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Abstract. A map is said to be internally bilipschitz if it is bilipschitz with respect to internal
distances. We prove the following extension theorem for John disks: any internally bilipschitz map
of the boundary ∂D of a Jordan John disk D extends as an internally bilipschitz map of D . This
result is a partial analogue to a result of Gehring for quasidisks.

1. Introduction

A domain D ⊂ R2 is called a c -John domain if any two points z1, z2 in D
may be joined by a rectifiable arc α ⊂ D such that

(1.1) min
j=1,2

length(α[zj , z]) ≤ c dist(z, ∂D).

See [9, Section 2.26]. Here, as in the rest of this paper, α[w1, w2] denotes the
subarc of α from w1 to w2 . If we are not interested in a particular constant,
we will say simply that D is a John domain. A simply connected John domain
with at least two boundary points will be called a John disk. It is an important
and very useful fact that in a John disk we may always, possibly by changing the
constant c , use hyperbolic geodesics γ in the definition (1.1); [5, Theorem 4.1],
[9, Theorem 5.2].

John disks enjoy many properties similar to those characteristic for quasidisks,
i.e. images of disks or half planes under quasiconformal self maps of R2 . Indeed,
John disks may be regarded as one sided quasidisks. See for example [9, Section 9],
[10, Theorem 5.9]. They appear in many contexts in analysis.

In this paper we shall concern ourselves with a certain extension problem for
John disks. A result of Gehring says that if D ⊂ R2 is a quasidisk, then every
bilipschitz map of ∂D extends as a bilipschitz map of D . See [2, Theorem 7].
Gehring also gives a partial converse to this in [3, Lemma 4.4]: A Jordan curve
C ⊂ R2 is a quasicircle if every bilipschitz map of C extends as a bilipschitz map
of D , where D is a component of R2\C . A homeomorphism f of some subset
A ⊂ R2 onto another is L -bilipschitz if

1

L
|z1 − z2| ≤ |f(z1) − f(z2)| ≤ L|z1 − z2|
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for all z1, z2 ∈ A . In Section 4 of the present paper we prove a partial analogue of
Gehring’s result for John disks, namely that if D is a Jordan John disk, and if f
is an internally bilipschitz map of ∂D , then f extends as an internally bilipschitz
map of D . Cf. Theorem 4.7 below. By an internally bilipschitz map f we mean
a map which is bilipschitz with respect to internal distances, i.e.

1

L
λD(z1, z2) ≤ λD′

(
f(z1), f(z2)

)
≤ LλD(z1, z2).

See Section 2 for the definition of internal distance, λD . At present we are only
able to prove that this extension property is necessary for Jordan John disks.

Inside a domain D the classes of internally bilipschitz and euclidean locally
bilipschitz homeomorphisms are the same, [13, p. 303]. In Section 4 we give
examples to show that this is not the case when we consider homeomorphisms of
the boundary of a domain. Thus our main result is not included in the results of
papers like [3], [6].

We have to clarify what we mean by “internal distance on the boundary”. This
is the subject of Section 2. In Section 3 we prove a new version of Ahlfors’ three
point property for John disks, a result which may be interesting in its own right.
In particular it is useful for certain quasisymmetry considerations in Section 4.

Our notation is almost self explanatory. B(z, r) denotes the open disk with
center z of radius r and S(z, r) denotes its boundary. We reserve D for the unit
disk with boundary T , while H is the upper half plane. D will always denote
a proper subdomain of R2 . Whenever D is simply connected, we will use γ
for hyperbolic segments. For the euclidean line segment from z1 to z2 we write
[z1, z2] . Diameters and lengths are denoted by diam and length, respectively.

2. Internal distances

Let D ⊂ R2 be any domain. We define the internal distance between z1 and
z2 in D as

λD(z1, z2) = inf
α

length(α),

where the infimum is taken over all rectifiable arcs α ⊂ D joining z1 and z2 ; cf. [9,
Section 3.1]. The internal distance is well suited for studying John disks, since John
domains are allowed to have inward cusps. In this paper we will be concerned with
boundary conditions, and therefore we would like to measure internal distances
between boundary points. This leads to some problems.

Firstly, there may be no rectifiable arc joining two arbitrary boundary points.
A point z in the boundary ∂D of D is said to be rectifiably accessible if there is
a half open rectifiable arc α in D ending at z , which means that there is a path
ϕ: [a, b) → D , α = ϕ

(
[a, b)

)
, with limt→b ϕ(t) = z and limτ→b length

(
ϕ([a, τ ])

)
=
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l < ∞ , τ < b . We let ∂rD denote the subset of ∂D which consists of all the
rectifiably accessbile points, that is

∂rD = {z ∈ ∂D : is rectifiably accessible}.

Fortunately, rectifiably accessible points are plentiful in the boundary of any do-
main.

2.1. Lemma. If D is any domain, then ∂rD is a dense subset of ∂D .

See pp. 162–163 in [8]. In fact, in a simply connected domain a boundary point
is rectifiably accessible if and only if it is accessible by a rectifiable, hyperbolic ray;
see [10, Exercise 4.5.3]. This is an immediate consequence of the following result,
known as the Gehring–Hayman theorem, which will be used repeatedly throughout
the paper. Here, and elsewhere, we will write

Dr = D ∪ ∂rD.

2.2. Lemma. Let D be a simply connected domain in R2 , and let z1, z2 ∈
Dr . If γ is the hyperbolic segment from z1 to z2 in D and α is any rectifiable

Jordan arc from z1 to z2 in D , we have that

length(γ) ≤ K length(α),

diam(γ) ≤ K diam(α),

where K is a universal constant.

For a proof see [10, Theorem 4.20]. We will use the letter K for the Gehring–
Hayman constant throughout. Another way to state this theorem is to say that
length(γ[z1, z2]) ≤ KλD(z1, z2), or that hyperbolic segments are quasigeodesics

for the metric λD . Note also that in John disks (as well as many other kinds of
domains) all finite boundary points are rectifiably accessible, [9, Remark 6.6]. We
will use this fact without further reference throughout.

Secondly, we feel it is necessary to show that the internal distance λD is in
fact a metric. This is readily proved when all points lie inside the domain in
question. When we allow points to lie on the boundary, however, the proof of the
triangle inequality is no longer entirely trivial. In fact, the triangle inequality may
not hold for λD if D is not a Jordan domain. (Consider a disk with a radius
removed. Let z3 be the point exactly in the join of the radius with the circle, and
let z1 and z2 be points on the circle close to z3 , but on opposite sides of the slit.
Then λD(z1, z2) > λD(z1, z3) + λD(z2, z3).)

We will now give a proof that λD is a metric in Dr if D is a Jordan domain.
Recall that a cross cut in a domain D is an arc with both end points in ∂D .
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2.3. Lemma. For every Jordan domain D , λD is a metric in Dr .

Proof. By definition λD(z1, z2) < ∞ for all pairs z1, z2 ∈ ∂rD . The only
non-obvious property is the triangle inequality, which we prove next.

Take two arbitrary points z1, z2 ∈ ∂rD , and let z3 be any other point in ∂rD .
For every ε > 0 there exist arcs β1 and β2 from z1 and z2 to z3 , respectively,
with

length(βj) < λD(zj , z3) + ε, j = 1, 2.

We will show that there is an arc βε from z1 to z2 such that

length(βε) ≤ length(β1) + length(β2) +Mε,

for some fixed constant M . To this end we may assume that β1 and β2 never
meet in D , for if they do meet, we obtain an arc from z1 to z2 in D with the
desired properties. For the rest of the proof, see Figure 1.

Let α denote that part of ∂D\{z1, z2} which does not contain z3 . Then

C = β1 ∪ β2 ∪ α is a Jordan curve. Denote by D̃ the component of R2\C which
lies inside D . If ε is sufficiently small we may assume that S = ∂B(z3, ε) meets

D̃ but not α . Here we use the fact that a Jordan curve is locally connected.
Furthermore there is a unique component U of D̃\S which has z3 as a boundary

point. To see this, assume that D̃ = D by applying a preliminary homeomorphism
of R2 first if necessary; now S will not necessarily be a circle anymore. We may
do this because D and hence D̃ is a Jordan domain. Then any sufficiently small
circular neighbourhood around z3 ∈ T in R2\S will meet only one component of
D\S .

U
β1

z1

S

z3

z2

∂D

α

D

D̃
β2

CV

V

Figure 1.
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By Proposition 2.13 in [10] there are countably many cross cuts Ck ⊂ S of

D̃ such that

D̃ = U ∪

(⋃
k

Dk

)
∪

(⋃
k

Ck

)
,

where Dk are disjoint domains with

Ck = D̃ ∩ ∂Dk.

Let V be that component Dk which has α on the boundary. Then CV = D̃ ∩
∂V ∩∂U ⊂ S is a cross cut in D̃ , and one of the Ck . V must be a Jordan domain
because it is a residual component of a cross cut of the Jordan domain D̃ (e.g. [8,

Theorem V.11.8]). Furthermore (∂D̃\CV ) ⊂ β1 ∪ β2 ∪ α . Now CV is a cross cut

in D̃ that separates z3 from z1 and z2 . Hence CV meets β1 and β2 .
We obtain the arc βε by going along β1 from z1 until it meets CV , then

along CV to β2 and to z2 along β2 . Since CV ⊂ S ,

length(βε) < length(β1) + length(β2) + 2πε.

This implies that

λD(z1, z2) < length(βε) < λD(z1, z3) + λD(z2, z3) + (2π + 2)ε,

and the result follows upon letting ε → 0. Similar arguments dispense with the
cases when one or two of the points z1, z2, z3 lie in ∂rD .

3. The three point property

In this section we will prove a version of the three point property for John
disks. We start by quoting a result of Gehring, Hag, and Martio [5, Theorem 4.4];
it was proved independently by Näkki and Väisälä [9, Theorem 4.5].

3.1. Lemma ([5], [9]). Suppose that D is a simply connected domain in

R2 . Then D is a c -John disk if and only if there exists a constant a such that

for each cross cut α of D ,

min
j=1,2

diamDj ≤ a diamα,

where D1 and D2 are the two components of D\α . The constants a and c depend

only on each other.

3.2. Lemma. Suppose D is a Jordan domain in R2 . Then D is a c -John

disk if and only if there exists a constant b such that for every pair of points

z1, z2 ∈ ∂rD

(3.3) min
j=1,2

diamβj ≤ bλD(z1, z2),

where βj are the components of ∂D\{z1, z2} . The constants b and c depend only

on each other.
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Proof. Suppose that D is a c -John disk. Then ∂rD = ∂D . Choose a cross
cut α from z1 to z2 . We know from Lemma 3.1 that

min
j=1,2

diamDj ≤ a diamα,

a = a(c), and trivially
diam βj ≤ diamDj

for j = 1, 2. Let ε > 0. We may choose α such that length(α) < λD(z1, z2) + ε .
Trivially we have that diamα ≤ length(α). It follows that

min
j=1,2

diamβj ≤ min
j=1,2

diamDj ≤ a length(α) ≤ a
(
λD(z1, z2) + ε

)
.

Since ε is arbitrary we conclude:

min
j=1,2

diamβj ≤ aλD(z1, z2).

So we may let b = a in (3.3).
Now assume that (3.3) holds for every pair of points z1, z2 in ∂rD . Take a

straight (rectilinear in Pommerenke’s, [10], terminology) cross cut [z1, z2] of D .
Then z1, z2 ∈ ∂rD . Let β1 be the component of ∂D\{z1, z2} of least diameter.
We have diamD1 ≤ diamβ1 . According to (3.3)

min
j=1,2

diamDj ≤ diamD1 ≤ bλD(z1, z2) = b|z1 − z2|.

Thus the condition in Lemma 3.1 holds for every straight cross cut, and by [9,
Theorem 4.5] D is a c -John disk with c = c(b).

3.4. Lemma. Let D be a c -John disk. Then there is a constant M = M(c)
such that for any hyperbolic geodesic segment γ joining two points in D we have

length(γ) ≤M diam γ.

Thus by Lemma 2.2 the internal length distance λD(z1, z2) is comparable to
the internal diameter distance defined by

δD(z1, z2) = inf{diamα : α arc from z1 to z2}.

This has been proved earlier in [6, Theorem 5.14], although it is stated only for D ,
and not D . Väisälä later showed that λD(z1, z2) ≤ L δD(z1, z2) holds in all airy

domains in Rn . See [15, Lemma 3.3, Theorem 3.4]. For completeness we include
a straightforward proof of Lemma 3.4 for John disks.
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Proof of Lemma 3.4. By 2.25 in [9] we could have used diameters instead of
lengths in (1.1), by changing the constants. Thus if D is a c -John disk, there are
c1 = c1(c) and c2 = c2(c) such that

min
j=1,2

diam γ[zj, z] ≤ c1 dist(z, ∂D) and min
j=1,2

length(γ[zj, z]) ≤ c2 dist(z, ∂D),

for the hyperbolic geodesic γ of finite euclidean length jointing any two points
z1, z2 ∈ D . Let z0 be the mid point of γ with respect to arc length. Then

length(γ[z1, z0]) = length(γ[z2, z0]) ≤ c2 dist(z0, ∂D).

Suppose first that we have

|z1 − z0| ≥ dist(z0, ∂D), or |z2 − z0| ≥ dist(z0, ∂D)

or both. Without loss of generality assume that |z1 − z0| ≥ dist(z0, ∂D). Then
diam γ[z1, z0] ≥ dist(z0, ∂D), and by our assumption

diam γ[z1, z0] ≥ length(γ[z1, z0])/c2.

Therefore we obtain:

length(γ) = 2 length(γ[z1, z0]) ≤ 2c2 diam γ[z1, z0] ≤ 2c2 diam γ.

Now assume that

|z0 − z1| < dist(z0, ∂D) and |z0 − z2| < dist(z0, ∂D).

We have: length([z1, z0]) = diam[z0, z1] = |z0 − z1| and

length([z2, z0]) = diam[z0, z2] = |z0 − z2|.

Lemma 2.2 gives

length(γ[z1, z0]) ≤ K length([z1, z0]) = K|z1 − z0|,

length(γ[z2, z0]) ≤ K length([z2, z0]) = K|z2 − z0|

while
diam γ[z1, z0] ≥ |z1 − z0|,

diam γ[z2, z0] ≥ |z2 − z0|.

Then we have

diam γ ≥ diam γ[z1, z0] ≥
1

K
length(γ[z1, z0]) =

1

2K
length(γ[z1, z2]).

So choose M = max{2c2, 2K} .
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In general, even if D is a bounded (in the euclidean metric) Jordan domain,
(Dr, λD) does not have to be a bounded metric space (to see this, think of a
Jordan curve with a spiral on the boundary, like [8, Figure 30]). If however, D is
John, we have the following.

3.5. Corollary. If D is a bounded Jordan John disk, then (D, λD) is a

bounded metric space.

Proof. Clearly diam γ ≤ diamD for any hyperbolic geodesic γ in D with
end points in D , while Lemma 3.4 assures us that λD(z1, z2) ≤ length(γ[z1, z2]) ≤
M diam γ[z1, z2] for any z1, z2 ∈ D .

We next give another version of Lemma 2.2.

3.6. Lemma. Let D ⊂ R2 be a Jordan domain and let z1, z2 ∈ ∂D . If

γ is the hyperbolic geodesic from z1 to z2 and β is a bounded component of

∂D\{z1, z2} , then

diam γ ≤ K diam β,

where K is the Gehring–Hayman constant.

Proof. Let β be a bounded component of ∂D\{z1, z2} and f :D → D a
conformal map. Because D is Jordan, f extends as a homeomorphism f :D → D .
Since β is bounded, β̄ is contained in the interior of a compact disk W . Let
V = D ∩W , V ′ = f−1(V ) ⊂ D . Then f :V ′ → V is uniformly continuous. Thus,
for any ε > 0 there exists δ > 0 such that

f
(
B(ζ, δ) ∩ V ′

)
⊂ B

(
f(ζ), ε

)
∩ V for all ζ ∈ D ∩ V ′.

Let β′ be the preimage of β in D and let ζ1, ζ2 ∈ T with zj = f(ζj), j = 1, 2.
Consider the union

U ′ =
⋃

ζ∈β′

(
B(ζ, δ) ∩ V ′

)
.

Then we have
U = f(U ′) ⊂

⋃
ζ∈β′

(
B

(
f(ζ), ε

)
∩ V

)
.

Join ζ1, ζ2 in U ′ by α′ such that α′\{ζ1, ζ2} ⊂ D ∩ U ′ , and let α = f(α′). Now

(3.7) diamα ≤ diamU ≤ diamβ + 2ε.

Let γ be the hyperbolic geodesic from z1 to z2 in D . By Lemma 2.2 there exists
an absolute constant K such that diam γ ≤ K diamα . Inequality (3.7) then
implies that diam γ ≤ K(diamβ + 2ε). Letting ε→ 0 we conclude that

diam γ ≤ K diamβ.

Finally we can prove the main result in this section, a reformulation of the
three point property for John disks. It looks just like the corresponding formulation
for quasidisks, but with euclidean distances replaced by internal distances; see e.g.
[4, Section 2.2]. The theorem is interesting in its own right, as it may be useful
for various calculations in John disks.
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3.8. Theorem. Let D be a Jordan domain. If D is a c -John disk, then

there is a constant a such that

(3.9) λD(z1, z2) ≤ aλD(z1, z3)

for any z1, z3 ∈ ∂D , with z2 in the component of ∂D\{z1, z3} with the least

euclidean diameter.

Conversely, suppose that there is a constant a such that whenever z1, z3 ∈
∂rD , (3.9) holds for every z2 in a bounded component of ∂rD\{z1, z3} . Then D
is a c -John disk.

The constants a and c depend only on each other.

Proof. If D is a c -John disk, then by Lemma 3.2 there is a constant b = b(c)
so that

(3.10) min
j=1,2

diam βj ≤ bλD(z1, z3)

for z1, z3 ∈ ∂D . Here β1 and β2 denote the two components of ∂D\{z1, z3} .
Assume that β1 is the component with the least euclidean diameter. Pick any
point z2 in β1\{z1, z3} and let γ be the unique hyperbolic geodesic that joins z1
and z2 in D . Then by Lemma 3.6 we have

(3.11) diam γ ≤ K diamβ1[z1, z2]

for some universal K ≥ 1. Since we are in a John disk there exists, by Lemma 3.4,
a constant M = M(c) so that

(3.12) length(γ) ≤M diam γ.

Combining (3.12), (3.11), (3.10), and using Lemma 3.2, we get

λD(z1, z2) ≤ length(γ)

≤M diam γ

≤ KM diamβ1[z1, z2]

≤ KM diamβ1

≤ bKMλD(z1, z3).

Now let a = bKM .
Conversely, assume that λD(z1, z2) ≤ aλD(z1, z3) for any point z2 ∈ β1∩∂rD ,

where β1 is a boundary arc from z1 to z3 . For a fixed 0 < ε < diamβ1 there
exist z21, z22 ∈ ∂rD ∩ (β1\{z1, z3}) such that |z21 − z22| > diamβ1 − ε . (This is
because, by Lemma 2.1, ∂rD is dense in ∂D .) Then:

diamβ1 ≤ λD(z21, z22) + ε ≤ λD(z1, z21) + λD(z1, z22) + ε ≤ 2aλD(z1, z3) + ε.

If we let ε → 0 we may use Lemma 3.2 and conclude that D is c -John with
c = c(a).
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To close this section we prove an “obvious” result, a fact which will be needed
below. It is a corollary of Lemmas 3.4 and 3.6.

3.13. Lemma. Suppose that D is a Jordan John domain. If z ∈ ∂D and

(zn) is a sequence in D , then λD(zn, z) → 0 if and only if |zn − z| → 0 .

Proof. If λD(zn, z) → 0, then obviously |zn − z| → 0, since |zn − z| ≤
λD(zn, z).

Now assume that |zn − z| → 0. Let ζn be the first point in [zn, z] ∩ ∂D
when we go from zn to z . (If ζn = z there is nothing to prove.) Since ∂D
is locally connected (in the sense of the definition on p. 19 in [10]), for every
ε > 0 there exists a δ such that any two points a, b ∈ ∂D with |a − b| < δ
can be joined by a continuum β in ∂D of diameter less than ε . Choose any
ε > 0. If n is so large that |zn − z| < δ , then |ζn − z| < δ . Thus there
is an arc β of ∂D with ζn, z ∈ β and diamβ < ε . Lemma 3.6 then gives
diam γ[ζn, z] ≤ K diam β < Kε . Lemma 3.4, on the other hand, provides an M
such that length(γ[ζn, z]) ≤M diam γ[ζn, z] . Combining what we have gives:

λD(zn, z) ≤ λD(zn, ζn) + λD(ζn, z) ≤ |zn − ζn| + length(γ[ζn, z]) ≤ (1 +KM)ε,

where we also used that |zn − ζn| < |zn − z| < δ ≤ ε . This is what we needed to
prove.

3.14. Remark. It follows from Lemma 3.13 that if D is a Jordan John
domain, then (D, λD) is complete. In particular, if D is bounded, then (D, λD)
is compact, by Corollary 3.5.

4. Extension properties

In this section we prepare for and prove the main result of this paper.
Given two metric spaces (X, dX) and (Y, dY ) and a homeomorphism f :X →

Y . The homeomorphism f is called η -quasisymmetric if there exists a strictly
increasing homeomorphism η: [0,∞) → [0,∞) with η(0) = 0 such that

dY

(
h(x1), h(x2)

)

dY

(
h(x1), h(x3)

) ≤ η

(
dX(x1, x2)

dX(x1, x3)

)

for all x1, x2, x3 ∈ X .
We say that f is L -bilipschitz if there exists a constant L such that

1

L
dX(x1, x2) ≤ dY

(
f(x1), f(x2)

)
≤ LdX(x1, x2)

for all x1, x2 in X , i.e. if both f and f−1 are L -lipschitz. If f is L -bilipschitz
for some L we sometimes say simply that f is bilipschitz, and if we say that f
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is quasisymmetric, we mean that f is η -quasisymmetric for some η . Note that
every L -bilipschitz map is η -quasisymmetric with η(t) = L2t ; see e.g. [7, p. 78].
A quasisymmetric map is not lipschitz in general.

Tukia and Väisälä gave the definition of quasisymmetric maps between gen-
eral metric spaces in [11]. (See also Näkki and Väisälä [9, 3.4] and Heinonen [7,
Chapter 10]). If X = T and Y ⊂ R2 , both equipped with the euclidean stan-
dard metrics, we get close to the original concept of quasisymmetry studied by
Beurling and Ahlfors in [1]. In this situation h(T) is a quasicircle if and only if
the homeomorphism h is a quasisymmetric map. See [10, Proposition 5.10 and
Theorem 5.11].

For later reference we recall the following properties of quasisymmetric maps.
See [17, Propositions 10.6, 10.8, and 10.11], and of course [11].

4.1. Lemma. Suppose f :X → Y and g:Y → Z are η and ϑ -quasisymmet-

ric, respectively. Then

(1) f(A) is bounded for every bounded A ⊂ X ,

(2) f extends to an η -quasisymmetric homeomorphism of the completions of X
and Y ,

(3) g ◦ f :X → Z is ϑ(η) -quasisymmetric,

(4) f−1:Y → X is 1/η−1(1/t) -quasisymmetric.

We will now consider the metric spaces (D, λD), (∂rD, λD), and (Dr, λD),
where D is some simply connected Jordan domain, and maps between these spaces.
If we say something like “f :D → (D, λD) is quasisymmetric”, we use euclidean
distance in D and internal distance in D .

Our point of departure is the following result of Näkki and Väisälä. (Section 7
of [9]. The proof is based on several results in Section 3 of [9] and on Theorem 2.20
in [14].)

4.2. Theorem. A bounded (respectively unbounded) conformal disk D ⊂
R2 is a c -John disk if and only if there is a homeomorphism h:D → (D, λD)
(respectively h:H → (D, λD)) which is η -quasisymmetric, c and η depending on

each other.

Recall that a conformal disk is a domain D ⊂ R2 such that the complement
R2\D is a continuum with at least two points.

4.3. Remark. The proof of Theorem 4.2 shows that if D ⊂ R2 is a
bounded (unbounded) John disk, then any conformal map h:D → D (h:H → D )
is quasisymmetric with respect to internal distances. This will be of importance
later on, most notably in the proof of Theorem 4.7.

We can now prove a one-sided analogue of Proposition 5.10 and Theorem 5.11
in [10].
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4.4. Lemma. Let D be a bounded Jordan domain.

If there exists a homeomorphism h:T → ∂D such that h:h−1(∂rD) →
(∂rD, λD) is η -quasisymmetric, then D is a c -John disk. Conversely, if D is

a c -John disk then any conformal map h:D → D has a homeomorphic extension

to the boundary such that h:T → (∂D, λD) is η -quasisymmetric. η and c depend

only on each other.

The same result holds for unbounded domains if we replace T by R .

Proof. First assume that we have an η -quasisymmetric map h of h−1(∂rD) ⊂
T to ∂rD . The proof is essentially that of Proposition 5.10 in [10], although we
have a slightly more flexible three point property.

Pick w1 = h(z1), w3 = h(z3) on ∂rD , zj ∈ T . Let z2 lie on the shorter
arc between z1 and z3 with w2 = h(z2) ∈ ∂rD . Then |z2 − z3| < |z1 − z3| . By
quasisymmetry we have

λD(w2, w3) ≤ η(1)λD(w1, w3).

Then D is a c -John disk, with c = c(η(1)) by Theorem 3.8.
If D is a Jordan John disk the conformal map f from D onto D is inter-

nally quasisymmetric (Theorem 4.2 and Remark 4.3), and this map extends to the
boundary since by Lemma 4.1(2) any quasisymmetric map of a metric space ex-
tends to a quasisymmetric map of the completion of that space. (By Remark 3.14
the completion of (D, λD) is (D, λD).)

The extension can be done without reference to Lemma 4.1 as follows. Since
D is Jordan, f extends as a homeomorphism f :D → D . Pick any three points
ζ1, ζ2, ζ3 ∈ T and let zj = f(ζj). Now, since f is quasisymmetric with respect to
internal distance in D , we have, for every 0 < r < 1

λD

(
f(rζ1), f(rζ2)

)

λD

(
f(rζ2), f(rζ3)

) ≤ η

(
|rζ1 − rζ2|

|rζ2 − rζ3|

)
.

As r → 1, f(rζj) → zj , and by Lemma 3.13 we have

λD(z1, z2)

λD(z2, z3)
≤ η

(
|ζ1 − ζ2|

|ζ2 − ζ3|

)
.

4.5. Corollary. If D and D′ are c and c′ Jordan John disks, respectively,

and if f : (D, λD) → (D′, λD′) is an η -quasisymmetric map, then f extends as an

η′ -quasisymmetric map f̃ : (D, λD) → (D′, λD′) , where η′ depends only on η , c ,
and c′ .

Proof. We only give the proof for the case when both D and D′ are bounded.
The unbounded case is similar. (D′ is bounded if and only if D is bounded,
by Lemma 4.1(1) and (4).) Let ϕ:D → D be a conformal map. It is % -
quasisymmetric, according to Theorem 4.2 and Remark 4.3. Thus g = f ◦ϕ:D →
D′ is η(%)-quasisymmetric (Lemma 4.1(3)). Furthermore, g extends as a qua-
sisymmetric map g̃:D → D′ , just like in the proof of Lemma 4.4. Then g̃−1 ◦ϕ−1

provides the extension.
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Using results of Ghamsari–Näkki–Väisälä, [6], we can say a bit more:

4.6. Lemma. Suppose D is a Jordan c -John disk. Let f : ∂D → ∂D′ =
f(∂D) be a homeomorphism such that f :

(
f−1(∂rD

′), λD

)
→ (∂rD

′, λD′) is qua-

sisymmetric. Then D′ is a Jordan c′ -John disk, c′ = c′(c) , and there exists an

extension f̃ : (D, λD) → (D′, λD′) of f such that f̃ |D is

(1) quasisymmetric with respect to internal distances,

(2) quasiconformal,

(3) bilipschitz with respect to hyperbolic distances.

Note that à priori f(∂D) is just a Jordan curve in R2 with two complemen-
tary domains, and that we have to specify the domain in which we want to use
the internal distance.

Proof of Lemma 4.6. Take w1, w3 in ∂rD
′ , let wj = f(zj), zj ∈ ∂D , and then

let w2 ∈ ∂rD
′\{w1, w3} lie in that component of ∂D′ which is the image of the

component of ∂D\{z1, z3} of least diameter. Then we have

λD(z1, z2)

λD(z1, z3)
≤ a = a(c),

which leads to
λD′(w1, w2)

λD′(w1, w3)
≤ c̃ = η(a).

Thus λD′(w1, w2) ≤ c̃λD′(w1, w3), and D′ is a c′ -John disk by Theorem 3.8,
with c′ = c′(c̃). Then ∂rD

′ = ∂D′ , and f is a quasisymmetric map (∂D, λD) →
(∂′D, λD′).

Suppose that D is bounded. Then D′ is bounded too, by Lemma 4.1(1). (The
proof of the unbounded case is similar, replacing D by H .) Let ϕ:D → D and
ψ:D → D′ be conformal maps; since D and D′ are both Jordan and John, these
maps extend as homeomorphisms of the boundaries. Then the map g:T → T

defined by
g = ψ−1 ◦ f ◦ ϕ

is quasisymmetric with respect to the euclidean metric. This is because ϕ and ψ
are quasisymmetric by Theorem 4.2 and Remark 4.3. The boundary extensions
are still quasisymmetric by Lemma 4.1 or Lemma 4.4, and the composition of
quasisymmetric maps is again quasisymmetric. By Lemma 2.10 in [6] g extends
as a homeomorphism g̃:D → D with the properties (1)–(3) above. Then

f̃ = ψ ◦ g̃ ◦ ϕ−1:D → D′

has the same properties because ϕ and ψ are conformal maps onto John disks
(remember that conformal maps are hyperbolic isometries); f̃ coincides with f
on ∂D .
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Next we state and prove the main result of this paper. It is an internal, or
one sided, version of Theorem 6 in [2]. It is also reminiscent of Theorem 3.1 in [6].

4.7. Theorem. Suppose D is a Jordan c -John disk, and that f : ∂D → ∂D′

is a homeomorphism. If f :
(
f−1(∂rD

′), λD

)
→ (∂rD

′, λD′) is L -bilipschitz, then

D′ is a c′ -John domain, and f extends as an M -bilipschitz map f̃ : (D, λD) →
(D′, λD′) . M and c′ depend only on L and c .

Proof. Assume that f :
(
f−1(∂rD

′), λD

)
→ (∂rD

′, λD′) is L -bilipschitz. Then
f is quasisymmetric, and D′ is a c′ -John disk, so that f : (∂D, λD) → (∂D′, λD′) is
L -bilipschitz. Furthermore f has an extension f̃ which is η -quasisymmetric with
respect to the internal distances and L′ -bilipschitz with respect to the hyperbolic
distances in D and D′ . All this follows from Lemma 4.6. Here L′ = L′(L), and η
depends only on c and L . Let %D(z) and %D′(w) denote the hyperbolic densities
in D and D′ , respectively, and let

lf̃ (z0) = lim inf
z→z0

|f̃(z) − f̃(z0)|

|z − z0|
, Lf̃ (z0) = lim sup

z→z0

|f̃(z) − f̃(z0)|

|z − z0|
.

Then because f̃ is hyperbolic L′ -bilipschitz we have for any z0 ∈ D

(4.8)
1

L′

%D(z0)

%D′

(
f̃(z0)

) ≤ lf̃ (z0) ≤ Lf̃ (z0) ≤ L′
%D(z0)

%D′

(
f̃(z0)

) ;

see e.g. [3, p. 250], [4, Lemma 7.7.2]. From Koebe’s theorem and Schwarz’ lemma
it follows that

1

2 dist(z0, ∂D)
≤ %D(z0) ≤

2

dist(z0, ∂D)

and
1

2 dist
(
f̃(z0), ∂D′

) ≤ %D′

(
f̃(z0)

)
≤

2

dist
(
f̃(z0), ∂D′

) .

Combining (4.8) with the above yields

(4.9)
1

4L′

dist
(
f̃(z0), ∂D

′
)

dist(z0, ∂D)
≤ lf̃ (z0) ≤ Lf̃ (z0) ≤ 4L′

dist
(
f̃(z0), ∂D

′
)

dist(z0, ∂D)
.

In addition, there is an N such that:

(4.10)
1

N
≤

dist
(
f̃(z0), ∂D

′
)

dist(z0, ∂D)
≤ N

for every z0 ∈ D . To see this, let z0 ∈ D and choose an a ∈ ∂D with |z0 − a| =
dist(z0, ∂D). Now z0 lies in S(a, |z0−a|). Traverse S(a, |z0−a|) from z0 (in any
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direction) and denote by b the first point where S(a, |z0 − a|) meets ∂D . Then
clearly

|z0 − a| ≤ |z0 − b| ≤ λD(z0, b) ≤ π|z0 − a|,

and

(4.11) |z0 − a| = |a− b| ≤ λD(a, b) ≤ |z0 − a| + π|z0 − a| = (π + 1)|z0 − a|.

Thus
λD(z0, b)

λD(a, b)
≤
π|z0 − a|

|z0 − a|
= π,

which implies
λD′

(
f̃(z0), f̃(b)

)

λD′

(
f̃(a), f̃(b)

) ≤ η(π)

because f̃ is η -quasisymmetric with respect to internal distances. Then

(4.12) dist
(
f̃(z0), ∂D

′
)
≤ λD′

(
f̃(z0), f̃(b)

)
≤ η(π)λD′

(
f̃(a), f̃(b)

)
.

By assumption, f = f̃ |∂D is L -bilipschitz with respect to internal distances, so
that

(4.13) λD′

(
f̃(a), f̃(b)

)
≤ LλD(a, b).

Combining (4.12), (4.13) and (4.11) gives

dist
(
f̃(z0), ∂D

′
)
≤ η(π)L(π + 1)|z0 − a| = N dist(z0, ∂D).

The lower inequality in (4.10) follows by considering the inverse of f̃ . Combining
(4.9) and (4.10) we have

1

M
≤ lf̃ (z0) ≤ Lf̃ (z0) ≤M,

where M = 4L′N . This is enough to ensure that

(4.14)
1

M
length(α) ≤ length

(
f̃(α)

)
≤M length(α)

for any arc α ⊂ D . See [12, Theorem 5.3]. But then

λD′

(
f̃(z1), f̃(z2)

)
≤MλD(z1, z2).

The lower inequality follows by looking at the inverse of f̃ . This completes the
proof.
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4.15. Remark. Maps that satisfy (4.14) are also known as maps of bounded

length distortion; see [13]. Homeomorphisms of bounded length distortion are
locally bilipschitz (in the euclidean metric), and conversely. These maps are im-
portant, for instance, if one wants to map a ball quasiconformally onto a cylindrical
domain in R3 . See [14].

In Remark 4.15 we just mentioned that internally bilipschitz maps are locally
euclidean bilipschitz in the interior of domains (and conversely). On the boundary
of a domain the situation is more interesting. Examples 4.16 to 4.18 below show
that a boundary map that is bilipschitz with respect to the euclidean metric does
not have to be bilipschitz with respect to internal distances, nor does an internally
bilipschitz map have to be locally euclidean bilipschitz there. Thus Theorem 4.7
does not follow immediately from previously known results on bilipschitz maps
like, for instance, Theorem 6 in [2] or Theorem 3.1 in [6].

There is another difference between [6, Theorem 3.1] and our Theorem 4.7. A
euclidean bilipschitz map does not “notice” the direction of cusps, and so a John
disk is not necessarily mapped onto a John disk via such a map. Therefore, in
order to have an extension, the authors of [6] have to assume that the image is a
John disk. Internally bilipschitz maps preserve the John condition (1.1), since the
direction of a cusp is already implicit in the choice of internal metric.

4.16. Example. Let D∗ denote the half strip, D∗ = {x + iy : x >
0, |y| < 1} , and let D = R2\D∗ . Consider f : ∂D → ∂D∗ defined by f(z) = z .
This is a euclidean isometry, thus a bilipschitz map, while the “induced” map
f : (∂D, λD) → (∂D∗, λD∗) is not bilipschitz.

4.17. Example. Let again D be the outside of the half strip, as in Ex-
ample 4.16. Consider g:R → ∂D defined by “wrapping” the real line without
stretching around the half strip:

g(x) =





ix, if |x| < 1,
x− 1 + i, if x ≥ 1,
−(x+ 1) − i, if x ≤ −1.

Now g:R → (∂D, λD) is an isometry, while g is not bilipschitz with respect to
the euclidean distance.

4.18. Example. Consider the domain D exterior to the triangle with ver-
tices i , −i , and 1. Let D′ = R2\{z = x + iy : 0 ≤ x ≤ 1, |y| ≤ (1 − x)2} . See
Figure 2. Consider the map h: ∂D → ∂D′ defined by

h(x+ iy) =

{
iy, if x = 0,
x+ iy2, if x > 0, y ≥ 0,
x− iy2, if x > 0, y < 0.

Then h: ∂D → ∂D′ is not locally bilipschitz at z = 1, while h: (∂D, λD) →
(∂D′, λD′) is 2-bilipschitz.
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−i

ii

−i

1 1

D
′

z
h(z)

D

Figure 2.

We mentioned in the introduction Gehring’s result which says that any bilip-
schitz map of the boundary of a quasidisk extends as a bilipchitz map of the
whole closed quasidisk, [2, Theorem 7]. The converse holds for bounded Jordan
domains, [3, Lemma 4.4, Theorem 4.9]. To conclude this paper we record the
following question.

4.19. Question. Is there some sort of converse of Theorem 4.7 for bounded

domains?

We have to assume the domain to be bounded: the half strip, in which in-
ternal and euclidean distances are the same, has the property that any euclidean
bilipschitz map of its boundary extends as a bilipschitz map of the closed half
strip. See Remark 4.10 in [3]. Because the half strip is not a John disk, we see
that the converse of Theorem 4.7 cannot hold for unbounded domains.
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