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Abstract. We give a complete classification of hyperbolic components in the space of iterated
exponential maps z 7→ λ exp(z) , and we describe a preferred parametrization of those components.
More precisely, we associate to every hyperbolic component of period n a finite symbolic sequence
of length n − 1 , we show that every such sequence is realized by a hyperbolic component, and
the hyperbolic component specified by any such sequence is unique. This leads to a complete
classification of all exponential maps with attracting dynamics, which is a fundamental step in the
understanding of exponential parameter space.

1. Introduction

This paper is part of the program to describe the dynamics of exponential
maps λ exp and the structure of parameter space, in the spirit of the well-developed
body of knowledge about polynomial dynamics. The polynomial theory was pio-
neered by Douady and Hubbard [DH1] who systematically investigated the Man-
delbrot set as the simplest non-trivial example of a holomorphic parameter space.
Since then, there has been a lot of further work in this field, much of it based
on methods and results developed initially for the Mandelbrot set. Among tran-
scendental entire maps, the exponential family λ exp stands out as the simplest
family. It is expected that a good understanding of this space of maps will guide
the way for further progress on a study of more classes of entire maps.

For holomorphic spaces of rational maps, such as the space z 7→ z2 + c of
quadratic polynomials, it is known from the work of Mañe, Sad and Sullivan [MSS]
that the set of structurally stable maps is open and dense: a map is structurally
stable if it has a neighborhood in which all maps are topologically (and even
quasiconformally) conjugate. The complementary locus is called the bifurcation
locus within this space of maps; it is closed and nowhere dense. An investigation
of a space of rational maps thus starts with a description of connected components
in the space of structurally stable maps, called stable components. In most spaces
of rational maps (those in which the bifurcation locus is non-empty and not every
map has an indifferent orbit), all known stable components consist of hyperbolic
maps: there is a uniformly expanding metric in a neighborhood of the Julia set,
which is equivalent to the fact that all critical points converge to attracting or
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superattracting cycles [M2]. It is conjectured that stable components are always
hyperbolic; unfortunately, this has not yet been confirmed for any space.

One reason why quadratic polynomials are the simplest non-trivial rational
maps is because they have only one critical point (except for the fixed point ∞)
and of lowest multiplicity; critical points determine the dynamics of rational maps
to a large extent. For the space of quadratic polynomials, the bifurcation locus is
the boundary of the Mandelbrot set. Douady and Hubbard [DH1] have developed
a complete conjectural description of the topology of the Mandelbrot set and its
boundary, and they showed that it is a true description if and only if the Mandel-
brot set is locally connected. This would imply that every stable component was
hyperbolic. They also provided a complete classification of hyperbolic components
as part of the complete description of the topology. The importance of the study
of the space of quadratic polynomials stems not only from the fact that they are
the simplest class of rational maps, but also because renormalization theory [DH2]
shows that quadratic polynomials have universal properties; as a consequence, ev-
ery non-trivial bifurcation locus in spaces of rational maps contains infinitely many
homeomorphic copies of the Mandelbrot set [Mc3] (or of Multibrot sets, which are
the analogues for maps zd + c with d > 2).

It will be a long way to establish analogous results for transcendental maps,
or even to find out which results have analogues and in which sense. The fact that
structurally stable maps are dense in many spaces of transcendental entire maps
has been established by Eremenko and Lyubich [EL2]; this includes the space of ex-
ponential maps. The decisive role of critical points (or critical values) for rational
maps is, for transcendental maps, assumed by either critical values or asymptotic
values, which are jointly known as singular values. Exponential maps λ exp have
only one singular value of the simplest kind: they have no critical values, 0 is the
only asymptotic value, and every λ exp is a universal cover C → C \ {0} . This
makes them good candidates for prototypes of transcendental maps. Probably for
this reason, the space of exponential maps has been studied more than any other
space of transcendental maps. An exponential map will be called hyperbolic if it
has an attracting orbit (which necessarily attracts the singular orbit, so there can
be at most one attracting orbit). A structurally stable component is called hyper-
bolic if it consists of hyperbolic maps (this is a slight abuse of notation: hyperbolic
dynamics in a strict sense would require a uniformly expanding metric in a neigh-
borhood of the Julia set, but the Julia set is never compact for transcendental
maps).

The description of the exponential parameter space was begun in the 1980’s
by Baker and Rippon [BR], by Eremenko and Lyubich [EL1], [EL2], [EL3], and by
Devaney, Goldberg and Hubbard [DGH]. These papers discuss certain fundamen-
tal properties of hyperbolic components and of bifurcations (in the case of [EL1],
[EL2], [EL3] as an example of a study of more general entire maps), but a de-
scription of the global structure of parameter space was in terms of pictures and
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conjectures. Eremenko and Lyubich conjectured that every structurally stable ex-
ponential map is hyperbolic, so the union of the hyperbolic components would be
dense in λ -space.

For a hyperbolic exponential map, the Julia set has measure zero [EL1], [EL3]
but Hausdorff dimension two [Mc2]. There are some results on the topology, in
particular if the attracting orbit has period one [AO]. It seems possible to give a
more complete description of the topology for exponential maps with attracting
orbits of arbitrary periods.

In this paper, we give a complete description of the space of hyperbolic expo-
nential maps. This was part of Chapter III of the author’s habilitation thesis [S1]
(of May, 1999) which developed a description of the exponential parameter space
in analogy to Douady and Hubbard’s Orsay Notes [DH1] about the Mandelbrot
set. An earlier version of this paper was circulated as [S3].

The bifurcation locus of exponential maps is not locally connected. It would
be interesting to have a topological criterion (analogous to local connectivity of
the Mandelbrot set) which would imply the validity of the conjecture of Eremenko
and Lyubich. It seems possible that this could be done in terms of fibers as
discussed in [S2]. There are two more conjectures in [EL2] which have now been
established [S1], [RS]; they are explained at the end of Section 7.

The set of parameters λ for which there is a (necessarily unique) attracting
periodic orbit is clearly open; connected components where this happens are hy-
perbolic components. The period of the attracting orbit is constant throughout the
component. Our object is to classify hyperbolic components in the λ parameter
plane, where λ ranges over C\{0} . It is known [BR], [EL2], [DGH] that all expo-
nential maps with attracting orbits of period 1 are contained in a single hyperbolic
component which is bounded in C ; it contains a neighborhood of 0. For period 2,
there is a unique hyperbolic component which is contained in a left half plane and
unbounded to the left; see also Section 2. All other hyperbolic components have
period 3 or more, and are unbounded to the right. Every hyperbolic component
is simply connected, except that the period 1 component is punctured at 0.

Here is our main result; it is illustrated in Figure 1.

Theorem 1.1 (Classification of hyperbolic components). For every period
n ≥ 3 , there are countably many hyperbolic components in the space of exponen-
tial maps λ exp . Each of them is characterized by a sequence

s1, s2, . . . , sn−1

(its “intermediate external address”), where s1 , s2, . . . , sn−2 ∈ Z with s1 = 0 , and
sn−1 ∈ (Z+ 1

2 ) . Conversely, every such sequence is realized by a unique hyperbolic
component of period n . These hyperbolic components have a natural vertical order
in which they stretch out to +∞ along bounded imaginary parts, and this order is
the same as the lexicographic order of the corresponding sequences s1, s2, . . . , sn−1 .
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Figure 1. The space of parameters λ for exponential maps λ exp , with hyperbolic components

indicated in white. Various hyperbolic components are labeled by their intermediate external

addresses, or briefly by their periods (in parentheses). The picture has kindly been contributed by

Jack Milnor: for every pixel, an approximate test is performed whether or not the corresponding

map λ exp has an attracting orbit (with λ at the center of the pixel); in addition, the boundaries

of hyperbolic components have been emphasized in order to show their shapes more clearly.

In particular, between any pair of consecutive hyperbolic components of period n ,
there are infinitely many hyperbolic components of period n+ 1 , ordered like Z .

The numbers s1, s2, . . . , sn−1 characterizing any hyperbolic component of pe-
riod n have a dynamic meaning as follows. Let λ be any parameter in the given
period n hyperbolic component, and let

U1
≈→U2

≈→· · · ≈→Un → U1

be the unique cycle of periodic Fatou components for λ exp, where 0 ∈ U1 , where
λ ∈ U2 , and where Un contains a left half plane. Here λ exp:Un → U1 \ {0} is
a universal cover, and all other λ exp:Uk → Uk+1 are conformal isomorphisms.
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Figure 2. The same space as in Figure 1, drawn differently by a special purpose program of Günter

Rottenfußer: this program traces out the boundaries of hyperbolic components, which is possible

with arbitrary precision for any given hyperbolic component. Unlike for the Mandelbrot set, in

the exponential case it is impossible to test whether the singular orbit “escapes to ∞”; instead,

in pixel images it is usually tested whether the singular orbit survives some fixed number N of

iterations without producing numbers too large to store. This is quite different from the existence

of an attracting orbit for the given value of λ , and logically independent. This picture confirms

that pixel test pictures like in Figure 1 are approximately correct.

Define the horizontal lines

L(sk) :=
{
z ∈ C : Im(z) = 2πsk − c

}
;

here c = Im
(
log(λ)

)
, choosing the branch with |c| < π . Then for k = 1, . . . , n−1,

the component Uk contains a curve which is asymptotic to L(sk) as Re(z)→ +∞
and which maps to L(sn−1) under (λ exp)◦(n−1−k) . Thus sk specifies precisely
which branch of (λ exp)−1 carries Uk+1 to Uk .
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Similarly, in the λ parameter plane, if n > 3 then the points in the hyperbolic
component are asymptotic to the line

Im(λ) = 2πs2 as Re(λ)→ +∞,

while for n = 3 they form a neighborhood of this line near +∞ .
Furthermore, if H1 and H2 are hyperbolic components of any periods greater

than 2, then H1 lies above H2 if and only if its symbol sequence is greater, using
lexicographic ordering.

Our results are easily translated into κ = log(λ)-space: then Theorem 1.1
holds for n ≥ 2, and the condition s1 = 0 is lifted. However, κ -space is not a true
parameter space: every exponential map is represented countably often; adding a
constant integer to every intermediate external address in κ -space yields the same
map with a different branch of κ .

In Section 2, we review necessary properties about exponential maps and
state results from earlier papers. In particular, we introduce dynamic rays. Then,
in Section 3, we give a combinatorial coding to every hyperbolic component in
terms of “intermediate external addresses”, and we show that each intermediate
external address is realized by at least one hyperbolic component. The at least one
is strengthened to exactly one in Section 4 using a variant of spider theory. This
finishes the classification of hyperbolic components. The second main result (in
Section 7) constructs, for every hyperbolic component, a preferred parametrization
(which even extends to the boundary). The main difficulty is in breaking the
symmetry and fixing an origin of the parametrization, which is accomplished using
a “dynamic root” of every periodic Fatou component: this is a boundary point
which is fixed under the first return map of the component and which is the landing
point of at least two periodic dynamic rays. Existence and uniqueness of dynamic
roots is shown in Section 6, while Section 5 provides the necessary combinatorial
properties of periodic dynamic rays landing at a common point: whenever three
or more periodic rays land at a common point, then the dynamics permutes all
these rays transitively, and two rays in this orbit are singled out as “ characteristic
rays”. We conclude this paper with a discussion of further results on hyperbolic
components, in particular their boundary properties.

Some notation. We write our exponential maps as z 7→ Eλ(z) := λez =
exp(z + κ) with λ = exp(κ) , where λ ∈ C \ {0} and κ ∈ C ; usually we will use
the branch |Im(κ)| ≤ π . We will often need F (t) = et−1, in particular for t ∈ R .
Let D := {z ∈ C : |z| < 1} and D∗ := D\{0} . We write that a curve or sequence
in C converges to +∞ or to −∞ to indicate that the real parts converge to ±∞ ,
while the imaginary parts are bounded.

Acknowledgments. I would like to thank Misha Lyubich and Jack Milnor
for many helpful and inspiring discussions, and to the Institute for Mathematical
Sciences at Stony Brook for continued support and encouragement. I am also
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grateful for several helpful comments from the audience at various seminars where
these results were presented, in particular in Stony Brook (spring 1999 and spring
2000) and at Boston University (spring 1999). Helpful and constructive suggestions
by Lasse Rempe and by an anonymous referee are also gratefully acknowledged.

2. Exponential dynamics

In this section, we will review known properties of exponential dynamics. The
map Eλ = λ exp has no critical points or critical values, and a unique omitted
value 0 also known as singular value. The singular value plays an equally decisive
role for exponential dynamics as the critical values do for polynomial dynamics.

Points z with E◦kλ (z) → ∞ as k → ∞ are known as escaping points; they
are completely classified [SZ2]: if the singular value itself does not escape, then
the escaping points are on disjoint curves called dynamic rays (or hairs) labeled
by external addresses s = s1s2s3 . . . , which are infinite sequences over Z (there is
a well-understood exception if the singular value does escape; that case does not
matter for our purposes). The dynamic ray at external address s is an injective
curve gs: ]ts,∞[→ C with Re

(
gs(t)

)
→ +∞ as t → ∞ , while Im

(
gs(t)

)
is

bounded. The quantity ts ≥ 0 depends on s in a well-understood way; we only
need bounded sequences s , and those have ts = 0. We say that a ray gs lands at a
point w ∈ C if limt↘ts gs(t) exists and is equal to w . A ray tail is an unbounded
subcurve of a ray: it is a curve gs( [τ,∞[ ) for τ > ts .

Every point on a dynamic ray is an escaping point, and every escaping point
is on such a ray, or the unique limit point of such a ray. We have the dynamic
relation

Eλ
(
gs(t)

)
= gσ(s)

(
F (t)

)

where σ is the shift map on external addresses, dropping the first entry. The
meaning of the external address of a ray is the following: the set E−1

λ (R−) is a
countable union of horizontal lines, spaced at distance 2πiZ , and C\E−1

λ (R−) are
horizontal strips, labeled by Z so that the strip with label 0 contains the singular
value 0 (perhaps on its boundary). Then at least for sufficiently large t > ts , the
external address s of gs is the sequence s1s2s3 . . . of strips visited by the orbit
of gs(t) . Not all possible sequences are allowed; the set of allowed sequences is
completely understood: it consists of sequences satisfying a certain exponential
growth condition [SZ2], and in particular it contains all bounded sequences.

If an exponential map has an attracting periodic point, then the singular
value is in a periodic Fatou component which we call the characteristic Fatou
component. All periodic orbits, except the unique attracting one, are repelling.
We will need a construction and results from [SZ3, Section 4.3]: let n ≥ 2 be the
period of the attracting orbit, let U1, U2, . . . , Un = U0 be the cycle of periodic
Fatou components, labeled cyclically modulo n so that U1 is the characteristic
Fatou component, and let a1, a2, . . . , an be the attracting periodic orbit labeled so
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that ak ∈ Uk for all k . Let Vn+1 be a closed neighborhood of a1 corresponding to
a disk in linearizing coordinates, large enough so as to contain the singular value
in its interior. For k = 0, 1, . . . , n , let

Vk :=
{
z ∈ Uk : E

◦(n+1−k)
λ (z) ∈ Vn+1

}

and V := V0 ∪ V1 ∪ · · ·Vn+1 . Then Vn contains a left half plane, and for k ∈
{n−1, n−2, . . . , 1} , Vk contains a neighborhood of a curve towards +∞ with V1 ⊃
Vn+1 , while V0 contains neighborhoods of infinitely many such curves towards
+∞ , spaced equally at integer translates of 2πi . The construction assures that
Eλ(V ) ⊂ V and that all Vk are connected and simply connected.

Let R := C \ V0 ; it consists of countably many connected components which
we will call “regions” Ru : let R0 be the region containing the singular value and
Ru := R0+2πiu , for u ∈ Z . Then R =

⋃
uRu . Any orbit (zk) within the Julia set

then has an associated itinerary u1, u2, u3, . . . such that zk ∈ Ruk for all k . We
should emphasize that this itinerary is different from the external address used for
example in the construction of dynamic rays: the external address is constructed
using inverse images of the negative real axis, which is dynamically not a natural
concept. The itineraries as defined here are dynamically natural; compare [SZ3,
Sections 4 and 5] for a discussion of the differences. (Note the different fonts for
external addresses s1s2 . . . and itineraries u1u2 . . . .)

For exponential dynamics with an attracting periodic orbit, every periodic
dynamic ray lands at a repelling periodic point [SZ3, Theorem 3.1]; every repelling
periodic point is the landing point of a finite positive number of periodic rays
[SZ3, Theorem 5.4]; and a periodic ray lands at a periodic point if and only if ray
and point have identical itineraries [SZ3, Proposition 4.5]. In particular, different
periodic points have different itineraries, while different periodic rays have the
same itinerary if and only if they land together.

The following results are known from [EL2], [EL3], [BR]: in λ -space, there is
a unique hyperbolic component H1 of period 1 which is a bounded neighborhood
of the puncture λ = 0 of parameter space; it comes with a conformal isomorphism
D∗ → H1 , µ 7→ µ exp−µ (so that λ exp has a fixed point with multiplier µ if and
only if λ = µ exp−µ ). All λ ∈ C∗ with |λ| < 1/e have λ ∈ H1 . There is a unique
period 2 component H2 which “almost” occupies a left half plane (in the sense
that for every ϑ ∈ ]π/2, 3π/2[ , there is an R > 0 such that for all r > R , the
parameter λ = r exp(iϑ) ∈ H2 ). Every hyperbolic component H of period n ≥ 2
is simply connected, and the multiplier map µ:H → D∗ is a universal cover.

Lemma 2.1 (Strong attraction only at far parameters). For every period
n ≥ 2 and r < 1 , there is an R > 0 such that any parameter λ for which there is
an attracting orbit of multiplier |µ| ≤ r has |λ| > R .

For every hyperbolic component H of period n ≥ 2 and λ ∈ H , there is
a unique homotopy class of curves γ( [0,∞] ) → H ∪ {∞} with γ(0) = λ and
γ(∞) =∞ such that µ

(
γ(t)

)
→ 0 as t→∞ (homotopy with fixed endpoints).
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Proof. If a1, a2, . . . , an is any periodic orbit of period n under λ exp, then(
E◦nλ (am)

)′
=
∏
k ak . If the orbit is attracting, then there is some |ak| < 1.

Hence if |λ| ≤ R , then all |ak| < ξ for some ξ depending on R and n . Now
Re(ak) ≥ −ξ implies that |ak+1| ≥ |λ| exp(−ξ) ≥ exp(−ξ)/e (if |λ| < 1/e , then
λ exp has an attracting fixed point). Hence we have a lower bound for all |ak| and
hence for |µ| .

It follows that any curve γ′: ( [0,∞[ ) → D∗ with limt→∞ γ′(t) = 0 lifts
under any branch of the inverse multiplier map to a curve γ: ( [0,∞[ ) → H
with limt→∞ γ(t) = ∞ . Conversely, any two curves γ1, γ2: ( [0,∞[ ) → H which
limit at ∞ and with µ

(
γ1,2(t)

)
→ 0 as t → ∞ project under µ to two curves

γ′1, γ
′
2: [0,∞[→ D∗ , and these are homotopic in D∗ ; hence γ1 and γ2 are also

homotopic in H (different branches of µ−1 can be compensated by loops around
0 in D∗ and do not matter).

Remark. This lemma does not show that any two curves γ1,2: ( [0,∞] ) →
H ∪ {∞} with γi(∞) = ∞ are homotopic if the condition µ

(
γ1,2(t)

)
→ 0

is dropped: it would even be conceivable that, for some ϑ ∈ R , a branch of
µ−1( ]0, eiϑ[ ) (an internal parameter ray, Definition 4.5) tends to ∞ as |µ| → 1.
It was conjectured by Eremenko and Lyubich [EL2] that this does not happen.
The proof of this is not easy: see [S1, Section V] and [RS].

3. Classification of hyperbolic components

Hyperbolic components of Multibrot sets have the helpful property that they
have a unique “center” in which the dynamics is postcritically finite [Mc1], [M1],
[ES]. If an exponential map has an attracting orbit, it can never be postsingularly
finite (with multiplier 0); the center of hyperbolic components “is at ∞” (in the
sense of Lemma 2.1). Fairly enough, it turns out that hyperbolic components of
exponential maps have a different feature unknown to the polynomial case: since
they stretch out to +∞ like parameter rays, they can be described by a slight
generalization of external addresses: we need finite sequences of integers, followed
by a half-integer.

Definition 3.1 (Intermediate external address). An intermediate external
address of period n ≥ 2 is a finite sequence s1s2 . . . sn−2, sn−1 with sk ∈ Z for
k ≤ n− 2 and sn−1 ∈ (Z + 1

2 ) .

The lexicographic order on external addresses (infinite sequences over Z)
extends naturally to intermediate external addresses such as s = s1s2 . . . sn−1 .
Intermediate external addresses of period n (which consist of n − 1 numbers)
label hyperbolic components of period n .

As usual, we start with a dynamic consideration.

Definition 3.2 (Attracting dynamic ray). Consider an exponential map Eλ
with an attracting orbit of period n ≥ 2 and let s = s1s2 . . . sn−1 be an interme-
diate external address of period n . As always, let a1 be the attracting periodic
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point in the characteristic Fatou component U1 . We say Eλ has an attracting
dynamic ray at external address s if there is a curve γ: [0,∞[→ U1 such that the
following hold:

– γ(0) = a1 ;

– limt→∞E◦kλ γ(t) = +∞ for k = 0, 1, . . . , n− 2;

– limt→∞E
◦(n−1)
λ γ(t) = −∞ ;

– every dynamic ray at an external address s′ < s is below γ ;

– every dynamic ray at an external address s′ > s is above γ .

Remark. Since γ is in a Fatou component, it must be disjoint from every
dynamic ray. Both γ and any given dynamic ray tend to +∞ at bounded imagi-
nary parts, so the ray must be above or below γ in the following sense: for real ξ
sufficiently large, γ cuts the half plane

{
z ∈ C : Re(z) > ξ

}
into two unbounded

parts, one above and one below γ , and every dynamic ray must tend to +∞
within one of these two parts.

Lemma 3.3 (Attracting dynamics has external addresses). For every ex-
ponential map Eλ with an attracting orbit of period n ≥ 2 , there is a unique
intermediate external address s = s1s2 . . . sn−1 of period n such that there is an
attracting dynamic ray at external address s . Every exponential map from the
same hyperbolic component has an attracting dynamic ray at the same external
address s .

Proof. The periodic Fatou component U0 = Un contains a left half plane.
By simple connectivity, it contains a unique homotopy class of curves connecting
the attracting periodic point an to −∞ eventually within a left half plane, even
eventually along R− . This homotopy class of curves can be pulled back n−1 steps
to a preferred homotopy class of curves within U1 connecting a1 to +∞ . Choose
one such curve γ ⊂ U1 . This curve avoids dynamic rays, and it is easy to check
that the supremum of external addresses of dynamic rays below γ has well-defined
n−1 initial entries in Z : the curve γ and its first n−2 iterates tend to +∞ (with
bounded imaginary parts), so the first n− 1 entries in the supremum are just the
labels of the strips containing the iterates of γ (with respect to inverse images
of R− used in the construction of external addresses). Similarly, the infimum
of external addresses of dynamic rays above γ supplies n − 1 well-defined first
entries which differ from the lower external addresses only in the last entry and
only by one. It is easy to confirm that the external address does not depend on
the choice of γ or on the parameter chosen from the hyperbolic component of Eλ
(the intermediate external address is a discrete object which depends continuously
on the parameter and on γ ).

We thus have a combinatorial coding for every hyperbolic component (the
unique component of period 1 is coded by the empty sequence), and our goal is



Attracting dynamics of exponential maps 13

to show that each coding is realized by exactly one hyperbolic component. This
will be done in Theorem 3.5 (existence) and Corollary 4.4 (uniqueness).

First we need a lemma to prove the existence of an attracting orbit.

Lemma 3.4 (Singular orbit in horizontal strip). Suppose that for some pa-
rameter λ there is a real number h > 3 such Re(λ) > h and the initial segment
z1 = 0 , z2 = λ, . . . , zn of the singular orbit has the property that |Im(zk)| < h for
1 ≤ k ≤ n . Suppose moreover that zn is the first point on the singular orbit with
Re(zn) < 0 . Then the map Eλ has an attracting periodic orbit of exact period n ,
and the attracting basin contains the left half plane Re(z) ≤ Re(zn) + 1 . As
Re(λ)→∞ with fixed height h of the strip, the multiplier tends to 0 .

The proof needs a couple of unpleasant calculations, but its idea is very sim-
ple: the geometry of the strip containing the singular orbit assures that absolute
values of orbit points are dominated by the real parts, and the real parts grow
exponentially. Once the orbit reaches a point with negative real part, its absolute
value dominates the remaining orbit by far, and its image is extremely close to 0.
The contraction coming from the exponential map at this point is far greater than
the expansion along the previous orbit, starting at the singular value 0. There-
fore, any sufficiently small disk around 0 will map after n steps to a much smaller
(almost-) disk close to the origin. In order to map this disk into itself, its size has
to be chosen so that it is neither too large (or we would lose control in the esti-
mates) nor too small (or it would not contain the images after n steps). It turns
out that things work if we choose the disk so that its image at zn has radius 1.

Proof. The points z2, . . . , zn−1 of the orbit are contained within the strip
S :=

{
z ∈ C : |Im(z)| < h

}
at positive real parts. We show that they all have real

parts greater than h . Indeed, this is true for z2 = λ by assumption, and for the
others it follows by induction using |λ| > h > 1: |zk| = |λ| exp

(
Re(zk−1)

)
> heh ,

so Re(zk) > h for k = 2, . . . , n− 1 and Re(zn) < −h .
Now we show for m ≤ n

(1)
m∏

k=2

(|zk|+ 1) < (|zm|+ 1)2.

Indeed, for m = 1 the empty product on the left equals 1, while Re(z1) > 3 by
assumption. For the inductive step, we only need to prove (|zm|+1)2 < |zm+1|+1.

We will use the inequality
(√

2x + 1
)2
< 3 exp(x) for all x ≥ 2 and estimate for

Re(zm) > 0 as follows:

(|zm|+ 1)2 <
(√

2 Re(zm) + 1
)2

< 3 exp
(
Re(zm)

)
< |λ| | exp(zm)| < |zm+1|+ 1.

Our next claim is about zn , the first point with negative real part:

(2) e|λ| exp
(
Re(zn)

)
< (|zn|+ 1)−2.
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Indeed, we have |zn| = |λ| exp
(
Re(zn−1)

)
> heh > 3 exp(3) > 60, thus |Re(zn)| >

heh/
√

2 > 40 and |zn|+ 1 <
√

2 |Re(zn)| . Using the inequality 2ex3 < ex for all
x ≥ 8, it follows

e|λ|(|zn|+ 1)2 < 2e|λ||Re(zn)|2 ≤ 2e|Re(zn)|3 < exp(|Re(zn)|).
Since the real part of zn is negative, the claim follows.

Now we can start the actual proof of the lemma. Let Dn be the open disk
of radius 1 around the point zn . Pulling back by the dynamics, we obtain open
neighborhoods Dn−1 around zn−1, . . . , D1 around z1 = 0. These pull-backs are
contracting at every step: the derivative of Eλ at a point z′k ∈ Dk is equal to
Eλ(z′k) , and its absolute value is bounded above by |zk+1|+1 (using the inductive
fact that dist(zk, ∂Dk) ≤ 1). The inverse map is thus contracting with contraction
factor at most 1/(|zk+1|+1), and the domain D1 contains a disk around the origin
with radius at least % =

∏n
k=2(|zk| + 1)−1 > (|zn| + 1)−2 by equation (1) above

(since we have a bound on the contraction for every point on the disks, the claim
follows without invoking Koebe’s theorems).

On the other hand, all the points in Dn are contained in the left half plane
Re(z) ≤ Re(zn) + 1. For every point z in this left half plane, |Eλ(z)| ≤
|λ| exp

(
Re(zn) + 1

)
= e|λ| exp

(
Re(zn)

)
< % by equation (2) above. It follows

that Eλ(Dn) ⊂ D1 and hence E◦nλ (D1) ⊂ D1 . This is a proper inclusion, so there
is an attracting orbit of period at most n . The period clearly cannot be smaller
than n . If within the same strip with imaginary parts bounded by h , Re(λ) be-
comes large, the size of the image of Dn within D1 gets much smaller compared
to the size of D1 , and the multiplier tends to 0.

Now we come to the existence theorem. We restrict to periods n ≥ 3 because
the hyperbolic components of periods 1 and 2 are completely classified: the unique
component of period 1 in λ -space is coded by the empty external address, and
the component of period 2 is coded by the address s = 0 of length 1.

Theorem 3.5 (Existence of hyperbolic components). For every n ≥ 3 and
every intermediate external address s = s1s2 . . . sn−1 of period n with s1 = 0 ,
there is a hyperbolic component in λ -space in which every exponential map has
an attracting dynamic ray at external address s .

This hyperbolic component contains an analytic curve tending to +∞ with
imaginary parts converging to 2πs2 such that along this curve the multipliers of
the attracting orbit tend to 0 .

Proof. Let s±n−1 := sn−1 ± 1
2 ∈ Z and define two periodic external addresses

of period n − 1 via s− := s1s2 . . . s
−
n−1 and s+ := s1s2 · · · s+

n−1 . Let A := 1 +
maxk{|sk|} .

In [SZ2, Proposition 3.4] (or [SZ1, Theorem 2.3]), the existence of dynamic
rays gs+ , gs− was shown: these are curves gs± : ]0,∞[→ C satisfying

(3) gs±(t) = t− κ+ 2πis1 + rs±(t) with |rs±(t)| < 2e−t(|κ|+ 2 + 2πAC ′)
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for t ≥ 1 + 2 log(|κ| + 3), where C ′ < 2.5 is a universal constant. The same
statement with the same bound holds also for all σk(s±) (replacing s1 by the
appropriate entry, of course). In particular, if we let

τ := 1 + 2 log(|κ|+ 3 + 2πAC ′),

then τ ≥ max
{

1 + 2 log(|κ| + 3), log 2 + log(|κ| + 2 + 2πAC ′)
}

so that (3) holds
and

|gs±(t)− (t− κ+ 2πis1)| = |rs±(t)| < e−(t−τ)

for t ≥ τ . After n− 2 iterations, the ray tails gs±( [τ,∞[ ) map to

E
◦(n−2)
λ

(
gs±
(

[τ,∞[
))

= gσn−2(s±)

(
[F ◦(n−2)(τ),∞[

)

with
gσn−2(s±)(t) = t− κ+ 2πis±n−1 + r±(t)

with |r±(t)| < e−(t−τ) ≤ 1. Define a curve

γ′κ: [F ◦(n−2)(τ),∞[→ C via γ′κ(t) = t− κ+ 2πisn−1;

it has the property that Eλ(γ′κ) ⊂ R− . The construction assures that the two ray
tails gσn−2(s±)

(
[F ◦(n−2)(τ),∞[

)
are above respectively below γ ′κ

(
[F ◦(n−2)(τ),∞[

)

(asymptotically by iπ ), and all three curves are disjoint. Moreover, every dynamic
ray gs′ with s′ < sn−1 (that is, s′1 < sn−1 ) is eventually below γ′ , and if s′ > sn−1

(that is, s′1 > sn−1 ), then the ray gs′ is eventually above γ′ .
Pulling back n− 2 times along equal branches of E−1

λ on C \R−0 , it follows
that there is a curve γκ: [τ,∞[→ C between the two rays gs±

(
[τ,∞[

)
with

(4) E
◦(n−2)
λ

(
γκ(t)

)
= γ′κ

(
F ◦(n−2)(t)

)
= F ◦(n−2)(t)− κ+ 2πisn−1.

Just like dynamic rays, this curve inherits the bound for t ≥ τ

(5) γκ(t) = t−κ+ 2πis1 + rκ(t) with |rκ(t)| < 2e−t(|κ|+ 2 + 2πAC ′) < e−(t−τ)

(it follows from the construction of γκ using n − 2 pull-backs that γκ satisfies
asymptotically the same bounds (3) as the two rays gs± which surround γk ; this
can also be verified in the proof of (3) in [SZ1], [SZ2]).

The curve γκ clearly satisfies the second and third conditions for attracting
dynamic rays; the last two are asymptotically satisfied in the sense that for every
s′ , the ray gs′ is above or below γκ (as needed) for sufficiently large t depending
on s′ . The first condition requires an attracting orbit, which not every exponential
map has.
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For any R ≥ 0, set κ±R := R + 2πis1 ± iπ = R ± iπ and IR := [κ−R, κ
+

R]
(a vertical interval of length 2π ); then |κ| ≤ R + π for all κ ∈ IR . Set tR :=
1+2 log(R+π+3+2πAC ′) > τ . For t ≥ tR , the bound (5) implies Im

(
γκ−

R
(t)
)
< 0

and Im
(
γκ+

R
(t)
)
> 0. For all κ ∈ IR , we have

Re
(
γκ(tR)

)
< tR −R+ 1.

Now fix R large enough so that tR−R+1 < 0; this is possible since tR = O(logR) .
As κ moves from κ−R to κ+

R , by continuity there must be an intermediate value
κ∗ where γκ∗(t

∗) = 0 for some t∗ > tR > τ . The point of this construction is,
of course, that κ∗ has an attracting periodic orbit of period n with the required
properties, at least when R is sufficiently large.

Indeed, with λ∗ := exp(κ∗) , the first n postsingular points 0, Eλ∗(0), . . . ,

E
◦(n−1)
λ∗ (0) are in the strip |Im(z)| ≤ 2πA + π + 1: the 2πA comes from the

bound |sk| < A ; the π is the bound on Im(κ) , and the final 1 is the error

bound for the rays. The postsingular orbit Eλ∗(0) = λ∗, . . . , E◦(n−2)
λ∗ (0) has pos-

itive real parts, while Re
(
E
◦(n−1)
λ∗ (0)

)
¿ 0. Now if R is large enough, then

Lemma 3.4 shows that there is an attracting orbit of exact period n for κ∗ , and

E
◦(n−1)
λ∗

(
γκ∗
(

[t∗,∞[
))
⊂ Un . Hence γκ∗

(
[t∗,∞[

)
is in the attracting basin with

γκ∗(t
∗) = 0, so γκ∗

(
[t∗,∞[

)
⊂ U1 .

Connect γκ∗ to the attracting periodic point a1 ∈ U1 and call this resulting
curve γ: ( [0,∞[ )→ C . It clearly satisfies the first three conditions for attracting
dynamic rays. We argued above that the last two conditions were satisfied at least
for large t . But since the curve γ is in the characteristic Fatou component, it
is disjoint from all dynamic rays, and it is indeed an attracting dynamic ray at
external address s = s1s2 . . . sn−1 .

By Lemma 3.3, every parameter λ in the hyperbolic component of λ∗ has an
attracting dynamic ray at external address s . This finishes the existence part of
the theorem.

To justify the asymptotics, start with large R , hence large t∗ > tR =
O(logR) , and observe that γκ∗(t

∗) = 0 implies, using (5), that κ∗ = t∗ + 2πis1 +
rκ∗(t

∗) with |rκ∗(t∗)| → 0, hence Im(κ∗) → 2πs1 = 0. For n = 3, we have
λ∗ = Eλ∗

(
γκ∗(t

∗)
)

= γ′κ∗
(
F (t)

)
= F (t) − κ + 2πis2 , hence Im(λ∗) → 2πs2 . For

n > 3, we argue similarly:

λ∗ = Eλ∗
(
γκ∗(t

∗)
)

= gσ(s±)

(
F (t∗)

)
+ o(1) = F (t∗)− κ∗ + 2πis2 + o(1)

= F (t∗)− t∗ + 2π(s2 − s1) + o(1).

This way, we have shown the existence of a map R 7→ (κ∗, t∗) (for sufficiently

large R) with Re(κ∗) = R and γκ∗(t
∗) = 0. Note that E

◦(n−1)
λ∗ (t∗) ∈ R− for all

t∗ = t∗(R) . It is quite easy to check that (∂/∂κ∗)
(
E
◦(n−1)
λ∗ (t∗)

)
→∞ as t∗ →∞ ,

so the implicit function theorem shows that the graph of R 7→ κ∗(R) is analytic.
It follows from Lemma 3.4 that the attracting multiplier tends to 0 as R→∞ .
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We know from Lemma 2.1 that every hyperbolic component H has a preferred
homotopy class of curves γ: [0,∞] → H ∪ {∞} with γ(0) ∈ H and γ(∞) = ∞
such that multipliers tend to 0 along this curve. These preferred homotopy classes
of curves give a natural vertical order to hyperbolic components, much as the
order for dynamic rays: we say that some hyperbolic component is above another
hyperbolic component if the corresponding preferred homotopy classes of curves
have the appropriate vertical order.

Corollary 3.6 (Relative position of hyperbolic component). The vertical
order of hyperbolic components is the same as the lexicographic order of their
intermediate external addresses.

Proof. This follows from the previous proof as follows: if s′ > s′′ are two
intermediate external addresses, then there is a periodic external address s be-
tween them: s′ > s > s′′ . In the construction in the proof of Theorem 3.5, the
curve γκ for s′ is always above gs , while the corresponding curve for s′′ is always
below gs .

Remark. This vertical order can also be expressed in terms of parameter
rays [S1], [F]: these are differentiable curves Gs: (ts,∞) → C with Gs(t) → +∞
as t → ∞ such that for λ = Gs(t) , the singular value escapes with 0 = gs(t) ;
parameter rays are thus disjoint from hyperbolic components. With the notation
of the proof of Corollary 3.6, there is a parameter ray Gs , and the hyperbolic
components for s′ and s′′ are above, respectively below, this ray.

As this paper was being submitted, a manuscript by Devaney, Fagella and
Jarque [DFJ] was released which contains the same sufficient condition for the
existence of hyperbolic components as in our Theorem 3.5.

4. Uniqueness of the classification

In the following lemma, we construct a curve γ = γ− ∪ {a1} ∪ γ+ in the
dynamical plane of every exponential map which has an attracting orbit with
positive real multiplier. The curve γ+ will be used in this section to construct
fundamental domains for exponential dynamics, while γ− will be used in Section 7
to construct a “dynamic root”, which helps parametrizing hyperbolic components
in a dynamically meaningful fashion.

Lemma 4.1 (Attracting dynamic ray to boundary fixed point). Let Eλ be an
exponential map which has an attracting periodic orbit with positive real multiplier
and with period n ≥ 2 . Then there is a proper analytic curve γ: R → U1 which
contains the orbit of 0 under E◦nλ . This curve is unique up to reparametrization
and can be written γ = γ−∪{a1}∪γ+ with two disjoint subcurves γ± which have
the following properties:

– γ+ is an attracting dynamic ray and contains the orbit of 0 under E◦nλ ; it
connects a1 to +∞ ;

– γ− starts at a1 and lands at some w ∈ ∂U1 with E◦nλ (w) = w .
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Proof. There is a unique open neighborhood D of a1 which corresponds to
a round disk in linearizing coordinates around a1 and which contains the singular
value 0 on its boundary. Let γD ⊂ D be the curve corresponding to a diameter
in linearizing coordinates such that 0 ∈ γD . Then the first return map E◦nλ of U1

sends D into itself and γD into itself. Any proper analytic curve which contains
the orbit of 0 under E◦nλ must be an extension of γD because the orbit of 0
accumulates at a1 , so γ is unique if it exists.

The point a1 cuts γD into two radii; let γ′+ be the one which ends at 0 and

γ′− the other one (then γD = γ′+∪{a1}∪γ′− ). The set E
◦(−n)
λ (γ′+)∩U1 consists of

countably many curves; let γ+ be the one which extends γ′+ : it starts at a1 and
lands at ∞ , running through 0. Since γ ′+ is differentiable at 0, every branch of

E−1
λ (γ′+) has bounded imaginary parts, and γ+ approaches +∞ along bounded

imaginary parts. Then γ+ is an attracting dynamic ray: it satisfies the first three
conditions of Definition 3.2, and by Lemma 3.3, the intermediate external address
of γ+ is uniquely determined by the hyperbolic component containing Eλ .

There is a unique curve γ− ⊂ U1 \ {a1} which extends γ′− and which satisfies
E◦nλ (γ−) = γ− : such a curve can be constructed by an infinite sequence of pull-
backs, starting at γ′− and always choosing the branch which extends γ ′− . Then
γ− is analytic and E◦nλ : γ− → γ− is a homeomorphism.

The curve γ− can be parametrized (in many ways) as γ−: R → U1 so that
E◦nλ

(
γ−(t)

)
= γ−(t + 1). We have limt→+∞ γ−(t) = a1 . We want to show that

limt→−∞ γ−(t) exists in ∂U1 . We will use a modification of the known standard
proofs for the landing of external dynamic rays of polynomials. Let

U ′ := U1 \
⋃
k≥0

E◦knλ (0) and U ′′ := E
−(◦n)
λ (U ′) ∩ U1.

Then both domains are open and E◦nλ :U ′′ → U ′ is a holomorphic covering map,
hence a local isometry with respect to the unique normalized hyperbolic metrics of
U ′′ and U ′ , and the inclusion U ′′ ↪→ U ′ is a contraction. Therefore, the hyperbolic
distance in U ′ between any γ−(t − 1) and γ−(t) is less than between γ−(t) and
γ−(t+1). By continuity, there is an s > 0 such that the hyperbolic distance in U ′

between γ−(t) and E◦nλ
(
γ−(t)

)
is at most s , for all t < 0. But since γ−(t)→ ∂U1

as t → −∞ (points γ−(t) for large negative t need longer and longer to iterate
near a1 ), and the density of the hyperbolic metric tends to ∞ near ∂U1 , it follows
that

∣∣γ−(t) − E◦nλ
(
γ−(t)

)∣∣ → 0 as t → −∞ . Therefore, any limit point of γ− is
either ∞ or a fixed point of E◦nλ . Since the limit set is non-empty and connected,
while the set of fixed points is discrete, it follows that γ− lands at a well-defined
boundary point of U1 which is either ∞ or fixed under E◦nλ . If the landing point
is a fixed point of E◦nλ , then the curve of the claim is γ := γ− ∪ {a1} ∪ γ+ . All
that remains is to show that the curve γ− does not land at ∞ .

Suppose that γ−(t)→∞ as t→ −∞ . Then also E◦nλ
(
γ−(t)

)
= γ−(t− 1)→

∞ as t → −∞ . Since γ− ⊂ U1 , it follows that E
◦(n−1)
λ (γ−) ⊂ U0 = Un and
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E
◦(n−1)
λ

(
γ−(t)

)
→ ∞ as t → −∞ . If we had lim inf Re

(
E
◦(n−1)
λ

(
γ−(t)

))
< +∞

as t → −∞ , then lim inf
∣∣E◦nλ

(
γ−(t)

)∣∣ = lim inf |γ−(t + 1)| < ∞ , and the landing

point of γ− would be in C . Therefore, Re
(
E
◦(n−1)
λ

(
γ−(t)

))
→ +∞ as t→ −∞ ,

and this curve must have bounded imaginary parts because the translates of U1

cut {z ∈ Un: Re(z) > 0} into parts with bounded imaginary parts. But then, for
t¿ 0 and Re

(
γ−(t)

)
À 0, the entire orbit of γ−(t) must have large real parts, and

standard estimates similarly as in Lemma 3.4 show Re
(
E◦nλ

(
γ−(t)

))
À Re

(
γ−(t)

)
,

which is a contradiction: for every t , the point γ−(t) converges to a1 under
iteration of E◦nλ .

Remark. In fact, it is not difficult to show that γ is a hyperbolic geodesic
of U1 [S1]: this is easier if the first return dynamics is conjugated to the map
M ◦ exp: H− → H− , where H− is the left half plane, exp: H− → D∗ is a universal
cover and M : D→ H− is an appropriate conformal isomorphism.

Using the analytic curve γ from Lemma 4.1, we construct fundamental do-
mains for Eλ as follows (provided the attracting multiplier is positive real): there
is a subcurve γ′ ⊂ γ which connects the singular value 0 to +∞ (in fact,
γ′ = γ+ \ (γ′+ ∪ {0})); the full inverse image E−1

λ (γ′) is a countable collection
of analytic curves which connect −∞ to +∞ and which differ by translation by
2πiZ . The connected components of the complement in C of these curves are
fundamental domains for Eλ ; each of them is mapped by Eλ conformally onto
C \ γ′ , and each has bounded imaginary parts because γ ′ is differentiable in its
endpoint 0.

Theorem 4.2 (Conformal conjugation). Suppose that two exponential maps
have attracting orbits of equal period n ≥ 2 with equal positive real multipliers,
and both have attracting dynamic rays at the same intermediate external address
s1s2 . . . sn−1 . Suppose in addition that for both maps, the fundamental domains
as constructed above are such that a single fundamental domain contains both
the periodic point a0 and the singular value. Then both maps are conformally
conjugate.

Proof. Step 1. Let Eλ and Eλ′ be two exponential maps satisfying the
assumptions of the theorem. Let V1 be an open round disk with respect to lin-
earizing coordinates of a1 , large enough so as to contain 0 in its interior. For

k = 2, 3, . . . , n+1, let Vk ⊂ Uk be the domain E
◦(k−1)
λ (V1) , and let V0 := E−1

λ (V1) .
Then V1 ⊃ Vn+1 and V0 ⊃ Vn . Denote the corresponding sets for Eλ′ as U ′k and
V ′k , where the size of V ′1 is chosen so that the dynamics on it is conformally
conjugate to the dynamics on V1 , respecting the singular value.

Step 2. We will construct a quasiconformal homeomorphism ϕ: C→ C from
the dynamic plane of Eλ to the dynamic plane of Eλ′ which will eventually turn
into a conformal conjugation. Since the multipliers at the attracting fixed points
are the same, we can define ϕ|Vk :Vk → V ′k as conformal isomorphisms for k =
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1, . . . , n which respect the dynamics on Vk in the sense that for z ∈ Vk

(6) ϕ
(
Eλ(z)

)
= Eλ′

(
ϕ(z)

)
.

It becomes unique on V1 by the requirement that ϕ(0) = 0, and in view of (6) it
is unique on all Vk .

Since for k = 1, . . . , n , the sets V k are disjoint closed disks with analytic
boundaries, the map ϕ can be extended from the conformal isomorphism ϕ:∪Vk →
∪V ′k to a quasiconformal homeomorphism ϕ: C→ C . On the multiply connected
domain C \ (∪Vk) , we need to specify the homotopy class of ϕ . We will do this

using the attracting dynamic ray γ+ from Lemma 4.1: let γk := E
◦(k−1)
λ (γ+) for

k = 1, 2, . . . , n . Every γk ⊂ Uk , and it connects Vk to +∞ (for k = 1, 2, . . . , n−1)
or to −∞ (for k = n). Now ϕ(γk) connects V ′k to ∞ for every k , and we require
that ϕ(γk) be homotopic to the analogous curve γ ′k relative to V ′1 ∪ · · · ∪ V ′n .
This fixes the homeomorphism ϕ: C→ C uniquely up to homotopy, and it is well
known that ϕ may be chosen so as to be quasiconformal. Note that we do not
claim that the extension of ϕ away from the Vk respects the dynamics.

Step 3. Our goal is to promote ϕ to a conformal conjugation via a sequence
of quasiconformal maps ϕj with ϕ0 := ϕ and

(7) ϕj ◦ Eλ = Eλ′ ◦ ϕj+1.

We will show that ϕj → id uniformly on compact sets, which implies that Eλ =
Eλ′ . The construction is inspired by the theory of spiders [HS].

By induction over j , we will assure that ϕj |Vk = ϕ0|Vk for all j and all k ,
and in particular ϕj(0) = 0 and ϕj(λ) = λ′ ; moreover, ϕj(γk) is homotopic to
ϕ0(γk) and hence to γ′k , relative to V ′1 ∪ · · · ∪ V ′n , for all k and j .

To construct ϕj+1 from ϕj , note that both ϕj ◦ Eλ and Eλ′ are universal
covers from C to C∗ , so there is a homeomorphism ϕj+1: C→ C which satisfies
(7), and it becomes unique by fixing the value at a single point. Since ϕj ◦Eλ(0) =
λ′ = Eλ′(0), we can and will require ϕj+1(0) = 0 to fix ϕj+1 everywhere uniquely.
Note that (7) implies ϕj+1(z + 2πi) = ϕj+1(z) + 2πi for all z .

By (7) and (6), we have

(Eλ′ ◦ ϕj+1)|Vk = (ϕj ◦ Eλ)|Vk = (ϕ0 ◦ Eλ)|Vk = (Eλ′ ◦ ϕ0)|Vk ⊂ V ′k+1.

To justify ϕj+1|Vk = ϕ0|Vk , all that remains to show is that ϕj+1 maps Vk onto
V ′k and not onto another branch of (Eλ′)

−1(V ′k+1) . It is here that the assumption
about the attracting dynamic rays comes in.

Step 3a: the case k = 1, 2, . . . , n−1. Since (Eλ′ ◦ϕj+1)(γk) = (ϕj ◦Eλ)(γk) =
ϕj(γk+1) is homotopic to γ′k+1 = Eλ′(γ

′
k) relative V ′1 ∪ · · · ∪ V ′n , it follows that

ϕj+1(γk) is homotopic to (a 2πiZ -translate of) γ ′k relative E−1
λ′ (V ′1 ∪ · · · ∪ V ′n) ⊃
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V ′1 ∪ · · ·∪V ′n . Now ϕj+1(0) = 0 implies ϕj+1|V1 = ϕ0|V1 , and since γ1 is attached
to V1 , it follows that ϕj+1(γ1) is homotopic to γ′1 .

For k = 2, 3, . . . , n− 1, the number of 2πiZ -translates of γk between γk and
γ1 is coded in the intermediate external address, and it equals the number of 2πiZ -
translates of γ′k between γ′k and γ′1 . This quantity must be respected by ϕj+1

in the sense that the number of translates of γ ′k between γ′1 and ϕj+1(γk) is the
same as between γk and γ1 , so ϕj+1(γk) is homotopic to γ′k and ϕj+1|Vk = ϕ0|Vk .
For k = 2, this implies that ϕj+1(λ) = λ′ . (For later use in Corollary 4.4, we note
that this reasoning is unchanged if a constant integer is added to all sk′ : only the
differences sk′ − s1 matter).

Step 3b: the case k = 0. Since V0 is invariant under translation by 2πiZ
and the curve γn runs towards −∞ , not +∞ , a different argument is needed to
show that ϕj+1|V0 = ϕ0|V0 . This is built into the construction: since ϕj+1(0) = 0,
it follows that ϕj+1 maps the Eλ -fundamental domain containing 0 to the Eλ′ -
fundamental domain containing 0 (up to homotopies of the boundary curve). Since
a0 and a′0 are in the same fundamental domains of Eλ respectively of Eλ′ as 0,
it follows ϕj+1(a0) = a′0 = ϕ0(a0) ; now ϕj+1|V0 = ϕ0|V0 follows from the covering
property.

Finally, ϕ0(γn) connects a′n to −∞ in the complement of V ′1 ∪· · ·∪V ′n−1 and
their associated curves γ′k′ ; since there is only one homotopy class of such curves,
it follows that ϕj+1(γn) is homotopic to ϕ0(γn) rel V ′1 ∪ · · · ∪ V ′n .

Step 4. We have a sequence (ϕj) of homeomorphisms C → C ; it follows
from (7) that all are quasiconformal with the same maximal dilatation as ϕ0 . All
ϕj coincide on

⋃
k Vk , and all fix the points 0, 2πi , and ∞ , and quasiconformal

homeomorphisms with these properties form a compact space. On the domain

E
◦(−(j−1))
λ

(⋃
k Vk

)
with j ≥ 1, the map ϕj is conformal and coincides with all

ϕj′ for j′ ≥ j . Now
⋃
j E
◦(−(j−1))
λ (

⋃
k Vk) fills up the entire Fatou set, while

the Julia set has measure zero by [EL1], [EL3]. Therefore, the support of the
bounded quasiconformal dilatation of the ϕj converges to zero, so the ϕj converge
uniformly on compact subsets of C to an automorphism of C fixing 0, 2πi and
∞ , hence to the identity. Finally, ϕj(λ) = λ′ implies Eλ = Eλ′ . This is what we
claimed.

In order to conclude that every hyperbolic component is uniquely described
by its intermediate external address, we first state a lemma with routine proof.

Lemma 4.3 (Same fundamental domain). Every hyperbolic component of
exponential maps with period n ≥ 2 contains a map for which the attracting orbit
has positive real multiplier, and for which a single fundamental domain contains
both the periodic point a0 and the singular value.

Proof. Let H be the hyperbolic component and let µ:H → D∗ be the
multiplier map. Since it is a universal covering, we may find a map Eλ0 ∈ H with
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µ(λ0) > 0. There is a curve in H starting at λ0 so that the µ -image of this curve
describes a circle in D∗ around the origin in positive orientation; let λ1 ∈ H be
the endpoint of the curve.

For Eλ0 , recall the analytic curve γ+ from Lemma 4.1: it is an extension of
a diameter in linearizing coordinates around a1 . Let γ1

+ be the subcurve between
0 and E◦nλ0

(0). As the parameter λ is deformed from λ0 to λ1 , the curve γ1
+

extends to a homotopy γ1
+(λ) of curves within U1(λ) connecting 0 to E◦nλ (0) in

the complement of the respective singular orbits. In particular, we obtain a curve
γ1

+(λ1) connecting 0 to E◦nλ1
(0) within U1(λ1) in the complement of the singular

orbit, and this curve is unique up to homotopy. This is not a closed curve, but
the beginning and endpoint are on the same radius with respect to linearizing
coordinates of a1 , so it makes sense to say that γ1

+(λ1) winds once around a1 .
For the map Eλ1 , Lemma 4.1 provides another curve which connects 0 to E◦nλ1

(0)
(part of a linearizing radius), and this has winding number zero. Call this curve
γ̃1

+(λ1) .
For k = 1, 2, . . . , n , pull back both curves under E◦kλ1

, choosing the branch

ending at E
◦(n−k)
λ1

(0) (as in Lemma 4.1): this yields two curves γ0
+(λ1) and γ̃0

+(λ1)
connecting 0 to +∞ ; their winding numbers around a1 differ by 1.

All the countably many Eλ1 -preimages of γ̃0
+(λ1) bound the fundamental do-

mains of Eλ1 as defined before Theorem 4.2, while the Eλ1 -preimages of γ0
+(λ1)

are deformations of the fundamental domain boundaries of Eλ0 : their difference
shows that between Eλ0 and Eλ1 , the periodic point a0 has jumped one funda-
mental domain up.

A finite repetition of this process (forward or backward) can bring a0 into
the fundamental domain which contains 0.

Corollary 4.4 (Uniqueness of classification). The intermediate external ad-
dresses associated to hyperbolic components associate a bijection between hyper-
bolic components and intermediate external addresses with s1 = 0 of any given
period.

Proof. By Lemma 3.3, every hyperbolic component is associated to a unique
intermediate external address s1, s2, . . . , sn−1 ; this defines a “classification map”
from hyperbolic components to intermediate external addresses. Every component
contains a parameter as described in Lemma 4.3, say with multiplier µ = 1

2 . By
Theorem 4.2 two such exponential maps are identical if their external addresses
s1s2 . . . sn−1 and s′1s

′
2 . . . s

′
n−1 satisfy sk− s1 = s′k− s′1 for all k , so the classifica-

tion map is injective. Since every address with s1 = 0 is realized (Theorem 3.5),
only addresses with s1 = 0 are realized, and the classification map is a bijection.

Remark. In the proof that the intermediate external address uniquely de-
scribes hyperbolic components, we singled out attracting exponential maps for
which the same fundamental domain contains the periodic point a0 and the sin-
gular value 0. This was convenient for the proof, but such maps are dynamically
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not special enough so that the corresponding locus in parameter space would stand
out. We do not believe that these maps have any real significance other than that
they are helpful in the proof. There is, however, a dynamically significant lo-
cus within every hyperbolic component, called “central internal ray”: this ray
has significance both dynamically and in parameter space and allows us to give
a preferred parametrization of hyperbolic components. This will be discussed in
Section 7, but some preparations are more conveniently done here.

Recall that the multiplier map µ:H → D∗ is a universal covering map for
every hyperbolic component H of period n ≥ 2, hence there is a conformal iso-
morphism Φ:H → H with µ = exp ◦Φ, and Φ is unique up to translation by
2πiZ in the range (throughout this paper, H denotes the left half plane). For our
preferred parametrization of the component, we have to specify a choice of this
integer translation, which is a combinatorial problem.

Definition 4.5 (Internal rays of hyperbolic components). An internal ray at
angle ϑ ∈ R/Z of a hyperbolic component H is any branch of µ−1

(
]0, e2πiϑ[

)
,

where µ:H → D∗ is the multiplier map. In other words, an internal ray is a
connected component of the locus in H where arg(µ) is constant.

For every fixed angle ϑ ∈ R/Z , there are countably many parameter rays
with the same angle (except for the unique period 1 component in λ space), and
on each of them the map |µ| induces a homeomorphism onto ]0, 1[ .

The internal parameter rays at angle 0 are the loci where the multiplier is
real and positive, and they can be distinguished dynamically by the following
generalization of Lemma 4.3. Note that the conformal isomorphism Φ:H → H
induces a vertical order of parameter rays induced by imaginary parts within H ;
this order does not depend on the ambiguity in the definition of Φ (but since
H is a left half plane, for hyperbolic components with unbounded positive real
parts this order is “upside down” when parameter rays are ordered with respect
to imaginary parts in their approach to +∞).

Lemma 4.6 (Internal parameter rays at angle 0). Every exponential map
which has an attracting orbit of period n ≥ 2 with real positive multiplier has an
associated integer-valued index ∆′ which specifies how many fundamental domains
the periodic point a0 is above the singular value (or below, if the index is negative).
The index ∆′ is constant for exponential maps on the same internal parameter
ray. For every hyperbolic component, the index ∆′ induces an order preserving
bijection between Z and parameter rays at angle 0 . In particular, for every
conformal isomorphism Φ:H → H with µ = exp ◦Φ , there is an integer m =
m(H,Φ) depending only on H and Φ such that every λ ∈ H with µ(λ) > 0 has
Im
(
Φ(λ)

)
= 2π(∆′ −m) .

Proof. Both a0 and the singular value are in some fundamental domain, and
the latter are ordered like Z ; therefore, there is a well-defined integer ∆′ which
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specifies how many fundamental domains a0 is above 0. By continuity, the index
is constant along internal parameter rays at angle 0.

Moving one parameter ray up within the hyperbolic component (i.e. moving
to a parameter ray on which Im(Φ) is greater by 2π for any given Φ) can be
achieved by a deformation as in the proof of Lemma 4.3, and this increases the
index ∆′ by one.

5. Characteristic rays and permutations

In this section, we investigate periodic points at which at least two periodic
dynamic rays land, and show that the first return map of the periodic points
permutes their rays transitively. This property is well known from quadratic poly-
nomials; it depends on the fact that there is a single singularity, not on the degree
of the map.

Definition 5.1 (Essential orbit, characteristic point and rays). A periodic
orbit will be called essential if at least two dynamic rays land at each of its points.
Suppose that a point z on an essential orbit is the landing point of two dynamic
rays which separate the singular value from all the other points on the orbit of z ;
then the point z will be called the characteristic point of its orbit. The character-
istic rays of the orbit will be the two dynamic rays landing at the characteristic
point which separate the singular value from all the other rays landing at the same
orbit.

The following result describes the combinatorics of dynamic rays landing to-
gether. The statement is the same as for polynomials, but the usual proof (using
“widths of sectors”) does not apply without modification. Still, essential ideas are
borrowed from Milnor [M3].

Lemma 5.2 (Permutation of dynamic rays). Every essential periodic orbit
has exactly one characteristic point and exactly two characteristic rays at every
point. If more than two dynamic rays land at any periodic point, then the first
return map of the periodic point permutes these rays cyclically.

Proof. Let z1 , z2, . . . , zn = z0 be a periodic orbit of period n , labeled in the
order of the dynamics, and let r ≥ 2 be the number of dynamic rays at each of
these points. This number is constant along the orbit. The r rays landing at any
given point zk cut the complex plane into r open connected components which
will be called the “sectors” at zk . These dynamic rays connect zk to +∞ , so
exactly one of the sectors at zk contains a left half plane.

Consider any sector which does not contain a left half plane. Let m be the
position of the first difference in the external addresses of the two rays bounding
the sector (with m = 1 if the first entries are different); this will be called the
singular index of the sector. For the sector which does contain a left half plane,
we let the singular index be m := 0. Clearly, any sector at zk with index m ≥ 1
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maps homeomorphically onto a sector at zk+1 with index m − 1 (for m = 1, it
follows from the fact that the sector must contain a horizontal line segment which
stretches infinitely to the right and maps onto an infinite segment of R− ). It
follows that for each sector, the index equals the number of iterations it takes for
this sector to map over a left half plane.

If the index of a sector S at some zk equals 0 so that the sector contains
a left half plane, then S will not map forward homeomorphically. If gs and gs′
are the two dynamic rays bounding S , then Eλ(gs) = gσ(s) and Eλ(gs′) = gσ(s′)

bound a sector S′ at zk+1 containing the singular value; we call S ′ the image
sector of S . If the image sector also contains a left half plane, then the index
remains 0; otherwise, the rays at zk+1 separate the singular value from a left half
plane, and the index is strictly greater than 0. Each zk has exactly one sector
with index 0 (the unique sector containing a left half plane).

Every sector at every point zk is periodic (in the sense just defined, not as a
subset of C), and so is the sequence of the indices. The index sequence of each
sector must of course contain at least one index 0, and it cannot be the constant
sequence: if all the entries of one cycle of sectors were equal to 0, then all the
other cycles of sectors could never have index 0, a contradiction.

Among the nr sectors based at the n points z1 · · · zn , there is at least one
with largest index. Let S be such a sector and let z1 be the periodic point at
which S is based (possibly after cyclic relabeling). If S contains a periodic point
zk 6= z1 , then at least one of the sectors at zk has index at least as large as S ;
after replacing S with such a sector, we may assume that S contains no periodic
point zk . Let S0 be the unique sector (at z0 ) with image sector S . Then S0 must
contain a left half plane (or the index of S0 would exceed that of S ), hence S
contains the singular value. This makes z1 the characteristic point of its orbit, and
the rays bounding S are the characteristic rays. This shows the first statement.

Let α1 > α2 > · · · > αr be the indices of the sectors at z1 ; no two of them
can be equal because otherwise the corresponding sectors would map forward
homeomorphically until they contained a left half plane at the same time. Of
course, αr = 0 is the sector containing a left half plane.

Consider any cycle C of sectors and let α > 0 be the largest index within its
period. Since indices are always decreasing unless they are equal to 0, the index
α must occur for a sector containing the singular value but not a left half plane.
Let zk be the periodic point at which this sector is based. If zk = z1 , then the
sector with index α is the sector at z1 containing the singular value. Hence all
sectors for which the largest index is realized at z1 are on the same orbit. This
is true even if the sequence of indices contains several maxima and one of them is
realized at z1 .

If, however, zk 6= z1 , then α ≤ αr−1 because the point z1 is within the sector
at zk with index α , and so are all the sectors at z1 with indices α1 > · · · > αr−1 .
The cycle C of sectors must map through z1 , but the only sector at z1 it can map
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through is the sector containing a left half plane (the maximum α is not assumed
at z1 ).

It follows that there are at most two cycles of sectors: their representatives
at z1 must include either the sector containing the singular value or the sector
containing a left half plane, or both. Suppose that not all sectors are on the same
orbit. Then the sector at z1 containing a left half plane is fixed under the first
return map of z1 and has period n , and all the other r − 1 sectors at z1 are
on the same orbit, so they are permuted transitively by the first return map of
the dynamics and have period (r − 1)n . But all sectors must have equal periods
because all dynamic rays have equal periods, and this is possible only if r = 2.

6. Dynamic roots

For an understanding of the dynamics, the most important rays are those
which land together. We will now show that such are associated to attracting
Fatou components.

We will need the partition constructed in [SZ3, Section 4.3] and reviewed in
Section 2. Let u1, u2, . . . , un−1 be the first n − 1 entries of the itinerary of the
singular value (such that the singular value 0 is in the region labeled u1 , etc.).
By definition of the labels, u1 = 0 . The nth entry is not defined.

For a dynamic ray gs with bounded external address s , it may happen that
there are two curves within U1 which connect the singular value to +∞ such that
they separate gs from U0 . In this case, we will say that the ray gs is surrounded
by U1 , and rays gs′ with bounded external addresses s′ sufficiently close to s will
also be surrounded by U1 , so this is an open property in the sequence space S . The
Fatou component U1 contains infinitely many non-homotopic curves connecting

the singular value to +∞ , namely pull-backs of curves connecting E
◦(n−1)
λ (0) to

∞ within the Fatou component Un containing a left half plane. Hence each ray
which is not surrounded by U1 is either above or below U1 in the sense that the
ray approaches +∞ above or below all such curves within U1 . Similarly, we will
say that rays are above or below U2, . . . , Un−1 (but not U0 ). Since every Ui
(for i = 1, 2, . . . , n − 1) is disjoint from its 2πiZ -translates, and Un−1 contains
a preimage of an unbounded part of R− , each Ui 6= U0 has bounded imaginary
parts.

Lemma 6.1 (Periodic external address above U1 ). Let U1 be the charac-
teristic Fatou component of an exponential map with attracting orbit of period
n ≥ 2 . Then

s+ := inf
{
s ∈ S : gs is above U1

}
and s− := sup

{
s ∈ S : gs is below U1

}

define two periodic external addresses of period n with equal itineraries.
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Proof. It may not be clear a priori that s+ and s− are well-defined sequences
in ZN , but their first entries are certainly integers s+

1 ≥ s−1 . If s+

1 = s−1 , then
iteration gives

σ(s+) = inf
{
s ∈ S: gs is above U2

}
(and similarly for σ(s−))

so that s+

2 ≥ s−2 are well-defined. Repeating this argument shows that

σk(s+) = inf
{
s ∈ S : gs is above Uk+1

}

where k is the first integer such that s+

k+1 > s−k+1 . Now Uk+1 surrounds or
contains a preimage of an unbounded part of R− , hence a preimage of a left half
plane, and the next step is different:

σk+1(s+) = inf
{
s ∈ S : gs is below U1 , and Uk+2 does not separate gs from U1

}

(the problem is that the lower part of Uk+1 maps above U1 , while the upper part
maps below U1 , and we are interested only in the image of the upper part; another
way of saying this is that σk+1(s+) is the infimum of sequences which are above
those parts of Uk+2 that are below U1 ). Note that the infimum still has finite first
entry because some part of Uk+2 is below U1 . We can continue to iterate this:

σk+m(s+) = inf
{
s ∈ S :gs is below Um,

and Uk+m+1 does not separate gs from Um
}

where m is the first integer such that Um surrounds or contains a preimage of an
unbounded part of R− , or there is a preimage of an unbounded part of R− below
Um which separates Um from Uk+m+1 . If that happens, we get

σk+m+1(s+) = inf
{
s ∈ S : gs is above Uk+m+2

}

and we are back to the initial situation. Repeating these arguments for a total of
n− 2 iterations, we see that either

(8) σn−2(s+) = inf
{
s ∈ S : gs is above Un−1

}
,

or there is a k′ ≤ n such that (8) is false, but

(9)
σn−2(s+) = inf

{
s ∈ S : gs is below Uk′ ,

and Un−1 does not separate gs from Uk′
}
.

In the case of (8), we get

σn−1(s+) = inf
{
s ∈ S : gs is in the same region Ru1 as U1,

and Un = U0 does not separate gs from U1

}
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(because Un−1 and the region surrounded by Un−1 together map homeomorphi-
cally over all of C except a subset of Ru1

), and then

σn(s+) = inf
{
s ∈ S : gs is above U1

}
.

Similarly, in the case of (9), we get

σn−1(s+) = inf
{
s ∈ S : gs is in the same region Ruk′+1 as Uk′+1,

and Un does not separate gs from Uk′+1

}

and again σn(s+) = inf
{
s ∈ S : gs is above U1

}
.

Thus in every case σn(s+) = s+ , and this is a periodic sequence over Z with
period n . The same applies to s− , and both have itineraries of period (dividing) n .

The first n − 1 entries in the itinerary of gs+ are u1u2 · · · un−1 , which are
the same as in the itinerary of U1 or of the singular value. The nth entry in the
itinerary of U1 is not defined (because the image component Un extends through
all fundamental domains), but we saw above that the nth entry in the itinerary
of gs+ is either u1 or uk′+1 , and gs− has the same itinerary.

Theorem 6.2 (Two rays at boundary fixed point). Every periodic Fatou
component with attracting dynamics of period n ≥ 2 has a unique point on its
boundary which is fixed by the first return map of the component and which is
the landing point of at least two periodic dynamic rays. The characteristic point
of this periodic orbit is on the boundary of the characteristic Fatou component.

Proof. Existence follows from Lemma 6.1: the periodic dynamic rays gs+ and
gs− have identical itineraries, so by the results of [SZ3] mentioned in Section 2,
they land at a common periodic point z , say. In order to prove that z ∈ ∂U1 , let l

be the hyperbolic distance of z to ∂U1 in the hyperbolic domain C\⋃k≥0E
◦k
λ (0).

Assume that l > 0. The hyperbolic distance between the unique periodic
inverse image of z and U0 = Un is then less than l . We take n − 1 further
pull-back steps along the periodic orbit of z ; since the itinerary of z in those steps
is the same as that of the singular orbit, the branches for the pull-back of z are
those mapping Un to Un−1, Un−2, . . . , U1 , and hyperbolic distances are decreased
in every step. After n steps, z is mapped back to itself and its hyperbolic distance
to U1 has decreased. This contradiction shows that l = 0 and z ∈ ∂U1 .

Let z1 be the characteristic point of the orbit of z (cf. Definition 5.1 and
Lemma 5.2). The two characteristic rays separate the singular value from the
orbit of z (except z1 itself) and from a left half plane. If z1 6= z , then the
characteristic rays would separate z ∈ ∂U1 from a left half plane, and this is a
contradiction. This proves the existence claim for the periodic Fatou component
U1 , and for the others it follows easily.

Now we show uniqueness. The point z1 , together with the two characteristic
rays landing at it, cut C into two open parts; let V be the one containing the
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singular value. Suppose that there is another periodic point z ′1 ∈ ∂U1 which
is fixed by the first return map of U1 and which is the landing point of two
periodic dynamic rays. We have z′1 ∈ V because V contains U1 − {z1} . The two
characteristic dynamic rays landing at z′1 are then contained in V as well. But
by symmetry between z1 and z′1 , it also follows that the two characteristic rays
landing at z′1 bound an open sector V ′ which contains z1 and all its rays, and
this is a contradiction.

Remark. The same statement holds also for parabolic dynamics; the proof
requires only the same modifications as in [SZ3, Section 4.3].

Definition 6.3 (Dynamic root). In any exponential dynamics with attracting
orbit of period n ≥ 2, the unique point of the characteristic Fatou component
which is fixed under the first return map of the component and which is the
landing point of at least two dynamic rays (as described in Theorem 6.2) will be
called the dynamic root of the characteristic Fatou component.

Lemma 6.4 (Rays at dynamic root). In attracting exponential dynamics, the
two characteristic rays of the dynamic root of the characteristic Fatou component
separate this Fatou component from all other periodic Fatou components.

Proof. Let U1 be the characteristic Fatou component and let z1 be its dy-
namic root. The characteristic dynamic rays at z1 separate the singular value and
thus U1 from all other points on the orbit of z1 . Every periodic Fatou component
Ui has a unique point zi on its boundary (Theorem 6.2). If zi 6= z1 , then Ui is
separated from the singular value by the characteristic ray pair. Let the periods of
the attracting orbit and of z1 be n and k , respectively. The number of different
periodic Fatou components with z1 on its boundary is exactly n/k and the first
return map of z1 must permute these k components cyclically. Hence the gaps
between cyclically adjacent periodic Fatou components at z1 are also permuted
cyclically, and at least one of them must contain a periodic dynamic ray landing
at z1 ; hence all gaps do, and all periodic Fatou components at z1 are separated by
periodic dynamic rays landing at z1 . (Conversely, it follows from Lemma 5.2 that
all the rays landing at z1 are separated by periodic Fatou components provided at
least two periodic Fatou components have z1 as their common dynamic root.)

7. Parametrization of hyperbolic components

Theorem 7.1 (Parametrization of hyperbolic components). For every hy-
perbolic component H of period n ≥ 2 , there is a unique conformal isomorphism
ΦH :H → H with µ = exp ◦ΦH such that if µ(λ) > 0 , then Im

(
ΦH(λ)

)
= 2π∆ ,

where the integer ∆ specifies how many fundamental domains the periodic point
a0 ∈ U0 is above the dynamic root z0 of U0 (or below if ∆ < 0).

Proof. We already know from Lemma 4.6 the existence of a conformal isomor-
phism Φ:H → H with µ = exp ◦ΦH , which is unique up to addition of a constant
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in 2πiZ in the range, so we only need to justify the combinatorial interpretation
of imaginary parts if µ(λ) > 0.

Choose any λ ∈ H . Let z1 be the dynamic root of the characteristic Fatou
component U1 and let s1 < s2 be the external addresses of its two characteristic
rays. Let z0 be the dynamic root of U0 (with Eλ(z0) = z1) and let s′2 < s′1 be
the least and greatest external addresses (with respect to lexicographic ordering)
of two dynamic rays landing at z0 . By continuity, these external addresses are the
same for every λ ∈ H .

Since the rays gs1 and gs2 surround 0, they bound the characteristic sector
at z1 , which is the image of the sector at z0 containing a left half plane. It follows
that σ(s′1) = s1 and σ(s′2) = s2 , and there is an m ∈ Z with s′2 = ms2 and
s′1 = (m + 1)s1 (concatenation). By the translation symmetry, it follows that
for every m′ ∈ Z , the rays at addresses m′s2 and (m′ + 1)s1 land together at
z0 +2πi(m′−m) . Since s1 and s2 are characteristic external addresses, no σk(s1)
or σk(s2) is contained in ]s1, s2[ ; therefore, no σk(s1) or σk(s2) is contained in
any ]m′s1,m

′s2[ for m′ ∈ Z . It follows that there is an m1 ∈ Z with

m1s2 < s1 < s2 < (m1 + 1)s1;

since the ray pair gs1 and gs2 surround the singular value 0, it follows that the
ray pair at addresses m1s2 and (m1 + 1)s1 surrounds 0 as well. We had seen
above that the ray pair at addresses ms2 and (m+ 1)s1 lands at z0 .

Now suppose that µ(λ) > 0. Then z0 is exactly m−m1 fundamental domains
above 0. All we used for this reasoning are the external addresses s1 , s2 , s′1 and s′2
which are the same for any λ ∈ H , so the index m−m1 is the same throughout H .

Recall the index ∆′ from Lemma 4.6 which specifies, whenever µ(λ) > 0,
how many fundamental domains a0 are above 0. Therefore, ∆ := ∆′ − (m−m1)
specifies how many fundamental domains a0 are above z0 . By Lemma 4.6, every
conformal isomorphism Φ:H → H with µ = exp ◦Φ has an integer mΦ ∈ Z
such that for all λ ∈ H with µ(λ) > 0, Im

(
Φ(λ)

)
= 2π(∆′ − mΦ) . Setting

ΦH := Φ + 2πi
(
mΦ − (m−m1)

)
yields the desired conformal isomorphism. It is

clearly unique.

Having stated this theorem, we should outline why this parametrization is
indeed a preferred one, for example over the one from Lemma 4.6 counting fun-
damental domains between a0 and the singular value. The dynamic root clearly
has dynamic significance, and the invariant curve γ− from Lemma 4.1 is part of
an analytic curve containing the singular orbit. Both might be linked for any par-
ticular exponential map: the following lemma states when this happens. It should
come as no surprise that the locus of such maps stands out in parameter space;
this is discussed at the end of this section.

Lemma 7.2 (Invariant curve lands at dynamic root). For every exponential
map which has an attracting orbit of period n ≥ 2 with positive real multiplier,
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the invariant curve γ− from Lemma 4.1 lands at the dynamic root z1 ∈ ∂U1 if
and only if ∆ = 0 .

Proof. The curve γ− starts at a1 and lands at a point w1 ∈ ∂U1 with
E◦nλ (w1) = w1 . Let γ0 ⊂ U0 be the branch of E−1

λ (γ−) starting at a0 ; it lands
at a point w0 ∈ ∂U0 with E◦nλ (w0) = w0 . Clearly, w1 = Eλ(w0) , so w0 is the
dynamic root of U0 if and only if w1 is the dynamic root of U1 .

Recall the analytic curve γ+ ⊂ U1 from Lemma 4.1: it connects a1 to +∞
such that γ′+ := E◦nλ (γ+) ⊂ γ+ , and γ′+ contains the singular orbit within U1 .

The fundamental domains for Eλ are bounded by E−1
λ (γ+ \ γ′+) .

Since γ0 is disjoint from the boundary of the fundamental domains, it follows
that w0 is in the same fundamental domain as a0 , so w0 can be the dynamic root
z0 ∈ U0 only if a0 and z0 are in the same fundamental domain, i.e. only if ∆ = 0.

Conversely, we show that w0 is the only boundary point of U0 which is fixed
by E◦nλ and which is in the same fundamental domain as a0 ; this implies that
whenever ∆ = 0, then γ0 lands at z0 and γ− lands at z1 .

Suppose there is another point w′0 ∈ ∂U0 with E◦nλ (w′0) = w′0 in the same
fundamental domain as w0 . There is a curve γ′0 ⊂ U0 with E◦nλ (γ′0) ⊃ γ′0 which
lands at w′0 (take a point b′0 in a linearizing neighborhood of w′0 and pull it
back repeatedly so as to obtain a sequence (b′k) converging to w′0 ; these can be
connected by a curve γ′0 as required). Let (bk) be an analogous sequence of points
converging to w0 .

Connect b0 to b′0 by a differentiable curve Γ0 ⊂ U0 which avoids the funda-

mental domain boundaries and the curve E
◦(n−1)
λ (γ+) which contains the singular

orbit within U0 . Then E−nλ (Γ0) contains a curve Γ1 connecting b1 to b′1 and
homotopic to Γ0 in U ′0 := U0 \

(
E−1
λ (γ+) ∪ {a0}

)
(the fact that the same branch

of E−nλ fixes both w0 and w′0 uses the assumption that both points are within
the same fundamental domain and would fail if w′0 was an arbitrary fixed point
of E◦nλ in ∂U0 ). This can be repeated, and the hyperbolic lengths of Γk within
U ′0 become shorter each time, while bk, b

′
k → ∂U0 , and this implies w0 = w′0 .

For the following definition, recall the conformal isomorphism ΦH :H → H
which maps parameter rays of H to horizontal lines in H .

Definition 7.3 (Height and central internal ray). Given a hyperbolic compo-
nent H of period n ≥ 2 with preferred conformal isomorphism ΦH :H → H , we
define the height of a parameter ray as the number h ∈ R such that Im

(
ΦH(λ)

)
=

2πh for λ on this parameter ray.
The central parameter ray of H is the parameter ray at height h = 0.

Remark. The angle of a parameter ray is the projection of h to R/Z . If
λ ∈ H has µ(λ) > 0, then clearly h = ∆. Note that for components of period
n ≥ 3 in λ -space (and of period n ≥ 2 in κ -space) a ray with larger height is
below a ray with smaller height: see the discussion after Definition 4.5. This is
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unavoidable if among nearby rays one wants rays at larger heights to have larger
angles of their multipliers.

Figure 3. Hyperbolic components of periods 3 and 4, with internal parameter rays at integer

heights drawn in. In both components, the central parameter rays are highlighted. Their landing

points are the roots of the component (at which the components bifurcate from components of

period 1 respectively 2).

Remark. We have classified hyperbolic components in terms of intermediate
external addresses. A different coding would be in terms of the external addresses
of the two characteristic dynamic rays landing at the root of the characteristic
Fatou component: clearly, all exponential maps from the same hyperbolic compo-
nent have the same external addresses at the dynamic rays landing at the root, so
there is an algorithm to turn the intermediate external address of the component
into the external addresses of the characteristic rays. The converse is much easier:
knowing the external addresses of the two characteristic rays, it is not hard to
write down the intermediate external address of the attracting dynamic ray and
thus of the component. Both algorithms can be found in [RS]. While the coding
in terms of intermediate external addresses leads to the easier classification, the
characteristic external addresses are more easily related to the structure of the
Multibrot sets Md and their limiting configurations as d→∞ .

The boundary of hyperbolic components and bifurcations. While this paper
completely describes hyperbolic components of exponential maps, their boundary
properties are discussed in [S1, Section V] and [RS]. To complete the picture, we
mention some results here.

By Theorem 7.1, every hyperbolic component H (except the period 1 com-
ponent in λ -space) comes with a preferred conformal isomorphism ΦH :H → H .
It extends as a homeomorphism to the closures ΦH :H → H . This result requires
a much better understanding of the exponential parameter space. It implies that

every hyperbolic component has connected boundary ∂H = Φ
−1

H (iR) , which was
conjectured by Eremenko and Lyubich [EL2].
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Different hyperbolic components may have common boundary points. This
happens if and only if one hyperbolic component bifurcates from another, and
then both components have a unique boundary point in common. The structure
of bifurcations between hyperbolic components in exponential parameter space is
cleared up in [RS]. In particular, this proves a third conjecture in [EL2] which
states that there are infinitely many “trees” of hyperbolic components such that
two components are in the same tree if and only if they can be connected via a
finite chain of components so that adjacent components in the chain have common
boundary.

Every internal parameter ray of H at height h lands at a well-defined param-
eter in ∂H with indifferent orbit so that the landing point depends continuously
on h . The landing point of the central parameter ray (h = 0) is called the root
of H , and it is significant in several ways: the root of H is the only boundary
point which may simultaneously be a boundary point of another hyperbolic com-
ponent H0 , and this happens if and only if H bifurcates from H0 . Moreover,
every boundary point of H is the landing point of one or two external parameter
ray (curves consisting of parameters for which the singular orbit converges to ∞
under iteration, see [S1, Chapter II] or [F]). Boundary points of H at positive
heights are the landing points of parameter rays which come from +∞ below H ,
while boundary points at negative heights are landing points of parameter rays
above H . The root point of H is the landing point of two parameter rays, one
above and one below H [S1, Chapter IV]. This shows once more the significance
of our preferred parametrization from Theorem 7.1.
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