Annales Academise Scientiarum Fennicee
Mathematica
Volumen 45, 2020, 343-410

REAL-VARIABLE CHARACTERIZATIONS
OF MUSIELAK-ORLICZ HARDY SPACES
ON SPACES OF HOMOGENEOUS TYPE

Xing Fu, Tao Ma and Dachun Yang*

Hubei University, Faculty of Mathematics and Statistics
Hubei Key Laboratory of Applied Mathematics
Wuhan 430062, P. R. China; xingfu@hubu.edu.cn

Wuhan University, School of Mathematics and Statistics
Wuhan 430072, P. R. China; tma.math@whu.edu.cn

Beijing Normal University, School of Mathematical Sciences
Laboratory of Mathematics and Complex Systems (Ministry of Education of China)
Beijing 100875, P. R. China; dcyang@bnu.edu.cn

Abstract. Let (X,d, u) be a space of homogeneous type in the sense of Coifman and Weiss.
In this article, the authors establish a complete real-variable theory of Musielak—Orlicz Hardy
spaces on (X,d,u). To be precise, the authors first introduce the atomic Musielak—Orlicz Hardy
space H7;(X) and then establish its various maximal function characterizations. The authors also
investigate the Littlewood—Paley characterizations of Hf (X) via Lusin area functions, Littlewood—
Paley g-functions and Littlewood—Paley gi-functions. The authors further obtain the finite atomic
characterization of H7(X) and its improved version in case ¢ < oo, and their applications to
criteria of the boundedness of sublinear operators from HY (X) to a quasi-Banach space, which
are also applied to the boundedness of Calderéon-Zygmund operators. Moreover, the authors find
the dual space of HY, (X), namely, the Musielak-Orlicz BMO space BMO?(X), present its several
equivalent characterizations, and apply it to establish a new characterization of the set of pointwise
multipliers for the space BMO(X'). The main novelty of this article is that, throughout the article,
except the last section, u is not assumed to satisfy the reverse doubling condition.

1. Introduction

The classical real Hardy space HP?(R™) on the n-dimensional Euclidean space
has proved a nice substitute of the Lebesgue space LP(R™) when p € (0, 1], because
some important operators (for instance, the Riesz transforms) are not bounded on
LP(R™) but bounded on H?(R™) when p € (0, 1]. The real-variable theory of H?(R")
was initiated by Stein and Weiss [57] and later extensively developed by Fefferman
and Stein [13|. Precisely, Fefferman and Stein [13] established various maximal func-
tion characterizations of H?(R"™) and found a surprising result on the dual space of
H'(R™), which is just BMO(R"), the space of functions with bounded mean oscil-
lations introduced by John and Nirenberg [33]. To better understand the structure
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of Hardy spaces, one finds that a core idea is to decompose any element of H?(R")
into a sum of some basic elements with some good properties, which are called atoms
(see Coifman [8] for the case n = 1 and Latter [39] for the general case n € N). This
paves the way for the extensive study of the boundedness on Hardy spaces of many
classical operators appearing in harmonic analysis such as Calderén—Zygmund oper-
ators and fractional integrals. For more studies on the real-variable theory of Hardy
spaces and its applications to harmonic analysis and partial differential equations,
we refer the reader to some fundamental references, for instance, [57, 55, 13, 56, 48|.

In the last several decades, the classical real Hardy spaces were generalized to
other type Hardy spaces. Among this, Ky [35] extended both the Orlicz-Hardy spaces
and the weighted Hardy spaces to new Orlicz type Hardy spaces, Musielak—Orlicz
Hardy spaces H?(R™), which prove useful. Particularly, the Musielak—Orlicz Hardy
space H'°(R™), related to the typical growth function

t n

(1.1) O(x,t) := Toglc + o) T ogle 1 1)’ Ve e R", Vtel0,00),

plays essential roles in the bilinear decompositions of BMO(R™) x H'(R"). These
bilinear decompositions are important to the optimal endpoint estimate for the div-
curl lemma, involving the space H'8(R"™), and have also relations to an implicit
conjecture from [6] (see also [5, 4]). These bilinear decompositions also play striking
roles in bilinear or subbilinear decompositions, respectively, for linear or sublinear
commutators of Calderén-Zygmund operators from [34]; see [36, 37| (or [59]) for
more applications. So far, some literature on the real-variable theory of H?(R") and
its applications appeared (see, for instance, [30, 35, 41, 42, 43, 44, 59, 60]).

To extend some classical results of harmonic analysis over Euclidean spaces to
more generalized setting, Coifman and Weiss |9, 10] introduced the following notion of
the space of homogeneous type, which is a natural setting for the theory of functions
spaces and operators in harmonic analysis. Let us first recall the following notion of
spaces of homogeneous type from [9, 10]. Suppose that X is a non-empty set equipped
with a quasi-metric d with the quasi-triangle constant Ay € [1,00), namely, for any
x, Yy, 2 € X,

(i) d(z,y) = d(y, x);

(ii) d(z,y) = 0 if and only if z = y;

(iii) d satisfies the quasi-triangle inequality
(1.2) d(x,y) < Ao ld(z, 2) + d(z,y)] -
The triple (X,d,p) is called a space of homogeneous type if p is a non-negative
measure satisfying the doubling condition: there exists a positive constant Cx) €
[1,00) such that, for any ball B(z,r) := {y € &: d(z,y) < r} with (z,r) € X x
(O> 00)7

(1.3) p(B(x,2r)) < Oy p(B(w, 1)),

which further implies that there exists a positive constant 5’(X) such that, for any
A€ [l,00) and (z,7) € X x (0, 00),

(1.4) u(B(z,Ar)) < CapA“u(B(z,r)),

where w := log, C ().

Remark 1.1. Two typical examples of spaces of homogeneous type are as follows.
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1/2

(i) Let & := R", d(x,y) = [Z;L:l(xl — yi)ﬂ / for any © = (x1,...,2,), y =
(y1,---,yn) € R™, and p be the n-dimensional Lebesgue measure. This is just
the Euclidean space equipped with the n-dimensional Lebesgue measure.

(i) Let X := R", d(z,y) = > 7 |zi — wi|* for any x = (21,...,2,), y =
(Y1, .- Yn) € R™, where aq,...,a, € (0,00) are not all equal, and p be the
n-dimensional Lebesgue measure. This is so called the anisotropic Euclidean
space equipped with the n-dimensional Lebesgue measure.

Please see [10, pp. 588-590| for more examples of spaces of homogeneous type.

In this setting, Coifman and Weiss [10] introduced the atomic Hardy space
HEY(X) and proved that HE?(X) is independent of the choice of ¢q. Hereafter,
H%%(X) is simply denoted by HZ (X). Coifman and Weiss [10] also showed that its
dual space is the Lipschitz space Lip; ;,_;(X) when p € (0, 1), or the space BMO(X)
when p = 1.

However, some important tools in the real-variable theory of HE, (X), such as the
Calderon reproducing formulae, seem to need additional assumptions. To this end,
Han et al. [26] (see also [25]) introduced the RD-space, namely, the space of homoge-
neous type satisfying the following reverse doubling condition: there exist some pos-
itive constants ag, cx) € (1,00) such that, for any € X and r € (0, diam (X')/ay)
with diam (X) := sup{d(z,y): z, y € X'},

(1.5) p(B(x, aor)) 2 (B, r));

see |62] for several equivalent characterizations of the reverse doubling condition (1.5).
Later, a real-variable theory of various function spaces and their applications were
given on RD-spaces; see, for instance, [25, 26, 61, 62, 21] and the references therein.

Recently, motivated by the remarkable wavelet theory of Auscher and Hyténen in
[2], Han et al. |23, 24| established a partial real-variable theory of (product) Hardy
spaces on spaces of homogeneous type without having recourse to the assumption
(1.5), via using the orthonormal basis of regular wavelets from [2, 3] and investigating
its applications to the boundedness of Calderén—Zygmund operators. Meanwhile, Fu
et al. [19] confirmed a conjecture raised by Bonami and Bernicot (see Ky [38, p.809))
that f x g of f € HL(X) and ¢ € BMO(X) can be written into a sum of two
bilinear operators on any metric measure space of homogeneous type without having
recourse to the reverse doubling condition (1.5), where several equivalent wavelet
characterizations of H)(X) from [17] and a typical Musielak-Orlicz Hardy space
H™&(X) play crucial roles. The space H'°8(X) is also important to the local version
of the above bilinear decomposition in [16]. Moreover, the bilinear decomposition in
[19] is also useful to the endpoint boundedness of the (sub-)linear commutator [b, 7]
of a sublinear operator 7" and b € BMO(X') on Hardy spaces in [46, 47]; see the
survey [15] for more details.

More recently, He et al. [28] constructed a corresponding wavelet reproducing
formulae without having recourse to the reverse doubling condition (1.5). Based on
these wavelet reproducing formulae, He et al. [27] further established a complete
real-variable theory of Hardy spaces H?(X') on spaces of homogeneous type without
having recourse to the reverse doubling condition (1.5). On another hand, Hou et
al. [31] investigated Musielak—Orlicz BMO-type spaces associated with generalized
approximations to the identity on spaces of homogeneous type.

Motivated by [27] and the useful space H'%%(X'), one naturally expects to develop
a complete real-variable theory of Musielak—Orlicz Hardy spaces, including the above
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useful space H'°8(X). In this article, we positively answer this question on (X, d, u1).
Precisely, we introduce the atomic Musielak—Orlicz Hardy space H%(X) and then
investigate their various maximal function characterizations, the Littlewood—Paley
characterizations, the finite atomic characterizations and the dual space of HZ(X).
We also consider their applications to the boundedness of sublinear operators, in-
cluding Calderén-Zygmund operators as concrete instances, from HY (X) to a quasi-
Banach space, and a characterization of the set of pointwise multipliers for the space
BMO(X). It should be pointed out that the main novelty of this article is that,
except Section 10, p is not assumed to satisfy the reverse doubling condition (1.5).

Throughout this article, but except the last section, we always assume that
(X,d, u) is a space of homogeneous type, which is non-atomic [namely, u({z}) =0
for any = € X| and satisfies diam (X') = co. It is known that diam (X') = oo implies
that ©(X) = oo (see, for instance, [53, Lemma 5.1] or |2, Lemma 8.1]).

The organization of this article is as follows.

In Section 2, we recall some basic notions, notation and known results used in
this article.

In Section 3, by establishing a version of Calderén-Zygmund decompositions on
balls and borrowing some ideas from the proof of [43, Theorem 2.5], we obtain the
John—Nirenberg inequality of BMO?¥(X') (see Theorem 3.1 below). Then we apply
this John—Nirenberg inequality to establish several equivalent characterizations for
BMO¥(X), which are similar to [43, Theorem 2.7] with some technical modifications.

In Section 4, we first recall the important Calderén reproducing formulae estab-
lished in [27] and then introduce Musielak-Orlicz Hardy spaces, H™%(X), Hy (X)
and H*¥(X) defined, respectively, via radial, nontangential and grand maximal func-
tions. In Subsection 4.2, by the pointwise inequalities for those maximal functions
and some ideas from the proof of |27, Theorem 3.5|, we show that HT%(X), H} (X)
and H*?(X) are mutually identical with equivalent quasi-norms (see Theorem 4.12
below).

Section 5 is devoted to the atomic characterizations of H*#(X) (see Theorem 5.4
below). The proof is divided into three parts. In Subsection 5.1, we show H7(X) C
H*%(X) via the properties of the growth functions ¢ and some arguments used in
the proof of [35, Theorem 4.2]. Then, in Subsection 5.2, we obtain a version of
Calderén—Zygmund decompositions for H*¢(X) (see Proposition 5.8 below), which
is a generalization of the corresponding results on H?(X') in [27, Proposition 4.9]. In
Subsection 5.3, via this Calderon—Zygmund decompositions for H*¥(X), a technical
lemma on the density of L7 ) (X)NH*?(X) in H*?(X) and some arguments similar

to those used in the proof of [27, Theorem 4.2], we prove that H*?(X) C HZ(X),
namely, we establish the atomic decomposition of H*%(X).

In Section 6, we study the Littlewood-Paley characterizations of HZ (X), respec-
tively, in terms of Lusin area functions, Littlewood—Paley g-functions and Littlewood—
Paley gi-functions. Precisely, in Subsection 6.1, via the vector-valued Fefferman—
Stein maximal inequality, we first show the independence of the choices of exp-ATIs
on the Musielak-Orlicz Hardy space H¥?(X') defined by the Lusin area functions (see
Theorem 6.3 below). Then we obtain the molecular characterizations of H¢(X) in
Subsection 6.2 (see Theorem 6.8 below) by borrowing some ideas from the proofs
of [10, Theorem C| and [18, Theorem 2.12|. Later, in Subsection 6.3, via introduc-
ing the adapted atomic Musielak—Orlicz Hardy spaces H;Dt’fi\()( ) and proving their
equivalences to H7%(X) (see Theorem 6.11 below), and some technical lemmas (see
Lemmas 4.9 and 6.13 below), we establish the Lusin area function characterizations
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of H?(X) (see Theorem 6.15 below), where the distribution (Gf(o,?))" is replaced
by its homogeneous version (G&(o,9))’ (see Proposition 6.12 below). Using the main
results in the above subsections, in Subsection 6.4, we establish the Littlewood—Paley
function characterizations of H?(X') (see Theorem 6.16 below).

In Section 7, we give a finite atomic characterization of H¥(X’) and an improved
version in case ¢ < oo. Indeed, in Subsection 7.1, combining some ideas used in the
proofs of [35, Theorem 3.4] and [27, Theorem 7.1|, under the uniformly dominated
convergence condition, we show that [| - || yea(x), with g € (g(i),00), and || - [[e(x)
are equivalent quasi-norms on Hg!(X), || - [|geexy and || - [ gz (1) are equivalent
quasi-norms on H{™(X) N UC(X), and HL™(X) N UC(X) is dense in H7™(X),
where UC(X') denotes the set of uniformly continuous functions on X. The appli-
cation of the above finite atomic characterizations of H¥(X) to the criterion for the
boundedness of sublinear operators from H¥?(X) to a quasi-Banach space is also in-
cluded in this section. By using some ideas from |7, 45|, in Subsection 7.2 for the
case ¢ < oo, we remove the uniformly dominated convergence condition of the main
results of Subsection 7.1, which essentially improves the corresponding results.

In Section 8, with the help of the finite atomic characterization of H¥(X) in
Section 7 and some ideas used in the proof of the corresponding Euclidean case (see,
for instance, [35, Theorem 3.2]), we find that the dual space of H?(X) is just the
Musielak—Orlicz BMO space BMO?(&X') (see Theorem 10.6 below).

In Section 9, applying the criteria of the boundedness of sublinear operators from
H?(X) to a quasi-Banach space established in Section 7, we show the boundedness
of Calderon—Zygmund operators on H¥(X') (see Theorem 9.2 below).

In Section 10, via the characterizations of PWM(BMO(X)) [namely, the set of
pointwise multipliers for BMO(X')] from [52, Example 2.8] in terms of some typical
Musielak-Orlicz BMO space BMO8(X), we establish another characterization of
PWM(BMO(X)) (see Theorem 10.6 below) by the typical Musielak-Orlicz Hardy
space H'8(X), which is a generalization of [35, Theorem 3.3]. The main difficulty
is to find a proper equivalent norm of functions in BMO"8(X) (see Proposition 10.4
below). We point out that the Ahlfors n-regular condition [see (10.1) below| plays im-
portant roles in the above characterization of PWM(BMO(X)). It is unclear whether
or not the Ahlfors n-regular assumption can be relaxed.

Finally, we list some conventions on notation. Throughout this article, let
N = {1,2,...}, Z, := {0} UN, C and ¢ stand for positive constants which are
independent of the main parameters, but they may change from line to line. More-
over, we use C(, q,.) and ¢\, .) to denote positive constants depending on the
indicated parameters p, «, .... If, for any real functions f and g, f < Cg, we then
write f < g and, if f < g < f, we then write f ~ g. We also use the following
convention: If f < Cg and g = h or g < h, we then write f Sg~hor f S g < h,
rather than f < g = hor f < g < h. For any subset E of X, we let 15 denote its
characteristic function and let E® denote its complementary set X \ E. For any ball
B, let x5 and rp denote, respectively, the center and the radius of B. Furthermore,
for any x, y € X, r, p € (0,00) and ball B := B(z, ), let

pB = B(z,pr), V(z,r):=p(B(z,r))=:V.(z) and V(x,y):=u(B(x,d(z,y))).

For any p € [1, 00|, we use p’ to denote its conjugate index, namely, 1/p + 1/p" = 1.
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2. Preliminaries

In this section, we recall some basic notions, notation and known results used
later in this article.

The following version of the space of test functions on X was originally introduced
by Han et al. |25, Definition 2.2| (see also |26, Definition 2.8]).

Definition 2.1. Let x; € X', r € (0,00), o € (0,1] and ¥ € (0,00). The space of
test functions, G(x1,r, 0,7), is defined to be the set of all measurable functions f on
X satisfying that there exists a non-negative constant C' such that

(Tl) for any x € X, |f($)| S CVr(acl)—l—l\/(ml,m) [T—I—d(?dml,gc)]ﬂ;

(T2) for any x, y € X satistying d(z,y) < [r + d(z1,2)]/(24)),

-l <o e e ]
Y= (e, 0) | Vi) + Ve ) |r+ d(z,a)]
where, for any z,y € X and r € (0,00), V.(z) = p(B(z,r)) and V(z,y) =
w(B(z,d(x,y))). Moreover, for any f € G(xy,r, 0,7), define

| fllger,r, 0,9 := inf {C': C satisfies (T1) and (T2)}.

Fix z; € X. It is obvious that G(x1, 1, 0,v) is a Banach space. For any x € X
and r € (0,00), it is easy to see that G(x,r, 0,9) = G(x1,1,0,9) with equivalent
norms. For notational simplicity, we denote G(z1, 1, o, ) simply by G(p, ). For any
given € € (0,1], let G5(o0,9) be the completion of the space G(e, €) in G(p,9) when
0,9 € (0, €]. Moreover, if f € G5(o,9), we then let || f|[ge(o0) = || fllge). Also, we

let G5(0,9) := {f € G5(0.9): [y f(x)du(x) = 0}.

The dual spaces (G§(0,9))" and (G5(p,v))" are defined, respectively, to be the
sets of all continuous linear functionals £ from G5(o,9) to C and from Gg(p, ) to
C, and both are equipped with the weak-* topology. For any f € (G5(p,?))" and
® € G5(0,19), we use the pairing (f, #) to denote the action of f on ¢. In particular,
when f is locally integrable, it makes sense to write

<ﬁ@:Aij@w@)

Then we recall the following notion of Orlicz functions. A function ¢: [0, 00) —
[0,00) is called an Orlicz function if it is non-decreasing and ¢(0) = 0, ¢(t) > 0 if
t € (0,00), and limy_,o, ¢(t) = oc.

Now, we recall the notions of uniformly lower (resp., upper) types on Musielak—
Orlicz functions from [31].

Definition 2.2. For a given function ¢: X x [0,00) — [0,00) such that, for
almost every x € X, ¢(z,-) is an Orlicz function, ¢ is said to be of uniformly lower
(resp., upper) type p if there exists a positive constant C(;), depending on p, such
that, for almost every x € X', t € [0,00) and s € (0,1) [resp., s € [1,00)],

o(z, st) < CpysPo(w,t).

The function ¢ is said to be of uniformly lower (resp., upper) type if it is of
uniformly lower (resp., upper) type p for some p € (0, 00) and let
(2.1) i(p) :=sup{p € (0,00): ¢ is of uniformly lower type p}.

Now, we recall the following notion of the set of Muckenhoupt weights on X from
[58].
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Definition 2.3. A measurable function w: X — (0, 00) is said to belong to the
set of Muckenhoupt weights for some ¢ € [1,00), denoted by ¢ € A,(X), if, when
q € (1,00),

laso = s s [ wtoduto) { [ w2y du<y>}q_l <

Bcx
or

Wl = s~ [ w)dute) (esssupfw] ) < o,

Bcx M yEB

where the suprema are taken over all balls B C X. Let

As(X) = ] Agx).
q€(1,00)
We recall the notions of the uniformly Muckenhoupt condition and the uniformly
reverse Holder condition from [31].

Definition 2.4. A function ¢: X x [0,00) — [0,00) is said to satisfy the uni-
formly Muckenhoupt condition for some ¢q € [1,00), denoted by ¢ € A, (X), if, when
q € (1,00),

lagr = s swp 1o [ so(x,wdu(x){ / [go(y,wr”@—”du(y)} <

te(0,00) BCX
or

1
lae = sup swp - @(x,t)du(x)<esssup [¢<y,t>]—1) .
te(0,00) Bcx f(B) Jp yeB

where the first suprema are taken over all ¢ € (0,00) and the second ones over all
balls B C X.
Let

Ao(X) = ] Ayx).
q€[1,00)

A function ¢: X x [0,00) — [0,00) is said to satisfy the uniformly reverse Hélder
condition for some ¢q € (1, 00], denoted by ¢ € RH,(X), if, when ¢ € (1, 00),

[pRH, (2) = sup sup {L/B[w(m)]qdu(x)}l/q{i/BSO(y,t) du(y)}_1< 00

te(0.00) Bcx | p(B) 1(B)
or

s = sup sup {esssp o0 [ {1 [ @(y,t)du(y)}_l<oo,

te(0,00) BCX yeB

where the first suprema are taken over all ¢ € (0,00) and the second ones over all
balls B C X.

The following notion of growth functions on spaces of homogeneous type were
taken from [31].

Definition 2.5. A function ¢: X x [0, 00) — [0, 00) is called a growth function
if the following conditions are satisfied:
(i) ¢ is a Musielak-Orlicz function, namely,
()1 the function ¢(z,-): [0,00) — [0,00) is an Orlicz function for almost
every r € X;
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(i) the function ¢(-,t) is measurable for any ¢ € [0, 00).

(i) p € A(X).

(iii) ¢ is of uniformly lower type p for some p € (0, 1] and of uniformly upper type
1.

In what follows, let M denote the Hardy—Littlewood mazimal operator defined by
setting, for any f € Ll _(X) (the space of all locally integrable functions on X) and
re X,

1
(2.2) Mmuwﬂwﬂﬁly@mww

B>z
where the supremum is taken over all balls B of X containing .

Now, we list some basic properties of A,(X) for any ¢ € [1, c0) whose proofs are
similar to those of the Euclidean case in [59, Lemma 1.1.3]; the details are omitted
here (see [31, Lemmas 2.11 and 2.12] for some details).

Lemma 2.6. The following conclusions hold true.

(i) A1(X) C Ay(X) C A (X) for any p, q satisfying 1 < p < q < oc.

(i) RH(X) Cc RH,(X) C RH,(X) for any p, q satisfying 1 < p < g < 0.

(iii) If ¢ € [1,00) and ¢ € A, (X), then there exists a positive constant C' such
that, for any ball B C X, measurable function f andt € (0, 00),

{;I%§St/;|f(x)|du(x)]q:£ C—gg |, 1F@ete. 0y duta).

here and hereafter, for any measurable set E C X andt € [0, 00), let

wﬂw:éywwwm.

(iv) If ¢ € A, (X) with q € [1,00), then there exists a positive constant C such
that, for any ball B C X, measurable set E C B and t € (0,00),

q

(B, 1) SC[M(B)] .

p(E,1) p(E)

(v) If g € (1,00) and ¢ € A,(X), then there exists a positive constant C' such
that, for any f € L _(X) and t € [0, 00),

loc

/X[M(f)(x)]%(x,t) dp(z) < C/le(ff)lqw(x,t) dp(z).

We then recall the definition of Musielak—Orlicz spaces from [31, Definition 2.8].

Definition 2.7. Let ¢ be a Musielak-Orlicz function. The Musielak—Orlicz space
L#(X) is defined to be the set of all measurable functions f such that, for some
A € (0, 00),

AMLWMMMM@<%

equipped with the Luzembourg (also called the Luzembourg-Nakano) (quasi-)norm

1 llpec) == iﬂf{AE (0,00): /Xw(fcalf(x)l/k)du(fc) < 1}-

We further recall some basic properties of L#(X’), which are easy generalizations
of the corresponding properties of the Euclidean case in [59, Lemmas 1.1.6 and 1.1.10]
to any space of homogeneous type; the details are omitted.
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Lemma 2.8. Let ¢ be a growth function as in Definition 2.5. Then the following
conclusions hold true.

(i) The growth function ¢ is uniformly o-quasi-subadditive on X' x [0, c0), namely,
there exists a positive constant C' such that, for any (z,t;) € X x [0, 00) with

Jj €N,
. (:f,ztj) <3 oty
j=1 j=1

(ii) For any f € L¥(X)\ {0},

/Xgp <x, %) du(z) = 1.

(ili) For any {fr}ren C L?(X), imy—yoo || f&|lLexy) = 0 if and only if

lim [z, | fe(x)]) dp(z) = 0.

k—o0 X

(iii) For any (z,t) € X x [0,00), ¢(x,t) := Ot@ ds is a growth function, which
is equivalent to y; moreover, for almost every x € X, ¢(x,-) Is continuous
and strictly increasing.

In what follows, for any f € L _(X) and any ball B C X, let

loc

1
(2.3) mo(f) = / F(2) dp(z).

Then we generalize the notion of Musielak-Orlicz BMO spaces BMO?(R") in [35] to
any space of homogeneous type as follows.

Definition 2.9. A function f € L (X) is said to belong to BMO¥(X) if

1 ooy = sup = / (@) — ma(f)| du(z) < oo,
B |18lleex) JB

where the supremum is taken over all balls B C X.

Remark 2.10. Fix zy € X. A typical example of the space BMO?(X) is the
space BMO'8(X) which is just the space BMO#(X) with

t

2.4 r,t) = , Yre X, Vtel0 00).
24) ple.t) log(e + d(x, zo)) + log(e + t) 0, c0)

We further introduce the following notion of Musielak—Orlicz Campanato spaces
Lip, (&), which is a generalization of the corresponding Euclidean case in [43] to
any space of homogeneous type.

Definition 2.11. A function f € L} (X) is said to belong to the Musielak-
Orlicz Campanato space Lip,, ,(X) if

q 1/q
||f||Lip%q(X) = Sl;p # {/B [‘f(l’) - mB(f)‘] © (ZL’, ||1B||Zi(x)) d,u(x)}

115 Le(x) (@, 118l 50 )

< 00,

where the supremum is taken over all balls B C X.
Remark 2.12. Obviously, Lip,,(X) = BMO?(X).
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3. John—Nirenberg inequality of BMO¥(X)

In this section, we obtain the John-Nirenberg inequality and establish several
equivalent characterizations of BMO?(X). The following John—Nirenberg inequality
for BMO¥(X) is similar to the corresponding Euclidean case in [43, Theorem 2.5].
For the convenience of the reader, we present some details here.

Theorem 3.1. Let ¢ be a growth function as in Definition 2.5 and f € BMO?(X).
Then there exist positive constants C, Cy and C5, independent of f, such that, for
any ball B C X andt € (0,00), if p € A1(X), then

|f(2) = ma(f)] _1 Cot
plsz e B: - >t o, |18l < Cexpl —
({ (@, 18]l ) e )= 1 lip, w0 18 o)

and, if p € A (X) for some q € (1,00), then

QO({SL’ € B: |f(l') _mB(.f)| >t}7H1BHZ;(){)> < 03

o(z, ||1B||Zi(x))
where mp(f) is as in (2.3) and ¢ :=q/(q —1).

To prove Theorem 3.1, we need the following two technical lemmas. The first
lemma is an easy generalization of the corresponding Euclidean case in [51, Lem-
ma (3.1)] to any space of homogeneous type; the details are omitted.

Lemma 3.2. Let g € (1,00) and % + % =1. Ifw e A,(X), then there exists a
positive constant C' such that, for any ball B C X and t € (0, c0),

!

t —q
1+ )
[ flltip, . () ||1B||LW(X)]

w({reB:w() <t}) <C {t%r w(B),

here and hereafter, for any non-negative measurable function w and measurable set

EFcXx,
w(FE) = /Ew(:c) du(x).

The second lemma is a generalization of the weighted version of Calderén—
Zygmund decompositions on the Euclidean case in [51, Lemma (3.2)] to any space of
homogeneous type.

Lemma 3.3. Let w: X — (0,00) be a measurable function satisfying the dou-

bling condition, namely, there exists a positive constant Cy such that, for any ball
B C X, w(2B) < Cow(B) and, for a given ball By C X and o € (0,00), let f be a
non-negative function which satisfies that

1
w(Bo) S f(@)w(z) du(z) < o.

Then there exists a sequence { By }xes (I is some countable index set) of disjoint balls
such that, for almost every x € By \ U, c;(440By,) with Ay same as in (1.2),

(3.1) fl@) <o
and, for any k € I,

1
7 < /B St dnt) < Coo
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Proof. For a fixed ball By and o € (0,00), let E:={z € X: f(z)1p,(x) >0} C
By. Observe that, by the generalized Lebesgue differential theorem (see, for instance,
[29, Theorem 1.8]), we know that, for almost every x € E, there exists a ball B, C X
such that

(3.2) !

w(B) /s fW)Ls (y)w(y) duly) > o

Let B, be the largest ball, satlsfymg (3.2), concentric with B!, and having the radius
of the form 2™rp, with m € Z,. Then, for B, := 2B,,

1
W), (y)w(y) duly) < o
w5 Js. ()15, (y)w(y) duly)

From the Vitali-Wiener type covering lemma (see, for instance, [10, Theorem
(3.1)]), it follows that there exists a disjoint subsequence { By }res (I is some countable
index set) of { B, }zep such that E' C |J,;(440By). Thus, (3.1) follows immediately.

Moreover, by the doubling condition of w, we further have

o< fw(y) du(y) < - F) s () w(y) duly) < Coo,
which completes the proof of Lemma 3.3. B

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let f € Lip,;(X) and fix any ball By C X. By the
homogeneity of the norm of f € Lip,, (&), without loss of generality, we may assume
that || fllvip, ,(x) = ||130||Zi(x); otherwise, we may replace f by

f

1/ lLip, s 0 1o [l oy
For any ¢ € (0,00) and ball B C By, let

. o @) —mp(f)] 1
At,B) = ¢ ({x € B: o H]-BOHZ;(X)) > t} ) ||1Bo||L¢(X)>

. A(t, B)
(3-3) ]:(t> ' Bcgo @(B ||1Bo||Lv(X )

From A(t, B) < ¢(B, ||1BO||Zi(X)), it follows that, for any ¢t € (0,00), F(t) < 1. By
[ flltip, . (x) = (15, ||Zi(x) and the uniformly upper type 1 property of ¢, we obtain

1
B0 T / (@) — mu(f)] du(z)

I18]Lew) - Cill1s]l o) _&,
= 0B, 11l e o) 1 mollzeey — (B, 11810 ) 1181l e(x)

for the positive constant 51 = % with C(yy as in Definition 2.2.

and

Furthermore, let o € [C},00). From Lemma 3.3 with f(-) and w(-) replaced,
respectively, by

o (Imlizln)] 150 = ms(h)
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and (-, ||lBO||Z;(X)), we deduce that there exist a disjoint sequence {By}kes, with 1

as in Lemma 3.3, of balls and a positive constant 6’0 as in Lemma 3.3 such that, for
almost every = € B\ |J,;(4A0Bs),

(35) o (= slite) | 1 @) —ms(n)] < o
and, for any k € I,

1
©(B, ||1BO||Zi(X))
Thus, by this and (3.4), we have
6 e (Bultaliln) <53 [ 1) - malf)] duto)

kel ker ¥ BxNB

(3.6) o<

/B.mB (@) = ms(f)] du(z) < Coo.

C
< %/B|f(:c) —mg(f)] du(z) < ?180 (B’ HlBOHZ;(X)) .

If t € [0,00), from (3.5) and Lemma 2.6(iv), we then deduce that

A(t,B) = ¢ ({x e p: @ = mB(f)') > t} : ||1Bo||2i<x>>

90(567 HlBoHZ;(A’)

< ZS@ ({ZL’ - 4A()Bki ‘f(l’) _ mB(f)|) > t} s ||1BO||Z;(X)>

el go(x, ||1Bo||2;()()

<Y, ({x g @ —mB<f>|) - t} , HlBOH;;(X)) .

el <P(xa HlBoHEi(;{)

Thus, for any t € [0,00) and any s € [0, ], we write

(3.8) A(t,B) <) At — s, By)

kel
imag, (f) = ms(f)| } _1
+ %) T € By - > 5 7HlBH¢
Z ({ o, LI ) ollze)
= 11 —|—Ig.

For I, by (3.3), (3.7) and some arguments similar to those used in the estimation of
I; in the proof of [43, Theoem 2.5], we then obtain

Cy

-1
(3.9) L < ?-/T(t —5)p <B, ||1BO||L<P(X)) :

Moreover, from (3.6), we deduce that

1
(3.10) mo () = ma(PI < s [ 17@) = ma ()] dite)
- p(Be ILallz )

11(Bg)

We further consider the following two cases.
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Case 1. ¢ € A;(X). In this case, we know that there exists a positive constant
C5 such that

¥ (Bka ||1Bo||2i(é\f))
1(Br)

which, together with (3.10), implies that

(311) ¢ ({ e p: ol = el } , HlBon;;(X))

2@ a7 ey)

- . -1
< O esggﬂlf ® (y, ||1Bo||m(2c)> ’

. _ 1
CQCQU e;éérklf 2 (ya ||1BO||L9"(X)>
<¢|{xeBy:

- > 50,115l
90(567 H]‘BOHL;(X)) OIEA)

Now, we choose o := 2C, and s = 26’051/0\;. Then we observe that, if t € (s, 00),
then o € (C4,t) and s € (0,t) as required.
By (3.8) and (3.11), we conclude that

. -1
esé}gnf (2 (y, ||1Bo||L¢(X))

L<Y | zeB: k —
kze; 90(567 H]"BOHLW(X))

> 10 11a 50 | =0,

which, combined with (3.8) and (3.9), further implies that, for any ¢ € (s, 00) and
B C Bo,

At B) < 5 F(t = )0 (B mo k)

Thus, if ¢ € (s,00), then F(t) < 3 F(t — s).
Moreover, if m € N and t € (ms, (m — 1)s], then
1 1
F(t) < §f(t— s) <.+ < Q—m}"(t—ms).

By F(t —ms) <1and m > L —1, we conclude that
F(t) <27 <2178 = 271082,

Let Cy := 2 and Cy := ~log2. Then we conclude that, for any given ¢ € A;(X) and
any s € (0,1),

o {zeB: |f(z) — mi(fﬂ >ty ||1B||Zi(X) < 9e—(3log2)t _ Che=C2t,
90(567 H]"B||L<P(X)>

which implies the desired conclusion of Theorem 3.1 in Case 1.
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Case 2. ¢ € A,(X) for some ¢ € (1,00). In this case, by (3.8), (3.10), Lemma 3.2
and (3.7), we know that

500'@ (Bk ||1BO||Z; )
’ (X)
I, < E %) r € By: ~

> S 7HlBo||E;(X)

B Coop (Bka ||1BOHZ;(X))
:Z<p x € By <P<$a HlBoHLv(X)> <

s (B ) 7H130HZ;(A’)
kel Dk

~ q/ ~ ql ~
Cyo _ Coo Cy _
<> <—) ¢ (Bes sk ) < Cs (—) Lo (B lmllzhw)
kel

where (3 is the same fixed positive constant C' as in Lemma 3.2.
From this, (3.8) and (3.9), it follows that, for any o € [C4,t], s € (0,¢) and
B C By,

g

~ ~ ql ~
Cl CQO’ 01 _
(3.12) At,B) < | —F(t—s)+Cs (T) e (Bv HlBOHL;(X)) :

Then, by (3.12) with ¢ := 49C}, s = £ and Cp := max{o, C1C5(2C0)7 071}, we
have, for any t € (Cp, 00),

(3.13) Ft) <4 F G) + Ot

Now, we show that, if t € (Cp, 2C] and m € Z ., then
(3.14) F(271) < (2C) (2™) 77
To this end, we use mathematical induction. Indeed, when m = 0, we observe that
F(2™) <1< (20)7t77,

which implies (3.14) in this case.
Suppose that (3.14) holds true with m replaced by m — 1. Then, from (3.13), we
deduce that

F(2m) <477 F (277') + Co (2m) ™7 < 477 (2C)7 (27714) ™" + Cy (27) 7
= (2Co)7 (27t (277 + 270 )
which, together with the fact that
270 42700y <277 4277 < 1,

implies that (3.14) holds true for m.
Then, by mathematical induction on m, we further conclude that (3.14) holds
true for any m € Z, . Furthermore, from (3.14), we deduce that, if ¢t € (Cy, o), then

F(t) < (2C)7 77,

which implies the desired conclusion of Theorem 3.1 in Case 2 and hence completes
the proof of Theorem 3.1. O

In what follows, let
(3.15) m(p) = |wlq(e)/i(¢) —1]],
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where, for any a € R, |a| denotes the largest integer which is not bigger than a, w
is as in (1.4), i(p) is as in (2.1) and
(3.16) a() = int{g € [1,00): ¢ € Ay (X)),

In the spirit of the corresponding Euclidean case in [43, Theorem 2.7|, we obtain
the following several equivalent characterizations of BMO?(X’) on X',

Theorem 3.4. Let ¢ be a growth function as in Definition 2.5, ¢ € [1,[q(¢)]')
and € € (w[z((i)) ],00), where i(p) and q(p) are, respectively, as in (2.1) and (3.16),
and 1/q(¢) +1/[q(¢)]' = 1. Then, for any f € L] _(X), the following statements are
mutually equivalent:

(i) [/ llsmoe ) < 00;

(1) [[fllLip,, ) < 005

purte / |f(x) — mp(f)]

() [l )= o e ol )

{20€X, re(0,00), Bi=B(zo,r)c X} [ 1B Le(x)
< 00, where mg(f) is as in (2.3).

Moreover, the norms ||-|smor (x), || [Lip, ,x) and ||-||Lipe , (x) are mutually equivalent.

Proof. From Theorem 3.1 and some arguments similar to those used in the proof
of [43, Theorem 2.7], it follows that “(i) <= (ii)” and, for any f € L] _(X),

[ fllip, ) ~ Nl fllLip,, 2

where the positive equivalence constants are independent of f.
Now, we show that “(iii) <= (i)”. It is clear that “(iii) = (i)” and, for any
f S Lloc (X)

[f v, ) S [ llLips,, 2)-

Then we are left to show that “(i) = (iii)”. Fix any zo € X, r € (0, 00) and ball
B := B(xg,r). For any k € Z, := {0} UN, let By, := 2*B. Then we write

(317) I:= rete / |f(£L’) — mB(f)| d/J,(SL’)

18|l zexy Ja 797 + [d(2, 20) ]+

rwte ) —mpg
_ JEECELTHIRRNS sty S
115]lre) J5 rete + [d(z, 20)] ||1B!|Lv(x Be\Be

=1 + Z L,
k=1

Il = et /B |f($) - mB(.f)| d,u(x)

5llLe) Jp rete + [d(a, zo) ]+

where

and, for any k € N,
rwte T)—m
Bi\Bj-1

11B][ze () _, Tt [d(, @) |0t

Obviously, we have
318 1< i [ 1) = ma (O] duta) < i,
[ BIIL«D

Moreover, observe that € € (w [‘f((:j) ], 00) implies that there exist py € (0,i(¢)) and

0 € (q(p), 00) such that € > w(Z —1). Thus, ¢ € Ay (X) and ¢ is of uniformly lower
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type po. By some arguments similar to those used in the proof of [43, Theorem 2.7,
we conclude that, for any k € N,

w0
(3.19) 115, l|ze ) S 27 |15]| e ),

which, together with (1.4), further implies that, for any & € N,

1
(3.20) L S 20 L [ ) mp () (o)
18|l Lexy /B,
<orera L ) i, () du(e)
118|zexy LB,

+p(B) [, (f) — 7_nB(f)H

! [ 11@) = ma (D)l duto)

118 ze(x)

k
1(Br,) Z |ms, (f) — mle(f)\]

- {HlBlm @) = ma (D] dp()

i e 1l If(ff)—mBs(f)ldu(x)]
[

< 2—k(w+e)

~

) 1Bl ze )

Hete) gk £ IIL% (%)

\f(x) —mp,(f)] du(x)]

HlBHLWc

+Z“

k
—k(w+e kw— e sw—
5 2 k(wte) HfHLlprl + E 2(k ) 2 ||f“L1p¢ 1(X)]

S§=—00

k
wio w sw(gh—
5 9—k(wte) 2’“ PO _|_2k g 2 (po 1)] ||f||Lip¢,1(X)

—k(wte)nkwi c— wq——l
2 k( +) p0||f||L1p¢1(X) ~ 2 k[ (

~

M o, -
From (3.17), (3.18), (3.20) and € > w(Z* — 1), we deduce that

—kle— o.;Al 1)]
LS (1 lluip,, x +ZQ M Fllip, sy S 1Flleip, )

which implies that, for any f € Lip,,(X),

1A live, ) S W Mip,, )
This finishes the proof of “(i) = (iii)” and hence of Theorem 3.4. O

Remark 3.5. By Theorem 3.4, we know that Lip, ,(X) is independent of the
choice of ¢ € [1, [q(¢)]"), with ¢(¢) as in (3.16), in the sense of equivalent norms.
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4. Musielak—Orlicz Hardy spaces via various maximal functions

In this section, we introduce Musielak-Orlicz Hardy spaces, HT#(X), Hy(X)
and H*¥(X), defined, respectively, via radial, nontangential and grand maximal
functions and show that H¢(X), Hy(X) and H*?(X) are mutually identical with

equivalent quasi-norms.

4.1. Calderén reproducing formulae. In this section, we first recall the
important Calderén reproducing formulae established in [28]. Now, we first recall
the following system of dyadic cubes given in [32, Theorem 2.2| (see also [2]), which
was formulated in [27, Lemma 2.3|.

Lemma 4.1. Fix constants ¢y, Cy and ¢ such that 0 < cg < Cy < 00, 6 € (0,1)
and 12A3Cy8 < ¢g. Suppose that a set of points, {2*: k € Z, a € &} C X with 4,
(k € Z) being a countable set of indices, has the following properties: for any k € Z,

(i) d(zE, z5) > co0® when o # 3;

(ii) mingey, d(z, 28) < Cod* for any z € X.

(The existence of such a set of points is guaranteed by the Zorn lemma.) Then there
exists a family of sets, {Q%: k € Z, o € .} (which is called the system of half-open
dyadic cubes), satisfying
(ili) X = Upen, @, where {QF: o € o} are mutually disjoint;
(iv) if ¢ > k, o € e, and 3 € o, then either Qf C Q% or QF N QG = 0;
(v) for any a € <, B(zF, ¢,0F) C QF C B(2k, C%*) = B(QF), where ¢; =
(3A2)7 Ly, C%:= 2A,Cy and zF is called the “center” of Q.

In what follows, for any k € Z, let

(4.1) XY = {FYoewms, Gi= A\ A and PP = XFT\ xR

Then we recall the following notion of the approximation of the identity with
exponential decay from |28, Definition 2.7]; see also [27, Definition 2.4].

Definition 4.2. A sequence {Qi}rez of bounded linear integral operators on
L3(X) is called an approzimation of the identity with exponential decay (for short,
exp-ATI) if there exist constants C, v € (0,00), a € (0,1] and n € (0,1) such that,
for any k € Z, the kernel of the operator (), which is still denoted by @)y, satisfies

(i) (the identity condition) > ;- Qr = I in L*(X), where [ is the identity
operator on L?(X);
(i) (the size condition) for any =, y € X,

el <€ e L )

exp {_V {max eV dly, yk>}} } |

(iii) (the regularity condition) for any z, z, y € X with d(z,2) < 6F,

<o %57 o %5

exp {_V [max{dm 2.y yk)}} } |
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(iv) (the second difference regularity condition) for any z, z, y, y € X with d(x,z) <
§% and d(y,7) < 0%,

[Qu2.1) - Qu(E0)] = [Qu(e.) ~ Qu(E.7)] a
= {d(zéz)} [d%@} vgké)v:;k(y) o {"’ [Q} }

exp { o [l 2. i PN

(v) (the cancellation condition) for any x, y € X,

/X Qule. 7) dul@) = 0 = /X Qu(E. ) dp(@).

Via the set of points, {2*}rez acw,, constructing random dyadic cubes (based on
the system of dyadic cubes as in Lemma 4.1) and the spline functions, Auscher and
Hytonen |2, Theorem 7.1] constructed the following system {@bg}kezﬁe% of wavelet
functions on X, which is an orthonormal basis of L?(X) (see also [28, Theorem 2.6]).

Theorem 4.3. There exist constants a € (0,1], n € (0,1), C, v € (0,00) and
wavelet functions {wg}keZ, ey, satislying

(i) forany k € Z, € 9, and x € X,

[5(2)] < C———exp (_V [d@g,x)]
V(y5 %)

Y

(ii) for any k € Z, 5 € 4, and x, y € X such that d(x,y) <

x n d k,{E ¢
B

(iii) for any k € Z and € %,

| ot duta) <o

Moreover, the wavelets {1} }rez, pey, form an orthonormal basis of L*(X) and an
unconditional basis of LP(X') with any given p € (1, 00).

Remark 4.4. (i) Let {1§}rez, ges, be as in Theorem 4.3. For any k € Z
and z, y € X, letting

Di(x,y) = > di(x)vh(y),

BEY,

it was shown in 28, p.291] that the sequence { Dy }xez satisfies all conditions
(i) through (v) of Definition 4.2.

(ii) The importance of the index 7 in Theorem 4.3 (and hence in Definition 4.2)
lies not only in the regularity of the wavelet functions but also in the restric-

tion of the index p for all results on Hardy spaces HP(X); see, for instance,
|27, Theorems 3.5, 4.2, 5.10, 6.3 and 7.3|.

The following homogeneous continuous Calderén reproducing formula was estab-
lished in |28, Theorem 4.15.
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Theorem 4.5. Let {Qy}rez be an exp-ATI and o, ¥ € (0,7). Then there exists
a sequence {Qy}rez of bounded linear operators on L*(X) such that, for any f in
(Go(0,9))" [resp., LP(X) with any given p € (1,00)],

f= QuQrf.

k=—00

where the series converges in (GJ(0,9)) [resp., LP(X) with any given p € (1,00)].
Moreover, there exists a positive constant C' such that, for any k € Z, the kernel of
@k, which is still denoted by Qy, satisfies the following conditions:

(i) for any z, y € X,

1 DA
Vae(2) + V(2,9) {5’“ + d(:c,y)} |
(ii) for any x, ¥, y € X with d(z,7) < (24¢) 7 [6F + d(x,y)],

‘@k(xvy>‘ <C

d(z,7) ]9 1 { g r.
o +d(x,y) | Vi(x)+V(z,y) [0F+d(z,y)]

Gilen) - Gl < |
(iii) for any x € X,

/X el ) du(y) = 0 = /X Guly. x) du(y).

Next we recall the following notion of 1-exp-ATIs from |27, Definition 2.8|.

Definition 4.6. A sequence {Pj}rez of bounded linear integral operators on
L*(X) is called an approzimation of the identity with exponential decay and integra-
tion 1 (for short, 1-exp-ATT) if { Py }rez has the following properties:

(i) for any k € Z, Py satisfies (ii), (iii) and (iv) of Definition 4.2 but without the
exponential decay factor

exp {—u [max{d@ 3;’;) d(y, y'f)}} } |

where V¥ is as in (4.1);
(ii) for any k € Z and z € X, [, Pi(z,y) du(y) = 1 = [, Pe(y, =) du(y):
(iii) for any k € Z, letting Qg := P, — Py_1, then {Qy }rez is an exp-ATI.
Remark 4.7. The existence of the 1-exp-ATT is guaranteed by [2, Lemma 10.1]
(see also |27, Remark 2.9]).

4.2. Equivalences of Musielak—Orlicz Hardy spaces via various max-
imal functions. In this subsection, we show that HT%(X), HJ(X) and H*?(X)
mutually coincide with equivalent quasi-norms.

We first introduce the notions of Musielak—Orlicz Hardy spaces defined via var-
ious maximal functions, which are generalizations of the corresponding spaces on
Hardy spaces HP(X) in 27, Section 3| [in this case,

(4.2)  @(x,t):=t" for any (x,t) € X x (0,00) and any given p € (w/(w + 1), 1]

with w as in (1.4) and 7 as in Definition 4.2].
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Definition 4.8. Let o, ¥ € (0,n) and f € (G (o, ?)) with n as in Definition 4.2.
Let {Py}rez be an l-exp-ATIL. The radial mazimal function M*(f) of f is defined
by setting

M*(f)(x) :==sup|Pf(z)|], VzelX.

keZ

The non-tangential mazimal function My(f) of f, with aperture 6 € (0,00), is de-
fined by setting

My(f)(x) :=sup sup |P.f(y)|, VzelX.
kEZ ye B(x,06%)

Moreover, the grand mazimal function f* of f is defined by setting, for any x € X,
(4.3) f*(x) :=sup {|(f, h)|: he Gi(o,9), |hlge,r, o9 < 1 for some r € (0, oo)} )

Let ¢ be a growth function as in Definition 2.5. Then the Musielak—Orlicz Hardy
spaces, HT?(X), Hy (X) [with 6 € (0,00)] and H*#?(X), are defined, respectively, by
setting

HY#(X) = { € G0.9) ¢ | luee == [MF (Do < 0}

H{(X) = {1 € @00+ I fllmgee) i= [Mof) o) < 0
and

H*2(X) = {f € (GJ(0.9) : Il = | f o) < oo}

We first give the following property of H*%(X’) on X, which is a generalization
of the Euclidean case in [35, Proposition 5.1].

Lemma 4.9. Let ¢, o and ¥ be as in Definition 4.8 and n as in Definition 4.2.
Then H*?(X) continuously embeds into (Gg(o,9))’, namely, there exists a positive
constant C' such that, for any f € H*?(X) and h € G{(o,?),

[(f, )] < Clihllgago.0 I f]
Proof. Let h € Gi(p,9). Then it is obvious that, for any x € B(z1, 1),

H*#(X)-

||h||gg(ac,1,g,v9) S ||h Gd(z1,1,09) ™ ||h Gd(0,9)s

where x; € X' is as in Definition 2.1. Thus, for any x € B(z1, 1),
(S Ik

gg(g,ﬁ)f*(if),
which further implies that

. « -1
|<f> h>| S ||h||gg(g,19) weél(lel 1)f (93) N ||h||gg(g,19) “13(901,1)“L¢(X) HfHH*»‘P(X)-

This finishes the proof of Lemma 4.9. O

Remark 4.10. (i) It was shown in [27, (3.1)] that, for any f € (GJ(0,9))
and v € X,

MTf(z) < Mo(f)(2) S f7(2),

where the implicit positive constant only depends on 6.
(i) Similarly to the Euclidean case in [35, Propsition 5.2|, by Lemma 4.9, we can
show that H*%(X') is complete; the details are omitted.
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The following boundedness of the Hardy—Littlewood maximal operator M as in
(2.2) on L¥(X) is similar to the Euclidean case in [41, Corollary 2.8] (see also [59,
Corollary 2.1.2]); the details are omitted.

Theorem 4.11. Assume that ¢ is a Musielak—Orlicz function of uniformly lower
type p,, and of uniformly upper type p} with q(¢) < p, < p} < oo, where q(y) is
as in (3.16). Then the Hardy-Littlewood maximal function M is bounded on L¥(X)
and, moreover, there exists a positive constant C' such that, for any f € L¥(X),

/X oz, M(f)(x)) dyu(z) < C /X (| (2)]) dp(a).

Now, we state the main result of this section, which is a generalization of the
corresponding results on Hardy spaces HP(X) in |27, Theorem 3.5| [in this case, ¢ is
the same as in (4.2)].

Theorem 4.12. Assume that ¢ is a growth function as in Definition 2.5 and
0 € (0,00). Then, for any f € (G](o,v)) with o, V¥ € (w[% —1],n) with w as in
(1.4), q(p) as in (3.16), p as in Definition 2.5 and n as in Definition 4.2,

1 lzz+eey ~ N g ey ~ L Loy,

with positive equivalence constants independent of f.

Proof. Let f € (GJ(o,v))" with o, ¥ € (w[% —1],n). Fix 6 € (0,00). From
Remark 4.10(i), it follows that

1M )y S IM6(E) oty S 1 ey

Thus, to complete the proof of Theorem 4.12, it suffices to show that, for any f €
(Gi(0,9)) with o, ¥ € (w[%2 — 1], p),

(4.4) 1 ey S NIMT D oy -

To show (4.4), we first recall the following estimate in [27, (3.5)] that, for any given
r € (0,.55) € (0,p) and, for any f € (Gd(0,9))" with o, ¥ € (w[% —1],n) and any
r e X,

Fr(@) S M) ) + {M (M) @)

By this and the boundedness of M on L?(X) with @(x,t) := p(x,tY/") for any z € X
and t € (0,00) (see Theorem 4.11), we conclude that

1/r

17N seay S IMTD gy + 1M AIMTDTN o aey ~ M oy

where we used the fact that ¢ is of uniformly lower type p/r > ¢(¢) when r € (0, ﬁ).

This implies (4.4) and hence finishes the proof of Theorem 4.12. O

5. Atomic characterizations of H**(X’)

This section is devoted to the atomic characterizations of H*¥(X’), which is
divided into three parts.

We need the following affiliated spaces, which are generalizations of the corre-
sponding Euclidean case in [35, Definition 2.3] to any space of homogeneous type.
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Definition 5.1. For any measurable set £ in X, the space LL(FE) for any given
q € [1,00] is defined to be the set of all measurable functions f on X', supported in
E, such that

1/q

Nio(x,t)d < oo when q € [1,0),
Hf||L30(E) = t€(000|: Et) /‘f e ) du(z) [ )

[ fllzoo(xy < o0 when ¢ = oo.

We then introduce the notions of (finite) atomic Musielak—Orlicz Hardy spaces on
spaces of homogeneous type, which are generalizations of the corresponding Euclidean
case in [35, Definition 2.4].

Definition 5.2. A couple (¢, q) is said to be admissible if ¢ € (q(p), 0] and
m(p) < 0, where g(¢) is as in (3.16) and m(y) as in (3.15). A measurable function
a is called a (@, q)-atom supported in a ball B C X if the following three conditions
hold true:

(i) supp a:={x € X: a(x) # 0} C B;
(ii) a€ L (B) and [lall2(8) < I1BlI7¢(xy;

(iii fX )=0.

The atomic Muszelakarlicz Hardy space HZ?(X) is defined to be the set of all
distributions f € (GJ(o,7))" with

(5.1) 0,9 € (w [@-1} ,n),

here w is as in (1.4), p as in Definition 2.5 and 7 as in Definition 4.2, satisfying
that there exists a sequence {b;};en of multiples of some (¢, q)-atoms supported,
respectively, in balls {B;}en, such that

[e.e]

> o (B, bl as,) < oo,
j=1

and f =37 b;in (G5(o,9))". Moreover, let

Ag ({b;}52,) = inf {)\ € (0,00): f:go <Bj, %) < 1}

and

[l mge ) = inf{/\q ({bs}521): f = Zb i (G (e, ))},

where the last infimum is taken over all decompositions of f as above.
The finite atomic Musielak-Orlicz Hardy space H{ (X)) is defined to be the set
of all finite linear combinations f of (¢, ¢)-atoms, namely, for some N € N,

N
F=>Yb,

j=1
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where {bj}j-vzl are multiples of some (¢, q)-atoms supported, respectively, in balls
{B;})L,. Moreover, define

N
1l = inf {Aq (W) =3 bj} ,

where the infimum is taken over all finite decompositions of f as above.

Remark 5.3. It is obvious that m(¢) < 0 is equivalent to wq(¢) < (w+ 1)i(y).
Thus, the real-variable theory of H7%(X) for the case wq(yp) > (w + 1)i(p) |or,
equivalently, m(yp) > 0] is failed on &', because the (¢, ¢)-atoms only have 0-order
cancelation.

Now, we are ready to state the main result of this section, which is a generalization
of the corresponding results on Hardy spaces H?(X) in [27, Theorem 4.2] [in this case,
¢ is the same as in (4.2)].

Theorem 5.4. Let ¢ be a growth function, m(yp) < 0 with m(y) as in (3.15),
q € (q(p),00] and o, ¥ as in (5.1) with p > -#-q(¢). Then H*?(X) = H3(X) as
subspaces of (Gg(o,v))" with equivalent quasi-norms.

Remark 5.5. Due to Theorem 5.4, H7?(X) is independent of the choice of
q € (q(p),o0] in the sense of equivalent quasi-norms. In what follows, H7(X) is
simply denoted by HZ(X).

5.1. Proof of HYY(X) C H*¥(X). In this subsection, we show that
HU(X) C H#(X).

Proof of Theorem 5.4, Part I. In this step, we show HZ(X) C H*?(X). Let b
be a multiple of a (¢, ¢)-atom supported in a ball B := B(zp,rg) with zg € X and
rg € (0,00). We first claim that

(52) [ @b @) duta) S (Bulblugin).
Indeed, let B := 24,B. When z € B, from the proof of [27, (4.1)], it follows

that b*(z) < M(b)(xz). By Lemma 2.6(iili) and the fact that ¢ € A (X) for any
q € (q(p), 0), we conclude that, for any ¢ € (0, 00),

1/q
55 L PO 0 du) ) < nB bl

which, combined with some arguments used in the proof of [27, (4.1)], further implies
that, for any h € GJ(0,?) with o, ¥ € (w[% —1],n), and = € (B),

0 0
B 1 B w(B)
b,h)| < bllra(p-
o <[] v Ten7) ey s
Therefore, taking the supremum over all h € Gi(o,7) satisfying ||h]|g,r, 0,9 < 1 for

some r € (0,1), we conclude that, for any x € X,

53 V@) S MO+ |72 1),

Now, we use (5.3) to prove (5.2). To this end, let ¢ € (¢(¢), 0o]. From the Holder in-
equality and the uniformly upper type 1 property of ¢, and (iv) and (v) of Lemma 2.6,

1Bl < u(B) {

1Bl < [
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we deduce that

/}§ o (2,5°(2)) du(z)

S [ ¢ le @) dute) 5 | mb)(fz 1] (o [Blls ) i)
S (B lblleacs)
+ —Hb”; - { / M) (@))% (, 6] 22.)) du(x)}q o (B 1Mo -

1
14+ ——||b| e
0]l e, Le(B)

~Y

@ (B bllie ) S ¢ (B blram) -

On another hand, choose ¢ > ¢(¢) such that w[! — 1] <7 and ¢ € (W[} — 1], 7).
By (5.3), the uniformly lower type p € (0,1] property of ¢, Lemma 2.6(iv) and
0 € (w[f —1],n), we obtain

[ o (2, 0°(x)) dp(x)

BC

< o (= ] vl sy Misan ) doto

0o B)
N :I:, 2_kQL b q ) d T
~ Z /2k+1AoB\2kAoB ¥ ( V(LL’B, 2kTB> || ||L¢(B) ,U( )

k=1

[ee) B) 1P
S QkL/ £ lbllo ) du(a
N; _V({Z}'B72k7’B)_ 2k+1AoB\2kA0Bg0( || ||L%0(B)) ,U( )

< i 9—kep -ﬂ- pgp (2k+1AOB, ||b||Lq (B))
~ —1 _V(SL’B, 2’“/’3)_ ®

© 0 B) 1P (281 AyB)]?
<Y ok H(B) {“( s >] (B, l1bll e

S 2 V(s 25r5) | 1(B)
o r 2kB) -p

< N gt [ 14 ] o (B. [1bll 15
; | u(B) ( o)

< 2—k[9p—w(q—p)](p (B’ ||b||Lq¢(B)) S (B, ||b||LZ£(B)) .
k=1

Thus, we have

[ e @) dut) = [ o@r@) du+ [ S (B blm)

which completes the proof of the above claim (5.2).
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Moreover, for any f € HZ*(X), by Definition 5.2, we know that f € (G](0,?))’,
with o, ¥ € (w [q(;f) 1],n), and there exists a sequence {b;}32, of multiples of (¢, ¢)-
atoms such that

F=Y b in(Gle.9) and A, ({b}32)) S I llazs)
7j=1

Thus, for any z € X, f*(z) < >°72,(b;)*(2). From this, Lemma 2.8(i) and the above
claim (5.2), it follows that

[ (o wtren) 02 [ (- wtin) )

J=1

o0 b q
S (5l )
=1 ({b }] 1)
which further implies that

1z ey ~ 1 N poqy S Ag (10:3521) S 1z

This finishes the proof of H7Y(X) C H*¥(X) and hence of the Part I of the proof of
Theorem 5.4. ]

5.2. Calder6on—Zygmund decompositions of H*¥(X). We obtain a version
of Calderon—Zygmund decompositions for H*#(X) in this subsection.

Suppose that f € H7?(X). Then, by Definition 5.2, we know that f € (G (o,))’
with o, ¢ as in (5.1). Since the level set {z € X: f*(x) > A} with A € (0,00) may
not be open even in the case that d is a metric, to obtain the Calderén—-Zygmund
decomposition of f, we need to use some ideas from [49, Theorem 2| and |21, Remark
2.9] (see also [27, Section 4.2]).

From the proof of [49, Theorem 2|, it follows that there exist a constant 6 € (0, 1)
and a metric d’ ~ d’. For any x € X and r € (0,00), define the d'-ball B'(x,r) :=
{y € X: d(x,y) <r}. Then (X,d, ) is a doubling metric measure space. We also
recall the following variant of the space of test functions associated with the metric
d' from |27, Definition 4.6].

Definition 5.6. Let z € X, r € (0,00) and g, ¥ € (0,00). The space of test
functions, denoted by G(z,r,0,7), is defined to be the set of all functions f on X
satisfying that there exists a non-negative constant C' such that

(Tl)/ for any y € X, |f( )| <C W(B'(y, rid’(w ) [,«+dfrm )]ﬂ5

(T2) for any y, y € X satlsfylng d(y,y) < [r+d(z,9)]/2,

N

.

(v,9) ]Q 1 [ r ]’9
— <C .
O IR e el e e eyl e e
Moreover, for any f € G(z,r, 0, 5), define
1l e, 5.5 := inf {C: C satisties (T1)" and (T2)'}.

It was shown in [27, Section 4.2| that G(z,7,0,9) = G(x, r?, 0/6, 9/0) with
equivalent norms. Moreover, for any o, ¥ € (0,n) and f € (Gg(o,?))’, the modified
grand mazimal function f* of f is defined by setting, for any x € X,

(5.4) f*(z) :==sup {{f,h): h € GJ(0,9), ||hllc(,r os6,9/6) < 1 for some r € (0,00)}.
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Then we know that f* ~ f* pointwisely on X with the positive equivalence constants
independent of f, where f* is as in Definition 4.8. For any A\ € (0,00) and j € Z,
define

(5.5) Wi={reX: f(r) >} and U :=Qy.

It was shown in [21, Remark 2.9(ii)| that, for any A € (0,00), 2, is open under the
topology induced by d’ and hence under the topology induced by d.

Suppose that g, ¥ € (w[% —1],n) and f € HZY(X). Then f* € L?(X) and
1(€2;) < oo for any j € Z. Consequently, it was shown in [27, Section 4.2] that, for
any j € Z, there exist {x] }rer, with I; being a countable index set, {r] }rer, C (0, 00),
Lo € N and a sequence {qbf;}ke 1; of non-negative functions satisfying all conclusions

of [27, Propositions 4.4 and 4.5]. For any j € Z and k € I;, the operator q)i is defined
by setting, for any h € Gj(p,9) and = € X,

@ (h)(x) U GA(2) diz ] | @) = hEN0A) dua),

By [21, Lemma 4.9], we know that ® is bounded on G{(o, ) with operator norm
depending on j and k. Therefore, it makes sense to define a distribution b, on G/ (o, ¥)
by setting, for any h € Gi(o, 1),

(5.6) (b, by == (f, ®L(h)).

In what follows, for any j € Z and k € I;, let ], € O and 7 € (0, 00) be defined
as in |27, Propositions 4.4 and 4.5].With the open set € therein replaced by € as in
(5.5). The following estimate of (b,)* is taken from [40, Lemma 3.7].

Proposition 5.7. For any j € Z and k € I;, let bi be defined by (5.6). Then
there exists a positive constant C' such that, for any j € Z, k € I; and x € X,

(0)" ()

, V(xl,r) ]

< CY -k K : k 1., iwel(x)+Cf* 1, 5 ().
Vi(xy, ) + V(g ) |+ d(zy, v) itsnnrt®l?) ¥ CT Lot tosrt ()
Then we obtain the following Calderén—Zygmund decomposition, which is a gen-

eralization of the corresponding results on Hardy spaces HP(X) in [27, Proposi-
tion 4.9] [in this case, ¢ is the same as in (4.2)].

Proposition 5.8. Let ¢ be a growth function as in Definition 2.5. For any
[ e H*?(X) C (Gj(o,9)), with o, ¥ as in (5.1), and, for any j € Z and k € I,
letting bi be defined as in (5.6), then there exists a positive constant C' such that,
for any j € Z and k € I,

67 [l @)@ @) e

moreover, there exists b € H*¥(X) such that iV = Zkelj bl in H*¥(X) and, for any
re X,

e

+ Cf* ()1 (2);

J
T

ri + d(xi, x)

V(]
V(x, i)+ V], z)

(58) (V)" (x) <C¥ )

kJEIJ‘
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if ¢/ := f — VY for any j € Z, then, for any v € X,
e

+ O ()1 i (2).

V(]

V(zl,r]) + V(] )

i
ri + d(xi, x)

(5.9) (gj)* (z) < 02 Z

kJEIj

Proof. Since (5.8) and (5.9) can be proved by the same arguments used in
the proof of [27, (4.5) and (4.6)], we only need to show (5.7) and that there exists
v € H*?(X) such that &/ = dej by in H*?(X). Indeed, by Proposition 5.7, we
write

[ (00" @) dute)

V(x],]) r

0
< x, 27 - . i i 1 ; ioelz du(z
- /X(p ( V(Z’i, ’l"i) + V([L’i, l’) Ti + d(l’i, l’)] (B(xk’lﬁAork))E( >> ’u( )

+ /XSO <x, f*<x)1B(xi,16Aor£)(x>) du(z) = T+11

By [27, (ii) and (v) of Proposition 4.4|, we have, for any j € Z,

(5.10) @ = ] B(2],16A0r]) and {B (], 16Aor])

kGI]‘

} ke, is finitely overlapped

with the finite positive integer independent of 57 and k. We immediately observe that
e [ @) duo)
B(x],16Adr))

For the estimation of I, choose ¢ > ¢(y) such that w(% —1) < nand p €
(w[% —1],n). By o € (w[% —1],n) and f* ~ f*, we conclude that

~ S e san\Bal 21640y \ V(@] 21648r))
r . . ap
- V(7)) . o
< 9—sop Tk ' B 517],25“1614 P 20
"’; |V (], 2016 A%r]) | o (Bla o) %)
= Vil 21648 | | -
S 22 s | V( ‘i;(x] Tj)o L) o (B(xd, 164410, 27)
s=0 L k>
S ZQ—SQPQSw(q—p)gp (B(xi, 16A07°i),2j) du(x) 5/ ,. ,. o (z, f*(2)) du(x).
5=0 B(z],16A4r])

Combining the estimates of I and II, we then complete the proof of (5.7).
Moreover, from Lemma 2.8(i), (5.7) and (5.10), we deduce that

*

s [ el (X0 @] o)
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S [ el @) @) S [ el @) dulo) < o,

kel; B(x],16A4r7) QI

which, together with the completeness of H*#(X'), further implies that there exist

{V'}jer, € H™#(X) such that & = 37, by in H*?(X). This finishes the proof of

Proposition 5.8. O
5.3. Atomic characterizations of H*¥(X’). In this subsection, we prove that

H*?(X) C HRYY(X), namely, the atomic decomposition of H*?(X). To this end, we
first need the following result on the density of LY ) (X) N H**(X) in H**(X),

which is a variant of the corresponding Euclidean case in [35, Proposition 5.3].

Lemma 5.9. For any g € (q(y),00), LY, (X) N H*¥(X) is dense in H*#(X).

Proof. Let f € H*¥?(X). By the Calderén-Zygmund decomposition of f* (see
Proposition 5.8 with the same notation as therein), we conclude that, for any j € Z,

fzgj+bj:gj+Zb{C.
kGI]‘
Now, we show that ¢’ € L7 1y (X) M H™#(X).
Indeed, for any j € Z, k € I; and any x € X,
V(. 1i)
V(i rh) + V(at, o)

< Vo)
© Vi(w, i + d(wy, )

7’; ¢
ri + d(xi,z)
V (wh,rh) ]

V(@i + d(w}, 2))

Vil ) ]
)

V(x{z,ri + d(xi,z

142
! / Ly () () b
~ — . o ‘ 2 H\Y) ey
V(ah,rl + d(x), 2)) Sl rdrdel e DO

S [M <1B(xi,rﬂk')> (55)} e

In what follows, let s := 1+ 2. From this, (5.9) and the Fefferman-Stein vector-
valued maximal inequality (see, for instance, [22, Theorem 1.2]), we deduce that

/X (&))" ()] o, 1) dp(x)

: V(xl, )
< 274 k' k
N/X 2 1%

& Vil )+ V(eh )

v @I et 1) du)

q

)] p(x, 1) du(z)

J
T

ri + d(:)si,x

s [ IS {0 () @)} e D) duto)

k‘EIj

o @It 1) du)
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s [ Y (L@} Pl du(a)+ [ (@) (1) du)

k> .
kel; ()0

< ot / ) dp(e) + / (@) o, 1) du(a)

(098

< 27 /Qj ¢ (w f;(f)) dp(z)

*(2)]? max 1 L v .
o[ e e s e @) duto)

somma{ 2o [ o) duto)

4 max {Qj(q—il’)7 2j(q—1)} © (LU, f*(;(;)) dﬂ(;{;)
()8
- 2quax{%,%}/)(go(x, £(2)) () < oo.

Moreover, by (5.11), we know that

/X o (o (g — 1) () dpu() = / o (5, (%) (@) dula)

< / (@) dutx) > 0

as j — 0o. Therefore, by Lemma 2.8(iii), we finally obtain

(512) jli{go ng - f‘ H*¢(X) = 07
which completes the proof of Lemma 5.9. U

Now, we are ready to prove H*¥(X) C H7?(X). In what follows, with all the
same notation as in Subsection 5.2, for any j € Z and k € I, let

R / F)6ly) duly) and b= (f — ml) 6i.
Dpll ey Jx

For any ¢ € [1,00], we also use the symbol L7 ,,(X) to denote the weighted
Lebesgue space equipped with the following norm: for any f € L;’O(,’l)(é‘( ),

iy = { [ @itete an |

with the usual modification made when ¢ = oc.

Proof of Theorem 5.4, Part II. In this step, we show H*¥(X) C HZY(X). By
Lemma 5.9 and a standard density argument (see, for instance, [59, pp.32-33]), we
reduce the proof of this step to showing that, for any f € L:ID(. 1)()() N H*?(X),

fe Hy(X) and

||f||HE§’q(X) S ||f||H*’w(X).
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Indeed, let f € LY | (X) N H*?(X). By the Calderén-Zygmund decomposition
of f* (see Proposition 5.8 with the same notation as therein), we conclude that, for
any j € 7,

fzgj+bj:gj+Zb,’;.
kJEIj
For any j € N, let &/ 1= g+ — g/ =/ — /"' Then f— 37" K ="+ 4 g7
From (5.12), it follows that

Jim g7 = fll o2y = 0
Therefore, |[(0™)* ||y = 19" = fllawexy — 0 as m — oo. Observe that, by
|27, Lemma 4.11(iv)], ¢/ — 0 uniformly as j — —oo. Thus,
F=> (" —=4¢) in(Ge).
j=—00

Besides, from the proof of H*?(X) C HYY(X) in [27], we deduce that

(5.13) W=t —pt=>" 1o — > ool — Lol =Y h

k‘EIj IEIJ‘+1 k‘EIj
converges in (GJ(o,v)) and almost everywhere on X,

(5.14) supp h], C Bl :== B (xff, 16A‘017“i) and th;HLm(x) < 2,

where C; is some fixed positive constant. Let

5.15 N =27 |1 and o =
k BI 3

J
k.
Lo (X) X

Then ai is a (p, 00)-atom with supp ai C Bi and
f= 202 ki (Ge,0)
j=—00 k)EIj
Furthermore, by (5.14) and Lemma 2.8(ii), we obtain

A
ZZ@(BL ||||f,f||L m)

JeZ kel H*#(X)

o - 2
< VA QZ Qf—l-l -
NZSO( 17 ) ZZ@( \ 7Hf||H*’“"(X))

€z A2 (%) J€Z 1=j

V4 *
< Z Z Q(j_m@ (Qz \ e} 2f ) < ZSO <Qe \ Qi+ 7 f )

LEZ j=—00 ’ HfHH**"(X) = H*#(X)

N xfi(‘"”)) N
/f( Ml ) @~ L

Consequently, || f[|geaxy S [Iflae~w@) S |If|lm-ex), which completes the proof of
H*?(X) C HZY(X) and hence of Part II of the proof of Theorem 5.4. So far, the
proof of Theorem 5.4 is then completed. U
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6. Littlewood—Paley characterizations of H (X)

In this section, we investigate the Littlewood-Paley characterizations of H%(X).
We first recall the notions of the Lusin area function, the Littlewood—Paley g-function
and the Littlewood-Paley gi-function from [27, Section 5|. Throughout the whole

section, we assume that ¢(¢) < 2 ("Jr“ , which is sharp in the sense that, if p(z,t) = ¢

for any (x,t) € X x [0,00), then q( ) = 1 and hence ¢(p) < p("% if and only if
p > HLW, which returns to the classical case.

Definition 6.1. Let ¢ be a growth function as in Definition 2.5 and o, ¢ as in
(5.1), and let f € (GJ(0,)) and {Qy}rez be an exp-ATL

(i) For any 6 € (0,00), the Lusin area function of f with aperture 0, Sy(f), is
defined by setting, for any x € X,

2 duly) |”

(6.1) So(f)(x) = [Z/B( ) Qrf () Voo ()

Particularly, we simply write S := &;.
(ii) The Littlewood—Paley g-function of f, g(f), is defined by setting, for any
re X,

(6.2) 9(f)(x) = [Z |Qkf(:6)|2]

keZ

(iii) Let A € (0,00). The Littlewood—Paley g%-function of f, gi(f), is defined by
setting, for any = € X,

1 duy) :
(6.3) {Z/ |Qnf(y) [5k + d(x’y)} Vie () 4+ Ve (y) } '

keZ

Then we introduce the notion of Musielak—Orlicz Hardy spaces via Lusin area
functions as follows.

Definition 6.2. Let ¢ be a growth function as in Definition 2.5 and p, ¥ as in
(5.1). The Musielak—Orlicz Hardy space H?(X'), related to the Lusin area function,
is defined by setting

1) = { 1 € (83(00)) +1S(lwer) < o0}
and, moreover, for any f € H?(X), let

[ f | zze ey == (IS o)

6.1. Independence of exp-ATIs. In this section, we prove that H?(X) is
independent of the choices of exp-ATIs. Let £ := {E} }rez and Q := {Qy }rez be two
exp-ATIs, we then let Sg¢ and Sg be the Lusin area functions associated with £ and
Q, respectively.

Theorem 6.3. Let ¢ be a growth function as in Definition 2.5, o, ¥ € (w [q(f)
1],m), € .= {Ex}rez and Q := {Qx trez be two exp-ATIs. Then there exists a positive
constant C' such that, for any f € (Gl(o,9)),

CHISQ () ey < N1Se(N)ll ey < C IS () poay -
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In order to prove Theorem 6.3, we need to first establish the Fefferman—Stein
vector-valued maximal inequality for L#(X). We first state the following vector-
valued interpolation theorem of Musielak—Orlicz type, which is similar to the corre-
sponding Euclidean case in [41, Theorem 2.9|; the details are omitted.

Recall that the space L¢(¢", X) is defined to be the set of all measurable functions
{f;}; such that

1/r
[Z |fj|T] € L?(X),

equipped with the (quasi-)norm

B

Theorem 6.4. Let py, ps € (0,00), p1 < p2, 7 € [1,00) and ¢ be a Musielak—
Orlicz function of uniformly lower type p,, and of uniformly upper type p+ Suppose
that 0 < py < p, < pj < pz < oo and T is a linear operator defined on Lpl( 1)(X) +
LZ 2(.71)()( ) satisfying that there exist positive constants C7 and Cy such that, for any
i € {1,2} and any sequence {f;}; € LP({", X), a € (0,00) and t € (0, 00),

ST (s) <x>|"]r >ag .t

<Ca [ [Zm ] ol 1) dp(z).

Then there exists a positive constant C' such that, for any sequence {f;}; € L¥({", X),

65 [ ¢ Z\T(fj)(xﬂ’"] Jauwzc [ o= [ij(x)\’”] o).

By the Calderon—Zygmund decomposition (see Lemma 3.3) and some arguments
similar to those used in the proof of the Euclidean case in [1, Theorme 3.1|, we obtain
the corresponding result on X and omit the details here.

Theorem 6.5. Let r € (1, 00].

(i) If p € [1,00), then there exists a positive constant C,p, depending on r and
p, such that w € A,(X) if and only if

1/r

ler,

Le(X)

(6.4) ® reX:

3=

P

w(Jzea: [Z{M(fj)(x)}rlr>a < Copt™ /[Zm ] (@) du().

ii) If p € (1,00), then there exists a positive constant C, ), depending on r and
(r:p)
p, such that w € A,(X) if and only if

P

/ [Z{M(fj)(x)}flrw(x)du( < Con | [Zm ] (2) diz).
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For more study on Muckenhoupt weights on spaces of homogeneous type, we
refer the reader to |58, Chapter 1].

Combining Theorems 6.4 and 6.5, we obtain the following vector-valued Feffer-
man—Stein maximal inequality on spaces of homogeneous type, which is a general-
ization of the corresponding Euclidean case in [41, Theorem 2.10|; the details are
omitted.

Theorem 6.6. Let r € (1,00], ¢ be a Musielak—Orlicz function of uniformly
lower type p,, and of uniformly upper type p}, and ¢ € A (X). If q(¢) < p, < p} <
00, then there exists a positive constant C' such that, for any {f;};cz € L¥({", X),

1 1

T

69 [ ¢|= [Z{M(fj) <x>}’“] Janw=ef o [ij(x)\’”] ).

Now, we are ready to show Theorem 6.3.

~

|So(f)|le(x). Forany k € Z, f € (G!(0,9)) with o and 9 as in this theorem, and
r e X, let

Proof of Theorem 6.3. By symmetry, we only need to show ||Se(f)|lrex) S

2

)= |y [ @ )

Choose ¢ and 7 such that r € (w/[w + 0|,p/q(¢)). Then, by the proof of |27,
Theorem 5.1|, we conclude that, for any x € X,

Se(N)(@)2 S S AM (mi(£)]) (@)},

kEZ
which, combined with Theorem 6.6, further implies that

3

1
s

N3

(6.7) HSg(f)HLsD(X) < [Z {M ([mk(f)]r)}il

keZ L7 ()
S {Z [mk(f)]z} ~ 1Sa(Hll ey »
keZ

L#(X)
where, for any € X and t € (0,00), p(z,t) := p(z,t"/") is of uniformly lower type
p/r € (q(¢),00). This finishes the proof of Theorem 6.3. O

6.2. Molecular characterizations of H% (X). In this subsection, we establish
the molecular characterization of Hj (X'). To this end, we first introduce the following
notion of molecular Musielak—Orlicz Hardy spaces on X', which is a generalization of
the corresponding Euclidean case in [30] (see also [59)]).

Definition 6.7. Let ¢ be a growth function as in Definition 2.5, ¢ € (1, 00),
s € Z, and € € (0,00). A measurable function « is called a (g, ¢, €)-molecule, related
to a ball B, if the following two conditions hold true:

(i) for any j € Z,,
. i1l _
el ooy (myy) < 67 [ (077 B) ] " 1BI172 v

where Up(B) := B and U;(B) :=07B\ § 7*'B for any j € N;
(ii) [, a(z)du(z) = 0.
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The molecular Musielak—Orlicz Hardy space H?%(X) is defined to be the set of

mol

all f € (Gl(o,v)) with o, ¥ € (w [q(f) 1], m) satisfying that there exist a sequence of
(¢, q, €)-molecules, {o; },en, related, respectively, to balls {B; }jen, and {)\;},exn C C

such that
Z < A ) _
_— 00

= ", || e

and f =37 \ja; in (Gg(e,))". Moreover, let

00 : - ‘)‘j| )
6.8 A, ({Nja; ) ) ==inf ¢ A € (0,00): B, ——— | <1
( ) q <{ J ]}]—1) { ( ) ;gp ( J )\HlBjHL‘P(X)

and then define

H;o‘gll,s(x) ;= inf {Aq ({)\jaj};i1> : f = Z )\jOéj in (gog(@ 19)),} )
j=1

where the last infimum is taken over all decompositions of f as above.

The following molecular characterization of HZ3(X) is a generalization of the

Euclidean case in |30, Theorem 4.13| to any space of homogeneous type (see also |59,
Theorem 3.2.10]).

Theorem 6.8. Let ¢ be a growth function as in Definition 2.5, ¢ € (max{w,

Wi} 00), q € (q(p)[r(9))',00) and m(p) < 0, where q(p), i(y) and m(yp) are,

respectively, as in (3.16), (2.1) and (3.15), and
(6.9) r(p) :=sup{q € (1,00]: ¢ € RHy(X)},

where T&D) + Telo)}’ = 1. Then H?%(X) = HZ(X) with equivalent quasi-norms.
Proof. Let ¢ be a growth function, € € (max{w,wq(y)/i(¢)},o0), ¢€ (q(v)[r(¢)],
oo) and m(¢) < 0. Then (g, ¢) is admissible as in Definition 5.2.
First, we easily observe that any (¢, c0)-atom is a (¢, g, €)-molecule. Thus, by
Remark 5.5, we have

HE(X) = HF™(X) € Hi g (X)
and, for any f € HA(X),
[ [y S W lmge= @) ~ 1 F g @)

mol

Now, we show that H?%(X) C H7Y(X). Indeed, let m be any fixed (¢, ¢, €)-
molecule related to a ball B := B(zp,rp) with zg € X and rp € (0,00). It suffices to
prove that m is a countable linear combination of (¢, ¢)-atoms for some q € (g(y¢), 00)
which is determined later, and (¢, co)-atoms.

To show this, write Ry := B and, for any k € N, Ry := § *B\ § **1 B, and then
let

Ls—rp
My, = 7’I7J]_R,c — 5 kB /m ]-Rk d,u( )
and
Ls-rp

my = 5’“B/m )1g, (v) dp(z).
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Then
(6.10) m=> M.+> m.
k=0 k=0

We first deal with >~,7 ) M. Fix k € Z,.. Now, we claim that M}, is a multiple of
a (¢, q)-atom for some g € (¢(p), 00) which is determined later. Indeed, it is obvious
that [, Mk(y) du(y) = 0 and supp My, C 6 *B. By € > w > # and the fact that

. _ 1/ _
(6.11) 1Ml oy S Mgl oy S 8% [ (67 B)] " 115114 )

we conclude that

[e.e] . 1/ B
Z 1Ml paaey S 25’“ (07" B)] " 17
Li(x) k=0 k=0
€ —kw k(e—< —
,sza'fa B Lal gk ~ 3 8D (B 5]
k —_—

u(B)]l/qnan;;(X) < o0,

which further implies that )"~ , M}, converges in L(X’) and hence in (G] (o, ?))" with
0, ¥ € (W[LE —1],p).

Since ¢ > q(@)[r(p)], it follows that there exists ¢ € (¢(¢), 00) such that ¢ >
q[r(v)]’, which implies that ¢ € RHy (X). By this, the Hélder inequality and
(6.11), we find that, for any ¢ € (0, oo),q

{m /MB (M) ey, 1) du(y)}

1 €% #%V
< gy Ml { [ e 01 ) |

Q=

1 _ 1/q _ ( !
S——— 0" [u(0 "B 1sl7: s B)] @
ot B sl e (6B

S M 1Bl iy = Ca0™ (15l 55 )

1) 1

[p(67* B, t)]7

where C, is a fixed positive constant. Thus,

||Mk||L‘3,(X) < 025]%”13”;;(;(),

. o 5-ke 15 . ) .
v&;h'lch further implies that & Mkinl(skaHL‘P(X) is a (¢, ¢)-atom. This shows the above
claim.

Next, we consider >~ my. For a fixed k € Z, let

Tyrg _
1= B and i /X () 1r, () diu(y).
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For any k € Z, let Ny := > 7, m;. We observe that [, m(y) du(y) = 0 and hence
Ny = 0. Therefore,

=0 k=0 k=0
= (Lg = 1p—1) N+ No = ZZ 1, —1,-)m
k=0 k=0 j—k

Forany k € Z, and j € Z; N[k, 00), let by ; := (1 — 14_1)m;. We further prove that
br; is a multiple of a (¢, 00)-atom. Indeed, it is easy to find that supp by,; C 6 *B
and [ by ;(y) du(y) = 0. Also, by the Holder inequality and (1.4), we have

1 1
m Hm]‘RjHLl(X) S E (5 kB) HmlR HLq(X) [ (5 ]B)}

1 Y _ . 1 . 1
S — g sl [0 (6B [ (678

N L i LV P

L
q

(6.13)  [[brjll oo ) S

where 53 is a fixed positive constant.
By (6.13), we obtain

PPN

k=0 j=k

=DIPWI L FE=DID DL Il L] 7789

Leo(x) k=0 j=k k=0 j=k

S ||1B||Zi(;() Z(;]%Z(S(j_k)(g_w) S ||1B||Zi(x) < 00,
k=0 j=k

which further implies that 3 7% ) > 2%, by, ; converges in L*°(X’) and hence in (G1(0,9))".
From (6.13) again, it follows that ‘E—jeé(j_k)ww is a (p, 00)-atom. Mean-
3

15— gllzex)
while, by € € (w q((cp)) o0), we know that there exist gy € (¢(p), 00) and po € (0,i(y))
such that € € (wi?,00), which also implies that ¢ € A (&) and ¢ is of uniformly

lower type po.
From the convergences of both 3 3% ) My and > 7 > 7=, b j, (6.12) and (6.10),
we deduce that

m = ZMHZZM

k=0 j=k
converges in (GJ(0,v))’. By these, the above claim and Lemma 2.6(iv), we conclude

that, for any A € (0, 00),

o0

(6.14) © (5_kB, A ||Mk||Li(57kB)> + Z Z 2 (5_kBa A ||bk,j||Loo(X)>

=0 k=0 j=k

5 ZSO < kB )\5195 |1B||L‘P ) + ZZ(’O ((5"9B, >\5_(j—k)w5j5’|13’|2i(x))
=0 j=k

k=0

ol
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<3 5w (B sl )+ D0 6 Rma U (B )
k=0

k=0 j=k

o0 i E_Wq_o -
S gl (B, A||lB||Li(X>>
k=0

= kpo(e—w0 - j—k)(e—w n
£ 30 R S pU ey (B A1) )
k=0 =k

<o (BAIsI )
Let f € HZH(X). We know that there exist numbers {);}32, C C and a

mol
sequence {m;}32, of (i, g, €)-molecules such that

F=>_M\m; in (Gi(e.0))
j=1

and

(6.15) [ gy ~ Dg({Ajm;152,)-
Then, by the above arguments, we find that, for any j € N, there exist a sequence

{a;x}ren of (¢, q)-atoms and numbers {1 }ren C C such that m; = > 77 1 6@k
in (G (0,9))". Thus, we have

F=3) Npjkaj, in (gog(Q,ﬁ))/>

j=1 k=0
which, together with Lemma 2.8(i), (6.14) and (6.15), further implies that

1A llmgeo S Aa (Dominaintiie,) S Ay (umsdi2y) ~ Ifligaeco.

mol

This finishes the proof of H%(X) C Hi(X) and hence of Theorem 6.8. O

mol
6.3. Atomic characterizations of H¥(X). In this section, we aim to obtain
the atomic characterizations of H¥(X).
The following notion of homogeneous atomic Musielak—Orlicz Hardy spaces is
taken from [21].

Definition 6.9. (i) Let (¢, q) be admissible as in Definition 5.2 and p,9 €

(w [@ — 1], n). The homogeneous atomic Musielak-Orlicz Hardy space

HE(X) is defined in the same way as H.3*(X) in Definition 5.2 with (Gg (¢, V)’
replaced by (G (0, 1))’

(ii) Let g € (1,00), s € Z, and € € (0, 00). The homogeneous molecular Musielak—
Orlicz Hardy space H?%“(X) is defined in the same way as H?2¢(X) in Def-

mol

inition 6.7 with (GJ(o,9))’ replaced by (G(0,9))".

Then we introduce notions of adapted atomic Musielak—Orlicz Hardy spaces,
which are generalized from the Euclidean case in [18] to any space of homogeneous
type.

Definition 6.10. (I) Let (¢, q) be admissible as in Definition 5.2 and o, ¥ €

(w[% —1],m). A function a € LI(X) is called an adapted (¢, q)a-atom
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supported in a ball B if Definition 5.2(iii) holds true and, instead of (i) and

(ii) of Definition 5.2, a satisfies

(I); supp a C B;

(D2 Nlallzac) < 1m0 o

(IT) The adapted homogeneous atomic Musielak-Orlicz Hardy space HZ\ (X) is
defined to be the set of all f € (G{(0,9))" satisfying that there exist a sequence

{a;};jen of some (yp, q) s4-atoms supported, respectively, in balls {B;},;en and
{\;}jen C C such that

Zgo(B' ¢> < 00
j=1

|B|1/q

71, || ey

and f =377 \ja; in (G7(0,9))". Moreover, let

(6.16) A, ({Ajaj};";l) - inf{)\ € (0,00): f:ap (B ﬁ) < 1}

7 Mg, o)
and then define
1z, = inf {8, (i} ) }
where the last infimum is taken over all decompositions of f as above.

(IIT) The adapted atomic Musielak-Orlicz Hardy space HZ*\ (X) is defined similar
to ﬁfi”%()() but with the distribution (GJ(0,))’ replaced by (G (o, 9))’.

Now, we show that H7* (X) and f[ﬁ’i(?( ) coincide, respectively, with H7 (X))
and HZ?(X), which are generalizations of the Euclidean case in [18, Theorem 2.12
to any space of homogeneous type.

Theorem 6.11. Suppose that (i, q) is admissible as in Definition 5.2, and o, ¥ €
(w[22) — 1], 5) with q() as in (3.16). Then

P
(i) Hi\(X) = HZ(X) with equivalent quasi-norms;
(ii) f[ﬁ’i(?() = H£9(X) with equivalent quasi-norms.

Proof. We only prove (i), because the proof of (ii) is similar. To show (i), we
notice that any (¢, 00)a-atom in Definition 6.10 is the same as a (p, 00)-atom in
Definition 5.2 and is also a (¢, ¢) a-atom in Definition 6.10. Thus, by Remark 5.5, we
have

HE (X)) = Hg™ (X) = HEX(X) © HEL (X).

On another hand, observe that any (¢, q)s-atom in Definition 6.10 is also a
(p, q, €)-molecule in Definition 6.7, which, combined with Theorem 6.8, further im-
plies that HZ% (X) C HI3(X) = HZ(X). This finishes the proof of Theo-

mol

rem 6.11. 0

The following relationship between HZY(X) and HEY(X) is a generalization of
the corresponding results on Hardy spaces H?(X') in |21, Theorem 5.4| [in this case,
¢ is the same as in (4.2)].

Proposition 6.12. Suppose that (y,q) is admissible as in Definition 5.2 and
0,V € (w[% —1],n). Then HZ*(X) = HZY(X) with equivalent (quasi-)norms.
More precisely, for any f € H£9(X), the restriction of f on (Gl(0,9)) belongs to



Real-variable characterizations of Musielak—Orlicz Hardy spaces on spaces of homogeneous type 381

}o[wq( X); Conversely, for any f € HE9(X), there exists a unique f € HEY(X) such
that f = f in (go(g, 7).

Before proving Proposition 6.12, we need to establish the following auxiliary
lemma.

Lemma 6.13. There exists a positive constant C' such that, for any sequence
{A\;}jen C C and for any sequence {a;}jen of (p, q)-atoms supported, respectively,
in balls {Bj}jGN;

Z ‘)‘j| < CKq <{)\jaj}j€N> ’
i=1
where A, is as in (6.16).

Proof. Let )\ := 2(;01 |Aj|. By the uniformly upper-type 1 property of ¢ and
Lemma 2.8(ii), we have

| J| ) o | / ( 1 )
S — | dp(x
Z/ < AL ey Z A B sl o) (=)
i—A
which implies that

Z RYIIS Kq <{)\jaj}j€N> :
j=1

This finishes the proof of Lemma 6.13 U

We are now ready to prove Proposition 6.12.

Proof of Proposition 6.12. By (GJ(0,9)) C (Gi(0,¥)) with 0,9 € (w[%—l], n),
we easily obtain HS9(X) c HE(X). Thus, it suffices to show that H5I(X) C
HZY(X). Indeed, let f € HZ(X). Then, by Definition 6.9, we know that f €
(gg (0,7))" and there exist a sequence {a;};en of (¢, ¢)-atoms supported, respectively,
in balls {B,};en as in Definition 5.2, and numbers {\;};jex C C such that

[eS) ) ,
f=> Xa; in (gg(g, 79))
j=1
and
Aq ({)\jaj}jeN> S 1z )
which, combined with Theorem 6.11(ii), implies that

(6.17) Ko (iasdjen) S 16 lagece-
Now, for any h € G(p, ), define

(Fh) = iAj (aj, h
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From Lemmas 4.9 and 6.13, Theorem 5.4 and the fact that |a;l|geaey S 1 and
(6.17), it follows that

(F.0)] < 30 Il 13 5 iw In

~ 37 Dl Ikllggomllasll e, ZWI 15l g7 00y
j=1

g (09) ||aj||H*»<P(;\g)

S WlggienRe (uasdjen) S IPlggiomll g

This shows that f € (G(o,9)) and f = > o1 Ajag in (Gg(e, ). Moreover, f = f
in (Gj(e.0))', € H*#(X) and

Then we are left to show the uniqueness of the extension fof f. Indeed, suppose
that there exists another extension of f, say, g € H7(X). Then g = f on (G (0, 9))’,

o S llagac,

which, together with |21, Lemma 5.2], implies that f — g is a constant, denoted by
C. It C # 0, then it contradicts to the fact that no non-zero constant belongs to
HY(X) = H(X). Therefore, C = 0, which further implies that f € HZ?(X) is the
unique extension of f. This finishes the proof of Proposition 6.12. O

Remark 6.14. Let ¢, ¢ and € be as in Theorem 6.8. From the proof of Theo-
rem 6.8, it follows that H”%(X) = Hy?(X) with equivalent quasi-norms.

Now, we state the main result of this subsection, which is a generalization of the
corresponding results on Hardy spaces HP(X') in |27, Theorem 5.9| [in this case, ¢ is
the same as in (4.2)].

Theorem 6.15. Assume that (¢, q) is admissible as in Definition 5.2 and o, ¥ €
(w4 — 1], n) with q(¢) € [1, Pit)) a5 in (3.16). Then, as subspaces of (GJ(o,9))’,
H¢(X) and H(X) coincide with equivalent (quasi-)norms.

Proof. By Theorem 6.11(ii), we have HSY(X) = f[ﬁ’i(?() with equivalent
(quasi-)norms. Thus, we first show that HZ7(X) = f[ﬁ’fA(X) C H?(X). Fix f €
H 3 (X). Then, by Definition 6.10, we know that there exist sequences {\;}jen C C
and {a;}jen of adapted (¢, ¢)a-atoms supported, respectively, in balls {B;},en =
{B(zj,7j)}jen with x; € X and r; € (0,00) for any j € N as in Definition 6.10, such

that f =377, \ja; in (Gl(0,9)) with g, ¥ € (w [q(“o) —1],7n), and

Ry (A3t jen) S 1z ey
Let 0 € (0,00). We aim to show that
(6.18) ||S€(f)||m( X) S < max {9 BN Wrn} ||f“H"’ 9 (X))

To this end, by the proof of |27, Proposition 5.6|, it suffices to prove that, for any
0 € [1,00),

1S6C) ey S O f iz -
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Indeed, we observe that

Sg(f) < Z Se()\ja’j)14A893j + Z SG()\jafj)]-(4A(2)ij)C =T+ 1IL
j=1 Jj=1
To estimate I, by some standard arguments, we reduce the proof to showing
that, for any (¢, ¢)a-atom a supported in a ball B := B(zp,rp) with x5 € X and
rg € (0,00), and A € C,

A= / o (2, So(\a)(x)) dp() S 60+ n (B, L) |
4A20B

5l x)

To this end, since ¢ is of uniformly upper type 1 and of uniformly lower type p, it
follows that

A tle [

4A26B

o (vt ) S dute)

18]l Le )

A
el [ o (oot ) S due) = A + Ao
1A%0B 115 Lex)

Now, we start to estimate A;. Choose ¢ € [2,00) such that ¢’ < r(¢) with (¢)
as in (6.9). Thus, ¢ € RH,(X). Moreover, from the boundedness of Sy on L(X)
(see, for instance, the proof of |25, Proposition 2.17|), we deduce that

[u(B;)]M
115, ]|2ecx)’

which, combined with the Holder inequality, ¢ € RH,(X) and Lemma 2.6(iv),
implies that

156 (a)HLq(X) S 0 ||a||L¢I(X) S 0

/ 1/q

q
A
5 o 15600 [ (il )| 19
0 ¥

B)]/e A
< 0% 1p 0 PPN vy (aazem, AL
1o Mol

< gUtaw, B,¢ .
el )

To deal with Ay, we first observe that ¢/p > ¢ and hence ¢ > (q/p)’, which,
together with Lemma 2.6(ii), implies that RHy(X) C RH(,y (X). By this, the
Holder inequality and Lemma 2.6(iv), we conclude that

|)\‘ (a/p)’ 1/(q/p)’
e e e o A I P ()
4A20B ||1B||L¢(X)

. wu(B)JP/a B A
o L P A L) =S Y Py S
||1Bj||L<P(X) ||1B||Leo(x)

< gitawg, B’L ’
el )
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which, combined with the estimate of A;, further implies that
A
A S Al + A2 S 9(1+q)wgp <B, L) .
115l Le(x)

Now, we turn to estimate II. From an argument similar to that used in the proof
of [27, Proposition 5.6] and (1.4), we deduce that, for any = € (4420B)C,

B) O 1 u(B) 1%
So(a)(z) < gotn [ } < gt [
6( )( )N ||1B||L<P(X) d(:l?,:L’B) V(x,xB) ~ ||1B||Leo(;\f) V(ZL’,ZEB)
< gertn [M(1p)(x)]+
115 Lex)

This, together with Theorem 6.6, further implies that

. B)]e
Uzo@) S 67|11
|| Loy S Z| | ||lBJ||Lv(X
Le(X)
pRE
o . 1
~ YT I
— ||1B ||w+77
Le(x)
L wtn
T41Y) wtn
~ R (M| gl —
= |15, ||z$(lX
L?(Xx)

w—+n

w

Py w
< pw+n ~ w+n
0 {EZMHHBMW } ’

L#(X)

§:M|M@

()

ew+nA {)\ a;}

jEN

W+ .
S g,
From the estimates of I and II, we deduce that
1S0() o ey S IMllzeqy + 2oy S 0771 f g )

which implies (6.18) and hence shows HZ9(X) < H#(X). This is the desired con-
clusion.

Let ¢ and € be as in Theorem 6.8. Then we show that H?(X) ¢ H#%(X) =

mol
HZY(X). Suppose that f € (G{(o,7))" belongs to H?(X). By Theorem 6.3, without
loss of generality, we may choose the exp-ATI { Dy }rez as in Remark 4.4(i). Denote
by D the set of all dyadic cubes. For any k € Z, define Q, := {z € X': S(f)(x) > 2"}
and

1 1
D= {Q €D 1(QN9) > (@) and (@1 ) < (@)}
Obviously, for any @ € D, there exists a unique k € Z such that Q € D;. Denote by
{Qi,k}TEIJ‘,k the set of all maximal cubes in Dy, at level j € Z, where [, C /. The
center of Q]T . 1s denoted by zik Then
(6.19) p=J U {Qen:Qc@l,}.

j,kEZ Teljyk
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Hereafter, we let D¢ := D, when Q) := Qéﬂ for some ¢ € Z and § € o/,1. We now
show that

(6.20) f= ZDzDef = ZZ Z N

(ez kEZ JEZ TEl; ),
where all the equalities hold true in (G (o, 9))’,
(6.21) Xy = 215 Nlzeer)

and

Wo()=— > / Dq(+y)Dof(y) duly).

™k (Qepy, @@l 9

Before proving (6.20), we first claim that v 7x is a positive harmless constant
multiple of a (p, q, €0)-molecule, where ¢ is determined later, related to the ball
Bik = B(z e 4A2%25771) as in Definition 6.7. Indeed, for any Q € Dj and Q €

Q7. ;, assume that Q := Q' for some ¢ € Z and a € ;. By the proof of |27,
Proposition 5.7|, we know that, for any y € @,

U (B (y, 55) N [Q]Tk \ QIchlD 2 Vse(y).

From this, the Fubini-Tonelli theorem, Vj(z) ~ Vs(y) for any z, y € X with
d(z, y) < 6%, and the Holder inequality, we deduce that, for any h € LY (X) with
1Al o 2y < 1,

(6.22) dp()

1

<5 X [ 1Derw) Dokt duty
Tk (QeDy, QCQl )

< b > u(B(y,0°) N [Q1\ Q]
]T Q Vse(y)

Do f(y)| | DSR(y)| dily)
k{Qeny, QcQl ¥

(B(y, %) N [Qik \ Q1))
D

Tk l=j—1 o€t {Ql+1€Dk QeJrlCQz. N

|Def( ) Deh(y )I dp(y)

/ B(y, ) N [Q74 \ Qun1])
Vs (y)

|Def ()| [Drh(y)| duy)

ka]l

/ / L0 @)Ly, 0, (20 1De )] [DE)] )

1 /
~ Y E , [Def (y)] [ Dgh(y)] dp(z)
>\‘77',k Qz—’k\ﬂlvrl 1=j—1 Qz_’kﬂB(w,(SZ) ‘/;52 (,’,U)
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L N / 2 dﬂ(y)r/z [/ o du(y)1?
S5 Def(y Dihly e
)\?ﬂk QL \ i1 g:zjzl{ B(:c76‘3|) ef ) Vse () B(x,(SLJ) ch(y)] Vse(2) ()

: 3 du(y) ]

KLY

SR Def (y)F

Nk JQI L;l /B(x,éf)‘ ef () Vi (2)

d ( ) 1/2
[Z / D) T | dul)
/= j—1 B(:L‘ 6Z 52(:17)

1/q , 1/q
< Ai { / o, SO du(x)} { / o, B0 du(x)}

2 @)1

~ ]
J
)\'r,k

where, for any x € X,

§(h)‘

)

L7 (X)

1/2

— (,8°) Vz (:L’)
and D} is the adjoint operator on L2(X) of D, for any ¢ € Z. By the proof of [27,
Theorem 5.10], we conclude that

50 IO
183,y = 18O
where g(h) := [,z |D;h|?]"/2. Following the arguments used in the proof of [27,
Lemma 5.8|, we know that g is bounded on L?*(X’), which, combined with the theory
of vector-valued Calderén-Zygmund operators (see, for instance, [22]), implies that
g is bounded on L7 (X). Therefore, we have

' (@)1 (@]
[ hato(o) )| $ Ty
x Q1 Lo () I

o e
Taking the supremum over all b € L7 (X) with ||h| (x) < 1, we obtain

k La(x) ~ ||1Qi,k||LW(X)’

which, together with some arguments similar to those used in the proof of [27, Propo-
sition 5.7, further implies that there exists ¢y € (w[% — 1], 0) such that

u(BL,) (B,
pe=mBl) | i e
[u(6~™ B2, )M

g llze)

1/2

b1

(6.23) Tk Um (B2 ) S 0"

Lo (x) ™

< 5m50

Thus, bi . 1s a positive harmless constant multiple of a (¢, g, €9)-molecule related to

the ball B, := B(z!,,4A35'~") as in Definition 6.7. This finishes the proof of the
above claim.
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Moreover, by (6.23), (6.21), Lemma 2.6(iv) and some arguments similar to those
used in the proof of [35, Lemma 5.4], we have

X4l
o | Bli
2.2 2 ( g e (7 Mzecx)

kEZ jEZ €I, )

ALl
IS 90( " g e IIS( )||L‘P(X)>

k€Z jeZ T€l;

YD D¢ ( HS?T)

k€Z JEZ T€l;

j 2k :u( ?rk)
522230(@*“9’“ EREE )L T N9

k€Z jeZ Tel;y

Po

<Z<P U UQrk ka,HS

IILw

N%ZZQP(QMIS )!Im(x)</ ( HS(.?)(|J|C[)/<P ) w(z) ~ 1,

which implies that

(6.24) Ao (N },,0) SIS locn,

where A, is as in (6.8).
Then we begin to prove (6.20). To this end, we need to show that

DD D Ml

k€Z jeZ 7€l

converges in (G!(0,9))" and hence in (GI(0,9))’, because G(0,9) C G!(0,9). Indeed,
let {&n}nen be an increasing sequence of finite subset of & = {(k,j,7): k, j €
Z, 7 € I} with & = Uyen En. For any N, M € N with N > M, by the above
claim, Lemma 4.9, Theorem 6.8 and (6.24), we conclude that, for any h € G](0,?),

> eI Do LIl e oy 1500

(k.j,m)EE (k.j,m)EE

S > Nl lblgen S A (b} ) IPlggen

(k,3,7)EE
SIS lzeln
which further implies that

< > )\i7kbi7k,h> < > AL |04 )] = 0 as M — oo.
{(k.g,r

JT)EEN\EM } {(k,5,7)EEN\EM }

Gl(0.0) < 9,

Thus, {3 . j.1een )‘kaTk}NeN is a Cauchy sequence in (QO(Q, v))’, which, combined
with the completion of (GJ(o,v))’, implies that Z (hjr)esn N b } ., converges to some

fe (gg(g> )) That i 18, Zkez Z]ez Z—rel k 'rk 'rk Converges n (QO(Q> 19))/
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By [24, Corollary 3.5], to prove (6.20), it suffices to show that, for any k€ Z and
B e - with ¢ as in (4.1) with & replaced by k,

(6.25)  (f.uk) = <Z DyDyf. ¢7gi> - <ZZ SN bak,¢k> = (J.45).
V=4 k€Z jeZ €l

where {wg}EeZ, Bes, is as in Theorem 4.3.

- Let {#n}nen be an increasing sequence of finite subset of & 1= {Q € Dy, @ C
Ty With 7 = Uyen . From the proof of (6.22), we deduce that, for any
h e L*(X) with ||k z2x) = 1,

Z (DoDgf,h)| < ok [ (Q] )]1/q

Qes
which further implies that, for any N, M € N with N > M

S(h)

<2 [ (@2,)]"" < o0,

L' (X)

< > DQDQf,h> < Y DgDgf.h)] =0 as M — oo.

QeIN\A M QEIN\IM

Thus, by the completion of L?*(X) and (L*(X))* = L*(X), where (L?(X))* denotes
the dual space of L?(X), we obtain

> / Dq(-,y)Dof(y) du(y)

{QeDy, QCQl .} @

converges in L?(X), which, together with D} ,(x,y) = D,_(y, ) for any ¢ € Z and
(r,y) € X x X, implies that

©020) (Bevh) =5 5 [ (Do) 0E) Dofty) duty)

™k (QeDy, QcQl 1”9

RIS [, (Peatv45) Disto) ),

Tki l=j BE%{Qlepk QZCQJ k}

where, for any k € Z, Dy(+,-) is as in Remark 4.4(i) and Dj(-,-) denotes the kernel
of the adjoint operator Dj of Dy, on L*(X).

On another hand, by the orthogonality of {¢§}Eez Geq.» We conclude that, for
’ ‘L

= 0 when ¢ — 1 # k
Dok = % oy
<D£_1(y’ ) w5> {wg(y), when ¢ — 1 =k,
which, combined with (6.26), implies that, ifk < j—1, then <b]Tk, ¢§’> =0; if k> j—1,
then

(6.27) <bjk,¢’“> ! > > / ¢§(y)sz(y)du(y)-

)\J . ‘ k+1
T, ﬁey{H {QkJrleD QkHCQi,k} B

any y € &,

From (6.19), (6.27), the disjointness of {QTvk}ng’k for any fixed j, k € Z, the
disjointness of {Dy}rez, Lemma 4.1(iii) and the orthogonality of {¢§}Eez Fes it
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follows that

k+1

(P =>> % % 3 " CE(y) D f (y) dpa(y)

k€Z j=—oco 7€l ﬁey/kH {QkHEDk QkHCQi ) B

= /¢ )Di (y) dn(y)

PEF 1
- (pun o) T 8- (1.8

This finishes the proof of (6.25) and hence of (6.20).
In the end, by (6.24), Proposition 6.12 and Theorem 6.8, we have

1o ~ 1l ~ Iflazgecn S A (bl ) S IS esc
This finishes the proof of H#(X) C HZ(X) and hence of Theorem 6.15. O

6.4. Littlewood—Paley function characterizations of H¥(X). In this
subsection, we establish several characterizations of H?(X), respectively, in terms of
the Lusin area functions with apertures, the Littlewood—Paley g-functions and the
Littlewood—Paley gi-functions, which is a generalization of the corresponding results
on Hardy spaces H?(X) in [27, Theorem 5.10] [in this case, ¢ is the same as in (4.2)].

Theorem 6.16. Let ¢ be a growth function and p, 9 € (w[% — 1],n) with
q(p) < Zw as in (3.16). Assume that 6 € (0,00) and A € (w[l + @], 00). Then,
for any f € (Gl(0,9)), it holds true that

(6.28) [ lLzze ey ~ WSo(F) [ Loy ~ NIAD oy ~ N9 ()l zeca)

provided that any one of (6.28) is finite, with all positive equivalence constants
independent of f.

Proof. Let f € (Gi(o,9)) with ¢,9 € (w[®2 — 1], ). Tet Sy(f), g5(f) and g(f)
be defined, respectively, as in (6.1), (6.3) and (6.2) with {Qy }rez being an exp-ATI,
where 6 € (0,00) and A € (w[1 + 2q](f)], ).

Let (¢, q) be admissible as in Definition 5.2. We first show that ||Sp(f)||rex) ~
| f1] e ) " From (6.18) and Theorem 6.15, we deduce that

10 CA N Loy S W1l gy ~ I llaecay

Conversely, without loss of generality, we may assume that |[Sy(f)| rex) < 00.
By the proof of H#(X) € H&*(X) in Theorem 6.15, we know that f = > o1 Ajaj in

(ég(g, ¥))" with a sequence {a;}22, of adapted (¢, q) s-atoms and numbers {);}52, C
C such that

Mg (A3} en) S UIS0(H) locar
which, together with Theorem 6.15, further implies that
1/l e ey = 1SN zecey ~ (1l 02y S Ag ({)\jaj}jeN> S Se (N pe () -

Therefore, we obtain || f|| mex) ~ ||So(f)|l Le(x)-
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Then we show that |[S(f)||Lex) ~ [|gx(f)|lLe(x). Notice that

S(f) < 6i(f) < Zz’(“’ * S0 ()

(see, for instance, the proof of [27, Theorem 5.10]), which, combined with (6.18) and
Theorem 6.15, implies that

Jj(w
IS 2y S llga(f W<Z2 2SI

22 ”||fHHM ) Sz gy ~ 1S ULy
7=1

This shows that ||S(f)||m(x llgx(f )||L¢(X

Now, we prove ||g(f)||zex) ~ || fllmex)- Following the proof of (6.18), we easily
have

lg(H ey S I1fllzay ~ N1 llme )

To finish the proof of Theorem 6.16, we still need to show that || f|| rexy S 19(f) || e
Indeed, by the proof of |27, Theorem 5.10| with the same notation as therein, via

choosing r and p such that r € (w+g 2o )) we conclude that, for any x € X,
k‘/ / T
Y ([ S% o (7)1 ) 0]
k'eZ a'edyr m'=1

which, together with Theorem 6.6, further implies that
1
[l = ST sy

Si=

¢ 2y 3
N (ko) T
siXx Ml Y X )Qk/ (s ) 1 gue
k'eZ a'edy m'=1
. L?(X)
( M i
Sl X ‘Q’“' ( ) L
k€Z | o'edy m/'=1
. L?(X)
k/ / %
s s S s () rge| |
k’EZaGyik/ m/=1
Le(X)

where @(x,t) := @(x,tV/") for any (z,t) € X x [0,00) is of uniformly lower type
p/r € (q(¢),00). From this and the arbitrariness of yféi’m/, it follows that

1

N(k' o) 2
2
[l S |[{ D2 D Z inf|Quf ()] 1 germ S lg(h)llwec),
k€Z o/t m'=1 Zer/(y )

Le(X)

which completes the proof of || f|| me(x) < ||9(f)||e(x) and hence of Theorem 6.16. [
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7. Finite atomic characterizations

In this section, we obtain a finite atomic characterization of H¥(X') and also give
an improved version in case ¢ < 00.

7.1. Finite atomic characterizations with uniformly locally dominated
convergence conditions. In this subsection, we obtain a finite atomic characteri-
zation of H¥(X') with uniformly locally dominated convergence conditions.

First, we need to introduce the following uniformly locally dominated convergence
condition on ¢, which is a generalization of the corresponding Euclidean case in [35]
to any space of homogeneous type.

Definition 7.1. A growth function ¢ is said to satisfy the uniformly locally
dominated convergence condition if the following holds true: Let K C X be a bounded
set and f a measurable function on X such that lim,, o fm(z) = f(z) for almost
every x € X. If there exists a non-negative measurable function g such that |f,,(z)| <
g(x) for almost every z € X and

o(z, t)
yd >/ 9(z) Jic ey, 1) du(y) dul) < o0,

te(0,00

then

. p(z,1)

i sup / @) - £(2)] dp(z) = 0.

m—00 4e (0 fKSO y,t) du(y)

We first recall some notions and notation from [35, Section 2.4]. Recall that a

quasi-Banach space B is a complete vector space equipped with a quasi-norm || - ||z
which is nonnegative, non-degenerate (namely, ||f||z = 0 if and only if f = 0)

and homogeneous, and satisfies the quasi-triangle inequality, namely, there exists a
positive constant x € [1,00) such that, for any f, g € B, ||f+gllz < «(|[f||z+l9l5)-

Let v € (0,1] and m € N. A quasi-Banach space B, with the quasi-norm || - |5,
is called a v-quasi-Banach space if there exists a positive constant « € [1,00) such
that, for any m € N and {f;}72, C B,,

m v m
DI <Ed Il
=1 g, =

Similarly to the Euclidean case, we know that, when ¢ is of uniformly lower type
€ (0,1], H?(X) and L¥(X) are p-quasi-Banach spaces.
For every given v-quasi-Banach space B, with v € (0, 1] and a linear space ), an
operator 1" from Y to B, is said to be B, -sublinear if there exists a positive constant
€ [1,00) such that

(i) for any f, g € ¥, [[T(f) = T(9)lls, < RIT(f = 9)lls,;
(ii) for any m € N, {\;}7, C C and {f;}72, C ),

The main result of this section is stated as follows. Let UC(X') be the set of all
uniformly continuous functions on X.

3

X:IA 1T s, -
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Theorem 7.2. Let ¢ be a growth function as in Definition 2.5, (y,q) be admis-
sible as in Definition 5.2 and ¢ satisfy the uniformly locally dominated convergence
condition as in Definition 7.1. Then

(i) If g € (q(p),00), then || - ||geacxy and || - ||me(x) are equivalent quasi-norms
on HE A (X);
(i) || - [[ag=x) and || - [|me(x) are equivalent quasi-norms on Hg:™(X) N UC(X);

(iii) HZ™(X)NUC(X) is a dense subspace of H?(X).

Proof. We first show (i). Let ¢ € (¢(p),00). By Theorems 6.15 and 5.4, and
Proposition 6.12, we know that H?(X) and H*¥(X") coincide with equivalent quasi-
norms and, for any f € H?(X),

(7.1) 1z cey ~ 1 agacey ~ 1 g ~ 1]

Thus, to show (i), it suffices to prove that, for any f € H?(X),

H*#(X)-

[ gy S Wl

By the homogeneity of the quasi-norm of H*%(X'), without loss of generality, we
may assume that || f|| g=ex) = 1.

Obviously, for any f € HEY(X), f € LY ) (X)NH*#(X) and [y f(z)dpu(z) = 0.
By the atomic characterization in Part II of the proof of Theorem 5.4, namely, the
proof of H*¥(X) C HY(X) (with the same notation as therein),

SO REEI DLW
JEZ kelj JEZ kel; JjEZ

converges both in (G (o,?))" and almost everywhere on X. Here and hereafter, h;,
hl, N, and aj are as in (5.13) and (5.15).

From f € HYY(X), we deduce that there exists a ball B(zy, R) with z; € X
and R € (0,00) such that supp f C B(x1, R). In the remainder of this proof, let

B := B(z;,16AR). Now, we claim that, for any = € (B)C,
(7.2) (@) < CIH]-EHZ;(X)

for some fixed positive constant ¢; independent of f and z, where f* is as in (5.4).
Suppose that ¢ € (G (o, 7)) with ||¢||g(z,rewv) < 1 for some r € (0,00). By the proof
of [27, (7.1)], we know that, for any y € B(z1,d(x,x1)),

[(Fro)l S (),
where f* is as in (4.3), and hence, by (3.19), for any z € (B)F,

(@) s . FW) S e mllze ol F e ~ 115017001 /]

H*#(X)

= Cl”LﬁHZi(?{)

for some fixed positive constant ¢; independent of f and z, which completes the proof
of the above claim.
Moreover, let

(7.3) jmmax{jeZ: ¥ < etz
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Then, by the atomic characterization in Part II of the proof of Theorem 5.4, namely,
the proof of H*?(X) C Hiy?(X), we know that

:ZZM’ and E::ZZhj
j<7 kel j>7 k€lj

converge both in (Gg(p,?)) and almost everywhere on X, where {hi}jeszejj are

the same as in (5.13) and, indeed, hi for any + € Z and k € I; is a multiple of a
(p, 00)-atom as in Definition 5.2. Thus, f = h + ¢ and, by the above claim (7.2), we
conclude that, if j > 7, then

9 ::{:L'EX:f*(:E)>2j}C§,

which, combined with supp f C B(z1, R), further implies that supp h C B. Now,
we show that h is a multiple of a (¢, 00)-atom as in Definition 5.2. Indeed, we

recall some results from Part II of the proof of Theorem 5.4, namely, the proof of
H*#(X) C HYY(X), that

(7.4) A HLOO xS 2/, supp hj, C B}, := B (x],16A5r]) C &
and Z 1B(wi,16Agr£) 5 L.
JElk

Therefore, we have

ollzeqey < D MRl ey S D22 S 150150 -
i<i i<i
Thus to prove that h is a multiple of a (p,00)-atom, it suffices to show that
[vh ¥ = 0. To this end, we first need to prove that f is a multlple of a
Classwal (1 ”) atom as in [10, p. 591] for some ¢ € (1, e )) Let g € (1, ( ) Then

¢ € Ay/z(X) and hence

vow . ) dute) "

1 . 1/4
< {w(B(% 7T / @) so(a:,ndu(x)] < o0

by Lemma 2.6(iii) when ¢ € (¢(¢), 00). From this and [, f(x)du(z) = 0, it follows
that f is a multiple of a classical (1, ¢)-atom and hence f* € Ll(X ).
Moreover, by (7.4), for any z € X', we have

(75 DY |H()

j>; kJEIj
YUY 1,0 S S 2 (e) ~ T2 Z Lo gy (z
j>j k€L 3> i>7
(o] m o
~/ Z Z 2'7].Qm\Qm+1 (,’L’) ~ Z 2m19m\9m+1 (QU)
m=j+1 j=j+1 m=j+1

z) Y Lomamii(@) ~ f7(2) 15 (2) S f(2)lei () € L}(X),

m:}—l— 1
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which, together with the Lebesgue dominated convergence theorem, implies that

A D= % [ Hle)duta

j>7 kel;

Moreover, by this and [, f(x) du(z) = 0, we obtain

| #ia) dnte) = /X fla) duta) = [ ta)duta) =o.

which further implies that h is a multiple of a (¢, c0)-atom as in Definition 5.2.
Now, we deal with ¢. For any N € N, let

Fy = {(k,j):jez, kel j>7, |k|+|j|§N} and Oyi= > K.
(k,j)EFN
Then [[(n|lmzea) < A} kjyery) S 1. We then claim that, for any e € (0, 00),
there exists N € N such that e71(¢ — £y) is a (¢, ¢)-atom supported in the ball B
and ||¢ — I geacx) < €. Indeed, observe that, for any j > j,

supp ({ — (y) C ¥ ¢ B and /X[E(x) — Uy (z)] dp(z) = 0.

To prove the above claim, it suffices to show that limy_,. ||¢ — €N||L3;(]§) = 0. To
this end, by f € L?O(E), f* < M(f) (see, for instance, [21, Proposition 3.9]) and

Lemma 2.6(v), we conclude that f* € L?p(é), which, combined with (7.5) and the
uniformly locally dominated convergence condition as in Definition 7.1, further im-
plies that limy_, ||€ — ENHL?O(E) = 0. This shows the above claim.

Furthermore, for any ¢ € (0, 00), we choose N € N such that |[{y — || graix) < €.

Thus, f = h+{x+ ({ — {y) is a finite linear combination of both (¢, c0)- atoms and
(¢, q)-atoms and

[ gy S Ihllmgsey + 1enll s + 16—l geo@y S 1,

which completes the proof of (i).
To show (ii), by Theorems 6.15 and 5.4, and Proposition 6.12, we know that
H?(X) and HZ™(X) coincide with equivalent quasi-norms and, for any f € H?(X),

(7.6) [ ezecaey ~ 1 gy ~ 1 lazgaey ~ 1 g -
Thus, to show (ii), it suffices to prove that, for any f € HZ'™(X) N UC(X),
I [y S W llmge )

By the homogeneity of the quasi-norm of H*?(X'), without loss of generality, we
may assume that || f[|ge~x) = 1. We use some arguments from the proof of [27,
Theorem 7.1].

Since f € HZ™(X)NUC(X), it follows that f is bounded. Thus, there exists a

positive integer j > j such that €/ = () for any integer j > j. Consequently,

E—ZZh

J<J<J
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where ¢ and {hf;}jd’kgj are the same as in the proof of (i). By f € UC(X), we
obtain, for any € € (0,00), there exists o € (0,00) such that, if d(z,y) < o, then
|f(z) — f(y)|] < e Write £ := (] + (5 with

Z hi and (5 = Z hi,
(4,k)EG1 (j,k)EG2

where
G = {(k,j): JEZ, kel 124%] >0, j<j S?}
and

GQ::{(k,j):jeZ, keI, 12431 <o, j<]<J}

Notice that €7 is bounded for any j € (j,7], which, together with [27, Proposi-
tion 4.4(vi)], implies that (7 is a finite linear combination of (¢, oc)-atoms as in
Definition 5.2 and |47 || ze=(x) < Aoo({h1}kj)eci) S 1.

For Eg, from the proof of [27, Theorem 7.1], we deduce that supp ¢5 C B,
[y 6(x =0 and

||€(27||L°°(X) Se

Thus, ¢3 is a multiple of a (¢, 00)-atom as in Definition 5.2. This proves that
145 || ez () < 1 and hence

1l S Wllagace + 16 e + 1S e < 1.

fin fin

which completes the proof of (ii).

Finally, to prove (iii), let ¢ € (¢(p), 0) and a be any (¢, co)-atom supported in
B(z,r) with z € X and r € (0,00). By (7.6) and the proof of |27, Theorem 7.1(iii)|
(with the same notation as therein), we know that, to show (iii), it suffices to show
that

Jim [Ska — allLa (B(z240r)) = 0
Let g € (1, 00) satisfy g > [r(¢)]" > 1. Then (g)’ < r(p) and hence ¢ € RH(g),(X).

By this and the Hélder inequality, we conclude that, for any ¢ € (0, c0),

1 o x
©(B(z,2A07),1) /B(z,onr) |Sra(x) — a(z)|? ¢(z,t) du(x)

! q
< ©(B(z,2A07r), 1) {/B(z,on,«) |Ska(z) — a(z)|? du(z)

. 1/(Zy
- { [ e du(az)}
B(z,2A0r1)

1
< _
RSBl 2 A D) 1%k

~ [V(z,2407)] 77 || Spa —

q

V(22400 @ "L o (B(z, 2407), 1)

a’”%q(B(zﬂAgr)) [

“H%a(B(z,onr)) ;

which, combined with |26, Proposition 2.7(iv)|, further implies that, as k — oo,

_a
| Ska — aHLg(B(z,onr)) S [V(z,2A0r)] 7 || Ska — — 0.

aH%a(B(zQAor))
This finishes the proof of (iii) and hence of Theorem 7.2. O
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As an application, we formulate some criteria for the boundedness of quasi-
Banach valued sublinear operators on H¥(X'), whose proofs are similar to that of
[35, Theorem 3.5|; the details are omitted.

Theorem 7.3. Let ¢ be a growth function satisfying the uniformly locally dom-
inated convergence condition as in Definition 7.1. Let (p,q) be admissible as in
Definition 5.2 and ¢ of uniformly upper type v € (0,1]. Suppose that B, is a -
quasi-Banach space and one of the following statements hold true:

(i) ¢ € (q(p),0) and T: HYY(X) — B, is a B,-sublinear operator such that
sup{||T'al/s,: ais a (p,q) — atom} < oo;
(ii) T is a B,-sublinear operator defined on continuous (g, 00)-atoms such that
sup{||T'al|s, : a is a continuous (y, c0) — atom} < co.

Then T can be uniquely extended to a bounded B, -sublinear operator from H¥(X)
into B,.

7.2. Finite atomic characterizations without having recourse to uni-
formly locally dominated convergence conditions. This subsection is devoted
to a partial improvement of finite atomic characterizations obtained in Section 7.1 by
removing the uniformly locally dominated convergence condition as in Definition 7.1
in case ¢ < 00.

By some arguments similar to those used in the proof of the Euclidean case in
|7, Lemma 3.6] and (7.1), we immediately obtain the following result; the details are
omitted.

Lemma 7.4. Let ¢ be a growth function, m(p) < 0 and r € (q(¢)[r(v)], ool
where m(p), q(p) and r(p) are, respectively, as in (3.15), (3.16) and (6.9). Then the
space

Lpo(X) = {f € L"(X): f has bounded support and /Xf(z) du(z) = O}

is dense in H?(X).

Now, we extend the Euclidean case in |7, Theorem 3.7] (see also |45, Theorem

4.2] for the anisotropic Euclidean case) to any space of homogeneous type (see Re-
mark 1.1).

Theorem 7.5. Let ¢ be a growth function, m(p) < 0 and r € (q(¢)[r(¢)], oo,
where m(y), q() and () are, respectively, as in (3.15), (3.16) and (6.9). Then, for

any q € (q(y), m) and f € Lj o(X), there exist a finite sequence {a;}}_, (N € N)

of (¢, q)-atoms as in Definition 5.2 and numbers {\;}_; C C such that

N
=Y Naj.
j=1

Moreover, there exists a positive constant C' such that, for any f € Ly o(X) with the
decomposition as above,

A, ((hai}l) < Cllfllmecey.

Proof. Let q € (q(¢), gr5p)- Then (7)" € (1,7(¢)) and hence ¢ € RHzy (X).
For any f € Lj,(X), there exists a ball B := B(x, R), with z; € X and R € (0, 00),
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such that supp f C B. By the Holder inequality and ¢ € RH(gy(X ), we know that,
for any ¢ € (0, oo)

(7.7) )| (z, t) du(z)

Sgp(Bt)U[@”(“”” ] U|f )" du ]
<[ q/’“[/u )" dpu(z }T<oo,

which, together with Lemma 7.4, further implies that f € H*%(X) N LL(B).
Following the proof of Theorem 7.2(i), with the same notation as therein, we

know that
F=Y 3= >"WA> > b =h+t

JEZ k)EIj ]S; kJEIj J>; k‘EIj

converges both in (GJ(g,))" and almost everywhere on X, where j is as in (7.3), hJ
is a multiple of a (¢, 00)-atom as in Definition 5.2 for any j € Z and k € I;, h is

a multiple of a (i, c0)-atom supported in the ball B := B(z1,164R), f* € L*(X)
and, for any = € X,

(7.8) Z > |hi(x) (2)1g(z) € L'(X).

j>7 kel

For any N € N, let
FN::{(kuj):jezvk€[j7j>3/7 ‘k‘_'_‘j‘SN} and [y := Z h]
(k,j)eFN

Since f € L"(X), then, from |27, Theorem 3.4(ii)], we deduce that f* € L"(X). By
this, (7.8) and the Lebesgue dominated convergence theorem, we conclude that

1\}520 [en — gHLT'(A’) =0,
which, combined with (7.7) and supp (¢) U supp (¢ — {x) C B, further implies that

_1
len — €l s < {M (B)} lex — Ol e = 0, as N = oo

This shows that, for any given ¢ € (0, 1), there exists N € N such that e (¢ — £y)
is a (¢, ¢)-atom supported in the ball B, which implies that f = h+ {4+ (£ — ly) is
a finite linear combination of (¢, co)-atoms and (¢, ¢)-atoms and

Ag ({0 = 00 WY ey ) S 1 o
This, together with (7.1), then finishes the proof of Theorem 7.5. O

As an easy consequence of Theorem 7.5, we obtain the following result, which
improves the result in Theorem 7.2(i) by removing the uniformly dominated conver-
gence condition as in Definition 7.1; the details are omitted.

Corollary 7.6. Let ¢, r and q be as in Theorem 7.5. Then || - |[ggax) and
| - | e (x) are two equivalent quasi-norms on Lj ;(X).
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As an application, we formulate an improved criterion for the boundedness of
quasi-Banach valued sublinear operators on H¢(X) in case ¢ < oo, whose proof is
similar to that of the Euclidean case in [35, Theorem 3.5|; the details are omitted.

Theorem 7.7. Let ¢ be a growth function of the uniformly upper type~y € (0, 1],
m(e) < 0 and q € (q(p),0), where m(p) and q(p) are, respectively, as in (3.15)
and (3.16). Suppose that B, is a y-quasi-Banach space. If T: H(X) — B, is a
B, -sublinear operator such that

sup{||T'al|s, : a is a (p, q)-atom} < oo,

then there exists a unique bounded B,-sublinear operator T from H #(X) into B,
which extends T' on Lg% (X).

Remark 7.8. (i) Theorem 7.7 improves the corresponding result in Theo-
rem 7.3(i) by removing the uniformly locally dominated convergence condi-
tion as in Definition 7.1, which has wider applications. Observe that The-
orem 7.3(i) is just a simple corollary of Theorem 7.2(i) and, moreover, the
proofs of (ii) and (iii) of Theorem 7.2 need to use the proof of Theorem 7.2(i)
which is also of independent interest.

(ii) But, in the case ¢ = oo, it is still unclear whether or not the uniformly locally
dominated convergence condition in Theorem 7.3(ii) can be removed.

8. Dual of H¥(X)

In this section, we show that the dual space of H?(X) is just the space BMO?(X).

Now, we state the following main result of this section, which is a generalization
of the corresponding results on Hardy spaces H?(X) in [10, Theorem B] [in this case,
¢ is the same as in (4.2)].

Theorem 8.1. Let ¢ be a growth function as in Definition 2.5 satisfying m(p) <
0 and q € (q(p), 0], where m(yp) and q(p) are respectively as in (3.15) and (3.16).
Then the dual space, (H?(X))*, of H¥(X') is BMOY(X) in the following sense:

(i) Suppose that b € BMO?(X'). Then the linear functional

Lyt f = Li(f) = /X F(@)b(z) du(z),

initially defined for any f € HZ%(X), has a bounded linear extension to

H?(X).
(ii) Conversely, every continuous linear functional on H¥(X') arises as in (i) with
a unique b € BMO¥(X). Moreover, ||bl|smorx)y ~ ||Ls|| (e (x)y, where the

positive equivalence constants are independent of b.

Before proving Theorem 8.1, we first state the following lemma which is similar
to the Euclidean case in [35, Lemma 4.4] and we omit its proof here.

Lemma 8.2. Let (p,q) be admissible as in Definition 5.2 and N € N U {oo}.
Then there exists a pos1t1ve constant C' such that, for any finite sequence {b;}_, of
multiples of (y, q)-atoms,

ZHbHLq(B 115, llzey < CA({bi}55) -
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Now, we start to prove Theorem 8.1.

Proof of Theorem 8.1.  To prove BMO¥(X) = Lip,,(X) C (H?(X))*, by
Theorem 3.4 and (7.1), it suffices to show that Lip,,(X) C (Hz*(X))*, where

at
q € (q(¢p),0) with g(¢) as in (3.16).
Let g € Lip, ,(X) and a be a (o, q)-atom supported in a ball B C X as in
Definition 5.2. Then, by the vanishing moment and the size conditions of a, together
with the Holder inequality and (B, ||1B||Z;( x)) = 1, we conclude that

/X a(z)g(z) du(z)
/X a(2) g(x) — mis(g)] ds(z)

< [ oo o (s Mol | 2 el

[e (=117 dnte)

< ||a||Lg(B)/X [\g(; ||1B||ng ‘] o |z, ||1B||Lw ) w(x)

1 l9(x) —mp(g)]
: 115l ze ) /X [ (z, ||lB||L<P(X))

Now, for any f € Hg'(X) = Lj ((X), by Definition 5.2, we know that there exists a

finite sequence {b;}7, of multiplies of (¢, ¢)-atoms supported, respectively, in balls
{Bj}jen such that f = 377" b; and A({b;}7,) < [ fllgeax). From this, (8.1),
Lemma 8.2 and Theorem 7.2, we deduce that

)| <D Il lI1s, e lglu, o S Ad{b 370 9N, 2
j=1

(8.1)

¢ (a: 15ll52 ) din@) = g, -

S I mgecollglii, , v ~ [l agae ), 0,

which, combined with the fact that Lj,(X) is dense in H?(X) (see Lemma 7.4),

Theorem 7.6 and a standard density argument, further completes the proof of (i).
To prove (ii), let L € (H?(X))* = (HZ(X))* [see (7.1)]. For any ball B C X
and g € (g(¢), o), let

1268 = {1 e 12m): [ f)aute) =0},

Obviously, L;O(B) C H?(X) and, for any f € L:ID’O(B), a:= HlBHZi(X)Hf”Zi(B)f is
a (¢, q)-atom supported in B and

1|z ey < N sllpe) L f 1 2 s),
which further implies that, for any L € (Hg?(X))" and f € LI ,(B),

ILf| < Ll ago )

Thus, L is a bounded linear functional on Lq o(B). From the Hahn-Banach theorem
(see, for instance, [54, p. 77, Corollary 1]), it follows that L can be linearly boundedly
extended to the whole space LS‘ID(B) without increasing its norm, which, together

15 ()
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with the Lebesgue-Radon-Nikodym theorem (see, for instance, [14, Theorem 3.8]),
we conclude that there exists h € L'(B) := {f € L'(X): supp f C B} such that,
for any f € LY ,(B),

Mﬁ=Aij@w@)

We now choose an increasing sequence {B;}jen of balls such that By C By C -+ C
B; C--- and Ujil Bj = X. From the above arguments, we deduce that there exists

a sequence {h;};en of measurable functions such that, for any j € N, h; € LY(B;)
and, for any f € LY (B;),

82) L) = [ F@hs(o) duta),
Therefore, for any f € L%O(Bl),

; f(@)[h () = ha()] dp(x) = 0,

which, combined with the fact that g —mp, (9) € L{y(B1) for any g € L(B),
further implies that, for any g € L1(B),

/B 9(x) = mp, (9)][h(2) — ho(x)] du(x) = 0,

here and hereafter, mpg, (g) denotes the mean of g on By as in (2.3) with f and B
replaced, respectively, by g and B; here.
Observe that, for any ball B and f, g € LL(B),

/B mp(g)[ha () — ha(2)] du(z) = / g(x)ymp(hy — hy) dp(z).

B
Thus, for any g € LL(B),

[ ota)in(e) = hale) = ma, (s = )] ) =
which further shovvs1 that, for p-almost every x € By,
hi(z) — ho(z) = mp, (hy — ha).
Let %1 := hy and, for any j € N,
Bt =1+ mp, (B = i)

Then the sequence {Z] }jen satisfies that, for y-almost every x € B;, ﬁjﬂ(x) = ?L](ZL')
and h; € L'(B;). Let b be a measurable function satisfying that, if 2 € B;, then

b(z) = hj(xz). To finish the proof of Theorem 8.1(ii), it still needs to show that
b € Lip, (&) and, for any f € HZ(X),

Mﬁzlj@ﬂ@@@)

Indeed, for any f € HIY(X), we easily know that there exists j € N such that
supp f C Bj. Thus, f € LZID,O(Bj), which, together with (8.2), further implies that

uﬁzﬁj@wwwwy
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Furthermore, for any ball B C X, let f := sign(b—mp (b)), where sign(-) denotes
the sign function, and

@ = 31l lF — ms ()]s,

Then a is a (¢, ¢)-atom supported in B and
1
||1B||m / o) = m®)] dulz) = m / (b(x) = mu (b)) (x) du(z)
|1B||W / J(x) = ms(f)]o(z) du(z)

L(a) S Ll g llall agaaey S Wl g
which further implies that b € Lip%l()\? ) and
10l Lip, , (20) S Ll 2 ey
This finishes the proof of (ii) and hence of Theorem 8.1. O

9. Boundedness of Calder6n—Zygmund operators

In this section, we establish the boundedness of Calderén—Zygmund operators
from H¥(X) into L¥(X) or from H¥(X) to itself, respectively. To this end, we first
recall the following notion of Calderon-Zygmund operators from [9] (see also |2, 11]).

Definition 9.1. A function K € L, ({X x X}\{(z,z): z € X}) is called a
Calderon—Zygmund kernel if there exists a positive constant C|), depending on K,
such that

(i) for any z, y € X with = # y,
1 .

"V, y)

(ii) there exists a positive constant s € (0, 1], depending on K, such that
(ii), for any =z, z, y € X with d(z,y) > 2Aud(x, z) > 0,

[d(z,2)]” 1

[d(z,y)] V(z,y)

(ii), for any =z, 7, y € X with d(z,y) > 2A0d(y,y) > 0,

(d(y.y)]" 1

[d(z,y)| V(z,y)’

(9-1) [ K (2, y)] < Cx

(9.2) |K(z,y) — K(z,y)| < Cx)

(9.3) K (2,y) — K(z,9)| < Cx

where Ay is the same as in (1.2).

Let C'(X) denote the space of all continuous functions on X and s € (0, 1]. Recall
that the space C;(X) is defined by setting

Cy(X) :={f € C°(X): f has bounded support},
where the space C*(X) is defined by setting
X) = {f S C(X) Hf”Cé(X) < OO}
with

| fllescy == I flleery +  sup  —————
(%) (%) {z,yeX: x#y} [d(:(]’y)]s
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We equip C§(X') with the strict inductive limit topology (see, for instance, [50, p. 273]
and [26, p. 23|). Moreover, the dual space (C7(X))" is defined to be the set of all linear
functionals on C§(X) equipped with the weak-* topology.

Let T: C3(X) — (C$(X)) be a linear continuous operator. Then T is called a
Calderon—Zygmund operator with the kernel K satisfying (9.1), (9.2) and (9.3) if, for

any f € Cj(&),

(9.4) 7f(x) = [ Kw)fw)duty). Ve e (suwp 1)
X
Then we state the main result of this section as follows.

Theorem 9.2. Let w be as in (1.4) and s € (0, 1] as in Definition 9.1. Suppose
that ¢ is a growth function as in Definition 2.5 with q(¢) < w, where p € (0, 1]
is as in Definition 2.5(iii) and q(y) as in (3.16), and that T is a Calderén—Zygmund
operator as in (9.4) which is bounded on L*(X).

(i) Then there exists a positive constant C' such that, for any f € H?(X), Tf €

L#(X) and [T o) < Ol = i

(ii) If we further assume that T*1 = 0, then there exists a positive constant C'

such that, for any f € H?(X), Tf € H?(X) and || T f||ge x) < 5||f]|H<p(X).

Proof. Choose r € [2,00) such that " < r(¢). Let (p,q) be admissible as
in Definition 5.2 and a a (¢, ¢)-atom with ¢ € (rq(¢),o0), supported in the ball
By := B(xg, 1) for some oy € X and ry € (0,00) as in Definition 5.2.

We first prove (i). By Theorem 7.7, it suffices to show that ||Tall ey S 1.
Indeed, we write

=1+ 1L
Le(Xx)

For I, by the boundedness of T on L"(X), we know that
(9.5) 1Tallry S Nlallor -

Meanwhile, from ¢ € (¢(¢), 00), it follows that ¢ € Aa(X), which, combined with
Lemma 2.6(iii), implies that

ITall sy S 1208070l oy + || Lzauis Tl

1 1/r 1 1/q
— ax’"d,u:)s} S{ a:zqcpx,tdu:z}
(g | ot dnto D, @ dute)

1
T ———
~ || ||L(P(X) ~ ||1BO||L¢(X)
By this and (9.5), we conclude that
[1(Bo)] "
(9.6) ITallzr@o S lallerey S 5=
115, [ o)

which, together with the arguments used in the estimation of A in the proof of
Theorem 6.15, we conclude that

[, e r0a@) duln) <o (B )

1slze )

This further shows that I < 1.
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To estimate II, from [, a(y d,u( ) =0, (9.3), the Holder inequality and (9.6), we
deduce that, for any = € (2AOBO) :

(9.7) |Ta(z)| =

. (K (2,y) — K (2, 20)] aly) du(y)

;mew—mewmwmmw

d(y>$0):|s 1
< a d
Nl¥b@w@ olalo)| duty)
[ To 1° 1
< 1
~ _d((L’,SL’O)_ V(x,l’o) HaHL (X)
[y )° 1 1
< , B 7
~ ld(z,x0) | V(:B,xo)HaHL( 2 lp(Bo)l
<[ 7o 17 1 1(Bo)
~ ld(z, o) | V(x,20) (|18, o)
B 751 [M(1,) ()] 5
~ L V(x, zo) 1B llery ~  IBolloery

which, combined with Theorem 4.11 and ¢(¢) < 2 (SJW , further implies that

241 wts
m< || ar | — 2o s (e
~Y 1 w+s 1 ors N
|| BoHL%D(X Lo () || B()HLL,O(X L5 ()
< i H 1p, o1
~ ||1BO||w+.s ||1B0||LLP(X L‘P(X)

where, for any 2 € X and ¢ € (0,00), §(z,t) := @(z,t"%") is of uniformly lower type
p(stw)

} Combining the estimates of I and II, we have
||Ta||Lw(X) ,S I -+ H 5 1,

which completes the proof of (i).

Now, we show (ii). Similarly to (i), by Theorem 7.7, we only need to prove that
|Tallgexy S 1. Indeed, we show that Ta is a (¢, 7, s)-molecule related to the ball
2A0By as in Definition 6.7. To this end, we write

Ta = Z ]_Uj(QAOBO)TCL,

J=0

where U0(2AoBo) = 214030 and, for anyj c N, Uj(QA(]B(]) = (5—j2AoBo\(5—j+12AoBo.
From (9.6) and some arguments similar to those used in the proof of [43, Theorem 2.7/,
it follows that

[(Bo)]"" < [1(240Bo)] "

|Tal| ) S
O~ gl ~ Meagmolle)
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Moreover, by the proof of (9.7) and some arguments similar to those used in the
proof of [43, Theorem 2.7|, we know that, for any z € (2AOBO)E,

To :|S 1 IU(B()) < |: To :|8 ]_ M(QA()BQ)
x,70) | V(x,20) 1B llecy ™ Ld(x,20) | V(x,20) [|[12a,8, o)

which further implies that, for any 7 € N,

)

a5 |5

HTCLHLT(UJ(2AOBO))

| © (2408
5 {/ [ To :| Tdﬂ(x)} :u( 0 0)
5-3240Bo\d-+12408, LA(T,70) | [V (x,20)] 1124050 | 2o (1)

(ROT240 B[V p(240By) o (1577240 Bo)]”
V (w9, 67712 A070) || 12408, Lo(x) ™~ |1 Loaomo |l Loy

On another hand, by 7*1 = 0, we immediately obtain [, T'a(x)du(z) = 0. Thus,
Ta is a harmless positive constant multiple of a (i, r, s)-molecule related to the ball
2A0 By, which, together with Theorem 6.8, further implies that

< 5

1 Tal| gz xy ~ [ Tallgers ) S 1.
This finishes the proof of (ii) and hence of Theorem 9.2. O

Remark 9.3. Let all the notation be the same as in Theorem 9.2. We point

out that the condition ¢(p) < @) i) Theorem 9.2 is sharp in the sense that, if

o(x,t) = t? for any (x,t) € X x [0,00), then ¢(¢) = 1 and hence ¢(p) < @
if and only if p > =%, which returns to the classical case (see, for instance, [47,

s+w
Theorem 3.4]).

10. Class of pointwise multipliers for BMO(X)

In this section, we establish a new characterization of PWM(BMO(X')), namely,
the set of all pointwise multipliers of the space BMO(X').

It was known by [31, p. 1925] that ¢ in (2.4) satisfies wq(¢) < (w+ 1)i(p). More
precisely, ¢ € A;(X) and, for almost every fixed z € X, ¢(x,-) is concave with
i(p) =1.

The following definition of log-atoms on X is a variant of log-atoms in the Eu-
clidean case from [35, Section 7].

Definition 10.1. A measurable function a is called a log-atom if it satisfies the
following three conditions:

(i) supp @ C B for some ball B in X
(ii) ||a|lpeery < ﬁ[log(e + ﬁ) + sup,cplog(e + d(xo, x))] with z¢ as in Re-
mark 2.10;
(iil) [, a(z)du(z) = 0.
We first show the following technical proposition, which is a generalization of the
Euclidean case in [35, Proposition 7.1] to any space of homogeneous type. In what
follows, we always let ¢ be as in (2.4).

Proposition 10.2. There exists a positive constant C such that, if f is a (@, 00)-

atom as in Definition 5.2 [resp., log-atom as in Definition 10.1], then 6’_1f is a
log-atom [resp., (¢, 00)-atom].
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Proof. Let f be a (¢, 00)-atom supported in a ball B C X. We first show that
i f is a log-atom. Indeed, to this end, it suffices to show that i f satisfies Definition
10.1(ii). Observe that

4 {log (e + ﬁ) + ilelg log (e + d(xo, x))] {log (e + ﬁ {log (e + ﬁ)

+ suplog (e + d(:)so,x))}) + suplog (¢ + d(xo,x))] el

zeB zeB
By this, we conclude that

[ (g o (e g ) + suplos e+t ] ) o) 2 1.

which implies that
1

. i [log (e + L) + sup log (e + d(y, x))}

ILL(B) zeEB

_ ﬁ [bg (e + ﬁ) +suplo o+ d(:co,:c))] .

This is the desired conclusion.
On another hand, let f be a log-atom. Then we prove that f is a multiple of a
(p, 00)-atom. We also observe that

[log (e + ﬁ) + ilelg log (e + d(xo, x))] [log (e + ﬁ {log (e + ﬁ)

+suplog (e + d(:)so,x))}) + suplog (¢ + d(xo,x))] Tl

reB r€EB

By this and ¢ € A;(X), we find that

[ (v o (e ) + swplos e+t ) o) 513,

which implies that

1 1
o) < ——— |1 — 1 d < sll7L -
ey < s fog (o4 ) + suptog e + e )| Il

This finishes the proof of Proposition 10.2. U
The following definition of weighted BMO spaces is taken from [52].

Definition 10.3. Let BMO,(X) be the space of all f € L _(X) such that, for
any a € X and r € (0, 00),

Lo ()

1 1
¢(a,r)V(a,r)
] and

MO(f, Bla,)) = [ @) = matan(9)] ) <o

._ 1
where ¢(a,r) := TGRSV,

1
T /B W)

For any f € Ly, (X), let || fllBMO,(x) = SUPfacx, re(0.00)y MOs(f, B(a, 7)) and
[ f lbmog () = [If IBMO,(2) + [MB(@0,1) ()],

MpB(a,r) (.f) =

where zg is as in (2.4).
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In what follows, we need the following Ahlfors n-reqular condition on the measure
i, namely, there exists n € (0,00) such that, for any ball B(z,r) with z € X and
€ (0,00),
(10.1) V(z,r) ~r",
where the positive equivalence constants are independent of x and r.

The following result is a generalization of the corresponding Euclidean case in
[35, Proposition 7.2].

Proposition 10.4. Assume that u satisfies the Ahlfors n-regular condition (10.1).
For any f € BMO(X), it holds true that

£ llBrio, (x)

1 1
~ Bs:ub]g;llﬁ {log <e+@)+il£log (e + d(xo, ] /|f )l du(x) <

with the positive equivalence constants independent of f.

Proof. It suffices to show that, for any ball B := B(a,r) with a € & and
€ (0, 00),

1 1
log (d(:)jo, a)+r+ ;) ~ log <e + @) + sup log(e + d(xg, z)).

r€B
We first show that

1 1
- < -
log (e + (B)) + suplog(e + d(xg, z)) < log (d(a:o, a)+r+ r) .

zeB

Indeed, by (10.1), we have

1 1 1 1
logle+ ——= ) ~logle+— | Slogle+— | Slog | d(zg,a) +1r+ —
w(B) rm r r

and we also observe that
1
sup log(e + d(xg, z)) <log (e + Aod(zg,a) + Aer) < log (d(:co, a)+r+ —) ’
reB r

which implies the desired conclusion.
Conversely, we show that

1 1
log ( d(zg,a) +7+ -] Slog | e+ ——= | +suplog(e + d(xg, x)).
o (a7t ) Stog (e ) + suplo(e -+ d(an, o)

It is easy to see that (X, d, u) with p satisfying (10.1) is an RD-space, which further
implies that there exists a constant ay € (1,00) such that, for any a € X and

€ (0,00), B(a,r)\ B(a, ;=) # 0. Thus, we are able to choose yo € B(a,r)\ B(a, ;-).
Therefore, we have
(10.2) T < dyo,a) <1

agp
We further consider the following two cases.
Case (i) r € (0,1]. In this case, by (10.1), we obtain

1 2 1
log (d(:co, a)+r+ —) < log (d(:co, a) + —) < log (e + —) + log(e + d(xo, a))
r r r

1
<lo e+—)+suplo e+ d(xp,)).
g (e )+ suplogte + dan, o)
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Case (ii) r € (1,00). In this case, by (10.2), we have

1
log (d(mo, a)+r+ ;) <log (d(zg,a) + 2r) < log (e + d(xg, a) + d(yo, a))
< sup log(e + d(xg, )),
zeB
which then completes the proof of Proposition 10.4. O

The following corollary gives an equivalent characterization of the BMO8(X)
norm.

Corollary 10.5. Let p satisfy the Ahlfors n-regular condition (10.1). Then both
BMO"8(X) and BMOy4(X) coincide with equivalent norms.

Proof. Let ¢ be as in (2.4). It was shown by [31, Remark 4.1(iii)| that, for any
ball B,

N 1(B)
log(e + 57) + SuPgep log(e + d(wo, )’

||1B||Lw(X)

which, combined with Proposition 10.4, immediately completes the proof of Corol-
lary 10.5. U

Now, we state the main result of this section as follows, which is a generalization
of the corresponding Euclidean case in [35, Theorem 3.3].

Theorem 10.6. Assume that u satisfies the Ahlfors n-regular condition (10.1).
The set of pointwise multipliers for BMO(X'), denoted by PWM(BMO(X)), is the
dual space of L'(X) + H*%(X), where ¢ is as in (2.4).

Proof. From [52, Example 2.8], it follows that PWM(BMO(X)) = [L>®(X) N
BMO¥(X)]. Thus, we only need to prove that [L>(X) N BMO?(X)] = (LY(X) +
H*#(X))*.

From Propositions 10.2 and 10.4, Corollary 10.5 and some arguments similar to
those used in the proof of |35, Theorem 3.3|, we deduce that the above conclusion
obviously holds true, which completes the proof of Theorem 10.6. O
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