆ Rn is a quasiball if there exists a quasiconfor-
mal mapping f : Rn → Rn such that G = f(Bn) . A quasiball in R2 is called a
quasidisk.

The cross-ratio |a, b, c, d| is defined by

|a, b, c, d| := q(a, c)q(b, d)

q(a, b)q(c, d)

(
=
|a− c||b− d|
|a− b||c− d|

)

for a 6= b , c 6= d and a, b, c, d ∈ Rn , where the second equality is valid if a, b, c, d ∈
Rn . A homeomorphism f : Rn → Rn is a Möbius mapping if

|f(a), f(b), f(c), f(d)| = |a, b, c, d|

for every quadruple a, b, c, d ∈ Rn with a 6= b and c 6= d . For more information on
Möbius mappings see e.g. [2]. Using the cross-ratio we can express the Apollonian
metric as

αG(x, y) = log sup
a,b∈∂G

|a, y, x, b|,

for x, y ∈ G Ã Rn . Indeed, one can define the Apollonian metric for domains
in Rn instead of domains of Rn . However, since we are ultimately interested
in the metric “modulo” Möbius mappings, the normalization ∞ /∈ G is no real
restriction. Moreover, the jG metric is only defined in proper subdomains of Rn ,
hence not assuming ∞ /∈ G would imply that we would have to start and end every
proof by using an auxiliary Möbius mapping, or use a Möbius invariant version of
jG such as the metric jG,a from [14]. We note that the inversion in Sn−1 , defined
by x 7→ x/|x|2 for x ∈ Rn \ {0} , 0 7→ ∞ and ∞ 7→ 0, is a Möbius mapping.

Some miscellaneous notation and terminology:

– For x ∈ G Ã Rn we denote δ(x) := d(x, ∂G) := min{|x− z| : z ∈ ∂G} .
– We denote by xy the line through x and y and by [x, y] the closed segment

between x and y .
– We use the expressions “satisfies condition X”, “has property X” and “is an

X domain” interchangeably.

We end this introduction by citing the so-called Bernoulli inequalities which hold
for s ≥ 0:

log(1 + as) ≤ a log(1 + s) for 1 ≤ a,
log(1 + as) ≥ a log(1 + s) for 0 ≤ a ≤ 1.

These inequalities follow from the fact that a 7→ log(1 + as)/a is decreasing on
(0,∞) for constant s > 0.
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3. Specific notation and terminology

In this section we present notation and results which are more or less specific
to the Apollonian metric. Let us start by defining some auxiliary metrics, which
have also been used in other contexts.

Assume throughout this paragraph that x, y ∈ G Ã Rn . The jG metric
from [23] is defined by

jG(x, y) := log

(
1 +

|x− y|
min{δ(x), δ(y)}

)
.

Note that this metric is sometimes defined, following [10], by

ĵG(x, y) =
1

2
log

[(
1 +
|x− y|
δ(x)

)(
1 +
|x− y|
δ(y)

)]
,

a fact which makes no greater difference in the present context, since 1
2jG ≤ ĵG ≤

jG for every G Ã Rn , and our approximations will not be this exact, anyway.
The quasihyperbolic metric from [11] is defined by

kG(x, y) := inf
γ

∫ |dz|
δ(z)

,

where the infimum is taken over all rectifiable curves joining x and y in G .

Definition 3.1. We say that a domain G Ã Rn has the comparison property
if there exists a constant K such that jG/K ≤ αG ≤ 2jG .

Note that the upper bound αG ≤ 2jG is valid in every domain G Ã Rn by [3,
Theorem 3.2]. The comparison property was a key concept in [12], allowing us to
prove Theorem 1.6 among other results. Comparison domains will be important to
us also in this investigation. Indeed, the proof of Theorem 1.8 consists essentially
of showing that the Apollonian quasiconvexity property implies the comparison
property for simply connected planar domains (Proposition 7.3).

We end this section by presenting the Apollonian balls approach. This ap-
proach has previously been used in [3], [5] and [20, Theorem 4.1], although this
presentation is from Section 5.1 of [12].

Let us define

qx := sup
b∈∂G

|b− y|
|b− x| , qy := sup

a∈∂G

|a− x|
|a− y| .

Then, by definition, αG(x, y) = log(qxqy) . Moreover the balls

(3.2)
Bx := {z ∈ Rn : |z − x|/|z − y| < 1/qx} and

By := {z ∈ Rn : |z − y|/|z − x| < 1/qy}
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lie completely in G . We collect some immediate results regarding these balls.

(1) Bx ⊆ G and Bx ∩ ∂G 6= ∅ , similarly for By .

(2) If B1 and B2 are balls that satisfy the conditions of item (1) then there exists
x ∈ B1 and y ∈ B2 such that Bx = B1 and By = B2 .

(3) If ix and iy denote the inversions in the spheres ∂Bx and ∂By then y =
ix(x) = iy(x) .

(4) Since ∞ /∈ G we have qx, qy ≥ 1. If moreover ∞ /∈ G, then qx, qy > 1.

(5) Let x0 denote the center of Bx and rx its radius. We have

|x− x0| =
|x− y|
q2
x − 1

=
rx
qx
.

(6) The ball Bx in (3.2) is decreasing (in the partial order defined by set inclusion)
in qx for fixed x and y .

4. Quasi-isotropy

In this section we introduce the concept of quasi-isotropy of a metric and
consider some basic implications of quasi-isotropy for the Apollonian metric.

Definition 4.1. We say that a metric space (G, d) with open G ⊆ Rn is
K-quasi-isotropic if

lim sup
r→0

sup
{
d(x, z) : |x− z| = r

}

inf
{
d(x, y) : |x− y| = r

} ≤ K

for every x ∈ G . A metric which is 1-quasi-isotropic is said to be isotropic,
whereas a metric that is not K-quasi-isotropic for any K is said to be anisotropic.

Since the only metric that we will be considering which is not isotropic is the
Apollonian metric (see Example 4.4), we say that a domain G Ã Rn is quasi-
isotropic if (G,αG) is, similarly for isotropic and anisotopic.

Since the metric jG is isotropic, it follows that every domain which has the
comparison property is also quasi-isotropic, as can be seen from the following
inequalities

lim sup
r→0

sup
{
αG(x, z) : |x− z| = r

}

inf
{
αG(x, y) : |x− y| = r

} ≤ lim sup
r→0

sup
{

2jG(x, z) : |x− z| = r
}

inf
{
jG(x, y)/L : |x− y| = r

} = 2L,

where L is the constant from the definition of the comparison condition.

The following lemma provides an alternative characterization for the quasi-
isotropic domains, except that the constant may be off by a factor of 2.
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Lemma 4.2. If the domain G Ã Rn is L -quasi-isotropic then

(4.3)
1

L
≤ inf
x∈G

lim inf
z→x

αG(x, z)

jG(x, z)
.

Conversely, if (4.3) holds then G is 2L -quasi-isotropic.

Proof. Let us start by noting that

αG(x, y) = sup
a,b∈∂G

log
|a− x|
|a− y|

|b− y|
|b− x| = sup

a,b∈Gc
log
|a− x|
|a− y|

|b− y|
|b− x|

so that it does not matter whether we take the supremum over ∂G or over Gc .
Assume that G is L -quasi-isotropic and fix x ∈ G . Let w ∈ ∂G be such that

|x− w| = δ(x) and set r := (w − x)/|x− w| . For 0 < ε < |x− w|
αG(x, x+ εr)/jG(x, x+ εr) ≥ 1,

as is directly seen by choosing a = w and b = ∞ in definition of the Apollonian
metric, (1.1), for a lower bound. This implies that

lim inf
z→x

αG(x, z)

jG(x, z)
= lim inf
|x−z|=ε→0

αG(x, z)

αG(x, x+ εr)

jG(x, x+ εr)

jG(x, z)

αG(x, x+ εr)

jG(x, x+ εr)

≥ lim inf
|x−z|=ε→0

αG(x, z)

αG(x, x+ εr)

jG(x, x+ εr)

jG(x, z)
.

It is easy to see that

jG(x, x+ εr)

jG(x, z)
≥ log

(
1 + ε/

(
δ(x) + ε

))

log
(
1 + ε/

(
δ(x)− ε

)) ,

for |x− z| = ε < δ(x) . Since t 7→ log(1 + t)/t is decreasing we find that

log(1 + u)

log(1 + v)
≥ u

v

(for positive u and v ) if and only if u ≤ v . Therefore we get

jG(x, x+ εr)

jG(x, z)
≥ log

(
1 + ε/

(
δ(x) + ε

))

log
(
1 + ε/

(
δ(x)− ε

)) ≥ δ(x)− ε
δ(x) + ε

.

Combining the previous two estimates gives

lim inf
z→x

αG(x, z)

jG(x, z)
≥ lim inf
|x−z|=ε→0

αG(x, z)

αG(x, x+ εr)

δ(x)− ε
δ(x) + ε

≥ 1

L
.

Assume conversely that (4.3) holds. Then

1

L
≤ lim inf

z→x
αG(x, z)

jG(x, z)
= lim inf
|x−y|=|x−z|→0

αG(x, z)

jG(x, y)
≤ lim inf
|x−y|=|x−z|→0

αG(x, z)

αG(x, y)/2
,

where we again used that jG is isotropic, as in the previous paragraph. Hence G
is 2L -quasi-isotropic.
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We are now ready to present an example of a domain which is not quasi-
isotropic.

Example 4.4. The domain G := Hn \ [0, en] is not quasi-isotropic. For let
t > 0 and consider the points xt := (1 + t)en and yt = xt + re1 (r is specified
later). We define

p1 := sup
a∈∂Hn

|xt − a|
|yt − a|

, p2 := sup
b∈∂Hn

|yt − b|
|xt − b|

, and p3 := sup
c∈[0,en]

|yt − c|
|xt − c|

.

By what amounts to dividing the supremum in the definition of αG into parts we
get

αG(xt, yt) = log max{p1p2, p3p2}.
Since p1, p2, p3 ≥ 1 and αHn(xt, yt) = log(p1p2) we get

αG(xt, yt) = log max{p1p2, p3p2} ≤ log(p1p2p3) = αHn(xt, yt) + log p3.

Since αBn = hBn (see for instance [3]) it follows from [2, p. 35] that

αHn(xt, yt) = arcosh
(
1 + r2/

(
2(1 + t)2

))
.

A simple calcualtion shows that p3 =
√
t2 + r2 /t =

√
1 + (r/t)2 . Therefore we

have shown that

αG(xt, yt) ≤ arcosh
(
1 + r2/

(
2(1 + t)2

))
+ log

√
1 + (r/t)2 .

On the other hand we see that jG(xt, yt) = log(1 + r/t) . Let us choose r = t2 .
Then we find that

αG(xt, yt)

jG(xt, yt)
≤ arcosh

(
1 + t4/

(
2(1 + t)2

))
+ log(1 + t2)/2

log(1 + t)
.

But this means that
αG(xt, yt)

jG(xt, yt)
→ 0

as t→ 0. Hence, by Lemma 4.2, G is not quasi-isotropic.

Using the previous lemma we can also show that the quasi-isotropy property
implies a local version of the comparison property.

Lemma 4.5. Let G be L -quasi-isotropic. For every compact subset K of G
and every ε > 0 there exists a constant δ > 0 such that αG(x, y) ≥ jG(x, y)/(L+ε)
for every x, y ∈ K with |x− y| < δ .
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Proof. By Lemma 4.2 we know that

lim inf
y→x

αG(x, y)/jG(x, y) ≥ 1/L.

Next we note that it follows easily from the definitions of αG and jG that t 7→
αG(x, x + te)/jG(x, x + te) is continuous for |t| < 1

2δ(x) , where e is a fixed unit
vector. It follows that for every x ∈ K there exists a t0(x, re) > 0 such that
αG(x, x+ te)/jG(x, x+ te) ≥ 1/(L+ ε) for |t| < t0(x, e) , moreover, by continuity
of αG/jG , the function t0 may be chosen to be continuous in x and e . Since x
is in the compact set K and e is in the compact set Sn−1 , we see that the claim
of the lemma holds for δ = minx,e t0(x, e) > 0.

Lemma 4.6. Let G Ã Rn be an L -quasi-isotropy domain and x ∈ G . For
K ≥ 1 we have

lim sup
z→x

{
sup

{
αG(x, y)

αG(x, z)
:
|x− z|
K

≤ |x− y| ≤ K|x− z|
}}
≤ 2KL.

Proof. For y, z ∈ Bn
(
x, δ(x)/K

)
such that |x− z|/K ≤ |x − y| ≤ K|x − z|

let w = wy,z be the point on the ray from x through y with |x − w| = |x − z| .
Since log(1 + u)/ log(1 + v) ≤ max{1, u/v} for u, v > 0 (proved as in the proof of
Lemma 4.2) we find that

jG(x, y)

jG(x,w)
≤ max

{
1,

(
δ(x) +K|x− z|
δ(x)−K|x− z|

) |x− y|
|x− w|

}
≤ Kδ(x) +K|x− z|

δ(x)−K|x− z| .

Hence we get

lim sup
z→x

{
sup

αG(x, y)

αG(x, z)

}
≤ 2 lim sup

z→x

{
sup

jG(x, y)

αG(x, z)

}

≤ 2 lim sup
z→x

{
K
δ(x) +K|x− z|
δ(x)−K|x− z| sup

jG(x,w)

αG(x, z)

}

≤ 2KL,

where the suprema are over the same set of points as the supremum in the state-
ment of the lemma. The last inequality follows from Lemma 4.2.

Proposition 4.7. Let G Ã Rn be a K-quasi-isotropy domain and f : G →
f(G) ⊆ Rn be a quasiconformal mapping which is also M-Apollonian bilipschitz.
Then f(G) is 2KLM2 -quasi-isotropic, where L := supx∈f(G)H(f−1, x) .
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Proof. Fix a point x′ =: f(x) in G′ := f(G) and ε > 0. Let U ⊆ G be a
neighborhood of x such that

1/(K + ε) ≤ αG(x, y)/αG(x, z) ≤ K + ε,

whenever |x − y| = |x − z| and y, z ∈ U (such a U exists since G is K-quasi-
isotropic). Let V ′ ⊆ G′ be a neighborhood of x′ such that

1/(L+ ε) ≤ |x− y|/|x− z| ≤ L+ ε,

for |x′ − y′| = |x′ − z′| , y := f−1(y′) , z := f−1(z′) and y′, z′ ∈ V ′ (such a V ′

exists since H(f−1, x) ≤ L).
For y′, z′ ∈ f(U) ∩ V ′ with |z′ − x′| = |y′ − x′| we have

αf(G)(x
′, y′)

αf(G)(x′, z′)
≤M2αG(x, y)

αG(x, z)
≤ 2M2(K + ε)(L+ ε),

where the first inequality follows since f is Apollonian bilipschitz and the second
one follows from Lemma 4.6 in view of what was shown of the points x , y , z in
the previous paragraph. The claim follows as ε→ 0.

The previous proposition says that quasi-isotropy is preserved under quasi-
conformal mappings that are Apollonian bilipschitz. This should be contrasted
with Corollary 5.15 of [12], which says that the comparison property is preserved
under Euclidean bilipschitz mappings with constants near 1. Notice that quasi-
isotropy and quasiconformality are local properties, whereas the comparison and
bilipschitz properties are global. Hence one might hope that the condition that f
be Apollonian bilipschitz could be removed from the previous proposition. This
turns out not to be the case, however.

5. Inner metrics

In this section we define the inner metric of a metric and consider the inner
metrics of the metrics from Section 3 and of the Apollonian metric.

By a path we mean a continuous function γ: [0, l]→ Rn , l > 0. We assume
throughout this section that the l in the previous sentence equals 1 for every path
considered. Let G ⊆ Rn and d be a metric in G . The length in (G, d) of the
path γ ⊆ G (as usual, we sometimes identify the path with its image in Rn ) is
defined by

ld(γ) := sup
k−1∑

i=0

d
(
γ(ti), γ(ti+1)

)
,

where the supremum is taken over all sequences of sequences {ti} satisfying 0 =
t0 < t1 < · · · < tk = 1. If the supremum is finite, then γ is said to be d-rectifiable.
We denote by l(γ) the Euclidean length of a path and call an | · | -rectifiable path
rectifiable. For brevity we call a sequence {ti}k0 satisfying 0 = t0 < t1 < . . . <
tk = 1 a length sequence throughout this section.
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Definition 5.1. Let d be a metric in the domain G ⊆ Rn . The inner metric
of d , denoted by d̃ , is defined by d̃(x, y) := infγ ld(γ) , where the infimum is taken
over all paths connecting x and y in G .

Remark 5.2. It is clear that that d ≤ d̃ , by repeated use of the triangle
inequality. Note that it is possible that d̃(x, y) = ∞ , in which case the inner
metric is not a metric, but this will not happen for the metric spaces that we
consider.

The following result is well known.

Lemma 5.3. For G Ã Rn we have j̃G = kG .

Proof. Follows for instance using [22, Theorem 3.7(1) and (3)].

It turns out to be quite difficult to describe the inner metric of the Apollonian
metric, which is perhaps not so surprising, given that this metric is not, in contrast
to the jG metric, isotropic. We therefore only derive some estimates of α̃G in this
paper, without deriving an explicit formula of it. Using Lemma 4.2 we obtain the
following result for the inner metrics of αG and jG .

Corollary 5.4. If the domain G Ã Rn is L -quasi-isotropic then kG/L ≤
α̃G ≤ 2kG .

Proof. Consider first the second inequality. Fix x, y ∈ G and let γ ⊆ G be a
path connecting them. Then for every length sequence we have

αG
(
γ(ti), γ(ti+1)

)
≤ 2jG

(
γ(ti), γ(ti+1)

)
,

and so
k−1∑

i=0

αG
(
γ(ti), γ(ti+1)

)
≤ 2

k−1∑

i=0

jG
(
γ(ti), γ(ti+1)

)
≤ 2ljG(γ).

It follows that

lαG(γ) = sup

k−1∑

i=0

αG
(
γ(ti), γ(ti+1)

)
≤ 2ljG(γ),

where the supremum is taken over all length sequences. This implies that the same
inequality holds also for the infima, and so the inequality α̃G ≤ 2kG follows.

By Lemma 4.5 we know that for ε > 0 there exists r0 > 0 such that

αG(x, y) ≥ jG(x, y)/(L+ ε),

for x, y ∈ γ with |x− y| < r0 . We may then argue as in the first part of the proof
to show that

lαG(γ) ≥ ljG(γ)/(L+ ε),
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since the restriction to length sequences satisfying |γ(ti) − γ(ti+1)| < r0 is not
important, as we may assume that |γ(ti) − γ(ti+1)| → 0, anyway. Since ε was
arbitrary it follows that lαG(γ) ≥ ljG(γ)/L , and since γ was arbitrary, it follows
that

α̃G(x, y) = inf
γ
lαG(γ) ≥ inf

γ
ljG(γ)/L = kG(x, y)/L.

Definition 5.5. The directed density of the metric d at the point x ∈ G in
direction r ∈ Rn \ {0} is defined by

d̄(x; r) = lim
t→0+

d(x, x+ tr)/(t|r|),

if the limit exists.

If d̄(x; r) is independent of r in every point of G then (G, d) is isotropic and
we may denote d̄(x) := d̄(x; e1) and call this function the density of d at x . For
the density of the jG metric we have the following expression.

Lemma 5.6. For x ∈ G Ã Rn we have j̄G(x) = 1/δ(x) .

Proof. Follows directly from the definition of the density.

We next present a geometric method of calculating the density of the Apol-
lonian metric.

Definition 5.7. Let G Ã Rn and x ∈ G and e ∈ Sn−1 . Let r± ∈ (0,∞] be
such that Bn(x+ se, |s|) ⊆ G if and only if −r− ≤ s ≤ r+ (excluding equality for
r+ = ∞ or r− = ∞). We define the Apollonian spheres through x in direction e
by S+ := Sn−1(x+ r+e, r+) and S− := Sn−1(x− r−e, r−) for finite r+ or r− and
the limiting hyper-plane otherwise.

The next lemma shows that the Apollonian spheres from the previous defini-
tion correspond to the Apollonian balls Bx and By as y → x from direction e .
The reason for now considering spheres instead of balls is simply to allow for the ex-
pression “S+ through x” which corresponds to “Bx about x” for the non-limiting
case.

Lemma 5.8. Let x ∈ G Ã Rn , r ∈ Sn−1 and r± be the radii of the
Apollonian spheres S± at x in direction r . Then

ᾱG(x; r) =
1

2r+

+
1

2r−
.

Proof. Let us denote

f(t, a, b) :=
1

t
log

( |x− a|
|x+ tr − a|

|x+ tr − b|
|x− b|

)
.
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Then by definition we have

ᾱG(x; r) = lim
t→0+

sup
a,b∈∂G

f(t, a, b),

provided the limit exists. We start by showing the limit indeed exists and that

(5.9) lim
t→0+

sup
a,b∈∂G

f(t, a, b) = sup
a,b∈∂G

lim
t→0+

f(t, a, b).

Let us denote g(a, b) := limt→0+ f(t, a, b) and show that this limit exists. Using
the formula |x + tr − a|2 = |x − a|2 + t2 − 2|x − a|t cos θ and the corresponding
one for |x+ tr − b| we find that

lim
t→0+

1

t
log

|x− a|
|x+ tr − a|

|x+ tr − b|
|x− b| =

cos θ

|x− a| +
cosφ

|x− b| ,

where θ is the angle between r and x − a and φ is the angle between −r and
x− b .

Hence (a, b) 7→ g(a, b) is continuous and we see that there exist points a0

and b0 in ∂G such that supa,b∈∂G g(a, b) = g(a0, b0) . It is easy to see that
limt→0+ f(t, a0, b0) = g(a0, b0) and so it follows that

lim inf
t→0+

sup
a,b∈∂G

f(t, a, b) ≥ sup
a,b∈∂G

lim
t→0+

f(t, a, b).

To prove the opposite inequality fix ε > 0. Since (a, b) 7→ f(t, a, b) is contin-
uous for t ≤ 1

2δ(x) we see that

h(t) := max
a,b∈∂G

|g(a, b)− f(t, a, b)|

exists for all such t . Since t 7→ f(t, a, b) is continuous, h is continuous as well,
and since h → 0 as t → 0+ we can find t0 > 0 such that h(t) < ε for every
positive t < t0 . Then

sup
a,b∈∂G

f(t, a, b) ≤ sup
a,b∈∂G

g(a, b) + ε

for the same range of t and it follows that

lim sup
t→0+

sup
a,b∈∂G

f(t, a, b) ≤ sup
a,b∈∂G

lim
t→0+

f(t, a, b) + ε.

Since ε was arbitrary we find that

lim sup
t→0+

sup
a,b∈∂G

f(t, a, b) ≤ sup
a,b∈∂G

lim
t→0+

f(t, a, b) ≤ lim inf
t→0+

sup
a,b∈∂G

f(t, a, b),
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so that (5.9) is proved.
We have thus shown that

ᾱG(x; r) = sup
a,b∈∂G

cos θ

|x− a| +
cosφ

|x− b|

with θ and φ as before. Let r′+ and r′− denote the radii of the spheres through
x with center on the line {x + tr : t ∈ R} which also pass through a and b ,
respectively. By elementary trigonometry one derives cos θ/|x− a| = 1/(2r′+) and
cosφ/|x− b| = 1/(2r′−) so that g(a, b) = 1/(2r′+) + 1/(2r′−) . We therefore see that
the supremum is achieved by choosing a and b such that r′+ = r+ and r′− = r− .

Remark 5.10. The content of the previous lemma seems to correspond to
that of Lemma 5.1.4 of [5], where the directed density is called a Lagrangian
structure.

Using the directed densities we can restate Lemma 4.2 in a form which is more
practical to check.

Corollary 5.11. Let G Ã Rn . If G is L -quasi-isotropic then ᾱG(x; r)δ(x) ≥
1/L for every x ∈ G and r ∈ Sn−1 . If conversely ᾱG(x; r)δ(x) ≥ 1/L for every
x ∈ G and r ∈ Sn−1 then G is 2L -quasi-isotropic.

Proof. This follows from Lemmata 4.2 and 5.6, since

lim inf
z→x

αG(x, z)

jG(x, z)
= lim inf

z→x
αG(x, z)

|x− z|
|x− z|
jG(x, z)

= lim inf
z→x

αG(x, z)

|x− z| lim
z→x

|x− z|
jG(x, z)

= inf
r∈Sn−1

ᾱG(x; r)

j̄G(x)
,

where the second equality follows since

z 7→ αG(x, z)

|x− z| and z 7→ |x− z|
jG(x, z)

are continuous in G \ {x} with both limit inferior and superior unequal to 0
and ∞ .

Lemma 5.12. Let G Ã Rn be such that ᾱG(x; r) ≥ h(x) for every x ∈ G
and r ∈ Sn−1 and some continuous h: G→ R . Then for x, y ∈ G we have

α̃G(x, y) ≥ inf
γ

∫

γ

h(z) |dz|,

where the infimum is taken over all rectifiable paths γ connecting x and y in G .
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Proof. Let γ be a path connecting x and y in G . For every ε > 0 there
exists a δ > 0 such that

αG(z, w)/|z − w| ≥ ᾱG(z; z − w)/(1 + ε) ≥ h(z)/(1 + ε),

for z, w ∈ γ with |z−w| < δ . It follows by considering the supremum over length
sequences with |γ(ti+1)− γ(ti)| < δ for all i that

(1 + ε)lαG(γ) = (1 + ε) sup
∑

αG
(
γ(ti+1), γ(ti)

)

≥
∑

ᾱG
(
γ(ti); γ(ti+1)− γ(ti)

)
|γ(ti+1)− γ(ti)|

≥
∑

h
(
γ(ti)

)
|γ(ti+1)− γ(ti)|.

The right-hand side is just the Riemann sum for the integral in the lemma, and
so we have shown that

inf
γ
lαG(γ) ≥ inf

γ

∫

γ

h(z) |dz|,

where both infima are over rectifiable paths connecting x and y in G . By defini-
tion the first infimum equals α̃G(x, y) which completes the proof.

6. Quasiconvexity and A-uniform domains

In this section we introduce the concept of A-uniform domains, which allows
us to integrate the results from the previous sections and to prove two of the main
theorems. The following definition is from [22, Section 2].

Definition 6.1. A metric space (X, d) is said to be K-quasiconvex if for
every x, y ∈ X there exists a path γ ⊆ X joining x and y in X such that
ld(γ) ≤ Kd(x, y) . A domain G ⊆ Rn is said to be quasiconvex if the metric space
(G, | · |) is quasiconvex.

We note first that an inner metric is K -quasiconvex for every K > 1 and that
it may or may not be 1-quasiconvex. Hence if d is K -quasiconvex then d̃ ≤ Kd
and if d̃ ≤ Kd then d is K ′ -quasiconvex for every K ′ > K .

Definition 6.2. A domain G Ã Rn is said to be uniform with constant K if
for every x, y ∈ G there exists a rectifiable path γ , parameterized by arc-length,
connecting x and y in G , such that

(1) l(γ) ≤ K|x− y| and
(2) Kδ

(
γ(t)

)
≥ min{t, l(γ)− t} .

Notice that the first condition implies that G is quasiconvex. Uniform do-
mains were introduced in [18, 2.12], but Definition 6.2 is an equivalent form
from [10, (1.1)]. From the latter paper we also need the following result, which
says that a domain G is uniform if and only if jG is quasiconvex.
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Lemma 6.3 ([10, Corollary 1]). The domain G Ã Rn is uniform if and only
if there exists a constant K such that kG ≤ KjG .

Note that in [10] the second condition is in the form kG ≤ cjG + d . However,
the two forms are equivalent since (for instance) 2jG(x, y) ≥ kG(x, y) in every
domain G Ã Rn for points x and y with jG(x, y) < log

(
3
2

)
by [23, (2.34)]. From

the previous lemma it also follows that every quasiball is uniform. In R2 we have
the following stronger result:

Lemma 6.4 ([18, Theorem 2.24]). Let G be a simply connected planar
domain. Then G is uniform if and only if it is a quasidisk.

Definition 6.5. A domain G Ã Rn is A-uniform with constant K if kG ≤
KαG . A domain G Ã Rn is said to be A-uniform if it is A-uniform with some
constant K <∞ .

Since αG ≤ 2jG in every domain G Ã Rn , it is clear that A-uniformity
implies uniformity. The following proposition makes the relationship clearer.

Proposition 6.6. Let G Ã Rn be a domain. The following conditions are
equivalent:

(1) G is A-uniform;
(2) G is uniform and has the comparison property ;
(3) G is quasi-isotropic and αG is quasiconvex.

Proof. Suppose first that G is A-uniform with constant K . Then

jG ≤ kG ≤ KαG ≤ 2KjG.

From this it is directly seen that jG ≤ KαG and kG ≤ 2KjG , the comparison
property and uniformity, respectively; hence (1) ⇒ (2).

Suppose next that (2) holds. It is clear that the comparison property implies
that G is quasi-isotropic. By Corollary 5.4, uniformity with constant K and the
comparison property with constant L we conclude that α̃G ≤ 2kG ≤ 2KjG ≤
2KLαG , so that αG is also quasiconvex. We have thus proved that (2) ⇒ (3).

Suppose finally that αG is quasiconvex and G is quasi-isotropic, with con-
stants K and L , respectively. Then, using Corollary 5.4 for the first inequality,
we find that kG ≤ Lα̃G ≤ KLαG and hence G is A-uniform, which proves the
implication (3) ⇒ (1).

Using the previous proposition we see that our old acquaintance Hn \ [0, en]
is not A-uniform (recall that we showed in Example 4.4 that this domain is not
quasi-isotropic). Nevertheless Hn \ [0, en] is uniform provided that n ≥ 3, as
can be seen directly from the definition. We thus see that the class of A-uniform
domains is a proper subset of the class of uniform domains for n ≥ 3.
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We are now ready to prove the first main result, Theorem 1.8, the generaliza-
tion to space of the quasidisk theorem. The proof consists of a bunch of references
to the previous auxiliary results, but the argument is basically that quasiconvexity
is preserved under bilipschitz mappings, a quite trivial fact. Note that [9, Theo-
rem 3.29] was based on a similar argument, which will be repeated in the proof of
Theorem 1.9.

Proof of Theorem 1.8. Assume first that f is quasiconformal. Since G is
A-uniform, αG is quasiconvex by Proposition 6.6. Since f is an Apollonian bilip-
schitz mapping, αG′ is also quasiconvex, where G′ := f(G) . It then follows from
Proposition 4.7 that G′ is quasi-isotropic. Hence, using Proposition 6.6 again, we
see that G′ is A-uniform.

Assume conversely that G′ is A-uniform. Then both G and G′ have the
comparison property, by Proposition 6.6, and so it follows as in the proof of [12,
Theorem 1.4] that f is quasiconformal in G .

We next give a geometric characterization of A-uniform domains. The follow-
ing definition is taken from [12].

Definition 6.7. We say that a domain G Ã Rn satisfies an interior double
ball condition with constant L (abbreviated L -IDB condition) if there exists a
boundary point z ∈ ∂G \ {∞} and a real number r > 0 such that Bn(z, 2r) ∩G
contains two disjoint balls with radii r/L .

In [12, Theorem 5.13] it was shown that a domain does not have the L -
IDB property for every L > 1 if and only if it has the comparison property.
This, combined with Proposition 6.6, implies the following result, which gives a
geometric characterization of domains that are A-uniform.

Corollary 6.8. The domain G is A-uniform if and only if it is uniform and
for some L > 1 it does not have the L -IDB property.

We end this section by considering the relationship between A-uniform do-
mains and quasiballs.

Corollary 6.9. Every quasiball is A-uniform.

Proof. As was noted after Lemma 6.3, every quasiball is uniform. It was
shown in [1, Corollary 1.3] that quasiballs have the comparison property, hence
the claim follows from Proposition 6.6.

Corollary 6.10. A simply connected planar domain is a quasidisk if and
only if it is A-uniform.

Proof. The sufficiency follows from the previous corollary. If G is A-uniform,
then it follows from Proposition 6.6 that it is uniform, hence a quasidisk, by
Lemma 6.4.
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It remains an open question whether there exists a domain topologically equiv-
alent to Bn which is A-uniform but not a quasiball. If we do not require that a
domain be a topologically ball the claim is obviously false, consider for instance
Bn(0, 1) \Bn

(
0, 1

2

)
.

7. Results in the plane

In this section we derive some results that are only valid in the plane, in
particular, we prove Theorem 1.7. We start with a more general lemma, which is
also valid in Rn . We make use of the hyperbolic metric in the half-space, hHn .
For properties of this metric the reader is referred to [2], [24, Section 2], or any
introductory text on the hyperbolic metric.

Lemma 7.1. Let G ⊆ Rn be a domain such that G∩Bn = Hn ∩Bn . Then
for every 0 < s < 1 and every path γ ⊂ G connecting sen with Sn−1 we have

lαG(γ) ≥ 1
2 (arsinh s−1 − arsinh 1).

Proof. Let us define

C :=
{
x ∈ Hn ∩Bn : xn + |x− xnen| < 1

}
,

where xn denotes the nth coordinate of x . We will show that ᾱG(x; r) ≥ 1
2 h̄Hn(x)

for every x ∈ C and every r ∈ Sn−1 . From this it follows as in Lemma 5.12 that
lαG(γ) ≥ 1

2 lhHn (γ) for all paths γ ⊆ C .

C

Sn−1

x

S
−

S
+

S
+

′ 

Figure 1. The density at x = 0.65e1 + 0.3e2 .
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Let then x ∈ C . In order to get a lower bound of ᾱG(x; r) we need to get an
upper bound for the radius of at least one of the Apollonian spheres through x ,
by Lemma 5.8. Consider the direction r ∈ Sn−1∩Hn . Since ∂G ⊃ Bn∩∂Hn , we
may assume that ∂G = (Bn∩∂Hn)∪{∞} since we are deriving a lower bound for
ᾱG , which, like αG , is decreasing in ∂G . It is then clear that the radius r− is the
same as it would be in Hn , and less than r+ (see Figure 1). Hence we conclude
that

ᾱG(x; r) =
1

2r+

+
1

2r−
≥ 1

4r−
+

1

4r−
≥ 1

4r−
+

1

4r′+
=
h̄Hn(x)

2
,

where r′+ is the radius of the Apollonian sphere through x in the direction r in the
domain Hn . The second inequality follows since r− ≤ r′+ and the last equality
follows since αHn = hHn , hence we may use the Apollonian spheres to obtain
h̄Hn(x) , as well.

Let us then evaluate infγ lhHn (γ) , where the infimum is taken over all paths
γ connecting sen with C . Since the hyperbolic metric is 1-quasiconvex, it suffices
to calculate the distance hHn(sen, C) . Let Bh(sen, R) denote the hyperbolic ball
about sen with radius R . It is known that the hyperbolic balls about sen are
Euclidean balls, more specifically, Bh(sen, R) = Bn

(
s cosh(R)en, s sinhR

)
, by [24,

(2.11)]. Let R0 be such that Bh(sen, R0) is tangent to C . Then we have

hHn(sen, C) = max
Bh(sen,R)⊆C

R = R0.

By elementary trigonometry we get the formula
√

2 s sinhR0 = 1 − s coshR0 for
the radius R0 . From this equation we derive

√
2
(
eR0 − e−R0

)
+ eR0 + e−R0 = 2/s

and so we find that eR0 =
(
1/s +

√
1 + 1/s2

)
/
(
1 +
√

2
)

from which it follows
that

hHn(sen, C) = R0 = log
(
1/s+

√
1 + 1/s2

)
− log

(
1 +
√

2
)

= arsinh s−1− arsinh 1.

Since every path connecting sen with Sn−1 has a subpath connecting sen
with C we are finished.

The next lemma, which is valid only in the plane, is a variant of Lemma 5.4,
[12]. Note that the quite complicated looking conditions say basically that B is
split into two large parts by ∂G .

Lemma 7.2. Let G Ã R2 be a simply connected domain and assume that
there exist points x, y ∈ G such that NαG(x, y) < jG(x, y) for some N > 40 .
Then there exists a disk B = B2(b, r) and a unit vector e ∈ S1 such that

(1) for all z ∈ Gc ∩B we have 〈z − b, e〉 ≤ 4N−1/2r and
(2) the points b± 0.9re belong to different path components of B ∩G .

(Here 〈 · , · 〉 denotes the usual inner product.)
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Proof. It follows from Lemma 5.4 in [12] that there exists a point w ∈ ∂G , a
unit vector e ∈ Sn−1 and R > 0 such that for every z ∈ Gc ∩ Bn(w,R) we have
〈z − w, e〉 < 2R/

√
N . For simplicity we assume without loss of generality that

w = 0 and e = e1 . Denote r := 1
2R and consider the balls B+ := Bn(re2, r) and

B− := Bn(−re2, r) . Both balls satisfy condition (1) of the lemma. Let us denote
a± := ±re2 + 0.9re1 and b± := ±re2 − 0.9re1 . Suppose that neither ball satisfies
condition (2) so that there exist paths γ+ ⊂ G ∩ B+ connecting a+ and b+ and
γ− ⊂ G∩B− connecting a− and b− . Then the path formed by concatenating γ+ ,
[b+, b−] , γ+ and [a−, a+] , which lies in G , is closed and loops around the boundary
point w . But this contradicts the assumption that G is simply connected; hence
either B+ or B− satisfies condition (2), and so is the ball whose existence we
wanted to prove.

Proposition 7.3. If G Ã R2 is simply connected and αG is K-quasiconvex
then G has the comparison property with constant 1250 exp{3.5K} .

Proof. Suppose that G does not have the comparison property with constant
N ≥ 8000 (the constant in the proposition is at least 1250e3.5 > 8000). This
means that there exist x, y ∈ G such that NαG(x, y) < jG(x, y) . Let B be a disk
which satisfies conditions (1) and (2) of Lemma 7.2. We assume without loss of
generality that B = B2(0, 1) and that e = e2 .

Consider the points ±te2 , where t := 2N−1/4 . Since the disks

B+ := B2
(

1
2 (1 + t2)e2,

1
2 (1− t2)

)

and

B− := B2
(
− 1

2 (1 + t2)e2,
1
2 (1− t2)

)

lie in G and since ±te2 are each others inverses in ∂B± (see Figure 2), it follows
that the Apollonian disks about ±te2 are at least as large as these disks, hence

αG(te2,−te2) ≤ 2 log
t+ t2

t− t2 = 2 log
1 + t

1− t < 0.86.

It is clear that every path connecting te2 and −te2 passes through S1 , since
the points are in different path components of B ∩ G . Hence it follows that
α̃G(te2,−te2) ≥ 2l , where l is the minimum Apollonian length of a path connect-
ing te2 with S1 in B . Let γ be any such path. If we move the boundary ∂G
further away from every point in γ then we get a lower bound for its Apollonian
length, since this makes the Apollonian spheres larger. This means that we can
consider the domain G′ with B ∩ ∂G′ = B ∩ ∂H ′ , where

H ′ = {x ∈ R2 : x+ t2e2 ∈ H2}

when deriving a lower bound for the part of γ in the upper component of B ∩G .
(The boundary of G′ is the heavy line in Figure 3.) But then G′ is a domain
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−
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Figure 2. An example domain with a sine curve as boundary.

with G′ ∩ B′ = H ′ ∩ B′ , where B′ := B2
(
−t2e2,

√
1− t2

)
. After a translation

and scaling the domain G′ satisfies the conditions of Lemma 7.1, with

s = (t+ t2)/(1− t2) = t
√

(1 + t)/(1− t) ≤ 1.24t.

Hence

2lαG(γ) ≥ 2lαG′ (γ) ≥ arsinh s−1 − arsinh 1 ≥ arsinh(0.8t−1)− arsinh 1.

Then since G is K-quasiconvex in the Apollonian metric it follows that

arsinh(0.8t−1)− arsinh 1 ≤ 2l ≤ α̃G(te2,−te2) ≤ KαG(te2,−te2) < 0.86K.

This implies that arsinh(0.8t−1) ≤ 0.86K+arsinh 1 and so, by the addition formula
for the hyperbolic sine, sinh(A+B) = sinhA coshB + coshA sinhB ,

0.8t−1 ≤
√

2 sinh{0.86K}+ cosh{0.86K} ≤
(
1 +
√

2
)

exp{0.86K}.

From this it follows that 1
2N

1/4 = t−1 ≤ 3.02 exp{0.86K} and so we find that

N ≤ 1327 exp{3.44K} ≤ 1250 exp{3.5K},

as claimed.



408 Peter A. Hästö

Corollary 7.4. A simply connected planar domain G Ã R2 is a quasidisk if
and only if αG is quasiconvex.

Proof. From Corollary 6.10 we see that a quasidisk is A-uniform, hence αG
is quasiconvex, by Proposition 6.6.

If αG is quasiconvex then G has the comparison property by Proposition 7.3.
The comparison property trivially implies quasi-isotropy and hence G is A-uniform
by Proposition 6.6. It then follows from Corollary 6.10 that G is a quasidisk.

We can now prove the strong version of the Theorem 1.2.

Proof of Theorem 1.7. Since G is a quasidisk it is A-uniform by Corollary 6.10
and hence αG is quasiconvex by Proposition 6.6, say with constant K . Since f
is Apollonian bilipschitz, say with constant L , it follows that

α̃f(G)

(
f(x), f(y)

)
≤ Lα̃G(x, y) ≤ KLαG(x, y) ≤ KL2αf(G)

(
f(x), f(y)

)
,

and so αf(G) is quasiconvex, as well. It is easy to see that f is a homeomor-
phism so that f(G) is simply connected. Hence, by Proposition 7.3, f(G) has the
comparison property, and so is trivially quasi-isotropic. It then follows from Propo-
sition 6.6 that f(G) is A-uniform and from Corollary 6.10 that it is a quasidisk.
Since G and f(G) are both quasidisks, the claim follows from [9, Theorem 3.11]
or, equivalently, from [12, Corollary 1.7].

Remark 7.5. The previous theorem has the shortcoming of not being asymp-
totically sharp, i.e. even if we assume that the bilipschitz constant equals one and
that G is a ball the theorem still only allows us to affirm that f(G) is a quasidisk
and f is quasiconformal.

8. Convexity of the Apollonian metric in space

In this section we show how to extend to Rn the proof by Gehring and Hag
that a domain is Apollonian convex (= 1-quasiconvex) if and only if it is a disk
or a half-plane ([9, Lemmata 3.18, 3.22, 3.23 and Theorem 3.26]).

Let us first note that Lemmata 3.18 and 3.22 [9] hold as such in space also,
the proofs being essentially identical (change Apollonian disk to Apollonian ball
etc.) The latter lemma, translated to Rn , reads as follows:

Lemma 8.1 ([9, Lemma 3.22]). Let G Ã Rn , z ∈ G and w ∈ ∂G and
suppose that there exists an Apollonian geodesic connecting z with any point
z′ ∈ G . Then for every r > 0 there exists a ball B ⊆ G such that d(z,B) < r
and d(w,B) < r .

We skip Lemma 3.23 of [9] and prove the following result directly. This
proposition corresponds to [9, Theorem 3.26].
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Proposition 8.2. If G Ã Rn is such that αG ≡ α̃G , then G is a ball or a
half-space.

Proof. The cases where Gc is a subset of hyperplane (i.e. when αG is not a
metric) and when G 6= Rn are handled exactly as in the proof of [9, Theorem 3.26].
It remains to consider the case when G = Rn , in which the argument of Gehring
and Hag needs some nontrivial modifications.

Since ∂G is not contained in a hyperplane it follows that there exists n + 1
finite boundary points, w, z1, . . . , zn , which are the vertices of a simplex S . Let R
be the ray starting at w and going through the barycenter m := (z1 + · · ·+ zn)/n
of the opposite side of the simplex. We assume without loss of generality that
w = 0 and R is the positive real axis. Let us denote êi := zi/|zi| . Since S is a
simplex the set {ê1, . . . , ên} is a basis of Rn .

Let s > 2d(S) and ws := se1 ∈ R . Let us define

ε(s) := min
{

1/(2s2), 2s2, |z1|/2, . . . , |zn|/2, |z1|2/(8s2), . . . , |zn|2/(8s2)
}
.

By Lemma 8.1 there exists a ball Bs ⊆ G which intersects Bn
(
0, ε(s)

)
and

Bn
(
ws, ε(s)

)
, since we can find a point of G arbitrarily close to ws . For ev-

ery s > 2d(S) let us fix one such ball and denote by bs its center and by Rs its
diameter.

For 1 ≤ i ≤ n consider the point zi and the half-space Hi :=
{
x ∈ Rn :

〈x, êi〉 < 1
2 |zi|

}
, the boundary of which is the midpoint normal plane of the seg-

ment [w, zi] . Now if |bs| and |bs− zi| would equal Rs then it would be clear that
bs ∈ Hi . Since we in fact have only |bs| ≤ Rs + ε(s) (since Bn(bs, Rs) intersects
Bn
(
0, ε(s)

)
) and |bs − zi| > Rs (since Bs ⊆ G and zi ∈ ∂G) we consider instead

of Hi the half-space H ′i := {x ∈ Rn : 〈x, êi〉 < |zi|} which contains Hi . It turns
out that even these larger half-spaces do not always contain bs , however, we will
show that bs is in H ′i or |bs| is large.

Let us consider the intersection of the boundary of H ′i with the midpoint
normal planes of segments [zi, w

′] where w′ ∈ Bn
(
w, ε(s)

)
. Notice that for some

such w′ the point bs lies above the mid-point normal plane of the segment [w′, zi] .
Let us estimate this distance, as indicated in Figure 3. We consider the hyperplanes
normal to rays from zi through w′ ∈ Bn

(
w, ε(s)

)
at a distance u := 1

2

(
|zi|−ε(s)

)

from zi . We easily see that such a plane intersects ∂H ′i at distance at least t
from the origin, where t is as in the figure with w′ extremal. Considering the
congruent triangles we find that

t =
u
√
|zi|2 − ε(s)2

ε(s)
≥
(
|zi| − ε(s)

)2

2ε(s)
≥

1
2 (|zi|)2

2ε(s)
≥ s2,

where the second inequality follows since ε(s) ≤ 1
2 |zi| and the third one since

ε(s) ≤ |zi|2/(8s2) . We thus see that either bs ∈ H ′i or |bs| > s2 . Let A be the set
of balls Bs with |bs| > s2 and let B be the set of all other balls Bs .
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Figure 3. The center of Bs is far away.

For Bs ∈ B we have bs ∈
⋂n
i=1H

′
i , which means that

n〈bs,m〉
M

=
〈bs, z1 + · · ·+ zn〉

max{|z1|2, . . . , |zn|2}
≤ 〈bs, z1〉
|z1|2

+ · · ·+ 〈bs, zn〉|zn|2

=
〈bs, ê1〉
|z1|

+ · · ·+ 〈bs, ên〉|zn|
< n,

where we have set M := max{|z1|2, . . . , |zn|2} . Since m = |m|e1 it follows that
〈bs, e1〉 < M/|m| . Consider then s > 2M/|m| + 1 + ε(s) . As shown in Figure 4,

we find that (M/|m|)2 + h2 ≥ R2
s and (s−M/|m|)2 + h2 ≤

(
Rs + ε(s)

)2
. From

this we conclude that 1 + ε(s)2 + 2M/|m| ≤ 2Rsε(s) + ε(s)2 , which means that

Rs ≥
(
2ε(s)

)−1 ≥ s2 , since ε(s) ≤ 1/(2s2) by assumption. This means that
Bs ∈ A for every s > 2M/|m|+ 1.

We have shown that for large s the balls Bs have radius greater than s2 −
ε(s) ≈ s2 . This means that as s → ∞ the ball Bs is very close to a half-space
the boundary of which contains the e1 -axis, at least in the ball Bn

(
w,diam (S)

)
,

which contains all of the zi . Since the êi span the space Rn , it is clear that every
half-space the boundary of which contains the e1 -axis contains one of the zi .
Since there is only a finite number of zi ’s, it is clear that for sufficiently large s
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Figure 4. Bs is in A for large s .

the ball Bs becomes so close to a half-space that it contains some zi , contrary to
the assumption that the Bs ⊆ G . This contradiction shows that the assumption
that G = Rn is false, which completes the proof.

Proof of Theorem 1.9. Since G is a ball, it follows that αG = hG is convex.
Since f is an isometry αf(G) is also convex. By Proposition 8.2, f(G) is then a
ball, and so we have αf(G) = hf(G) . This means that f is a hyperbolic isometry

from a ball to a ball and so it is clear that f = g|G , where g: Rn → Rn is a
Möbius mapping.
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Appendix

In this appendix we consider Seittenranta’s and Ferrand’s metrics, which can
be thought of as the Möbius invariant variants of the jG and the kG metric,
respectively. The results in this section are needed in an upcoming paper, [13].
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Assume throughout this appendix that x, y ∈ G Ã Rn . Seittenranta’s metric,
δG , from [20] is defined by

δG(x, y) := sup
a,b∈∂G

log{1 + |a, x, b, y|}.

As with the Apollonian metric, the requirement that ∞ /∈ G is a nonessential
simplification. The Ferrand metric from [7] is defined by

σG(x, y) := inf
γ

∫
sup

a,b∈∂G

|a− b|
|a− z||b− z| |dz|,

where the infimum is over all rectifiable curves joining x and y in G . We have
jG ≤ δG ≤ 2jG and kG ≤ σG ≤ 2kG , by [20, Theorem 3.4] and [7, Section 6],
respectively.

Ferrand’s metric is the inner metric of δG :

Lemma A.1. For G Ã Rn we have δ̃G = σG .

Proof. A lower bound for δG(γ) is proved as the proof of [20, Theorem 3.12]
and the upper bound can be established similarly.

It is easy to see that Seittenranta’s metric is isotropic. The following lemma
gives two expressions of its density.

Lemma A.2. Let x ∈ G Ã Rn and ix denote the inversion in the sphere
Sn−1(x, 1) . Then

δ̄G(x) = sup
a,b∈∂G

|a− b|
|a− x||b− x| = diam ix(∂G).

Proof. The first equality is clear. To prove the second one, we note that if ix
denotes the inversion in the sphere Sn−1(x, 1) then |ix(z)− ix(w)| = |z−w|/(|z−
x||w − x|) (see [24, (1.5)]). Hence

sup
a,b∈∂G

|a− b|
|a− x||b− x| = sup

a,b∈∂G
|ix(a)− ix(b)| = sup

a,b∈∂ix(G)

|a− b| = diam ix(∂G).
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