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Abstract. Certain estimates involving the derivative f 7→ f ′ of a meromorphic function
play key roles in the construction and applications of classical Nevanlinna theory. The purpose of
this study is to extend the usual Nevanlinna theory to a theory for the exact difference f 7→ ∆f =
f(z + c) − f(z) .

An a -point of a meromorphic function f is said to be c -paired at z ∈ C if f(z) = a =
f(z + c) for a fixed constant c ∈ C . In this paper the distribution of paired points of finite-
order meromorphic functions is studied. One of the main results is an analogue of the second main
theorem of Nevanlinna theory, where the usual ramification term is replaced by a quantity expressed
in terms of the number of paired points of f . Corollaries of the theorem include analogues of the
Nevanlinna defect relation, Picard’s theorem and Nevanlinna’s five value theorem. Applications to
difference equations are discussed, and a number of examples illustrating the use and sharpness of
the results are given.

1. Introduction

Nevanlinna’s theory of value distribution is concerned with the density of
points where a meromorphic function takes a certain value in the complex plane.
One of the early results in this area is a theorem by Picard [11] which states that
a non-constant entire function can omit at most one value. Nevanlinna offered a
deep generalization of Picard’s theorem in the form of his second main theorem

[8], which implies the defect relation:

(1.1)
∑

a

(
δ(a, f) + θ(a, f)

)
≤ 2

where the sum is taken over all points in the extended complex plane, f is a
non-constant meromorphic function and the quantities δ(a, f) and θ(a, f) are
called the deficiency and the index of multiplicity of the value a , respectively (see
Section 2.1). The defect relation (1.1) yields, for instance, Picard’s theorem as an
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immediate corollary. It also implies that the maximum number of totally ramified
values is at most four for any meromorphic function.

The appearance of the ramification index θ(a, f) in the defect relation (1.1)
means that the density of high-multiplicity a -points is relatively low for most
a ∈ C . Similarly in this paper it is shown that a -points appearing in pairs
with constant separation are rare for finite-order meromorphic functions, unless
the function in question is periodic with the same period as the separation. For
instance, if f is of finite order and not periodic with period c , then

(1.2)
∑

a

(
δ(a, f) + πc(a, f)

)
≤ 2

where the sum is taken over all points in the extended complex plane, and πc(a, f)
is a measure of those a -points of f which appear in pairs separated by the constant
c ∈ C (in other words, those points z0 where f(z0) = a = f(z0+c), see Section 2.1
for the exact definition.) The sharpness of inequality (1.2) is shown by giving
an example of a finite-order meromorphic function, which is not periodic with
period c , satisfying

∑
a πc(a, f) = 2.

The defect relation (1.1) follows by an analysis of the behavior of the derivative
f 7→ f ′ in the ramification term of the second main theorem. In what follows, (1.2)
is obtained by proving a version of the second main theorem where the derivative
of f is replaced by the exact difference f 7→ ∆f = f(z+c)−f(z) of a meromorphic
function. In the remainder of this paper difference analogues of Picard’s theorem
and Nevanlinna’s theorem on functions sharing five values are given. In addition,
the sharpness of the obtained results is discussed with the help of examples, and
an application to difference equations is presented.

2. Nevanlinna theory for exact differences

Before going into details of value distribution of exact differences we must first
give a precise answer to the following question: What is the difference analogue
of a point with high multiplicity? By a formal discretisation of the derivative
function f ′(z) we obtain

(2.1)
f(z + c) − f(z)

c
=:

∆cf

c
,

where c ∈ C . As noted in the introduction, those a -points of f where the deriva-
tive vanishes, called ramified points, play a special role in Nevanlinna theory. The
discretisation (2.1) of f ′(z) suggests that a -points appearing in pairs separated by
a fixed constant c may have similar importance with respect to the operator ∆c .
This indeed turns out to be the case as seen in the following sections.

2.1. Lemma on the exact difference. We first briefly recall some of
the basic definitions of Nevanlinna theory. We refer to [5] for a comprehensive
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description of the value distribution theory. The Nevanlinna deficiency is defined
as

δ(a, f) := lim inf
r→∞

m(r, a)

T (r, f)
,

where a is in the extended complex plane, m(r, a) is the Nevanlinna proximity

function and T (r, f) is the characteristic function of f . The ramification index is

θ(a, f) := lim inf
r→∞

N(r, a) −N (r, a)

T (r, f)
,

where N(r, a) is the counting function of the a -points of f , counting multiplicities,
and N (r, a) the counting function ignoring multiplicities. The point a ∈ C is a
totally ramified value of f if all a -points of f have multiplicity two or higher.

The following theorem is a recently obtained difference analogue of the lemma
on the logarithmic derivative [4].

Theorem 2.1. Let f be a non-constant meromorphic function of finite order,

c ∈ C and δ < 1 . Then

(2.2) m

(
r,

f(z + c)

f(z)

)
= o

(
T (r, f)

rδ

)

for all r outside of a possible exceptional set E with finite logarithmic measure∫
E

dr/r < ∞ .

In the original statement of Theorem 2.1 in [4] the error term on the right
side of (2.2) has T (r + |c|, f) instead of T (r, f). But by the following lemma, [3,
Lemma 2.1], we have T (r + |c|, f) =

(
1 + o(1)

)
T (r, f) for all r outside of a set

with finite logarithmic measure, whenever f is of finite order.

Lemma 2.2. Let T : (0, +∞) → (0, +∞) be a non-decreasing continuous

function, s > 0 , α < 1 , and let F ⊂ R+ be the set of all r such that

(2.3) T (r) ≤ αT (r + s).

If the logarithmic measure of is F infinite, that is,
∫

F
dt/t = ∞ , then

lim sup
r→∞

log T (r)

log r
= ∞.

Let f(z) be a non-constant meromorphic function of finite order, and let a(z)
be a finite-order periodic function with period c such that f(z) 6≡ a(z). Denote

∆cf := f(z + c) − f(z),
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and ∆n
c f := ∆n−1

c (∆cf) for all n ∈ N , n ≥ 2. Then by applying Theorem 2.1
with the function f(z) − a(z), we have

(2.4)

m

(
r,

∆cf

f − a

)
= m

(
r,

f(z + c) − a(z + c)

f(z) − a(z)

)
+ O(1)

= o

(
T (r, f − a)

rδ

)
+ O(1)

outside of a possible exceptional set with finite logarithmic measure. We denote
by S (f) the set of all meromorphic functions g such that T (r, g) = o

(
T (r, f)

)

for all r outside of a set with finite logarithmic measure. Functions in the set
S (f) are called small compared to f , or slowly moving with respect to f . Also,
if g ∈ S (w) we write T (r, g) = S(r, f).

Since by (2.4)

(2.5) m

(
r,

∆cf

f − a

)
= S(r, f − a)

we arrive at the following lemma by induction and using the fact that

T
(
r, f(z + 1)

)
≤ (1 + ε)T

(
r + 1, f(z)

)

for any ε > 0 when r is large [15].

Lemma 2.3. Let c ∈ C , n ∈ N , and let f be a meromorphic function of

finite order. Then for any small periodic function a ∈ S (f)

m

(
r,

∆n
c f

f − a

)
= S(r, f),

where the exceptional set associated with S(r, f) is of at most finite logarithmic

measure.

Finally, an identity due to Valiron [13] and Mohon’ko [7] is needed in the
following section. It states that if the function R(z, f) is rational in f and has
small meromorphic coefficients, then

(2.6) T
(
r, R(z, f)

)
= degf (R)T (r, f) + S(r, f).

For the proof see also [6].

2.2. Second main theorem. The lemma on the logarithmic derivative is
one of the main ingredients of Nevanlinna’s proof of the second main theorem. The
following theorem is obtained by combining the standard method of proof for the
second main theorem [8] together with Theorem 2.1. As a result a version of the
second main theorem is obtained where, instead of the usual ramification term,
there is a certain quantity expressed in terms of paired points of the meromorphic
function f . Since periodic functions are the analogues of constants for exact
differences, it is natural to consider slowly moving periodic functions as target
functions of f .
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Theorem 2.4. Let c ∈ C , and let f be a meromorphic function of finite order

such that ∆cf 6≡ 0 . Let q ≥ 2 , and let a1(z), . . . , aq(z) be distinct meromorphic

periodic functions with period c such that ak ∈ S (f) for all k = 1, . . . , q . Then

m(r, f) +

q∑

k=1

m

(
r,

1

f − ak

)
≤ 2T (r, f)− Npair(r, f) + S(r, f)

where

Npair(r, f) := 2N(r, f)− N(r, ∆cf) + N

(
r,

1

∆cf

)

and the exceptional set associated with S(r, f) is of at most finite logarithmic

measure.

Proof. By denoting

P (f) :=

q∏

k=1

(f − ak),

we have
1

P (f)
=

q∑

k=1

αk

f − ak

,

where αk ∈ S (f) are certain periodic functions with period c . Hence, by (2.5),
we obtain

m

(
r,

∆cf

P (f)

)
≤

q∑

k=1

m

(
r,

∆cf

f − ak

)
+ S(r, f) = S(r, f),

and so

(2.7) m

(
r,

1

P (f)

)
= m

(
r,

∆cf

P (f)

1

∆cf

)
≤ m

(
r,

1

∆cf

)
+ S(r, f).

By combining the first main theorem, (2.7) and the Valiron–Mo’honko identity
(2.6), we have

T (r, ∆cf) = m

(
r,

1

∆cf

)
+ N

(
r,

1

∆cf

)
+ O(1)

≥ m

(
r,

1

P (f)

)
+ N

(
r,

1

∆cf

)
+ S(r, f)

= qT (r, f) −

q∑

k=1

N

(
r,

1

f − ak

)
+ N

(
r,

1

∆cf

)
+ S(r, f)

=

q∑

k=1

m

(
r,

1

f − ak

)
+ N

(
r,

1

∆cf

)
+ S(r, f).
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Thus, by (2.5),

m(r, f) +

q∑

k=1

m

(
r,

1

f − ak

)
≤ T (r, f) + N(r, ∆cf) + m(r, ∆cf)

− N

(
r,

1

∆cf

)
− N(r, f) + S(r, f)

≤ T (r, f) + N(r, ∆cf) + m(r, f)

− N

(
r,

1

∆cf

)
− N(r, f) + S(r, f)

= 2T (r, f) + N(r, ∆cf) − N

(
r,

1

∆cf

)

− 2N(r, f) + S(r, f).

Let us now analyze the assertion of Theorem 2.4 more closely. By Lemma 2.2
N(r + |c|, f) =

(
1 + o(1)

)
N(r, f) for all r outside of a set with finite logarithmic

measure. Therefore,

Npair(r, f) ≥ N(r, f)− N(r + |c|, f) + N

(
r,

1

∆cf

)
= N

(
r,

1

∆cf

)
+ S(r, f)

so clearly Theorem 2.4 is telling us something non-trivial about the value dis-
tribution of finite-order meromorphic functions. In order to better interpret the
meaning of the pair term Npair(r, f) we introduce the counting function nc(r, a),
a ∈ C , which is the number of points z0 where f(z0) = a and f(z0 + c) = a ,
counted according to the number of equal terms in the beginning of Taylor series
expansions of f(z) and f(z + c) in a neighborhood of z0 . We call such points
c -separated a -pairs of f in the disc {z : |z| ≤ r} .

For instance, if f(z) = a and f(z + c) = a with multiplicities p and q < p ,
respectively, then the q first terms in the series expansions of f(z) and f(z + c)
are identical, and so this point is counted q times in nc(r, a). Similarly, if in a
neighborhood of z0

f(z) = a + c1(z − z0) + c2(z − z0)
2 + α(z − z0)

3 + O
(
(z − z0)

4
)

and

f(z + c) = a + c1(z − z0) + c2(z − z0)
2 + β(z − z0)

3 + O
(
(z − z0)

4
)

where α 6= β , then the point z0 is counted 3 times in nc(r, a).
The integrated counting function is defined as follows:

Nc(r, a) :=

∫ r

0

nc(t, a) − nc(0, a)

t
dt + nc(0, a) log r.
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Similarly,

Nc(r,∞) :=

∫ r

0

nc(t,∞) − nc(0,∞)

t
dt + nc(0,∞) log r,

where nc(r,∞) is the number of c -separated pole pairs of f , which are exactly
the c -separated 0-pairs of 1/f . This means that if f has a pole with multiplicity
p at z0 and another pole with multiplicity q at z0 + c then this pair is counted
min{p, q} + m times in nc(r,∞), where m is the number of equal terms in the
beginning of the Laurent series expansions of f(z) and f(z+c) in a neighborhood
of z0 . Of course, if p 6= q then m = 0.

Note that nc(r, a) is finite for any finite r , provided that the given function
f is not periodic with period c . Otherwise there would be a point z0 ∈ C in
a neighborhood of which the series expansions of f(z) and f(z + c) would be
identical. But this means that f(z) ≡ f(z + c) in the whole complex plane, which
contradicts the assumption. However, it is possible that nc(r, a) is strictly greater
than the counting function n(r, a).

A natural difference analogue of N(r, a) is

Ñ c(r, a) := N(r, a)− Nc(r, a)

which counts the number of those a -points (or poles) of f which are not in c -
separated pairs. We also use the notation Nc

(
r, 1/(f − a)

)
instead of Nc(r, a)

and Nc(r, f) instead of Nc(r,∞) when we want to emphasize the connection to
the meromorphic function f . With this notation we may state the main result of
this paper.

Theorem 2.5. Let c ∈ C , and let f be a meromorphic function of finite order

such that ∆cf 6≡ 0 . Let q ≥ 2 , and let a1(z), . . . , aq(z) be distinct meromorphic

periodic functions with period c such that ak ∈ S (f) for all k = 1, . . . , q . Then

(q − 1)T (r, f) ≤Ñ c(r, f) +

q∑

k=1

Ñ c

(
r,

1

f − ak

)
+ S(r, f)

where the exceptional set associated with S(r, f) is of at most finite logarithmic

measure.

Before proving Theorem 2.5 we briefly discuss its implications. Analogously to
the classical Nevanlinna theory, the counting function Ñc(r, a) satisfies Ñ c(r, a) =
T (r, f) + S(r, f) for all except at most countably many values a (see [5, pp. 43–

44] for a proof of this). However, unlike N(r, a), the counting function Ñ c(r, a)
may, for some values a , be negative for all sufficiently large r . This fact has
interesting consequences. By Theorem 2.5 any finite-order meromorphic function
f is either periodic with period c , or it can have at most one non-deficient value



470 R. G. Halburd and R. J. Korhonen

a such that whenever f(z) = a also f(z + c) = a and the first two terms in the
series expansions of f(z) at z and z + c are identical. For instance, consider the
function g(z) := ℘(z) + exp(z) where ℘(z) is a Weierstrass elliptic function with
a period c 6= 2πi . Then T (r, g) = N(r, g)+S(r, g) and each pole of g contributes

2 to n(r, g) but −2 to ñc(r, g). Therefore T (r, g) = −Ñ c(r, g) + S(r, g) and so

Ñc(r, a) = T (r, g) + S(r, g) for all a ∈ C by Theorem 2.5.

Also, by the definition of Ñ c(r, a) alone, there appears to be no lower bound

for Ñ c(r, a). However, by Theorem 2.5, for any a ∈ C ∪ {∞} we have Ñc(r, a) ≥
−T (r, f)+o

(
T (r, f)

)
outside of a possible exceptional set E with finite logarithmic

measure
∫

E
dt/t < ∞ , and if there is an α > 0 such that Ñ c(r, a) < −αT (r, f) in

a set with infinite logarithmic measure, then Ñc(r, b) ≥ o
(
T (r, f)

)
for all b 6= a .

Proof of Theorem 2.5. By Theorem 2.4 and the first main theorem, we obtain

(2.8)
(q − 1)T (r, f) ≤ N(r, f) +

q∑

k=1

N

(
r,

1

f − ak

)
− N

(
r,

1

∆cf

)

+ N(r, ∆cf) − 2N(r, f) + S(r, f).

We denote by N0(r, f) the counting function for those poles of f having Laurent
series expansions at z0 and z0 + c with identical principal parts, multiplicity
counted according to the number of equal terms in the beginning of the analytic
part of the series expansions. (For instance, if f(z) = c/(z−z0)

2 +b/(z−z0)+a+
α(z − z0)+O

(
(z− z0)

2
)

and f(z + c) = c/(z − z0)
2 + b/(z − z0)+ a+ β(z − z0) +

O
(
(z − z0)

2
)

the pole at z0 is counted once in N0(r, f) whenever α 6= β .) Since
N(r, f) = N(r + |c|, f) + S(r, f) by Lemma 2.2, inequality (2.8) takes the form

(2.9)
(q − 1)T (r, f) ≤ N(r, f) + N0(r, f) +

q∑

k=1

N

(
r,

1

f − ak

)
− N

(
r,

1

∆cf

)

+ N(r, ∆cf) − 2N(r + |c|, f) − N0(r, f) + S(r, f).

The rest of the proof consists of estimates on different terms on the right side
of (2.9). First, by the definition of a paired point, we have

N0(r, f) +

q∑

k=1

Nc

(
r,

1

f − ak

)
≤ N

(
r,

1

∆cf

)

for all r , and thus

(2.10) N0(r, f) +

q∑

k=1

N

(
r,

1

f − ak

)
− N

(
r,

1

∆cf

)
≤

q∑

k=1

Ñ c

(
r,

1

f − ak

)
.
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Second, assume that z0 ∈ C is such that f(z0 + kc) = ∞ for all k ∈ Z with
multiplicities pk ≥ 0. Here pk = 0 means that f(z0 + kc) is finite. (Note that
the case pk = 0 for all k 6= 0 is not ruled out.) Out of these points only finitely
many are inside the disc {z ∈ C : |z| ≤ r + |c|} for any r > 0. By redefining z0

if necessary, we may assume that these points are z0 + jc , j = 0, . . . , K , where
K ∈ N is a constant depending only on r . Then z0 + c, . . . , z0 + (K − 1)c are
inside the disc with radius r centered at the origin, and ∆cf has a pole with
multiplicity max{pj, pj+1}−m′

j at z0 + jc , where j = 1, . . . , K−1 and m′
j is the

number of equal terms in the beginning of the principal parts of the Laurent series
expansions of f(z) and f(z + c) at z0 + jc . If principal parts are identical, the
number of equal terms in the beginning of the analytic parts of the series at z0+jc
is denoted by m′′

j , and moreover mj := m′
j + m′′

j . Therefore the contribution to

n(r, ∆cf) − 2n(r + |c|, f)− n0(r, f)

from the points z0 + jc , j = 0, . . . , K , is

(2.11)

K−1∑

j=1

(
max{pj , pj+1} − m′

j

)
− 2

K∑

j=0

pj −

K−1∑

j=1

m′′

j

=

K−1∑

j=1

(
max{pj , pj+1} − m′

j − m′′

j

)

−

(
p0 +

K−1∑

j=0

(
max{pj , pj+1} + min{pj , pj+1}

)
+ pK

)

≤ −
K−1∑

j=1

(
min{pj , pj+1} + mj

)
.

The quantity on the right side of (2.11) is by definition exactly the same as the
contribution to −nc(r, f) from the points z0 + jc , j = 0, . . . , K . Therefore, by
summing over all poles of f , we obtain

(2.12) N(r, f) + N(r, ∆cf) − 2N(r + |c|, f)− N0(r, f) ≤Ñ c(r, f).

The assertion follows by combining (2.9), (2.10) and (2.12).

2.3. Defect relation and Picard’s theorem. Nevanlinna’s second main
theorem is a deep generalization of Picard’s theorem, and as such it has many
important consequences for the value distribution of meromorphic functions. In
this section we present difference analogues of a number of these results, includ-
ing Picard’s theorem and Nevanlinna’s theorems on the total deficiency sum and
completely ramified values of a meromorphic function. All of the results in this
section follow from Theorem 2.5.
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A difference analogue of the index of multiplicity θ(a, f) is called the c -
separated pair index, and it is defined as follows:

πc(a, f) := lim inf
r→∞

Nc(r, a)

T (r, f)
,

where a is either a slowly moving periodic function with period c , or a = ∞ .
Similarly, we define

Πc(a, f) := 1 − lim sup
r→∞

Ñ c(r, a)

T (r, f)
,

which is an analogue of

Θ(a, f) = 1 − lim sup
r→∞

N(r, a)

T (r, f)

in the usual value distribution theory.

The following corollary says that a non-periodic meromorphic function of
finite order cannot have too many a -points which appear in pairs. It is a difference
analogue of Nevanlinna’s theorem on deficient values.

Corollary 2.6. Let c ∈ C , and let f be a meromorphic function of finite

order such that ∆cf 6≡ 0 . Then Πc(a, f) = 0 except for at most countably many

meromorphic periodic functions a with period c such that a ∈ S (f) , and

(2.13)
∑

a

(
δ(a, f) + πc(a, f)

)
≤

∑

a

Πc(a, f) ≤ 2.

By the second main theorem it follows that Θ(a, f) = 0 for all except at most
countably many values a , see, for instance, [5, pp. 43–44]. The same reasoning
can be applied to prove that Theorem 2.5 implies Corollary 2.6.

Probably the most distinct difference between the classical Nevanlinna theory
and its difference analogue is that, although 0 ≤ Θ(a, f) ≤ 1 for all meromorphic
functions f and for all a in the extended complex plane, the maximal deficiency
sum ∑

a

Πc(a, f) = 2

may be attained by a single value a . For instance, the function g(z) = ℘(z) +
exp(z), where ℘(z) is a Weierstrass elliptic function with a period c 6= 2πi , satisfies
Πc(∞, g) = 2. In fact, by the definition of Πc(a, f) alone, it is not even clear that
Πc(a, f) has an upper bound what so ever. The fact that Πc(a, f) ≤ 2 for all a
follows by Corollary 2.6.

We say that a is an exceptional paired value of f with the separation c if
the following property holds for all except at most finitely many a -points of f :
Whenever f(z) = a then also f(z + c) = a with the same or higher multiplicity.

Clearly N(r, a) ≤ Nc(r, a)+O(log r) for all exceptional paired values a of f . Note
also that by this definition all Picard exceptional values of f are also exceptional
paired values. The following corollary is an analogue of Picard’s theorem.
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Corollary 2.7. If a finite-order meromorphic function f has three excep-

tional paired values with the separation c , then f is a periodic function with

period c .

Corollary 2.7 implies that if a finite-order meromorphic function w has two
groups of three exceptional paired values with two different separations, say c1

and c2 independent over the reals, then either w is a constant or w is an elliptic
function with periods c1 and c2 and therefore exactly of order 2.

There is no hope of extending Corollary 2.7 (or Corollary 2.6) to include all
infinite order meromorphic functions, since the function exp

(
exp(z)

)
has three

exceptional paired values with the separation log 2: In addition to the Picard
exceptional zeros and poles, the value 1 is exceptionally paired, although non-
deficient.

An example of a finite-order meromorphic function which has exactly two
exceptional paired values with the separation 2K is given by the elliptic function
sn (z, k), where k ∈ (0, 1) is the elliptic modulus, K is the corresponding complete
elliptic integral of the first kind and K ′ is the complementary complete integral.
The function sn (z, k) is periodic with the periods 4K and 2iK ′ , and it attains
the value zero at points 2nK + 2miK ′ and has its poles at 2nK + (2m + 1)iK ′ ,
where n, m ∈ Z . The function sn (z, k) has no deficient values, but it has the
maximal four completely ramified values at ±1 and ±1/k . Therefore, the function
g(z) = sn (z, k) satisfies ∑

a

π2K(a, g) = 2

and, moreover, ∑

a

(
θ(a, g) + π2K(a, g)

)
= 4.

Analogously to complete ramification, we say that a point a is completely

paired with the separation c if whenever f(z) = a then either f(z + c) = a or
f(z − c) = a , with the same multiplicity. Then a non-periodic meromorphic
function of finite order can have at most four values which only appear in pairs.

Corollary 2.8. Let c ∈ C , and let f be a meromorphic function of finite

order such that ∆cf 6≡ 0 . Then f has at most four completely paired points with

separation c .

Similarly, a non-periodic finite-order function f can have at most three val-
ues a which only appear such that for some z0 ∈ C , f(z0) 6= a , f(z0 + jc) = a
with the same multiplicity for each j = 1, 2, 3, and f(z0 + 4c) 6= a . We say that
such values appear in lines of three. Similarly, a finite-order meromorphic function
can have a maximum of two values which appear only in lines of four or more.

2.4. Functions sharing values. Another consequence of Nevanlinna’s
second main theorem is the five value theorem, which says that if two non-constant
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meromorphic functions share five values ignoring multiplicity then these functions
must be identical. By considering periodic functions instead of constants, and by
ignoring paired points instead of multiplicity, we obtain a difference analogue of
the five value theorem.

We say that two meromorphic functions f and g share a point a , ignoring c -
separated pairs, when f(z) = a if and only if g(z) = a with the same multiplicity,
unless a is a c -separated pair of f or g . In short, all paired points are ignored
when determining whether or not f and g share a . This also means that if f has
a paired a -point at z0 and g has a single a -point at the same location, this point
is not shared by f and g .

Theorem 2.9. Let c ∈ C , and let f and g be meromorphic functions of

finite order. If there are five distinct periodic functions ak ∈ S (f) such that

f and g share ak , ignoring c -separated pairs, for all k = 1, . . . , 5 then either

f(z) ≡ g(z) or both f and g are periodic with period c .

Proof. We follow the reasoning of the proof of the five value theorem [5].
Suppose first that f is periodic with period c . Then by definition all a -points of
f are paired. Since f and g share five points, ignoring pairs, g has at least five
exceptional paired values, and therefore it must also be periodic with period c by
Corollary 2.7.

Assume now that neither f nor g is periodic with period c , and that f 6≡ g .
Then by Theorem 2.5, for any ε > 0,

(2.14) (4 + ε)T (r, f) ≤ Ñ c(r, f) +
5∑

k=1

Ñ c

(
r,

1

f − ak

)

and

(2.15) (4 + ε)T (r, g) ≤ Ñ c(r, g) +

5∑

k=1

Ñ c

(
r,

1

g − ak

)

outside a set with finite logarithmic measure. Since

Ñ c

(
r,

1

g − ak

)
=Ñ c

(
r,

1

f − ak

)

for all k = 1, . . . , 5, inequalities (2.14) and (2.15) imply

T

(
r,

1

f − g

)
≤ T (r, f) + T (r, g) + O(1) ≤

2

3 + ε

5∑

k=1

Ñ c

(
r,

1

f − ak

)

≤
2

3 + ε
N

(
r,

1

f − g

)
≤

2

3 + ε
T

(
r,

1

f − g

)
.

This is only possible when f − g is a constant, say g(z) = f(z) + k . But now,
since f(z) and f(z) + k share five points out of which at most two can be either
exceptionally paired or Picard exceptional, k = 0, and the assertion follows.
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The elliptic functions sn z and 1/sn z show that the number five cannot be
replaced by four in Theorem 2.9. Namely, for both functions zero and infinity are
exceptional paired values with separation 2K and they share the points 1 and
−1, counting multiplicities. Therefore, sn z and 1/sn z share the points −1, 0, 1
and ∞ , ignoring pairs.

2.5. An application to difference equations. In this section we give
an example of how to apply the results obtained above to study meromorphic
solutions of difference equations. We consider the equation

(2.16) w(z + 1) + w(z − 1) =
a2w(z)2 + a0

1 − w(z)2

where the right side is irreducible in w and the coefficients aj are constants.
Equation (2.16) is a subcase of a more general equation studied in [3] where it was
shown that the existence of one finite-order meromorphic solution is sufficient to
reduce a large class of difference equations into a difference Painlevé equation or
into a linear difference equation, provided that the solution does not simultane-
ously satisfy a difference Riccati equation. Suppose that (2.16) has a finite-order
meromorphic solution w(z) and consider a Laurent series expansion of w in a
neighborhood of a point z0 such that w(z0) = δ with multiplicity k ≥ 1, where
δ := ±1. Then w has a pole of order at least k at z0 − 1 or z0 + 1.

Consider first the case where w(z0+1) = ∞ with multiplicity k and w(z0−1)
is either finite or a pole with multiplicity strictly less than k . Then by iterat-
ing (2.16), we have

w(z + 4n) = δ + α(z − z0)
k + O

(
(z − z0)

k+1
)
,(2.17)

w(z + 2n + 1) =

(
(−1)n

(
1
4
n + 1

8

)
− 1

8

)
(a0 + a2)

αδ
(z − z0)

−k + O
(
(z − z0)

1−k
)
,

w(z + 4n + 2) = −a2 − δ + O
(
(z − z0)

)

for all n ∈ N∪{0} and for all z in a suitably small neighborhood of z0 , provided
that a2 6= 0. Since we assumed the right side of (2.16) to be irreducible a0+a2 6= 0
and so w(z + 2n + 1) = ∞ for all n ∈ N ∪ {0} . The iteration in the case where
w(z0 + 1) is finite, or a pole with low order, and w(z0 − 1) = ∞ is symmetric
with (2.17).

Suppose now that w(z0) = δ and w(z0 ± 1) = ∞ all with the same mul-
tiplicity k . Then, assuming c1 ∈ C and c−1 ∈ C such that c1c−1 6= 0, we
have

(2.18)

w(z + 4n) = δ + α(z − z0)
k + O

(
(z − z0)

k+1
)
,

w(z + 4n + 2) = −a2 − δ + O
(
(z − z0)

)
,

w(z + 2n + 1) = c2n+1(z − z0)
−k + O

(
(z − z0)

1−k
)
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for all n ∈ Z as long as none of the constants c2n+1 vanish. But if c2n0+1 = 0
for some n0 ∈ Z then we are back in the situation (2.17) with the starting point
z0 + 2n0 + 1 instead of z0 − 1. Note also that a closer inspection of the iteration
in (2.18) shows that

(2.19) ck±4 = ck +
a2 + a0

2α
for all k ∈ Z .

The final possibility is that w(z0) = δ with the multiplicity k and w(z0±1) =
∞ for both choices of the sign with the multiplicity strictly greater than k . But
in this case it is immediately seen that w(z) has a pole with the same order in
z0 + 2n + 1 for all n ∈ Z .

We conclude that all poles, 1-points and −1-points of w appear in lines where
each point is separated from its neighbors by the constant 4, with the possible
exception of the endpoints of sequences of points appearing as a part of (2.17). In
fact for our purposes it is sufficient to know that all poles and δ -points of w appear
in groups of four or more, with 4-separation. Assume that w is not periodic with
period four. Then by Theorem 2.5,

T (r, w) ≤Ñ4(r,∞) +Ñ4(r, 1) +Ñ4(r,−1) + S(r, w)

≤ 1
4
N(r,∞) + 1

4
N(r, 1) + 1

4
N(r,−1) + S(r, w) ≤ 3

4
T (r, w) + S(r, w),

which is a contradiction. Therefore, either a2 = 0, or w is periodic with period 4
or of infinite order.

Suppose finally that w is periodic with period 4. Then 1 and −1 are Picard
exceptional values of w by (2.17), (2.18) and (2.19). Therefore all poles of w
appear in lines where each pole is separated from its neighbors by the constant 2,
and so w is periodic with period 2. But then, by periodicity, w(z + 1), w(z − 1)
and w(z + 1) + w(z − 1) are infinite simultaneously. On the other hand, the right
side of (2.16) is never infinite since the values ±1 are Picard exceptional. Hence
also the value infinity is Picard exceptional for w , and therefore w is a constant
by Picard’s theorem. We conclude that if (2.16) has a non-constant meromorphic
solution of finite order then a2 = 0.

The existence of finite-order meromorphic solutions of (2.16) is guaranteed in
the case a2 = 0, a0 6= 0. Then (2.16) has solutions of the form

(2.20) w(z) =
α sn (Ωz + C) + β

γ sn (Ωz + C) + δ

where C ∈ C is arbitrary, and α , β , γ , δ , Ω are certain constants depending
on another free parameter. The meromorphic solutions (2.20) are of order 2 and
periodic, but not of period 4.
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3. Discussion

Nevanlinna’s second main theorem implies that a non-constant meromorphic
function cannot have too many points with high multiplicity. In this study a
difference analogue of the second main theorem of Nevanlinna theory was given,
which shows that a non-periodic finite-order meromorphic function cannot have
many values which only appear in pairs, separated by a fixed constant. Then a
number of results on the value distribution of finite-order meromorphic functions
were derived by combining existing proof techniques from Nevanlinna theory to-
gether with the difference analogue of the second main theorem. These include
analogues of Picard’s theorem, the theorem on the deficiency sum and the theo-
rem on meromorphic functions sharing five values. Sharpness of these results was
discussed with the help of examples. Also, an example of how to apply some of
these results to study complex difference equations was given.

All concepts of Nevanlinna theory related to ramification have a natural dif-
ference analogue. For instance, constant functions are analogous to periodic func-
tions, and a pole with multiplicity n > 1 is analogous to a line of n poles with the
same multiplicity, each separated from its neighbors by a fixed constant. Similarly
as a pole is counted only once in the counting function N(r, f) regardless of its

multiplicity, only one pole from the above line of poles contributes to Ñ c(r, f).
However, some notions in the difference Nevanlinna theory seem to go, in a sense,
further than their classical counterparts. If a line of points consists of poles with
different multiplicities, the contribution from these poles to Ñc(r, f) is neverthe-
less strictly less than the contribution to N(r, f). Therefore this situation is still
exceptional in the sense of the difference deficiency relation (1.2). On the other
hand, if all poles in the line have similar enough Laurent series expansions, then
the contribution to Ñ c(r, f) from these poles may be negative. This implies that
the maximal value two in the difference deficiency relation (1.2) may be attained
by one value a , which is impossible for the classical deficiencies (1.1).

4. Open problems

In addition to his ground-breaking results in the field of value distribution
theory, Nevanlinna proposed a number of problems many of which have remained
open until recently. In this section we briefly discuss two of them.

4.1. Inverse problem. The inverse problem for the deficiency relation is
to find a meromorphic function f which at prescribed points has certain non-zero
deficiencies and ramification indices. This problem was proposed and partially
solved by Nevanlinna himself, see [9], but the complete solution had to wait until
1977 when Drasin [1] settled the issue by a clever use of quasi-conformal mappings.
Later on Drasin [2] established a related corollary by F. Nevanlinna, which states
that if a meromorphic function f has finite order λ and

∑
a δ(a, f) = 2 then 2λ

is a natural number greater or equal to two. In the view of Corollary 2.6 it is
natural to ask under what conditions it is possible to find a meromorphic function
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of finite order for which the pair index π(a, f) and the deficiency δ(a, f) have
certain non-zero values at prescribed points a?

4.2. Slowly moving targets. Another question proposed by Nevanlinna
is whether or not the relation (1.1) remains valid if the sum is taken over all
small functions with respect to f . Partial answer was given by Steinmetz [12] and
Osgood [10] who showed that

∑

a

δ(a, f) ≤ 2

where the sum is taken over distinct small functions with respect to f . A complete
solution to this problem was given recently by Yamanoi [14] who showed that (1.1)
indeed remains valid if the sum is taken over the larger field of small functions,
rather than just constants. Similarly we propose that (2.13) remains valid even if
the sum is taken over the field S (f). It can be immediately seen, by a modification
of the reasoning in [5, p. 47], that the assertion holds for at most three functions.
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[12] Steinmetz, N.: Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes. -

J. Reine Angew. Math. 368, 1986, 134–141.
[13] Valiron, G.: Sur la dérivée des fonctions algébröıdes. - Bull. Soc. Math. France 59,
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