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Abstract. Let (X , d, µ) be a space of homogeneous type in the sense of Coifman and Weiss.

In this article, the authors establish a complete real-variable theory of Musielak–Orlicz Hardy

spaces on (X , d, µ). To be precise, the authors first introduce the atomic Musielak–Orlicz Hardy

space H
ϕ
at
(X ) and then establish its various maximal function characterizations. The authors also

investigate the Littlewood–Paley characterizations of Hϕ
at
(X ) via Lusin area functions, Littlewood–

Paley g-functions and Littlewood–Paley g∗λ-functions. The authors further obtain the finite atomic

characterization of H
ϕ
at
(X ) and its improved version in case q < ∞, and their applications to

criteria of the boundedness of sublinear operators from H
ϕ
at
(X ) to a quasi-Banach space, which

are also applied to the boundedness of Calderón–Zygmund operators. Moreover, the authors find

the dual space of Hϕ
at
(X ), namely, the Musielak–Orlicz BMO space BMOϕ(X ), present its several

equivalent characterizations, and apply it to establish a new characterization of the set of pointwise

multipliers for the space BMO(X ). The main novelty of this article is that, throughout the article,

except the last section, µ is not assumed to satisfy the reverse doubling condition.

1. Introduction

The classical real Hardy space Hp(Rn) on the n-dimensional Euclidean space
has proved a nice substitute of the Lebesgue space Lp(Rn) when p ∈ (0, 1], because
some important operators (for instance, the Riesz transforms) are not bounded on
Lp(Rn) but bounded on Hp(Rn) when p ∈ (0, 1]. The real-variable theory of Hp(Rn)
was initiated by Stein and Weiss [57] and later extensively developed by Fefferman
and Stein [13]. Precisely, Fefferman and Stein [13] established various maximal func-
tion characterizations of Hp(Rn) and found a surprising result on the dual space of
H1(Rn), which is just BMO(Rn), the space of functions with bounded mean oscil-
lations introduced by John and Nirenberg [33]. To better understand the structure
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of Hardy spaces, one finds that a core idea is to decompose any element of Hp(Rn)
into a sum of some basic elements with some good properties, which are called atoms
(see Coifman [8] for the case n = 1 and Latter [39] for the general case n ∈ N). This
paves the way for the extensive study of the boundedness on Hardy spaces of many
classical operators appearing in harmonic analysis such as Calderón–Zygmund oper-
ators and fractional integrals. For more studies on the real-variable theory of Hardy
spaces and its applications to harmonic analysis and partial differential equations,
we refer the reader to some fundamental references, for instance, [57, 55, 13, 56, 48].

In the last several decades, the classical real Hardy spaces were generalized to
other type Hardy spaces. Among this, Ky [35] extended both the Orlicz–Hardy spaces
and the weighted Hardy spaces to new Orlicz type Hardy spaces, Musielak–Orlicz
Hardy spaces Hϕ(Rn), which prove useful. Particularly, the Musielak–Orlicz Hardy
space H log(Rn), related to the typical growth function

θ(x, t) :=
t

log(e+ |x|) + log(e + t)
, ∀ x ∈ Rn, ∀ t ∈ [0,∞),(1.1)

plays essential roles in the bilinear decompositions of BMO(Rn) × H1(Rn). These
bilinear decompositions are important to the optimal endpoint estimate for the div-
curl lemma, involving the space H log(Rn), and have also relations to an implicit
conjecture from [6] (see also [5, 4]). These bilinear decompositions also play striking
roles in bilinear or subbilinear decompositions, respectively, for linear or sublinear
commutators of Calderón–Zygmund operators from [34]; see [36, 37] (or [59]) for
more applications. So far, some literature on the real-variable theory of Hϕ(Rn) and
its applications appeared (see, for instance, [30, 35, 41, 42, 43, 44, 59, 60]).

To extend some classical results of harmonic analysis over Euclidean spaces to
more generalized setting, Coifman and Weiss [9, 10] introduced the following notion of
the space of homogeneous type, which is a natural setting for the theory of functions
spaces and operators in harmonic analysis. Let us first recall the following notion of
spaces of homogeneous type from [9, 10]. Suppose that X is a non-empty set equipped
with a quasi-metric d with the quasi-triangle constant A0 ∈ [1,∞), namely, for any
x, y, z ∈ X ,

(i) d(x, y) = d(y, x);
(ii) d(x, y) = 0 if and only if x = y;
(iii) d satisfies the quasi-triangle inequality

d(x, y) ≤ A0 [d(x, z) + d(z, y)] .(1.2)

The triple (X , d, µ) is called a space of homogeneous type if µ is a non-negative
measure satisfying the doubling condition: there exists a positive constant C(X ) ∈
[1,∞) such that, for any ball B(x, r) := {y ∈ X : d(x, y) < r} with (x, r) ∈ X ×
(0,∞),

µ(B(x, 2r)) ≤ C(X ) µ(B(x, r)),(1.3)

which further implies that there exists a positive constant C̃(X ) such that, for any
λ ∈ [1,∞) and (x, r) ∈ X × (0,∞),

(1.4) µ(B(x, λr)) ≤ C̃(X )λ
ωµ(B(x, r)),

where ω := log2C(X ).

Remark 1.1. Two typical examples of spaces of homogeneous type are as follows.
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(i) Let X := Rn, d(x, y) :=
[∑n

j=1(xi − yi)
2
]1/2

for any x := (x1, . . . , xn), y :=

(y1, . . . , yn) ∈ Rn, and µ be the n-dimensional Lebesgue measure. This is just
the Euclidean space equipped with the n-dimensional Lebesgue measure.

(ii) Let X := Rn, d(x, y) :=
∑n

j=1 |xi − yi|
αi for any x := (x1, . . . , xn), y :=

(y1, . . . , yn) ∈ Rn, where α1, . . . , αn ∈ (0,∞) are not all equal, and µ be the
n-dimensional Lebesgue measure. This is so called the anisotropic Euclidean
space equipped with the n-dimensional Lebesgue measure.

Please see [10, pp. 588–590] for more examples of spaces of homogeneous type.

In this setting, Coifman and Weiss [10] introduced the atomic Hardy space
Hp, q

at (X ) and proved that Hp, q
at (X ) is independent of the choice of q. Hereafter,

Hp, q
at (X ) is simply denoted by Hp

at(X ). Coifman and Weiss [10] also showed that its
dual space is the Lipschitz space Lip1/p−1(X ) when p ∈ (0, 1), or the space BMO(X )
when p = 1.

However, some important tools in the real-variable theory of Hp
at(X ), such as the

Calderón reproducing formulae, seem to need additional assumptions. To this end,
Han et al. [26] (see also [25]) introduced the RD-space, namely, the space of homoge-
neous type satisfying the following reverse doubling condition: there exist some pos-
itive constants a0, c(X ) ∈ (1,∞) such that, for any x ∈ X and r ∈ (0, diam (X )/a0)
with diam (X ) := sup{d(x, y) : x, y ∈ X},

µ(B(x, a0r)) ≥ c(X )µ(B(x, r));(1.5)

see [62] for several equivalent characterizations of the reverse doubling condition (1.5).
Later, a real-variable theory of various function spaces and their applications were
given on RD-spaces; see, for instance, [25, 26, 61, 62, 21] and the references therein.

Recently, motivated by the remarkable wavelet theory of Auscher and Hytönen in
[2], Han et al. [23, 24] established a partial real-variable theory of (product) Hardy
spaces on spaces of homogeneous type without having recourse to the assumption
(1.5), via using the orthonormal basis of regular wavelets from [2, 3] and investigating
its applications to the boundedness of Calderón–Zygmund operators. Meanwhile, Fu
et al. [19] confirmed a conjecture raised by Bonami and Bernicot (see Ky [38, p. 809])
that f × g of f ∈ H1

at(X ) and g ∈ BMO(X ) can be written into a sum of two
bilinear operators on any metric measure space of homogeneous type without having
recourse to the reverse doubling condition (1.5), where several equivalent wavelet
characterizations of H1

at(X ) from [17] and a typical Musielak–Orlicz Hardy space
H log(X ) play crucial roles. The space H log(X ) is also important to the local version
of the above bilinear decomposition in [16]. Moreover, the bilinear decomposition in
[19] is also useful to the endpoint boundedness of the (sub-)linear commutator [b, T ]
of a sublinear operator T and b ∈ BMO(X ) on Hardy spaces in [46, 47]; see the
survey [15] for more details.

More recently, He et al. [28] constructed a corresponding wavelet reproducing
formulae without having recourse to the reverse doubling condition (1.5). Based on
these wavelet reproducing formulae, He et al. [27] further established a complete
real-variable theory of Hardy spaces Hp(X ) on spaces of homogeneous type without
having recourse to the reverse doubling condition (1.5). On another hand, Hou et
al. [31] investigated Musielak–Orlicz BMO-type spaces associated with generalized
approximations to the identity on spaces of homogeneous type.

Motivated by [27] and the useful space H log(X ), one naturally expects to develop
a complete real-variable theory of Musielak–Orlicz Hardy spaces, including the above
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useful space H log(X ). In this article, we positively answer this question on (X , d, µ).
Precisely, we introduce the atomic Musielak–Orlicz Hardy space Hϕ

at(X ) and then
investigate their various maximal function characterizations, the Littlewood–Paley
characterizations, the finite atomic characterizations and the dual space of Hϕ

at(X ).
We also consider their applications to the boundedness of sublinear operators, in-
cluding Calderón–Zygmund operators as concrete instances, from Hϕ

at(X ) to a quasi-
Banach space, and a characterization of the set of pointwise multipliers for the space
BMO(X ). It should be pointed out that the main novelty of this article is that,
except Section 10, µ is not assumed to satisfy the reverse doubling condition (1.5).

Throughout this article, but except the last section, we always assume that
(X , d, µ) is a space of homogeneous type, which is non-atomic [namely, µ({x}) = 0
for any x ∈ X ] and satisfies diam (X ) = ∞. It is known that diam (X ) = ∞ implies
that µ(X ) = ∞ (see, for instance, [53, Lemma 5.1] or [2, Lemma 8.1]).

The organization of this article is as follows.
In Section 2, we recall some basic notions, notation and known results used in

this article.
In Section 3, by establishing a version of Calderón–Zygmund decompositions on

balls and borrowing some ideas from the proof of [43, Theorem 2.5], we obtain the
John–Nirenberg inequality of BMOϕ(X ) (see Theorem 3.1 below). Then we apply
this John–Nirenberg inequality to establish several equivalent characterizations for
BMOϕ(X ), which are similar to [43, Theorem 2.7] with some technical modifications.

In Section 4, we first recall the important Calderón reproducing formulae estab-
lished in [27] and then introduce Musielak–Orlicz Hardy spaces, H+,ϕ(X ), Hϕ

θ (X )
and H∗,ϕ(X ) defined, respectively, via radial, nontangential and grand maximal func-
tions. In Subsection 4.2, by the pointwise inequalities for those maximal functions
and some ideas from the proof of [27, Theorem 3.5], we show that H+,ϕ(X ), Hϕ

θ (X )
and H∗,ϕ(X ) are mutually identical with equivalent quasi-norms (see Theorem 4.12
below).

Section 5 is devoted to the atomic characterizations of H∗,ϕ(X) (see Theorem 5.4
below). The proof is divided into three parts. In Subsection 5.1, we show Hϕ,q

at (X ) ⊂
H∗,ϕ(X ) via the properties of the growth functions ϕ and some arguments used in
the proof of [35, Theorem 4.2]. Then, in Subsection 5.2, we obtain a version of
Calderón–Zygmund decompositions for H∗,ϕ(X ) (see Proposition 5.8 below), which
is a generalization of the corresponding results on Hp(X ) in [27, Proposition 4.9]. In
Subsection 5.3, via this Calderón–Zygmund decompositions for H∗,ϕ(X ), a technical
lemma on the density of Lq

ϕ(·,1)(X )∩H∗,ϕ(X ) in H∗,ϕ(X ) and some arguments similar

to those used in the proof of [27, Theorem 4.2], we prove that H∗,ϕ(X ) ⊂ Hϕ,q
at (X ),

namely, we establish the atomic decomposition of H∗,ϕ(X ).
In Section 6, we study the Littlewood–Paley characterizations of Hϕ

at(X ), respec-
tively, in terms of Lusin area functions, Littlewood–Paley g-functions and Littlewood–
Paley g∗λ-functions. Precisely, in Subsection 6.1, via the vector-valued Fefferman–
Stein maximal inequality, we first show the independence of the choices of exp-ATIs
on the Musielak–Orlicz Hardy space Hϕ(X ) defined by the Lusin area functions (see
Theorem 6.3 below). Then we obtain the molecular characterizations of Hϕ(X ) in
Subsection 6.2 (see Theorem 6.8 below) by borrowing some ideas from the proofs
of [10, Theorem C] and [18, Theorem 2.12]. Later, in Subsection 6.3, via introduc-
ing the adapted atomic Musielak–Orlicz Hardy spaces Hϕ,q

at,A(X ) and proving their
equivalences to Hϕ,q

at (X ) (see Theorem 6.11 below), and some technical lemmas (see
Lemmas 4.9 and 6.13 below), we establish the Lusin area function characterizations
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of Hϕ(X ) (see Theorem 6.15 below), where the distribution (Gǫ
0(̺, ϑ))

′ is replaced

by its homogeneous version (G̊ǫ
0(̺, ϑ))

′ (see Proposition 6.12 below). Using the main
results in the above subsections, in Subsection 6.4, we establish the Littlewood–Paley
function characterizations of Hϕ(X ) (see Theorem 6.16 below).

In Section 7, we give a finite atomic characterization of Hϕ(X ) and an improved
version in case q < ∞. Indeed, in Subsection 7.1, combining some ideas used in the
proofs of [35, Theorem 3.4] and [27, Theorem 7.1], under the uniformly dominated
convergence condition, we show that ‖ · ‖Hϕ,q

fin (X ), with q ∈ (q(ϕ),∞), and ‖ · ‖H∗,ϕ(X )

are equivalent quasi-norms on Hϕ,q
fin (X ), ‖ · ‖Hϕ,∞

fin (X ) and ‖ · ‖Hϕ,∞
at (X ) are equivalent

quasi-norms on Hϕ,∞
fin (X ) ∩ UC(X ), and Hϕ,∞

fin (X ) ∩ UC(X ) is dense in Hϕ,∞
at (X ),

where UC(X ) denotes the set of uniformly continuous functions on X . The appli-
cation of the above finite atomic characterizations of Hϕ(X ) to the criterion for the
boundedness of sublinear operators from Hϕ(X ) to a quasi-Banach space is also in-
cluded in this section. By using some ideas from [7, 45], in Subsection 7.2 for the
case q <∞, we remove the uniformly dominated convergence condition of the main
results of Subsection 7.1, which essentially improves the corresponding results.

In Section 8, with the help of the finite atomic characterization of Hϕ(X ) in
Section 7 and some ideas used in the proof of the corresponding Euclidean case (see,
for instance, [35, Theorem 3.2]), we find that the dual space of Hϕ(X ) is just the
Musielak–Orlicz BMO space BMOϕ(X ) (see Theorem 10.6 below).

In Section 9, applying the criteria of the boundedness of sublinear operators from
Hϕ(X ) to a quasi-Banach space established in Section 7, we show the boundedness
of Calderón–Zygmund operators on Hϕ(X ) (see Theorem 9.2 below).

In Section 10, via the characterizations of PWM(BMO(X )) [namely, the set of
pointwise multipliers for BMO(X )] from [52, Example 2.8] in terms of some typical
Musielak–Orlicz BMO space BMOlog(X ), we establish another characterization of
PWM(BMO(X )) (see Theorem 10.6 below) by the typical Musielak–Orlicz Hardy
space H log(X ), which is a generalization of [35, Theorem 3.3]. The main difficulty
is to find a proper equivalent norm of functions in BMOlog(X ) (see Proposition 10.4
below). We point out that the Ahlfors n-regular condition [see (10.1) below] plays im-
portant roles in the above characterization of PWM(BMO(X )). It is unclear whether
or not the Ahlfors n-regular assumption can be relaxed.

Finally, we list some conventions on notation. Throughout this article, let
N := {1, 2, . . .}, Z+ := {0} ∪ N, C and c stand for positive constants which are
independent of the main parameters, but they may change from line to line. More-
over, we use C(ρ, α, ...) and c(ρ, α, ...) to denote positive constants depending on the
indicated parameters ρ, α, . . .. If, for any real functions f and g, f ≤ Cg, we then
write f . g and, if f . g . f , we then write f ∼ g. We also use the following
convention: If f ≤ Cg and g = h or g ≤ h, we then write f . g ∼ h or f . g . h,
rather than f . g = h or f . g ≤ h. For any subset E of X , we let 1E denote its
characteristic function and let E∁ denote its complementary set X \E. For any ball
B, let xB and rB denote, respectively, the center and the radius of B. Furthermore,
for any x, y ∈ X , r, ρ ∈ (0,∞) and ball B := B(x, r), let

ρB := B(x, ρr), V (x, r) := µ(B(x, r)) =: Vr(x) and V (x, y) := µ(B(x, d(x, y))).

For any p ∈ [1,∞], we use p′ to denote its conjugate index, namely, 1/p+ 1/p′ = 1.
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2. Preliminaries

In this section, we recall some basic notions, notation and known results used
later in this article.

The following version of the space of test functions on X was originally introduced
by Han et al. [25, Definition 2.2] (see also [26, Definition 2.8]).

Definition 2.1. Let x1 ∈ X , r ∈ (0,∞), ̺ ∈ (0, 1] and ϑ ∈ (0,∞). The space of
test functions, G(x1, r, ̺, ϑ), is defined to be the set of all measurable functions f on
X satisfying that there exists a non-negative constant C such that

(T1) for any x ∈ X , |f(x)| ≤ C 1
Vr(x1)+V (x1,x)

[ r
r+d(x1,x)

]ϑ;

(T2) for any x, y ∈ X satisfying d(x, y) ≤ [r + d(x1, x)]/(2A0),

|f(x)− f(y)| ≤ C

[
d(x, y)

r + d(x1, x)

]̺
1

Vr(x1) + V (x1, x)

[
r

r + d(x1, x)

]ϑ
,

where, for any x, y ∈ X and r ∈ (0,∞), Vr(x) := µ(B(x, r)) and V (x, y) :=
µ(B(x, d(x, y))). Moreover, for any f ∈ G(x1, r, ̺, ϑ), define

‖f‖G(x1, r, ̺, ϑ) := inf {C : C satisfies (T1) and (T2)} .

Fix x1 ∈ X . It is obvious that G(x1, 1, ̺, ϑ) is a Banach space. For any x ∈ X
and r ∈ (0,∞), it is easy to see that G(x, r, ̺, ϑ) = G(x1, 1, ̺, ϑ) with equivalent
norms. For notational simplicity, we denote G(x1, 1, ̺, ϑ) simply by G(̺, ϑ). For any
given ε ∈ (0, 1], let Gε

0(̺, ϑ) be the completion of the space G(ε, ε) in G(̺, ϑ) when
̺, ϑ ∈ (0, ε]. Moreover, if f ∈ Gε

0(̺, ϑ), we then let ‖f‖Gε
0(̺,ϑ)

:= ‖f‖G(̺,ϑ). Also, we

let G̊ε
0(̺, ϑ) := {f ∈ Gε

0(̺, ϑ) :
´

X
f(x) dµ(x) = 0}.

The dual spaces (Gε
0(̺, ϑ))

′ and (G̊ε
0(̺, ϑ))

′ are defined, respectively, to be the

sets of all continuous linear functionals L from Gε
0(̺, ϑ) to C and from G̊ε

0(̺, ϑ) to
C, and both are equipped with the weak-∗ topology. For any f ∈ (Gε

0(̺, ϑ))
′ and

φ ∈ Gε
0(̺, ϑ), we use the pairing 〈f, φ〉 to denote the action of f on φ. In particular,

when f is locally integrable, it makes sense to write

〈f, φ〉 =

ˆ

X

f(x)φ(x) dµ(x).

Then we recall the following notion of Orlicz functions. A function φ : [0,∞) →
[0,∞) is called an Orlicz function if it is non-decreasing and φ(0) = 0, φ(t) > 0 if
t ∈ (0,∞), and limt→∞ φ(t) = ∞.

Now, we recall the notions of uniformly lower (resp., upper) types on Musielak–
Orlicz functions from [31].

Definition 2.2. For a given function ϕ : X × [0,∞) → [0,∞) such that, for
almost every x ∈ X , ϕ(x, ·) is an Orlicz function, ϕ is said to be of uniformly lower
(resp., upper) type p if there exists a positive constant C(p), depending on p, such
that, for almost every x ∈ X , t ∈ [0,∞) and s ∈ (0, 1) [resp., s ∈ [1,∞)],

ϕ(x, st) ≤ C(p)s
pϕ(x, t).

The function ϕ is said to be of uniformly lower (resp., upper) type if it is of
uniformly lower (resp., upper) type p for some p ∈ (0,∞) and let

i(ϕ) := sup{p ∈ (0,∞) : ϕ is of uniformly lower type p}.(2.1)

Now, we recall the following notion of the set of Muckenhoupt weights on X from
[58].
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Definition 2.3. A measurable function w : X → (0,∞) is said to belong to the
set of Muckenhoupt weights for some q ∈ [1,∞), denoted by ϕ ∈ Aq(X ), if, when
q ∈ (1,∞),

[w]Aq(X ) := sup
B⊂X

1

[µ(B)]q

ˆ

B

w(x) dµ(x)

{
ˆ

B

[w(y)]−1/(q−1) dµ(y)

}q−1

<∞

or

[w]A1(X ) := sup
B⊂X

1

µ(B)

ˆ

B

w(x) dµ(x)

(
ess sup

y∈B
[w(y)]−1

)
<∞,

where the suprema are taken over all balls B ⊂ X . Let

A∞(X ) :=
⋃

q∈[1,∞)

Aq(X ).

We recall the notions of the uniformly Muckenhoupt condition and the uniformly
reverse Hölder condition from [31].

Definition 2.4. A function ϕ : X × [0,∞) → [0,∞) is said to satisfy the uni-
formly Muckenhoupt condition for some q ∈ [1,∞), denoted by ϕ ∈ Aq(X ), if, when
q ∈ (1,∞),

[ϕ]Aq(X ) := sup
t∈(0,∞)

sup
B⊂X

1

[µ(B)]q

ˆ

B

ϕ(x, t) dµ(x)

{
ˆ

B

[ϕ(y, t)]−1/(q−1) dµ(y)

}q−1

<∞

or

[ϕ]A1(X ) := sup
t∈(0,∞)

sup
B⊂X

1

µ(B)

ˆ

B

ϕ(x, t) dµ(x)

(
ess sup

y∈B
[ϕ(y, t)]−1

)
<∞,

where the first suprema are taken over all t ∈ (0,∞) and the second ones over all
balls B ⊂ X .

Let

A∞(X ) :=
⋃

q∈[1,∞)

Aq(X ).

A function ϕ : X × [0,∞) → [0,∞) is said to satisfy the uniformly reverse Hölder
condition for some q ∈ (1,∞], denoted by ϕ ∈ RHq(X ), if, when q ∈ (1,∞),

[ϕ]RHq(X ) := sup
t∈(0,∞)

sup
B⊂X

{
1

µ(B)

ˆ

B

[ϕ(x, t)]q dµ(x)

}1/q{
1

µ(B)

ˆ

B

ϕ(y, t) dµ(y)

}−1

<∞

or

[ϕ]RH∞(X ) := sup
t∈(0,∞)

sup
B⊂X

{
ess sup

y∈B
ϕ(y, t)

}{
1

µ(B)

ˆ

B

ϕ(y, t) dµ(y)

}−1

<∞,

where the first suprema are taken over all t ∈ (0,∞) and the second ones over all
balls B ⊂ X .

The following notion of growth functions on spaces of homogeneous type were
taken from [31].

Definition 2.5. A function ϕ : X × [0,∞) → [0,∞) is called a growth function
if the following conditions are satisfied:

(i) ϕ is a Musielak–Orlicz function, namely,
(i)1 the function ϕ(x, ·) : [0,∞) → [0,∞) is an Orlicz function for almost

every x ∈ X ;
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(i)2 the function ϕ(·, t) is measurable for any t ∈ [0,∞).
(ii) ϕ ∈ A∞(X ).
(iii) ϕ is of uniformly lower type p for some p ∈ (0, 1] and of uniformly upper type

1.

In what follows, let M denote the Hardy–Littlewood maximal operator defined by
setting, for any f ∈ L1

loc (X ) (the space of all locally integrable functions on X ) and
x ∈ X ,

(2.2) M(f)(x) := sup
B∋x

1

µ(B)

ˆ

B

|f(y)| dµ(y),

where the supremum is taken over all balls B of X containing x.
Now, we list some basic properties of Aq(X ) for any q ∈ [1,∞) whose proofs are

similar to those of the Euclidean case in [59, Lemma 1.1.3]; the details are omitted
here (see [31, Lemmas 2.11 and 2.12] for some details).

Lemma 2.6. The following conclusions hold true.

(i) A1(X ) ⊂ Ap(X ) ⊂ Aq(X ) for any p, q satisfying 1 ≤ p ≤ q <∞.
(ii) RH∞(X ) ⊂ RHq(X ) ⊂ RHp(X ) for any p, q satisfying 1 < p ≤ q ≤ ∞.
(iii) If q ∈ [1,∞) and ϕ ∈ Aq(X ), then there exists a positive constant C such

that, for any ball B ⊂ X , measurable function f and t ∈ (0,∞),
[

1

µ(B)

ˆ

B

|f(x)| dµ(x)

]q
≤ C

1

ϕ(B, t)

ˆ

B

|f(x)|qϕ(x, t) dµ(x),

here and hereafter, for any measurable set E ⊂ X and t ∈ [0,∞), let

ϕ(E, t) :=

ˆ

E

ϕ(x, t) dµ(x).

(iv) If ϕ ∈ Aq(X ) with q ∈ [1,∞), then there exists a positive constant C such
that, for any ball B ⊂ X , measurable set E ⊂ B and t ∈ (0,∞),

ϕ(B, t)

ϕ(E, t)
≤ C

[
µ(B)

µ(E)

]q
.

(v) If q ∈ (1,∞) and ϕ ∈ Aq(X ), then there exists a positive constant C such
that, for any f ∈ L1

loc (X ) and t ∈ [0,∞),
ˆ

X

[M(f)(x)]qϕ(x, t) dµ(x) ≤ C

ˆ

X

|f(x)|qϕ(x, t) dµ(x).

We then recall the definition of Musielak–Orlicz spaces from [31, Definition 2.8].

Definition 2.7. Let ϕ be a Musielak–Orlicz function. The Musielak–Orlicz space
Lϕ(X ) is defined to be the set of all measurable functions f such that, for some
λ ∈ (0,∞),

ˆ

X

ϕ(x, |f(x)|/λ) dµ(x) <∞,

equipped with the Luxembourg ( also called the Luxembourg–Nakano) (quasi-)norm

‖f‖Lϕ(X ) := inf

{
λ ∈ (0,∞) :

ˆ

X

ϕ(x, |f(x)|/λ) dµ(x) ≤ 1

}
.

We further recall some basic properties of Lϕ(X ), which are easy generalizations
of the corresponding properties of the Euclidean case in [59, Lemmas 1.1.6 and 1.1.10]
to any space of homogeneous type; the details are omitted.
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Lemma 2.8. Let ϕ be a growth function as in Definition 2.5. Then the following
conclusions hold true.

(i) The growth function ϕ is uniformly σ-quasi-subadditive on X×[0,∞), namely,
there exists a positive constant C such that, for any (x, tj) ∈ X × [0,∞) with
j ∈ N,

ϕ

(
x,

∞∑

j=1

tj

)
≤ C

∞∑

j=1

ϕ (x, tj) .

(ii) For any f ∈ Lϕ(X ) \ {0},
ˆ

X

ϕ

(
x,

|f(x)|

‖f‖Lϕ(X )

)
dµ(x) = 1.

(iii) For any {fk}k∈N ⊂ Lϕ(X ), limk→∞ ‖fk‖Lϕ(X ) = 0 if and only if

lim
k→∞

ˆ

X

ϕ(x, |fk(x)|) dµ(x) = 0.

(iii) For any (x, t) ∈ X × [0,∞), ϕ̃(x, t) :=
´ t

0
ϕ(x,s)

s
ds is a growth function, which

is equivalent to ϕ; moreover, for almost every x ∈ X , ϕ̃(x, ·) is continuous
and strictly increasing.

In what follows, for any f ∈ L1
loc (X ) and any ball B ⊂ X , let

mB(f) :=
1

µ(B)

ˆ

B

f(x) dµ(x).(2.3)

Then we generalize the notion of Musielak–Orlicz BMO spaces BMOϕ(Rn) in [35] to
any space of homogeneous type as follows.

Definition 2.9. A function f ∈ L1
loc (X ) is said to belong to BMOϕ(X ) if

‖f‖BMOϕ(X ) := sup
B

1

‖1B‖Lϕ(X )

ˆ

B

|f(x)−mB(f)| dµ(x) <∞,

where the supremum is taken over all balls B ⊂ X .

Remark 2.10. Fix x0 ∈ X . A typical example of the space BMOϕ(X ) is the
space BMOlog(X ) which is just the space BMOϕ(X ) with

ϕ(x, t) :=
t

log(e+ d(x, x0)) + log(e+ t)
, ∀ x ∈ X , ∀ t ∈ [0,∞).(2.4)

We further introduce the following notion of Musielak–Orlicz Campanato spaces
Lipϕ,q(X ), which is a generalization of the corresponding Euclidean case in [43] to
any space of homogeneous type.

Definition 2.11. A function f ∈ L1
loc (X ) is said to belong to the Musielak–

Orlicz Campanato space Lipϕ,q(X ) if

‖f‖Lipϕ,q(X ) := sup
B

1

‖1B‖Lϕ(X )

{
ˆ

B

[
|f(x)−mB(f)|

ϕ(x, ‖1B‖
−1
Lϕ(X ))

]q
ϕ
(
x, ‖1B‖

−1
Lϕ(X )

)
dµ(x)

}1/q

<∞,

where the supremum is taken over all balls B ⊂ X .

Remark 2.12. Obviously, Lipϕ,1(X ) = BMOϕ(X ).
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3. John–Nirenberg inequality of BMOϕ(X )

In this section, we obtain the John–Nirenberg inequality and establish several
equivalent characterizations of BMOϕ(X ). The following John–Nirenberg inequality
for BMOϕ(X ) is similar to the corresponding Euclidean case in [43, Theorem 2.5].
For the convenience of the reader, we present some details here.

Theorem 3.1. Let ϕ be a growth function as in Definition 2.5 and f ∈ BMOϕ(X ).
Then there exist positive constants C1, C2 and C3, independent of f , such that, for
any ball B ⊂ X and t ∈ (0,∞), if ϕ ∈ A1(X ), then

ϕ

({
x ∈ B :

|f(x)−mB(f)|

ϕ(x, ‖1B‖
−1
Lϕ(X ))

> t

}
, ‖1B‖

−1
Lϕ(X )

)
≤ C1 exp

{
−

C2t

‖f‖Lipϕ,1(X )‖1B‖Lϕ(X )

}

and, if ϕ ∈ Aq(X ) for some q ∈ (1,∞), then

ϕ

({
x ∈ B :

|f(x)−mB(f)|

ϕ(x, ‖1B‖
−1
Lϕ(X ))

> t

}
, ‖1B‖

−1
Lϕ(X )

)
≤ C3

[
1 +

t

‖f‖Lipϕ,1(X )‖1B‖Lϕ(X )

]−q′

,

where mB(f) is as in (2.3) and q′ := q/(q − 1).

To prove Theorem 3.1, we need the following two technical lemmas. The first
lemma is an easy generalization of the corresponding Euclidean case in [51, Lem-
ma (3.1)] to any space of homogeneous type; the details are omitted.

Lemma 3.2. Let q ∈ (1,∞) and 1
q
+ 1

q′
= 1. If w ∈ Aq(X ), then there exists a

positive constant C such that, for any ball B ⊂ X and t ∈ (0,∞),

w ({x ∈ B : w(x) < t}) ≤ C

[
t
µ(B)

w(B)

]q′
w(B),

here and hereafter, for any non-negative measurable function w and measurable set
E ⊂ X ,

w(E) :=

ˆ

E

w(x) dµ(x).

The second lemma is a generalization of the weighted version of Calderón–
Zygmund decompositions on the Euclidean case in [51, Lemma (3.2)] to any space of
homogeneous type.

Lemma 3.3. Let w : X → (0,∞) be a measurable function satisfying the dou-

bling condition, namely, there exists a positive constant C̃0 such that, for any ball

B ⊂ X , w(2B) ≤ C̃0w(B) and, for a given ball B0 ⊂ X and σ ∈ (0,∞), let f be a
non-negative function which satisfies that

1

w(B0)

ˆ

B0

f(x)w(x) dµ(x) ≤ σ.

Then there exists a sequence {Bk}k∈I (I is some countable index set) of disjoint balls
such that, for almost every x ∈ B0 \

⋃
k∈I(4A0Bk) with A0 same as in (1.2),

f(x) ≤ σ(3.1)

and, for any k ∈ I,

σ <
1

w(Bk)

ˆ

Bk∩B0

f(x)w(x) dµ(x) ≤ C̃0σ.
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Proof. For a fixed ball B0 and σ ∈ (0,∞), let E := {x ∈ X : f(x)1B0(x) > σ} ⊂
B0. Observe that, by the generalized Lebesgue differential theorem (see, for instance,
[29, Theorem 1.8]), we know that, for almost every x ∈ E, there exists a ball B′

x ⊂ X
such that

1

w(B′
x)

ˆ

B′
x

f(y)1B0(y)w(y) dµ(y) > σ.(3.2)

Let Bx be the largest ball, satisfying (3.2), concentric with B′
x and having the radius

of the form 2mrB′
x

with m ∈ Z+. Then, for B̃x := 2Bx,

1

w(B̃x)

ˆ

B̃x

f(y)1B0(y)w(y) dµ(y)≤ σ.

From the Vitali–Wiener type covering lemma (see, for instance, [10, Theorem
(3.1)]), it follows that there exists a disjoint subsequence {Bk}k∈I (I is some countable
index set) of {Bx}x∈E such that E ⊂

⋃
k∈I(4A0Bk). Thus, (3.1) follows immediately.

Moreover, by the doubling condition of w, we further have

σ <
1

w(Bk)

ˆ

Bk∩B0

f(y)w(y) dµ(y)≤
w(B̃k)

w(Bk)

1

w(B̃k)

ˆ

B̃k

f(y)1B0(y)w(y) dµ(y)≤ C̃0σ,

which completes the proof of Lemma 3.3. �

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let f ∈ Lipϕ,1(X ) and fix any ball B0 ⊂ X . By the
homogeneity of the norm of f ∈ Lipϕ,1(X ), without loss of generality, we may assume

that ‖f‖Lipϕ,1(X ) = ‖1B0‖
−1
Lϕ(X ); otherwise, we may replace f by

f

‖f‖Lipϕ,1(X )‖1B0‖Lϕ(X )

.

For any t ∈ (0,∞) and ball B ⊂ B0, let

λ(t, B) := ϕ

({
x ∈ B :

|f(x)−mB(f)|

ϕ(x, ‖1B0‖
−1
Lϕ(X ))

> t

}
, ‖1B0‖

−1
Lϕ(X )

)

and

F(t) := sup
B⊂B0

λ(t, B)

ϕ(B, ‖1B0‖
−1
Lϕ(X ))

.(3.3)

From λ(t, B) ≤ ϕ(B, ‖1B0‖
−1
Lϕ(X )), it follows that, for any t ∈ (0,∞), F(t) ≤ 1. By

‖f‖Lipϕ,1(X ) = ‖1B0‖
−1
Lϕ(X ) and the uniformly upper type 1 property of ϕ, we obtain

1

ϕ(B, ‖1B0‖
−1
Lϕ(X ))

ˆ

B

|f(x)−mB(f)| dµ(x)(3.4)

≤
‖1B‖Lϕ(X )

ϕ(B, ‖1B0‖
−1
Lϕ(X ))‖1B0‖Lϕ(X )

≤
C̃1‖1B‖Lϕ(X )

ϕ(B, ‖1B‖
−1
Lϕ(X ))‖1B‖Lϕ(X )

= C̃1

for the positive constant C̃1 :=
1

C(1)
with C(1) as in Definition 2.2.

Furthermore, let σ ∈ [C̃1,∞). From Lemma 3.3 with f(·) and w(·) replaced,
respectively, by [

ϕ
(
·, ‖1B0‖

−1
Lϕ(X )

)]−1

|f(·)−mB(f)|
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and ϕ(·, ‖1B0‖
−1
Lϕ(X )), we deduce that there exist a disjoint sequence {Bk}k∈I , with I

as in Lemma 3.3, of balls and a positive constant C̃0 as in Lemma 3.3 such that, for
almost every x ∈ B \

⋃
k∈I(4A0Bk),

[
ϕ
(
x, ‖1B0‖

−1
Lϕ(X )

)]−1

|f(x)−mB(f)| ≤ σ(3.5)

and, for any k ∈ I,

σ <
1

ϕ(Bk, ‖1B0‖
−1
Lϕ(X ))

ˆ

Bk∩B

|f(x)−mB(f)| dµ(x) ≤ C̃0σ.(3.6)

Thus, by this and (3.4), we have

∑

k∈I

ϕ
(
Bk, ‖1B0‖

−1
Lϕ(X )

)
≤

1

σ

∑

k∈I

ˆ

Bk∩B

|f(x)−mB(f)| dµ(x)(3.7)

≤
1

σ

ˆ

B

|f(x)−mB(f)| dµ(x) ≤
C̃1

σ
ϕ
(
B, ‖1B0‖

−1
Lϕ(X )

)
.

If t ∈ [σ,∞), from (3.5) and Lemma 2.6(iv), we then deduce that

λ(t, B) = ϕ

({
x ∈ B :

|f(x)−mB(f)|

ϕ(x, ‖1B0‖
−1
Lϕ(X ))

> t

}
, ‖1B0‖

−1
Lϕ(X )

)

≤
∑

k∈I

ϕ

({
x ∈ 4A0Bk :

|f(x)−mB(f)|

ϕ(x, ‖1B0‖
−1
Lϕ(X ))

> t

}
, ‖1B0‖

−1
Lϕ(X )

)

.
∑

k∈I

ϕ

({
x ∈ Bk :

|f(x)−mB(f)|

ϕ(x, ‖1B0‖
−1
Lϕ(X ))

> t

}
, ‖1B0‖

−1
Lϕ(X )

)
.

Thus, for any t ∈ [σ,∞) and any s ∈ [0, t], we write

λ(t, B) ≤
∑

k∈I

λ(t− s, Bk)(3.8)

+
∑

k∈I

ϕ

({
x ∈ Bk :

|mBk
(f)−mB(f)|

ϕ(x, ‖1B0‖
−1
Lϕ(X ))

> s

}
, ‖1B0‖

−1
Lϕ(X )

)

=: I1 + I2.

For I1, by (3.3), (3.7) and some arguments similar to those used in the estimation of
I1 in the proof of [43, Theoem 2.5], we then obtain

I1 ≤
C̃1

σ
F(t− s)ϕ

(
B, ‖1B0‖

−1
Lϕ(X )

)
.(3.9)

Moreover, from (3.6), we deduce that

|mBk
(f)−mB(f)| ≤

1

µ(Bk)

ˆ

Bk

|f(x)−mB(f)| dµ(x)(3.10)

≤ C̃0σ
ϕ(Bk, ‖1B0‖

−1
Lϕ(X ))

µ(Bk)
.

We further consider the following two cases.
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Case 1. ϕ ∈ A1(X ). In this case, we know that there exists a positive constant

C̃2 such that

ϕ
(
Bk, ‖1B0‖

−1
Lϕ(X )

)

µ(Bk)
≤ C̃2 ess inf

y∈Bk

ϕ
(
y, ‖1B0‖

−1
Lϕ(X )

)
,

which, together with (3.10), implies that

ϕ

({
x ∈ Bk :

|mBk
(f)−mB(f)|

ϕ(x, ‖1B0‖
−1
Lϕ(X ))

> s

}
, ‖1B0‖

−1
Lϕ(X )

)
(3.11)

≤ ϕ







x ∈ Bk :

C̃0C̃2σ ess inf
y∈Bk

ϕ
(
y, ‖1B0‖

−1
Lϕ(X )

)

ϕ(x, ‖1B0‖
−1
Lϕ(X ))

> s




, ‖1B0‖

−1
Lϕ(X )


 .

Now, we choose σ := 2C̃1 and s := 2C̃0C̃1C̃2. Then we observe that, if t ∈ (s,∞),

then σ ∈ (C̃1, t) and s ∈ (0, t) as required.
By (3.8) and (3.11), we conclude that

I2 ≤
∑

k∈I

ϕ







x ∈ Bk :

ess inf
y∈Bk

ϕ
(
y, ‖1B0‖

−1
Lϕ(X )

)

ϕ(x, ‖1B0‖
−1
Lϕ(X ))

> 1




, ‖1B0‖

−1
Lϕ(X )


 = 0,

which, combined with (3.8) and (3.9), further implies that, for any t ∈ (s,∞) and
B ⊂ B0,

λ(t, B) ≤
1

2
F(t− s)ϕ

(
B, ‖1B0‖

−1
Lϕ(X )

)
.

Thus, if t ∈ (s,∞), then F(t) ≤ 1
2
F(t− s).

Moreover, if m ∈ N and t ∈ (ms, (m− 1)s], then

F(t) ≤
1

2
F(t− s) ≤ · · · ≤

1

2m
F(t−ms).

By F(t−ms) ≤ 1 and m ≥ t
s
− 1, we conclude that

F(t) ≤ 2−m ≤ 21−
t
s = 2e−( t

s
log 2).

Let C1 := 2 and C2 :=
1
s
log 2. Then we conclude that, for any given ϕ ∈ A1(X ) and

any s ∈ (0, t),

ϕ

({
x ∈ B :

|f(x)−mB(f)|

ϕ(x, ‖1B‖
−1
Lϕ(X ))

> t

}
, ‖1B‖

−1
Lϕ(X )

)
≤ 2e−( 1

s
log 2)t = C1e

−C2t,

which implies the desired conclusion of Theorem 3.1 in Case 1.
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Case 2. ϕ ∈ Aq(X ) for some q ∈ (1,∞). In this case, by (3.8), (3.10), Lemma 3.2
and (3.7), we know that

I2 ≤
∑

k∈I

ϕ





x ∈ Bk :

C̃0σϕ
(
Bk, ‖1B0‖

−1
Lϕ(X )

)

µ(Bk)ϕ(x, ‖1B0‖
−1
Lϕ(X ))

> s



 , ‖1B0‖

−1
Lϕ(X )




=
∑

k∈I

ϕ





x ∈ Bk : ϕ

(
x, ‖1B0‖

−1
Lϕ(X )

)
<
C̃0σϕ

(
Bk, ‖1B0‖

−1
Lϕ(X )

)

sµ(Bk)



 , ‖1B0‖

−1
Lϕ(X )




≤
∑

k∈I

C3

(
C̃0σ

s

)q′

ϕ
(
Bk, ‖1B0‖

−1
Lϕ(X )

)
≤ C3

(
C̃0σ

s

)q′

C̃1

σ
ϕ
(
B, ‖1B0‖

−1
Lϕ(X )

)
,

where C3 is the same fixed positive constant C as in Lemma 3.2.

From this, (3.8) and (3.9), it follows that, for any σ ∈ [C̃1, t], s ∈ (0, t) and
B ⊂ B0,

λ(t, B) ≤


C̃1

σ
F(t− s) + C3

(
C̃0σ

s

)q′

C̃1

σ


ϕ

(
B, ‖1B0‖

−1
Lϕ(X )

)
.(3.12)

Then, by (3.12) with σ := 4q
′

C̃1, s := t
2

and C0 := max{σ, C̃1C3(2C̃0)
q′σq′−1}, we

have, for any t ∈ (C0,∞),

F(t) ≤ 4−q′F

(
t

2

)
+ C0t

−q′.(3.13)

Now, we show that, if t ∈ (C0, 2C0] and m ∈ Z+, then

F (2mt) ≤ (2C0)
q′ (2mt)−q′ .(3.14)

To this end, we use mathematical induction. Indeed, when m = 0, we observe that

F (2mt) ≤ 1 ≤ (2C0)
q′t−q′ ,

which implies (3.14) in this case.
Suppose that (3.14) holds true with m replaced by m− 1. Then, from (3.13), we

deduce that

F (2mt) ≤ 4−q′F
(
2m−1t

)
+ C0 (2

mt)−q′ ≤ 4−q′(2C0)
q′
(
2m−1t

)−q′
+ C0 (2

mt)−q′

= (2C0)
q′ (2mt)−q′

(
2−q′ + 2−q′C1−q′

0

)
,

which, together with the fact that

2−q′ + 2−q′C1−q′

0 < 2−q′ + 2−q′ < 1,

implies that (3.14) holds true for m.
Then, by mathematical induction on m, we further conclude that (3.14) holds

true for any m ∈ Z+. Furthermore, from (3.14), we deduce that, if t ∈ (C0,∞), then

F(t) ≤ (2C0)
q′t−q′ ,

which implies the desired conclusion of Theorem 3.1 in Case 2 and hence completes
the proof of Theorem 3.1. �

In what follows, let

m(ϕ) := ⌊ω[q(ϕ)/i(ϕ)− 1]⌋,(3.15)
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where, for any a ∈ R, ⌊a⌋ denotes the largest integer which is not bigger than a, ω
is as in (1.4), i(ϕ) is as in (2.1) and

q(ϕ) := inf{q ∈ [1,∞) : ϕ ∈ Aq(X )}.(3.16)

In the spirit of the corresponding Euclidean case in [43, Theorem 2.7], we obtain
the following several equivalent characterizations of BMOϕ(X ) on X .

Theorem 3.4. Let ϕ be a growth function as in Definition 2.5, q ∈ [1, [q(ϕ)]′)

and ǫ ∈ (ω[ q(ϕ)
i(ϕ)

−1],∞), where i(ϕ) and q(ϕ) are, respectively, as in (2.1) and (3.16),

and 1/q(ϕ) + 1/[q(ϕ)]′ = 1. Then, for any f ∈ L1
loc (X ), the following statements are

mutually equivalent:

(i) ‖f‖BMOϕ(X ) <∞;
(ii) ‖f‖Lipϕ,q(X ) <∞;

(iii) ‖f‖Lipǫϕ,1(X ) := sup
{x0∈X , r∈(0,∞), B:=B(x0,r)⊂X}

rω+ǫ

‖1B‖Lϕ(X )

ˆ

X

|f(x)−mB(f)|

rω+ǫ+[d(x, x0)]ω+ǫ
dµ(x)

<∞, where mB(f) is as in (2.3).

Moreover, the norms ‖·‖BMOϕ(X ), ‖·‖Lipϕ,q(X ) and ‖·‖Lipǫϕ,1(X ) are mutually equivalent.

Proof. From Theorem 3.1 and some arguments similar to those used in the proof
of [43, Theorem 2.7], it follows that “(i) ⇐⇒ (ii)” and, for any f ∈ L1

loc (X ),

‖f‖Lipϕ,1(X ) ∼ ‖f‖Lipϕ,q(X ),

where the positive equivalence constants are independent of f .
Now, we show that “(iii) ⇐⇒ (i)”. It is clear that “(iii) =⇒ (i)” and, for any

f ∈ L1
loc (X ),

‖f‖Lipϕ,1(X ) . ‖f‖Lipǫϕ,1(X ).

Then we are left to show that “(i) =⇒ (iii)”. Fix any x0 ∈ X , r ∈ (0,∞) and ball
B := B(x0, r). For any k ∈ Z+ := {0} ∪N, let Bk := 2kB. Then we write

I : =
rω+ǫ

‖1B‖Lϕ(X )

ˆ

X

|f(x)−mB(f)|

rω+ǫ + [d(x, x0)]ω+ǫ
dµ(x)(3.17)

=
rω+ǫ

‖1B‖Lϕ(X )

ˆ

B

|f(x)−mB(f)|

rω+ǫ + [d(x, x0)]ω+ǫ
dµ(x) +

∞∑

k=1

rω+ǫ

‖1B‖Lϕ(X )

ˆ

Bk\Bk−1

· · ·

=: I1 +
∞∑

k=1

I2,k,

where

I1 :=
rω+ǫ

‖1B‖Lϕ(X )

ˆ

B

|f(x)−mB(f)|

rω+ǫ + [d(x, x0)]ω+ǫ
dµ(x)

and, for any k ∈ N,

I2,k :=
rω+ǫ

‖1B‖Lϕ(X )

ˆ

Bk\Bk−1

|f(x)−mB(f)|

rω+ǫ + [d(x, x0)]ω+ǫ
dµ(x).

Obviously, we have

I1 ≤
1

‖1B‖Lϕ(X )

ˆ

B

|f(x)−mB(f)| dµ(x) ≤ ‖f‖Lipϕ,1(X ).(3.18)

Moreover, observe that ǫ ∈ (ω[ q(ϕ)
i(ϕ)

−1],∞) implies that there exist p0 ∈ (0, i(ϕ)) and

q0 ∈ (q(ϕ),∞) such that ǫ > ω( q0
p0
−1). Thus, ϕ ∈ Aq0(X ) and ϕ is of uniformly lower
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type p0. By some arguments similar to those used in the proof of [43, Theorem 2.7],
we conclude that, for any k ∈ N,

‖1Bk
‖Lϕ(X ) . 2

kω
q0
p0 ‖1B‖Lϕ(X ),(3.19)

which, together with (1.4), further implies that, for any k ∈ N,

I2,k . 2−k(ω+ǫ) 1

‖1B‖Lϕ(X )

ˆ

Bk

|f(x)−mB(f)| dµ(x)(3.20)

. 2−k(ω+ǫ) 1

‖1B‖Lϕ(X )

[
ˆ

Bk

|f(x)−mBk
(f)| dµ(x)

+µ(Bk) |mBk
(f)−mB(f)|]

. 2−k(ω+ǫ) 1

‖1B‖Lϕ(X )

[
ˆ

Bk

|f(x)−mBk
(f)| dµ(x)

+µ(Bk)

k∑

s=1

∣∣mBs(f)−mBs−1(f)
∣∣
]

. 2−k(ω+ǫ)

[
1

‖1B‖Lϕ(X )

ˆ

Bk

|f(x)−mBk
(f)| dµ(x)

+

k∑

s=1

µ(Bk)

µ(Bs−1)

1

‖1B‖Lϕ(X )

ˆ

Bs−1

|f(x)−mBs(f)| dµ(x)

]

. 2−k(ω+ǫ)
[
2
kω

q0
p0 ‖f‖Lipϕ,1(X )

+

k∑

s=1

µ(Bk)

µ(Bs)

1

‖1B‖Lϕ(X )

ˆ

Bs

|f(x)−mBs(f)| dµ(x)

]

. 2−k(ω+ǫ)

[
2
kω

q0
p0 ‖f‖Lipϕ,1(X ) +

k∑

s=1

2(k−s)ω2
sω

q0
p0 ‖f‖Lipϕ,1(X )

]

. 2−k(ω+ǫ)

[
2
kω

q0
p0 + 2kω

k∑

s=−∞

2
sω(

q0
p0

−1)

]
‖f‖Lipϕ,1(X )

∼ 2−k(ω+ǫ)2
kω

q0
p0 ‖f‖Lipϕ,1(X ) ∼ 2

−k[ǫ−ω(
q0
p0

−1)]
‖f‖Lipϕ,1(X ).

From (3.17), (3.18), (3.20) and ǫ > ω( q0
p0

− 1), we deduce that

I . ‖f‖Lipϕ,1(X ) +
∞∑

k=1

2
−k[ǫ−ω(

q0
p0

−1)]
‖f‖Lipϕ,1(X ) . ‖f‖Lipϕ,1(X ),

which implies that, for any f ∈ Lipϕ,1(X ),

‖f‖Lipǫϕ,1(X ) . ‖f‖Lipϕ,1(X ).

This finishes the proof of “(i) =⇒ (iii)” and hence of Theorem 3.4. �

Remark 3.5. By Theorem 3.4, we know that Lipϕ,q(X ) is independent of the
choice of q ∈ [1, [q(ϕ)]′), with q(ϕ) as in (3.16), in the sense of equivalent norms.



Real-variable characterizations of Musielak–Orlicz Hardy spaces on spaces of homogeneous type 359

4. Musielak–Orlicz Hardy spaces via various maximal functions

In this section, we introduce Musielak–Orlicz Hardy spaces, H+,ϕ(X ), Hϕ
θ (X )

and H∗,ϕ(X ), defined, respectively, via radial, nontangential and grand maximal
functions and show that H+,ϕ(X ), Hϕ

θ (X ) and H∗,ϕ(X ) are mutually identical with
equivalent quasi-norms.

4.1. Calderón reproducing formulae. In this section, we first recall the
important Calderón reproducing formulae established in [28]. Now, we first recall
the following system of dyadic cubes given in [32, Theorem 2.2] (see also [2]), which
was formulated in [27, Lemma 2.3].

Lemma 4.1. Fix constants c0, C0 and δ such that 0 < c0 ≤ C0 < ∞, δ ∈ (0, 1)
and 12A3

0C0δ ≤ c0. Suppose that a set of points, {zkα : k ∈ Z, α ∈ Ak} ⊂ X with Ak

(k ∈ Z) being a countable set of indices, has the following properties: for any k ∈ Z,

(i) d(zkα, z
k
β) ≥ c0δ

k when α 6= β;

(ii) minα∈Ak
d(x, zkα) ≤ C0δ

k for any x ∈ X .

(The existence of such a set of points is guaranteed by the Zorn lemma.) Then there
exists a family of sets, {Qk

α : k ∈ Z, α ∈ Ak} (which is called the system of half-open
dyadic cubes), satisfying

(iii) X =
⋃

α∈Ak
Qk

α, where {Qk
α : α ∈ Ak} are mutually disjoint;

(iv) if ℓ ≥ k, α ∈ Ak and β ∈ Aℓ, then either Qℓ
β ⊂ Qk

α or Qk
α ∩Qℓ

β = ∅;

(v) for any α ∈ Ak, B(zkα, c♮δ
k) ⊂ Qk

α ⊂ B(zkα, C
♮δk) =: B(Qk

α), where c♮ :=
(3A2

0)
−1c0, C

♮ := 2A0C0 and zkα is called the “center” of Qk
α.

In what follows, for any k ∈ Z, let

X k := {zkα}α∈Ak
, Gk := Ak+1 \ Ak and Yk := X k+1 \ X k.(4.1)

Then we recall the following notion of the approximation of the identity with
exponential decay from [28, Definition 2.7]; see also [27, Definition 2.4].

Definition 4.2. A sequence {Qk}k∈Z of bounded linear integral operators on
L2(X ) is called an approximation of the identity with exponential decay (for short,
exp-ATI) if there exist constants C, ν ∈ (0,∞), a ∈ (0, 1] and η ∈ (0, 1) such that,
for any k ∈ Z, the kernel of the operator Qk, which is still denoted by Qk, satisfies

(i) (the identity condition)
∑∞

k=−∞Qk = I in L2(X ), where I is the identity
operator on L2(X );

(ii) (the size condition) for any x, y ∈ X ,

|Qk(x, y)| ≤ C
1√

Vδk(x)Vδk(y)
exp

{
−ν

[
d(x, y)

δk

]a}

· exp

{
−ν

[
max {d(x,Yk), d(y,Yk)}

δk

]a}
;

(iii) (the regularity condition) for any x, x̃, y ∈ X with d(x, x̃) ≤ δk,

|Qk(x, y)−Qk(x̃, y)|+ |Qk(y, x)−Qk(y, x̃)|

≤ C

[
d(x, x̃)

δk

]η
1√

Vδk(x)Vδk(y)
exp

{
−ν

[
d(x, y)

δk

]a}

· exp

{
−ν

[
max {d(x,Yk), d(y,Yk)}

δk

]a}
;
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(iv) (the second difference regularity condition) for any x, x̃, y, ỹ ∈ X with d(x, x̃) ≤
δk and d(y, ỹ) ≤ δk,

|[Qk(x, y)−Qk(x̃, y)]− [Qk(x, ỹ)−Qk(x̃, ỹ)]|

≤ C

[
d(x, x̃)

δk

]η [
d(y, ỹ)

δk

]η
1√

Vδk(x)Vδk(y)
exp

{
−ν

[
d(x, y)

δk

]a}

· exp

{
−ν

[
max{d(x,Yk), d(y,Yk)}

δk

]a}
;

(v) (the cancellation condition) for any x, y ∈ X ,
ˆ

X

Qk(x, ỹ) dµ(ỹ) = 0 =

ˆ

X

Qk(x̃, y) dµ(x̃).

Via the set of points, {zkα}k∈Z, α∈Ak
, constructing random dyadic cubes (based on

the system of dyadic cubes as in Lemma 4.1) and the spline functions, Auscher and
Hytönen [2, Theorem 7.1] constructed the following system {ψk

β}k∈Z, β∈Gk
of wavelet

functions on X , which is an orthonormal basis of L2(X ) (see also [28, Theorem 2.6]).

Theorem 4.3. There exist constants a ∈ (0, 1], η ∈ (0, 1), C, ν ∈ (0,∞) and
wavelet functions {ψk

β}k∈Z, β∈Gk
satisfying

(i) for any k ∈ Z, β ∈ Gk and x ∈ X ,

∣∣ψk
β(x)

∣∣ ≤ C
1√

V (ykβ, δ
k)

exp

(
−ν

[
d(ykβ, x)

δk

]a)
;

(ii) for any k ∈ Z, β ∈ Gk and x, y ∈ X such that d(x, y) ≤ δk,

∣∣ψk
β(x)− ψk

β(y)
∣∣ ≤ C

[
d(x, y)

δk

]η
1√

V (ykβ, δ
k)

exp

(
−ν

[
d(ykβ, x)

δk

]a)
;

(iii) for any k ∈ Z and β ∈ Gk,
ˆ

X

ψk
β(x) dµ(x) = 0.

Moreover, the wavelets {ψk
β}k∈Z, β∈Gk

form an orthonormal basis of L2(X ) and an
unconditional basis of Lp(X ) with any given p ∈ (1,∞).

Remark 4.4. (i) Let {ψk
β}k∈Z, β∈Gk

be as in Theorem 4.3. For any k ∈ Z
and x, y ∈ X , letting

Dk(x, y) :=
∑

β∈Gk

ψk
β(x)ψ

k
β(y),

it was shown in [28, p. 291] that the sequence {Dk}k∈Z satisfies all conditions
(i) through (v) of Definition 4.2.

(ii) The importance of the index η in Theorem 4.3 (and hence in Definition 4.2)
lies not only in the regularity of the wavelet functions but also in the restric-
tion of the index p for all results on Hardy spaces Hp(X ); see, for instance,
[27, Theorems 3.5, 4.2, 5.10, 6.3 and 7.3].

The following homogeneous continuous Calderón reproducing formula was estab-
lished in [28, Theorem 4.15].
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Theorem 4.5. Let {Qk}k∈Z be an exp-ATI and ̺, ϑ ∈ (0, η). Then there exists

a sequence {Q̃k}k∈Z of bounded linear operators on L2(X ) such that, for any f in

(G̊η
0 (̺, ϑ))

′ [resp., Lp(X ) with any given p ∈ (1,∞)],

f =

∞∑

k=−∞

Q̃kQkf,

where the series converges in (G̊η
0 (̺, ϑ))

′ [resp., Lp(X ) with any given p ∈ (1,∞)].
Moreover, there exists a positive constant C such that, for any k ∈ Z, the kernel of
Q̃k, which is still denoted by Q̃k, satisfies the following conditions:

(i) for any x, y ∈ X ,

∣∣∣Q̃k(x, y)
∣∣∣ ≤ C

1

Vδk(x) + V (x, y)

[
δk

δk + d(x, y)

]ϑ
;

(ii) for any x, x̃, y ∈ X with d(x, x̃) ≤ (2A0)
−1[δk + d(x, y)],

∣∣∣Q̃k(x, y)− Q̃k(x̃, y)
∣∣∣ ≤ C

[
d(x, x̃)

δk + d(x, y)

]̺
1

Vδk(x) + V (x, y)

[
δk

δk + d(x, y)

]ϑ
;

(iii) for any x ∈ X ,
ˆ

X

Q̃k(x, y) dµ(y) = 0 =

ˆ

X

Q̃k(y, x) dµ(y).

Next we recall the following notion of 1-exp-ATIs from [27, Definition 2.8].

Definition 4.6. A sequence {Pk}k∈Z of bounded linear integral operators on
L2(X ) is called an approximation of the identity with exponential decay and integra-
tion 1 (for short, 1-exp-ATI) if {Pk}k∈Z has the following properties:

(i) for any k ∈ Z, Pk satisfies (ii), (iii) and (iv) of Definition 4.2 but without the
exponential decay factor

exp

{
−ν

[
max {d(x,Yk), d(y,Yk)}

δk

]a}
,

where Yk is as in (4.1);
(ii) for any k ∈ Z and x ∈ X ,

´

X
Pk(x, y) dµ(y) = 1 =

´

X
Pk(y, x) dµ(y);

(iii) for any k ∈ Z, letting Qk := Pk − Pk−1, then {Qk}k∈Z is an exp-ATI.

Remark 4.7. The existence of the 1-exp-ATI is guaranteed by [2, Lemma 10.1]
(see also [27, Remark 2.9]).

4.2. Equivalences of Musielak–Orlicz Hardy spaces via various max-

imal functions. In this subsection, we show that H+,ϕ(X ), Hϕ
θ (X ) and H∗,ϕ(X )

mutually coincide with equivalent quasi-norms.
We first introduce the notions of Musielak–Orlicz Hardy spaces defined via var-

ious maximal functions, which are generalizations of the corresponding spaces on
Hardy spaces Hp(X ) in [27, Section 3] [in this case,

(4.2) ϕ(x, t) := tp for any (x, t) ∈ X × (0,∞) and any given p ∈ (ω/(ω + η), 1]

with ω as in (1.4) and η as in Definition 4.2].
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Definition 4.8. Let ̺, ϑ ∈ (0, η) and f ∈ (Gη
0 (̺, ϑ))

′ with η as in Definition 4.2.
Let {Pk}k∈Z be an 1-exp-ATI. The radial maximal function M+(f) of f is defined
by setting

M+(f)(x) := sup
k∈Z

|Pkf(x)| , ∀ x ∈ X .

The non-tangential maximal function Mθ(f) of f , with aperture θ ∈ (0,∞), is de-
fined by setting

Mθ(f)(x) := sup
k∈Z

sup
y∈B(x,θδk)

|Pkf(y)| , ∀ x ∈ X .

Moreover, the grand maximal function f ∗ of f is defined by setting, for any x ∈ X ,

f ∗(x) := sup
{
|〈f, h〉| : h ∈ Gη

0 (̺, ϑ), ‖h‖G(x, r, ̺, ϑ) ≤ 1 for some r ∈ (0,∞)
}
.(4.3)

Let ϕ be a growth function as in Definition 2.5. Then the Musielak–Orlicz Hardy
spaces, H+,ϕ(X ), Hϕ

θ (X ) [with θ ∈ (0,∞)] and H∗,ϕ(X ), are defined, respectively, by
setting

H+,ϕ(X ) :=
{
f ∈ (Gη

0 (̺, ϑ))
′
: ‖f‖H+,ϕ(X ) := ‖M+(f)‖Lϕ(X ) <∞

}
,

Hϕ
θ (X ) :=

{
f ∈ (Gη

0 (̺, ϑ))
′ : ‖f‖Hϕ

θ (X ) := ‖Mθ(f)‖Lϕ(X ) <∞
}

and

H∗,ϕ(X ) :=
{
f ∈ (Gη

0 (̺, ϑ))
′
: ‖f‖H∗,ϕ(X ) := ‖f ∗‖Lϕ(X ) <∞

}
.

We first give the following property of H∗,ϕ(X ) on X , which is a generalization
of the Euclidean case in [35, Proposition 5.1].

Lemma 4.9. Let ϕ, ̺ and ϑ be as in Definition 4.8 and η as in Definition 4.2.
Then H∗,ϕ(X ) continuously embeds into (Gη

0 (̺, ϑ))
′, namely, there exists a positive

constant C such that, for any f ∈ H∗,ϕ(X ) and h ∈ Gη
0 (̺, ϑ),

|〈f, h〉| ≤ C‖h‖Gη
0 (̺,ϑ)

‖f‖H∗,ϕ(X ).

Proof. Let h ∈ Gη
0 (̺, ϑ). Then it is obvious that, for any x ∈ B(x1, 1),

‖h‖Gη
0 (x,1,̺,ϑ)

. ‖h‖Gη
0 (x1,1,̺,ϑ) ∼ ‖h‖Gη

0 (̺,ϑ)
,

where x1 ∈ X is as in Definition 2.1. Thus, for any x ∈ B(x1, 1),

|〈f, h〉| . ‖h‖Gη
0 (̺,ϑ)

f ∗(x),

which further implies that

|〈f, h〉| . ‖h‖Gη
0 (̺,ϑ)

inf
x∈B(x1,1)

f ∗(x) . ‖h‖Gη
0 (̺,ϑ)

∥∥1B(x1,1)

∥∥−1

Lϕ(X )
‖f‖H∗,ϕ(X ).

This finishes the proof of Lemma 4.9. �

Remark 4.10. (i) It was shown in [27, (3.1)] that, for any f ∈ (Gη
0 (̺, ϑ))

′

and x ∈ X ,

M+f(x) ≤ Mθ(f)(x) . f ∗(x),

where the implicit positive constant only depends on θ.
(ii) Similarly to the Euclidean case in [35, Propsition 5.2], by Lemma 4.9, we can

show that H∗,ϕ(X ) is complete; the details are omitted.



Real-variable characterizations of Musielak–Orlicz Hardy spaces on spaces of homogeneous type 363

The following boundedness of the Hardy–Littlewood maximal operator M as in
(2.2) on Lϕ(X ) is similar to the Euclidean case in [41, Corollary 2.8] (see also [59,
Corollary 2.1.2]); the details are omitted.

Theorem 4.11. Assume that ϕ is a Musielak–Orlicz function of uniformly lower
type p−ϕ and of uniformly upper type p+ϕ with q(ϕ) < p−ϕ ≤ p+ϕ < ∞, where q(ϕ) is
as in (3.16). Then the Hardy–Littlewood maximal function M is bounded on Lϕ(X )
and, moreover, there exists a positive constant C such that, for any f ∈ Lϕ(X ),

ˆ

X

ϕ(x,M(f)(x)) dµ(x) ≤ C

ˆ

X

ϕ(x, |f(x)|) dµ(x).

Now, we state the main result of this section, which is a generalization of the
corresponding results on Hardy spaces Hp(X ) in [27, Theorem 3.5] [in this case, ϕ is
the same as in (4.2)].

Theorem 4.12. Assume that ϕ is a growth function as in Definition 2.5 and

θ ∈ (0,∞). Then, for any f ∈ (Gη
0 (̺, ϑ))

′ with ̺, ϑ ∈ (ω[ q(ϕ)
p

− 1], η) with ω as in

(1.4), q(ϕ) as in (3.16), p as in Definition 2.5 and η as in Definition 4.2,

‖f‖H+,ϕ(X ) ∼ ‖f‖Hϕ
θ (X ) ∼ ‖f‖H∗,ϕ(X ),

with positive equivalence constants independent of f .

Proof. Let f ∈ (Gη
0 (̺, ϑ))

′ with ̺, ϑ ∈ (ω[ q(ϕ)
p

− 1], η). Fix θ ∈ (0,∞). From

Remark 4.10(i), it follows that
∥∥M+(f)

∥∥
Lϕ(X )

. ‖Mθ(f)‖Lϕ(X ) . ‖f ∗‖Lϕ(X ) .

Thus, to complete the proof of Theorem 4.12, it suffices to show that, for any f ∈
(Gη

0 (̺, ϑ))
′ with ̺, ϑ ∈ (ω[ q(ϕ)

p
− 1], η),

‖f ∗‖Lϕ(X ) .
∥∥M+(f)

∥∥
Lϕ(X )

.(4.4)

To show (4.4), we first recall the following estimate in [27, (3.5)] that, for any given

r ∈ (0, p
q(ϕ)

) ⊂ (0, p) and, for any f ∈ (Gη
0 (̺, ϑ))

′ with ̺, ϑ ∈ (ω[ q(ϕ)
p

− 1], η) and any

x ∈ X ,

f ∗(x) . M+(f)(x) +
{
M
([
M+(f)

]r)
(x)
}1/r

.

By this and the boundedness of M on Lϕ̃(X ) with ϕ̃(x, t) := ϕ(x, t1/r) for any x ∈ X
and t ∈ (0,∞) (see Theorem 4.11), we conclude that

‖f ∗‖Lϕ(X ) .
∥∥M+(f)

∥∥
Lϕ(X )

+
∥∥M

([
M+(f)

]r)∥∥1/r
Lϕ̃(X )

∼
∥∥M+(f)

∥∥
Lϕ(X )

,

where we used the fact that ϕ̃ is of uniformly lower type p/r > q(ϕ) when r ∈ (0, p
q(ϕ)

).

This implies (4.4) and hence finishes the proof of Theorem 4.12. �

5. Atomic characterizations of H∗,ϕ(X )

This section is devoted to the atomic characterizations of H∗,ϕ(X ), which is
divided into three parts.

We need the following affiliated spaces, which are generalizations of the corre-
sponding Euclidean case in [35, Definition 2.3] to any space of homogeneous type.
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Definition 5.1. For any measurable set E in X , the space Lq
ϕ(E) for any given

q ∈ [1,∞] is defined to be the set of all measurable functions f on X , supported in
E, such that

‖f‖Lq
ϕ(E) :=





sup
t∈(0,∞)

[
1

ϕ(E, t)

ˆ

X

|f(x)|qϕ(x, t) dµ(x)

]1/q
<∞ when q ∈ [1,∞),

‖f‖L∞(X ) <∞ when q = ∞.

We then introduce the notions of (finite) atomic Musielak–Orlicz Hardy spaces on
spaces of homogeneous type, which are generalizations of the corresponding Euclidean
case in [35, Definition 2.4].

Definition 5.2. A couple (ϕ, q) is said to be admissible if q ∈ (q(ϕ),∞] and
m(ϕ) ≤ 0, where q(ϕ) is as in (3.16) and m(ϕ) as in (3.15). A measurable function
a is called a (ϕ, q)-atom supported in a ball B ⊂ X if the following three conditions
hold true:

(i) supp a := {x ∈ X : a(x) 6= 0} ⊂ B;
(ii) a ∈ Lq

ϕ(B) and ‖a‖Lq
ϕ(B) ≤ ‖1B‖

−1
Lϕ(X );

(iii)
´

X
a(x) dµ(x) = 0.

The atomic Musielak–Orlicz Hardy space Hϕ,q
at (X ) is defined to be the set of all

distributions f ∈ (Gη
0 (̺, ϑ))

′ with

̺, ϑ ∈

(
ω

[
q(ϕ)

p
− 1

]
, η

)
,(5.1)

here ω is as in (1.4), p as in Definition 2.5 and η as in Definition 4.2, satisfying
that there exists a sequence {bj}j∈N of multiples of some (ϕ, q)-atoms supported,
respectively, in balls {Bj}j∈N, such that

∞∑

j=1

ϕ
(
Bj , ‖bj‖Lq

ϕ(Bj)

)
<∞,

and f =
∑∞

j=1 bj in (Gǫ
0(̺, ϑ))

′. Moreover, let

Λq

(
{bj}

∞
j=1

)
:= inf

{
λ ∈ (0,∞) :

∞∑

j=1

ϕ

(
Bj ,

‖bj‖Lq
ϕ(Bj)

λ

)
≤ 1

}

and

‖f‖Hϕ,q
at (X ) := inf

{
Λq

(
{bj}

∞
j=1

)
: f =

∞∑

j=1

bj in (Gη
0 (̺, ϑ))

′

}
,

where the last infimum is taken over all decompositions of f as above.
The finite atomic Musielak–Orlicz Hardy space Hϕ,q

fin (X ) is defined to be the set
of all finite linear combinations f of (ϕ, q)-atoms, namely, for some N ∈ N,

f =

N∑

j=1

bj ,
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where {bj}
N
j=1 are multiples of some (ϕ, q)-atoms supported, respectively, in balls

{Bj}
N
j=1. Moreover, define

‖f‖Hϕ,q
fin (X ) := inf

{
Λq

(
{bj}

N
j=1

)
: f =

N∑

j=1

bj

}
,

where the infimum is taken over all finite decompositions of f as above.

Remark 5.3. It is obvious that m(ϕ) ≤ 0 is equivalent to ωq(ϕ) < (ω + 1)i(ϕ).
Thus, the real-variable theory of Hϕ,q

at (X ) for the case ωq(ϕ) ≥ (ω + 1)i(ϕ) [or,
equivalently, m(ϕ) > 0] is failed on X , because the (ϕ, q)-atoms only have 0-order
cancelation.

Now, we are ready to state the main result of this section, which is a generalization
of the corresponding results on Hardy spaces Hp(X ) in [27, Theorem 4.2] [in this case,
ϕ is the same as in (4.2)].

Theorem 5.4. Let ϕ be a growth function, m(ϕ) ≤ 0 with m(ϕ) as in (3.15),
q ∈ (q(ϕ),∞] and ̺, ϑ as in (5.1) with p > ω

η+ω
q(ϕ). Then H∗,ϕ(X ) = Hϕ,q

at (X ) as

subspaces of (Gη
0 (̺, ϑ))

′ with equivalent quasi-norms.

Remark 5.5. Due to Theorem 5.4, Hϕ,q
at (X ) is independent of the choice of

q ∈ (q(ϕ),∞] in the sense of equivalent quasi-norms. In what follows, Hϕ,q
at (X ) is

simply denoted by Hϕ
at(X ).

5.1. Proof of H
ϕ,q

at (X ) ⊂ H
∗,ϕ(X ). In this subsection, we show that

Hϕ,q
at (X ) ⊂ H∗,ϕ(X ).

Proof of Theorem 5.4, Part I. In this step, we show Hϕ,q
at (X ) ⊂ H∗,ϕ(X ). Let b

be a multiple of a (ϕ, q)-atom supported in a ball B := B(xB, rB) with xB ∈ X and
rB ∈ (0,∞). We first claim that

ˆ

X

ϕ (x, b∗(x)) dµ(x) . ϕ
(
B, ‖b‖Lq

ϕ(B)

)
.(5.2)

Indeed, let B̃ := 2A0B. When x ∈ B̃, from the proof of [27, (4.1)], it follows
that b∗(x) . M(b)(x). By Lemma 2.6(iii) and the fact that ϕ ∈ Aq(X ) for any
q ∈ (q(ϕ),∞), we conclude that, for any t ∈ (0,∞),

‖b‖L1(X ) ≤ µ(B)

{
1

ϕ(B, t)

ˆ

B

|b(x)|qϕ(x, t) dµ(x)

}1/q

≤ µ(B)‖b‖Lq
ϕ(B),

which, combined with some arguments used in the proof of [27, (4.1)], further implies

that, for any h ∈ Gη
0 (̺, ϑ) with ̺, ϑ ∈ (ω[ q(ϕ)

p
− 1], η), and x ∈ (B̃)∁,

|〈b, h〉| ≤

[
rB

d(xB, x)

]̺
1

V (xB, x)
‖b‖L1(X ) ≤

[
rB

d(xB, x)

]̺
µ(B)

V (xB, x)
‖b‖Lq

ϕ(B).

Therefore, taking the supremum over all h ∈ Gη
0 (̺, ϑ) satisfying ‖h‖G(x, r, ̺, ϑ) ≤ 1 for

some r ∈ (0, 1), we conclude that, for any x ∈ X ,

b∗(x) .M(b)1B̃(x) +

[
rB

d(xB, x)

]̺
µ(B)

V (xB, x)
‖b‖Lq

ϕ(B)1B̃∁(x).(5.3)

Now, we use (5.3) to prove (5.2). To this end, let q ∈ (q(ϕ),∞]. From the Hölder in-
equality and the uniformly upper type 1 property of ϕ, and (iv) and (v) of Lemma 2.6,
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we deduce that

ˆ

B̃

ϕ (x, b∗(x)) dµ(x)

.

ˆ

B̃

ϕ (x,M(b)(x)) dµ(x) .

ˆ

B̃

[
M(b)(x)

‖b‖Lq
ϕ(B)

+ 1

]
ϕ
(
x, ‖b‖Lq

ϕ(B)

)
dµ(x)

. ϕ
(
B̃, ‖b‖Lq

ϕ(B)

)

+
1

‖b‖Lq
ϕ(B)

{
ˆ

B̃

[M(b)(x)]qϕ
(
x, ‖b‖Lq

ϕ(B)

)
dµ(x)

} 1
q [
ϕ
(
B̃, ‖b‖Lq

ϕ(B)

)] q−1
q

.

[
1 +

1

‖b‖Lq
ϕ(B)

‖b‖Lq
ϕ(B)

]
ϕ
(
B̃, ‖b‖Lq

ϕ(B)

)
. ϕ

(
B, ‖b‖Lq

ϕ(B)

)
.

On another hand, choose q > q(ϕ) such that ω[ q
p
− 1] < η and ̺ ∈ (ω[ q

p
− 1], η).

By (5.3), the uniformly lower type p ∈ (0, 1] property of ϕ, Lemma 2.6(iv) and
̺ ∈ (ω[ q

p
− 1], η), we obtain

ˆ

B̃∁

ϕ (x, b∗(x)) dµ(x)

.

ˆ

B̃∁

ϕ

(
x,

[
rB

d(xB, x)

]̺
µ(B)

V (xB, x)
‖b‖Lq

ϕ(B)

)
dµ(x)

.
∞∑

k=1

ˆ

2k+1A0B\2kA0B

ϕ

(
x, 2−k̺ µ(B)

V (xB, 2krB)
‖b‖Lq

ϕ(B)

)
dµ(x)

.
∞∑

k=1

2−k̺p

[
µ(B)

V (xB, 2krB)

]p ˆ

2k+1A0B\2kA0B

ϕ
(
x, ‖b‖Lq

ϕ(B)

)
dµ(x)

.
∞∑

k=1

2−k̺p

[
µ(B)

V (xB, 2krB)

]p
ϕ
(
2k+1A0B, ‖b‖Lq

ϕ(B)

)

.
∞∑

k=1

2−k̺p

[
µ(B)

V (xB, 2krB)

]p [
µ(2k+1A0B)

µ(B)

]q
ϕ
(
B, ‖b‖Lq

ϕ(B)

)

.
∞∑

k=1

2−k̺p

[
µ(2kB)

µ(B)

]q−p

ϕ
(
B, ‖b‖Lq

ϕ(B)

)

.
∞∑

k=1

2−k[̺p−ω(q−p)]ϕ
(
B, ‖b‖Lq

ϕ(B)

)
. ϕ

(
B, ‖b‖Lq

ϕ(B)

)
.

Thus, we have

ˆ

X

ϕ (x, b∗(x)) dµ(x) =

ˆ

B̃

ϕ (x, b∗(x)) dµ(x) +

ˆ

B̃∁

· · · . ϕ
(
B, ‖b‖Lq

ϕ(B)

)
,

which completes the proof of the above claim (5.2).
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Moreover, for any f ∈ Hϕ,q
at (X ), by Definition 5.2, we know that f ∈ (Gη

0 (̺, ϑ))
′,

with ̺, ϑ ∈ (ω[ q(ϕ)
p

− 1], η), and there exists a sequence {bj}
∞
j=1 of multiples of (ϕ, q)-

atoms such that

f =

∞∑

j=1

bj in (Gη
0 (̺, ϑ))

′
and Λq

(
{bj}

∞
j=1

)
. ‖f‖Hϕ,q

at (X ).

Thus, for any x ∈ X , f ∗(x) ≤
∑∞

j=1(bj)
∗(x). From this, Lemma 2.8(i) and the above

claim (5.2), it follows that
ˆ

X

ϕ

(
x,

f ∗(x)

Λq({bj}∞j=1)

)
dµ(x) .

∞∑

j=1

ˆ

X

ϕ

(
x,

(bj)
∗(x)

Λq({bj}∞j=1)

)
dµ(x)

.
∞∑

j=1

ϕ

(
Bj,

‖bj‖Lq
ϕ(B)

Λq({bj}∞j=1)

)
. 1,

which further implies that

‖f‖H∗,ϕ(X ) ∼ ‖f ∗‖Lϕ(X ) . Λq

(
{bj}

∞
j=1

)
. ‖f‖Hϕ,q

at (X ).

This finishes the proof of Hϕ,q
at (X ) ⊂ H∗,ϕ(X ) and hence of the Part I of the proof of

Theorem 5.4. �

5.2. Calderón–Zygmund decompositions of H∗,ϕ(X ). We obtain a version
of Calderón–Zygmund decompositions for H∗,ϕ(X ) in this subsection.

Suppose that f ∈ Hϕ,q
at (X ). Then, by Definition 5.2, we know that f ∈ (Gη

0 (̺, ϑ))
′

with ̺, ϑ as in (5.1). Since the level set {x ∈ X : f ∗(x) > λ} with λ ∈ (0,∞) may
not be open even in the case that d is a metric, to obtain the Calderón–Zygmund
decomposition of f , we need to use some ideas from [49, Theorem 2] and [21, Remark
2.9] (see also [27, Section 4.2]).

From the proof of [49, Theorem 2], it follows that there exist a constant θ ∈ (0, 1)
and a metric d′ ∼ dθ. For any x ∈ X and r ∈ (0,∞), define the d′-ball B′(x, r) :=
{y ∈ X : d′(x, y) < r}. Then (X , d′, µ) is a doubling metric measure space. We also
recall the following variant of the space of test functions associated with the metric
d′ from [27, Definition 4.6].

Definition 5.6. Let x ∈ X , r ∈ (0,∞) and ˜̺, ϑ̃ ∈ (0,∞). The space of test

functions, denoted by G(x, r, ˜̺, ϑ̃), is defined to be the set of all functions f on X
satisfying that there exists a non-negative constant C such that

(T1)′ for any y ∈ X , |f(y)| ≤ C 1
µ(B′(y,r+d′(x,y)))

[ r
r+d′(x,y)

]ϑ̃;

(T2)′ for any y, ỹ ∈ X satisfying d(y, ỹ) ≤ [r + d′(x, y)]/2,

|f(y)− f(ỹ)| ≤ C

[
d′(y, ỹ)

r + d′(x, y)

]˜̺
1

µ(B′(y, r + d′(x, y)))

[
r

r + d′(x, y)

]ϑ̃
.

Moreover, for any f ∈ G(x, r, ˜̺, ϑ̃), define

‖f‖G(x, r, ˜̺, ϑ̃) := inf {C : C satisfies (T1)′ and (T2)′} .

It was shown in [27, Section 4.2] that G(x, r, ̺, ϑ) = G(x, rθ, ̺/θ, ϑ/θ) with
equivalent norms. Moreover, for any ̺, ϑ ∈ (0, η) and f ∈ (Gη

0 (̺, ϑ))
′, the modified

grand maximal function f ⋆ of f is defined by setting, for any x ∈ X ,

f ⋆(x) := sup
{
〈f, h〉 : h ∈ Gη

0 (̺, ϑ), ‖h‖G(x, r, ̺/θ, ϑ/θ) ≤ 1 for some r ∈ (0,∞)
}
.(5.4)
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Then we know that f ⋆ ∼ f ∗ pointwisely on X with the positive equivalence constants
independent of f , where f ∗ is as in Definition 4.8. For any λ ∈ (0,∞) and j ∈ Z,
define

Ωλ := {x ∈ X : f ⋆(x) > λ} and Ωj := Ω2j .(5.5)

It was shown in [21, Remark 2.9(ii)] that, for any λ ∈ (0,∞), Ωλ is open under the
topology induced by d′ and hence under the topology induced by d.

Suppose that ̺, ϑ ∈ (ω[ q(ϕ)
p

− 1], η) and f ∈ Hϕ,q
at (X ). Then f ⋆ ∈ Lϕ(X ) and

µ(Ωj) < ∞ for any j ∈ Z. Consequently, it was shown in [27, Section 4.2] that, for

any j ∈ Z, there exist {xjk}k∈Ij with Ij being a countable index set, {rjk}k∈Ij ⊂ (0,∞),

L0 ∈ N and a sequence {φj
k}k∈Ij of non-negative functions satisfying all conclusions

of [27, Propositions 4.4 and 4.5]. For any j ∈ Z and k ∈ Ij , the operator Φj
k is defined

by setting, for any h ∈ Gη
0 (̺, ϑ) and x ∈ X ,

Φj
k(h)(x) := φj

k(x)

[
ˆ

X

φj
k(z) dµ(z)

]−1 ˆ

X

[h(x)− h(z)]φj
k(z) dµ(z).

By [21, Lemma 4.9], we know that Φj
k is bounded on Gη

0 (̺, ϑ) with operator norm

depending on j and k. Therefore, it makes sense to define a distribution bjk on Gη
0 (̺, ϑ)

by setting, for any h ∈ Gη
0 (̺, ϑ),

〈
bjk, h

〉
:=
〈
f,Φj

k(h)
〉
.(5.6)

In what follows, for any j ∈ Z and k ∈ Ij, let xjk ∈ Ωj and rjk ∈ (0,∞) be defined
as in [27, Propositions 4.4 and 4.5] with the open set Ω therein replaced by Ωj as in
(5.5). The following estimate of (bjk)

∗ is taken from [40, Lemma 3.7].

Proposition 5.7. For any j ∈ Z and k ∈ Ij, let bjk be defined by (5.6). Then
there exists a positive constant C such that, for any j ∈ Z, k ∈ Ij and x ∈ X ,
(
bjk
)∗

(x)

≤ C2j
V (xjk, r

j
k)

V (xjk, r
j
k) + V (xjk, x)

[
rjk

rjk + d(xjk, x)

]̺
1(B(xj

k ,16A0r
j
k))

∁(x) + Cf ∗1B(xj
k ,16A0r

j
k)
(x).

Then we obtain the following Calderón–Zygmund decomposition, which is a gen-
eralization of the corresponding results on Hardy spaces Hp(X ) in [27, Proposi-
tion 4.9] [in this case, ϕ is the same as in (4.2)].

Proposition 5.8. Let ϕ be a growth function as in Definition 2.5. For any
f ∈ H∗,ϕ(X ) ⊂ (Gη

0 (̺, ϑ))
′, with ̺, ϑ as in (5.1), and, for any j ∈ Z and k ∈ Ij ,

letting bjk be defined as in (5.6), then there exists a positive constant C such that,
for any j ∈ Z and k ∈ Ij ,

ˆ

X

ϕ
(
x,
(
bjk
)∗

(x)
)
dµ(x) ≤ C

ˆ

B(xj
k ,16A

4
0r

j
k)

ϕ (x, f ∗(x)) dµ(x);(5.7)

moreover, there exists bj ∈ H∗,ϕ(X ) such that bj =
∑

k∈Ij
bjk in H∗,ϕ(X ) and, for any

x ∈ X ,

(
bj
)∗

(x) ≤ C2j
∑

k∈Ij

V (xjk, r
j
k)

V (xjk, r
j
k) + V (xjk, x)

[
rjk

rjk + d(xjk, x)

]̺
+ Cf ∗(x)1Ωj (x);(5.8)
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if gj := f − bj for any j ∈ Z, then, for any x ∈ X ,

(
gj
)∗

(x) ≤ C2j
∑

k∈Ij

V (xjk, r
j
k)

V (xjk, r
j
k) + V (xjk, x)

[
rjk

rjk + d(xjk, x)

]̺
+ Cf ∗(x)1(Ωj)∁(x).(5.9)

Proof. Since (5.8) and (5.9) can be proved by the same arguments used in
the proof of [27, (4.5) and (4.6)], we only need to show (5.7) and that there exists

bj ∈ H∗,ϕ(X ) such that bj =
∑

k∈Ij
bjk in H∗,ϕ(X ). Indeed, by Proposition 5.7, we

write
ˆ

X

ϕ
(
x,
(
bjk
)∗

(x)
)
dµ(x)

.

ˆ

X

ϕ

(
x, 2j

V (xjk, r
j
k)

V (xjk, r
j
k) + V (xjk, x)

[
rjk

rjk + d(xjk, x)

]̺
1(B(xj

k ,16A0r
j
k))

∁(x)

)
dµ(x)

+

ˆ

X

ϕ
(
x, f ∗(x)1B(xj

k ,16A0r
j
k)
(x)
)
dµ(x) =: I + II.

By [27, (ii) and (v) of Proposition 4.4], we have, for any j ∈ Z,

Ωj =
⋃

k∈Ij

B
(
xjk, 16A0r

j
k

)
and

{
B
(
xjk, 16A0r

j
k

)}
k∈Ij

is finitely overlapped(5.10)

with the finite positive integer independent of j and k. We immediately observe that

II ∼

ˆ

B(xj
k ,16A

4
0r

j
k)

ϕ (x, f ∗(x)) dµ(x).

For the estimation of I, choose q > q(ϕ) such that ω( q
p
− 1) < η and ̺ ∈

(ω[ q
p
− 1], η). By ̺ ∈ (ω[ q

p
− 1], η) and f ⋆ ∼ f ∗, we conclude that

I .
∞∑

s=0

ˆ

B(xj
k ,2

s+116A0r
j
k)\B(xj

k ,2
s16A0r

j
k)

ϕ

(
x, 2j

V (xjk, r
j
k)

V (xjk, 2
s16A4

0r
j
k)
2−s̺

)
dµ(x)

.
∞∑

s=0

2−s̺p

[
V (xjk, r

j
k)

V (xjk, 2
s16A4

0r
j
k)

]p
ϕ
(
B(xjk, 2

s+116A0r
j
k), 2

j
)

.
∞∑

s=0

2−s̺p

[
V (xjk, 2

s16A4
0r

j
k)

V (xjk, r
j
k)

]q−p

ϕ
(
B(xjk, 16A0r

j
k), 2

j
)

.
∞∑

s=0

2−s̺p2sω(q−p)ϕ
(
B(xjk, 16A0r

j
k), 2

j
)
dµ(x) .

ˆ

B(xj
k,16A

4
0r

j
k)

ϕ (x, f ∗(x)) dµ(x).

Combining the estimates of I and II, we then complete the proof of (5.7).
Moreover, from Lemma 2.8(i), (5.7) and (5.10), we deduce that

ˆ

X

ϕ


x,


∑

k∈Ij

bjk




∗

(x)


 dµ(x)(5.11)

.

ˆ

X

ϕ


x,

∑

k∈Ij

(
bjk
)∗

(x)


 dµ(x) .

∑

k∈Ij

ˆ

X

ϕ
(
x,
(
bjk
)∗

(x)
)
dµ(x)
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.
∑

k∈Ij

ˆ

B(xj
k ,16A

4
0r

j
k)

ϕ (x, f ∗(x)) dµ(x) .

ˆ

Ωj

ϕ (x, f ∗(x)) dµ(x) <∞,

which, together with the completeness of H∗,ϕ(X ), further implies that there exist
{bj}j∈Ij ⊂ H∗,ϕ(X ) such that bj =

∑
k∈Ij

bjk in H∗,ϕ(X ). This finishes the proof of

Proposition 5.8. �

5.3. Atomic characterizations of H∗,ϕ(X ). In this subsection, we prove that
H∗,ϕ(X ) ⊂ Hϕ,q

at (X ), namely, the atomic decomposition of H∗,ϕ(X ). To this end, we
first need the following result on the density of Lq

ϕ(·,1)(X ) ∩ H∗,ϕ(X ) in H∗,ϕ(X ),

which is a variant of the corresponding Euclidean case in [35, Proposition 5.3].

Lemma 5.9. For any q ∈ (q(ϕ),∞), Lq
ϕ(·,1)(X ) ∩H∗,ϕ(X ) is dense in H∗,ϕ(X ).

Proof. Let f ∈ H∗,ϕ(X ). By the Calderón–Zygmund decomposition of f ∗ (see
Proposition 5.8 with the same notation as therein), we conclude that, for any j ∈ Z,

f = gj + bj = gj +
∑

k∈Ij

bjk.

Now, we show that gj ∈ Lq
ϕ(·,1)(X ) ∩H∗,ϕ(X ).

Indeed, for any j ∈ Z, k ∈ Ij and any x ∈ X ,

V (xjk, r
j
k)

V (xjk, r
j
k) + V (xjk, x)

[
rjk

rjk + d(xjk, x)

]̺

.
V (xjk, r

j
k)

V (xjk, r
j
k + d(xjk, x))

[
V (xjk, r

j
k)

V (xjk, r
j
k + d(xjk, x))

] ̺
ω

∼

[
V (xjk, r

j
k)

V (xjk, r
j
k + d(xjk, x))

]1+ ̺
ω

∼

{
1

V (xjk, r
j
k + d(xjk, x))

ˆ

B(xj
k ,r

j
k+d(xj

k ,x))

1B(xj
k,r

j
k)
(y) dµ(y)

}1+ ̺
ω

.
[
M
(
1B(xj

k ,r
j
k)

)
(x)
]1+ ̺

ω

.

In what follows, let s0 := 1 + ̺
ω
. From this, (5.9) and the Fefferman–Stein vector-

valued maximal inequality (see, for instance, [22, Theorem 1.2]), we deduce that
ˆ

X

[(
gj
)∗

(x)
]q
ϕ(x, 1) dµ(x)

.

ˆ

X

2jq




∑

k∈Ij

V (xjk, r
j
k)

V (xjk, r
j
k) + V (xjk, x)

[
rjk

rjk + d(xjk, x)

]̺


q

ϕ(x, 1) dµ(x)

+

ˆ

(Ωj)∁
[f ∗(x)]q ϕ(x, 1) dµ(x)

. 2jq
ˆ

X






∑

k∈Ij

{
M
(
1B(xj

k ,r
j
k)

)
(x)
}s0




1
s0





s0q

ϕ(x, 1) dµ(x)

+

ˆ

(Ωj)∁
[f ∗(x)]q ϕ(x, 1) dµ(x)
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. 2jq
ˆ

X






∑

k∈Ij

{
1B(xj

k,r
j
k)
(x)
}s0




1
s0





s0q

ϕ(x, 1) dµ(x) +

ˆ

(Ωj)∁
[f ∗(x)]q ϕ(x, 1) dµ(x)

. 2jq
ˆ

Ωj

ϕ(x, 1) dµ(x) +

ˆ

(Ωj)∁
[f ∗(x)]q ϕ(x, 1) dµ(x)

. 2jq
ˆ

Ωj

ϕ

(
x,
f ∗(x)

2j

)
dµ(x)

+

ˆ

(Ωj)∁
[f ∗(x)]q max

{
1

[f ∗(x)]p
,

1

f ∗(x)

}
ϕ (x, f ∗(x)) dµ(x)

. 2jq max

{
1

2jp
,
1

2

}
ˆ

Ωj

ϕ (x, f ∗(x)) dµ(x)

+ max
{
2j(q−p), 2j(q−1)

}ˆ

(Ωj)∁
ϕ (x, f ∗(x)) dµ(x)

∼ 2jq max

{
1

2jp
,
1

2

}
ˆ

X

ϕ (x, f ∗(x)) dµ(x) <∞.

Moreover, by (5.11), we know that
ˆ

X

ϕ
(
x,
(
gj − f

)∗
(x)
)
dµ(x) =

ˆ

X

ϕ
(
x,
(
bj
)∗

(x)
)
dµ(x)

.

ˆ

Ωj

ϕ (x, f ∗(x)) dµ(x) → 0

as j → ∞. Therefore, by Lemma 2.8(iii), we finally obtain

lim
j→∞

∥∥gj − f
∥∥
H∗,ϕ(X )

= 0,(5.12)

which completes the proof of Lemma 5.9. �

Now, we are ready to prove H∗,ϕ(X ) ⊂ Hϕ,q
at (X ). In what follows, with all the

same notation as in Subsection 5.2, for any j ∈ Z and k ∈ Ij , let

mj
k :=

1

‖φj
k‖L1(X )

ˆ

X

f(y)φj
k(y) dµ(y) and bjk :=

(
f −mj

k

)
φj
k.

For any q ∈ [1,∞], we also use the symbol Lq
ϕ(·,1)(X ) to denote the weighted

Lebesgue space equipped with the following norm: for any f ∈ Lq
ϕ(·,1)(X ),

‖f‖Lq
ϕ(·,1)

(X ) :=

{
ˆ

X

|f(x)|qϕ(x, 1) dµ(x)

}1/q

with the usual modification made when q = ∞.

Proof of Theorem 5.4, Part II. In this step, we show H∗,ϕ(X ) ⊂ Hϕ,q
at (X ). By

Lemma 5.9 and a standard density argument (see, for instance, [59, pp. 32–33]), we
reduce the proof of this step to showing that, for any f ∈ Lq

ϕ(·,1)(X ) ∩ H∗,ϕ(X ),

f ∈ Hϕ,q
at (X ) and

‖f‖Hϕ,q
at (X ) . ‖f‖H∗,ϕ(X ).
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Indeed, let f ∈ Lq
ϕ(·,1)(X ) ∩H∗,ϕ(X ). By the Calderón–Zygmund decomposition

of f ∗ (see Proposition 5.8 with the same notation as therein), we conclude that, for
any j ∈ Z,

f = gj + bj = gj +
∑

k∈Ij

bjk.

For any j ∈ N, let hj := gj+1 − gj = bj − bj+1. Then f −
∑m

j=−m h
j = bm+1 + g−m.

From (5.12), it follows that

lim
j→∞

∥∥gj − f
∥∥
H∗,ϕ(X )

= 0.

Therefore, ‖(bm+1)∗‖Lϕ(X ) = ‖gm+1 − f‖H∗,ϕ(X ) → 0 as m → ∞. Observe that, by
[27, Lemma 4.11(iv)], gj → 0 uniformly as j → −∞. Thus,

f =

∞∑

j=−∞

(
gj+1 − gj

)
in (Gη

0 (̺, ϑ))
′
.

Besides, from the proof of H∗,p(X ) ⊂ Hp,q
at (X ) in [27], we deduce that

hj = bj − bj+1 =
∑

k∈Ij


bjk −

∑

l∈Ij+1

bj+1
l φj

k − Lj+1
k,l φ

j+1
l


 =:

∑

k∈Ij

hjk(5.13)

converges in (Gη
0 (̺, ϑ))

′ and almost everywhere on X ,

supp hjk ⊂ Bj
k := B

(
xjk, 16A

4
0r

j
k

)
and

∥∥hjk
∥∥
L∞(X )

≤ C42
j ,(5.14)

where C4 is some fixed positive constant. Let

λjk := C42
j
∥∥∥1Bj

k

∥∥∥
Lϕ(X )

and ajk :=
hjk
λjk
.(5.15)

Then ajk is a (ϕ,∞)-atom with supp ajk ⊂ Bj
k and

f =

∞∑

j=−∞

∑

k∈Ij

hjk in (Gη
0 (̺, ϑ))

′
.

Furthermore, by (5.14) and Lemma 2.8(ii), we obtain

∑

j∈Z

∑

k∈Ij

ϕ

(
Bj

k,
‖hjk‖L∞(X )

‖f‖H∗,ϕ(X )

)

.
∑

j∈Z

ϕ

(
Ωj ,

2j

‖f‖H∗,ϕ(X )

)
∼
∑

j∈Z

∞∑

ℓ=j

ϕ

(
Ωℓ \ Ωℓ+1,

2j

‖f‖H∗,ϕ(X )

)

.
∑

ℓ∈Z

ℓ∑

j=−∞

2(j−ℓ)pϕ

(
Ωℓ \ Ωℓ+1,

2ℓ

‖f‖H∗,ϕ(X )

)
.
∑

ℓ∈Z

ϕ

(
Ωℓ \ Ωℓ+1,

f ∗

‖f‖H∗,ϕ(X )

)

∼

ˆ

X

ϕ

(
x,

f ∗(x)

‖f‖H∗,ϕ(X )

)
dµ(x) ∼ 1.

Consequently, ‖f‖Hϕ,q
at (X ) . ‖f‖Hϕ,∞

at (X ) . ‖f‖H∗,ϕ(X ), which completes the proof of
H∗,ϕ(X ) ⊂ Hϕ,q

at (X ) and hence of Part II of the proof of Theorem 5.4. So far, the
proof of Theorem 5.4 is then completed. �
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6. Littlewood–Paley characterizations of H
ϕ

at(X )

In this section, we investigate the Littlewood–Paley characterizations of Hϕ
at(X ).

We first recall the notions of the Lusin area function, the Littlewood–Paley g-function
and the Littlewood–Paley g∗λ-function from [27, Section 5]. Throughout the whole

section, we assume that q(ϕ) < p(η+ω)
ω

, which is sharp in the sense that, if ϕ(x, t) = tp

for any (x, t) ∈ X × [0,∞), then q(ϕ) = 1 and hence q(ϕ) < p(η+ω)
ω

if and only if
p > ω

η+ω
, which returns to the classical case.

Definition 6.1. Let ϕ be a growth function as in Definition 2.5 and ̺, ϑ as in
(5.1), and let f ∈ (G̊η

0 (̺, ϑ))
′ and {Qk}k∈Z be an exp-ATI.

(i) For any θ ∈ (0,∞), the Lusin area function of f with aperture θ, Sθ(f), is
defined by setting, for any x ∈ X ,

Sθ(f)(x) :=

[
∑

k∈Z

ˆ

B(x,θδk)

|Qkf(y)|
2 dµ(y)

Vθδk(x)

] 1
2

.(6.1)

Particularly, we simply write S := S1.
(ii) The Littlewood–Paley g-function of f , g(f), is defined by setting, for any

x ∈ X ,

g(f)(x) :=

[
∑

k∈Z

|Qkf(x)|
2

] 1
2

.(6.2)

(iii) Let λ ∈ (0,∞). The Littlewood–Paley g∗λ-function of f , g∗λ(f), is defined by
setting, for any x ∈ X ,

g∗λ(f)(x) :=

{
∑

k∈Z

ˆ

X

|Qkf(y)|
2

[
δk

δk + d(x, y)

]λ
dµ(y)

Vδk(x) + Vδk(y)

} 1
2

.(6.3)

Then we introduce the notion of Musielak–Orlicz Hardy spaces via Lusin area
functions as follows.

Definition 6.2. Let ϕ be a growth function as in Definition 2.5 and ̺, ϑ as in
(5.1). The Musielak–Orlicz Hardy space Hϕ(X ), related to the Lusin area function,
is defined by setting

Hϕ(X ) :=

{
f ∈

(
G̊η
0 (̺, ϑ)

)′
: ‖S(f)‖Lϕ(X ) <∞

}

and, moreover, for any f ∈ Hϕ(X ), let

‖f‖Hϕ(X ) := ‖S(f)‖Lϕ(X ).

6.1. Independence of exp-ATIs. In this section, we prove that Hϕ(X ) is
independent of the choices of exp-ATIs. Let E := {Ek}k∈Z and Q := {Qk}k∈Z be two
exp-ATIs, we then let SE and SQ be the Lusin area functions associated with E and
Q, respectively.

Theorem 6.3. Let ϕ be a growth function as in Definition 2.5, ̺, ϑ ∈ (ω[ q(ϕ)
p

−

1], η), E := {Ek}k∈Z and Q := {Qk}k∈Z be two exp-ATIs. Then there exists a positive

constant C such that, for any f ∈ (G̊η
0 (̺, ϑ))

′,

C−1 ‖SQ(f)‖Lϕ(X ) ≤ ‖SE(f)‖Lϕ(X ) ≤ C ‖SQ(f)‖Lϕ(X ) .
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In order to prove Theorem 6.3, we need to first establish the Fefferman–Stein
vector-valued maximal inequality for Lϕ(X ). We first state the following vector-
valued interpolation theorem of Musielak–Orlicz type, which is similar to the corre-
sponding Euclidean case in [41, Theorem 2.9]; the details are omitted.

Recall that the space Lϕ(ℓr,X ) is defined to be the set of all measurable functions
{fj}j such that

[
∑

j

|fj|
r

]1/r
∈ Lϕ(X ),

equipped with the (quasi-)norm

∥∥∥{fj}j
∥∥∥
Lϕ(ℓr ,X )

:=

∥∥∥∥∥∥

[
∑

j

|fj|
r

]1/r∥∥∥∥∥∥
Lϕ(X )

.

Theorem 6.4. Let p1, p2 ∈ (0,∞), p1 < p2, r ∈ [1,∞) and ϕ be a Musielak–
Orlicz function of uniformly lower type p−ϕ and of uniformly upper type p+ϕ . Suppose
that 0 < p1 < p−ϕ < p+ϕ < p2 < ∞ and T is a linear operator defined on Lp1

ϕ(·,1)(X ) +

Lp2
ϕ(·,1)(X ) satisfying that there exist positive constants C1 and C2 such that, for any

i ∈ {1, 2} and any sequence {fj}j ∈ Lpi(ℓr,X ), α ∈ (0,∞) and t ∈ (0,∞),

ϕ





x ∈ X :

[
∑

j

|T (fj) (x)|
r

] 1
r

> α



 , t


(6.4)

≤ Ciα
−pi

ˆ

X

[
∑

j

|fj(x)|
r

] pi
r

ϕ(x, t) dµ(x).

Then there exists a positive constant C such that, for any sequence {fj}j ∈ Lϕ(ℓr,X ),

ˆ

X

ϕ


x,

[
∑

j

|T (fj) (x)|
r

] 1
r


 dµ(x) ≤ C

ˆ

X

ϕ


x,

[
∑

j

|fj(x)|
r

] 1
r


 dµ(x).(6.5)

By the Calderón–Zygmund decomposition (see Lemma 3.3) and some arguments
similar to those used in the proof of the Euclidean case in [1, Theorme 3.1], we obtain
the corresponding result on X and omit the details here.

Theorem 6.5. Let r ∈ (1,∞].

(i) If p ∈ [1,∞), then there exists a positive constant C(r,p), depending on r and
p, such that w ∈ Ap(X ) if and only if

ω





x ∈ X :

[
∑

j

{M (fj) (x)}
r

] 1
r

> α






 ≤ C(r,p)t

−p

ˆ

X

[
∑

j

|fj(x)|
r

] p
r

ω(x) dµ(x).

(ii) If p ∈ (1,∞), then there exists a positive constant C(r,p), depending on r and
p, such that w ∈ Ap(X ) if and only if

ˆ

X

[
∑

j

{M(fj)(x)}
r

] p
r

ω(x) dµ(x) ≤ C(r,p)

ˆ

X

[
∑

j

|fj(x)|
r

] p
r

ω(x) dµ(x).
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For more study on Muckenhoupt weights on spaces of homogeneous type, we
refer the reader to [58, Chapter 1].

Combining Theorems 6.4 and 6.5, we obtain the following vector-valued Feffer-
man–Stein maximal inequality on spaces of homogeneous type, which is a general-
ization of the corresponding Euclidean case in [41, Theorem 2.10]; the details are
omitted.

Theorem 6.6. Let r ∈ (1,∞], ϕ be a Musielak–Orlicz function of uniformly
lower type p−ϕ and of uniformly upper type p+ϕ , and ϕ ∈ Aq(X ). If q(ϕ) < p−ϕ < p+ϕ <
∞, then there exists a positive constant C such that, for any {fj}j∈Z ∈ Lϕ(ℓr,X ),

ˆ

X

ϕ


x,

[
∑

j

{M (fj) (x)}
r

] 1
r


 dµ(x) ≤ C

ˆ

X

ϕ


x,

[
∑

j

|fj(x)|
r

] 1
r


 dµ(x).(6.6)

Now, we are ready to show Theorem 6.3.

Proof of Theorem 6.3. By symmetry, we only need to show ‖SE(f)‖Lϕ(X ) .

‖SQ(f)‖Lϕ(X ). For any k ∈ Z, f ∈ (G̊η
0 (̺, ϑ))

′ with ̺ and ϑ as in this theorem, and
x ∈ X , let

mk(f)(x) :=

[
1

Vδk(x)

ˆ

B(x,δk)

|Qkf(y)|
2 dµ(y)

]1
2

.

Choose ˜̺ and r such that r ∈ (ω/[ω + ˜̺], p/q(ϕ)). Then, by the proof of [27,
Theorem 5.1], we conclude that, for any x ∈ X ,

[SE(f)(x)]
2 .

∑

k∈Z

{M ([mk(f)]
r) (x)}

2
r ,

which, combined with Theorem 6.6, further implies that

‖SE(f)‖Lϕ(X ) .

∥∥∥∥∥∥

[
∑

k∈Z

{M ([mk(f)]
r)}

2
r

] r
2

∥∥∥∥∥∥

1
r

Lϕ̃(X )

(6.7)

.

∥∥∥∥∥∥

{
∑

k∈Z

[mk(f)]
2

} 1
2

∥∥∥∥∥∥
Lϕ(X )

∼ ‖SQ(f)‖Lϕ(X ) ,

where, for any x ∈ X and t ∈ (0,∞), ϕ̃(x, t) := ϕ(x, t1/r) is of uniformly lower type
p/r ∈ (q(ϕ),∞). This finishes the proof of Theorem 6.3. �

6.2. Molecular characterizations of H
ϕ

at(X ). In this subsection, we establish
the molecular characterization ofHϕ

at(X ). To this end, we first introduce the following
notion of molecular Musielak–Orlicz Hardy spaces on X , which is a generalization of
the corresponding Euclidean case in [30] (see also [59]).

Definition 6.7. Let ϕ be a growth function as in Definition 2.5, q ∈ (1,∞),
s ∈ Z+ and ǫ ∈ (0,∞). A measurable function α is called a (ϕ, q, ǫ)-molecule, related
to a ball B, if the following two conditions hold true:

(i) for any j ∈ Z+,

‖α‖Lq(Uj(B)) ≤ δjǫ
[
µ
(
δ−jB

)]1/q
‖1B‖

−1
Lϕ(X ),

where U0(B) := B and Uj(B) := δ−jB \ δ−j+1B for any j ∈ N;
(ii)
´

X
α(x) dµ(x) = 0.
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The molecular Musielak–Orlicz Hardy space Hϕ,q,ǫ
mol (X ) is defined to be the set of

all f ∈ (Gη
0 (̺, ϑ))

′ with ̺, ϑ ∈ (ω[ q(ϕ)
p

−1], η) satisfying that there exist a sequence of

(ϕ, q, ǫ)-molecules, {αj}j∈N, related, respectively, to balls {Bj}j∈N, and {λj}j∈N ⊂ C
such that

∞∑

j=1

ϕ

(
Bj,

|λj|

‖1Bj
‖Lϕ(X )

)
<∞

and f =
∑∞

j=1 λjαj in (Gη
0 (̺, ϑ))

′. Moreover, let

Λq

(
{λjαj}

∞
j=1

)
:= inf

{
λ ∈ (0,∞) :

∞∑

j=1

ϕ

(
Bj,

|λj|

λ‖1Bj
‖Lϕ(X )

)
≤ 1

}
(6.8)

and then define

‖f‖Hϕ,q,ǫ
mol (X ) := inf

{
Λq

(
{λjαj}

∞
j=1

)
: f =

∞∑

j=1

λjαj in (G̊η
0 (̺, ϑ))

′

}
,

where the last infimum is taken over all decompositions of f as above.

The following molecular characterization of Hϕ
at(X ) is a generalization of the

Euclidean case in [30, Theorem 4.13] to any space of homogeneous type (see also [59,
Theorem 3.2.10]).

Theorem 6.8. Let ϕ be a growth function as in Definition 2.5, ǫ ∈ (max{ω,

ω q(ϕ)
i(ϕ)

},∞), q ∈ (q(ϕ)[r(ϕ)]′,∞) and m(ϕ) ≤ 0, where q(ϕ), i(ϕ) and m(ϕ) are,

respectively, as in (3.16), (2.1) and (3.15), and

r(ϕ) := sup{q ∈ (1,∞] : ϕ ∈ RHq(X )},(6.9)

where 1
r(ϕ)

+ 1
[r(ϕ)]′

= 1. Then Hϕ,q,ǫ
mol (X ) = Hϕ

at(X ) with equivalent quasi-norms.

Proof. Let ϕ be a growth function, ǫ ∈ (max{ω, ωq(ϕ)/i(ϕ)},∞), q∈(q(ϕ)[r(ϕ)]′,
∞) and m(ϕ) ≤ 0. Then (ϕ, q) is admissible as in Definition 5.2.

First, we easily observe that any (ϕ,∞)-atom is a (ϕ, q, ǫ)-molecule. Thus, by
Remark 5.5, we have

Hϕ
at(X ) = Hϕ,∞

at (X ) ⊂ Hϕ,q,ǫ
mol (X )

and, for any f ∈ Hϕ
at(X ),

‖f‖Hϕ,q,ǫ
mol (X ) . ‖f‖Hϕ,∞

at (X ) ∼ ‖f‖Hϕ
at(X ).

Now, we show that Hϕ,q,ǫ
mol (X ) ⊂ Hϕ,q

at (X ). Indeed, let m be any fixed (ϕ, q, ǫ)-
molecule related to a ball B := B(xB, rB) with xB ∈ X and rB ∈ (0,∞). It suffices to
prove that m is a countable linear combination of (ϕ, q̃)-atoms for some q̃ ∈ (q(ϕ),∞)
which is determined later, and (ϕ,∞)-atoms.

To show this, write R0 := B and, for any k ∈ N, Rk := δ−kB \ δ−k+1B, and then
let

Mk := m1Rk
−

1δ−kB

µ(δ−kB)

ˆ

X

m(y)1Rk
(y) dµ(y)

and

mk :=
1δ−kB

µ(δ−kB)

ˆ

X

m(y)1Rk
(y) dµ(x).
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Then

m =
∞∑

k=0

Mk +
∞∑

k=0

mk.(6.10)

We first deal with
∑∞

k=0Mk. Fix k ∈ Z+. Now, we claim that Mk is a multiple of
a (ϕ, q̃)-atom for some q̃ ∈ (q(ϕ),∞) which is determined later. Indeed, it is obvious
that

´

X
Mk(y) dµ(y) = 0 and supp Mk ⊂ δ−kB. By ǫ > ω > ω

q
and the fact that

‖Mk‖Lq(X ) . ‖m1Rk
‖Lq(X ) . δkǫ

[
µ
(
δ−kB

)]1/q
‖1B‖

−1
Lϕ(X ),(6.11)

we conclude that
∥∥∥∥∥

∞∑

k=0

Mk

∥∥∥∥∥
Lq(X )

≤
∞∑

k=0

‖Mk‖Lq(X ) .
∞∑

k=0

δkǫ
[
µ
(
δ−kB

)]1/q
‖1B‖

−1
Lϕ(X )

.
∞∑

k=0

δkǫδ−kω
q [µ(B)]1/q‖1B‖

−1
Lϕ(X ) ∼

∞∑

k=0

δk(ǫ−
ω
q
)[µ(B)]1/q‖1B‖

−1
Lϕ(X )

. [µ(B)]1/q‖1B‖
−1
Lϕ(X ) <∞,

which further implies that
∑∞

k=0Mk converges in Lq(X ) and hence in (Gη
0 (̺, ϑ))

′ with

̺, ϑ ∈ (ω[ q(ϕ)
p

− 1], η).

Since q > q(ϕ)[r(ϕ)]′, it follows that there exists q̃ ∈ (q(ϕ),∞) such that q >
q̃[r(ϕ)]′, which implies that ϕ ∈ RH( q

q̃
)′(X ). By this, the Hölder inequality and

(6.11), we find that, for any t ∈ (0,∞),

{
1

ϕ(δ−kB, t)

ˆ

δ−kB

[Mk(y)]
q̃ ϕ(y, t) dµ(y)

}1
q̃

≤
1

[ϕ(δ−kB, t)]
1
q̃

‖Mk‖Lq(X )

{
ˆ

δ−kB

[ϕ(y, t)](
q
q̃
)′ dµ(y)

} 1
q̃(

q
q̃
)′

.
1

[ϕ(δ−kB, t)]
1
q̃

δkǫ
[
µ
(
δ−kB

)]1/q
‖1B‖

−1
Lϕ(X )

[
µ
(
δ−kB

)]( 1
(
q
q̃
)′
−1) 1

q̃
[ϕ(δ−kB, t)]

1
q̃

. δkǫ‖1B‖
−1
Lϕ(X ) =: C̃2δ

kǫ‖1B‖
−1
Lϕ(X ),

where C̃2 is a fixed positive constant. Thus,

‖Mk‖Lq̃
ϕ(X )

≤ C̃2δ
kǫ‖1B‖

−1
Lϕ(X ),

which further implies that δ−kǫ

C̃2
Mk

‖1B‖
‖1

δ−kB
‖Lϕ(X)

is a (ϕ, q̃)-atom. This shows the above

claim.
Next, we consider

∑∞
k=0mk. For a fixed k ∈ Z+, let

1k :=
1δ−kB

µ(δ−kB)
and m̃k :=

ˆ

X

m(y)1Rk
(y) dµ(y).
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For any k ∈ Z+, let Nk :=
∑∞

j=k m̃j. We observe that
´

X
m(y) dµ(y) = 0 and hence

N0 = 0. Therefore,

∞∑

k=0

mk =
∞∑

k=0

1km̃k =
∞∑

k=0

1k (Nk −Nk+1)(6.12)

=
∞∑

k=0

(1k − 1k−1)Nk +N0 =
∞∑

k=0

∞∑

j=k

(1k − 1k−1) m̃j .

For any k ∈ Z+ and j ∈ Z+∩ [k,∞), let bk,j := (1k−1k−1)m̃j . We further prove that
bk,j is a multiple of a (ϕ,∞)-atom. Indeed, it is easy to find that supp bk,j ⊂ δ−kB
and
´

X
bk,j(y) dµ(y) = 0. Also, by the Hölder inequality and (1.4), we have

‖bk,j‖L∞(X ) .
1

µ(δ−kB)

∥∥m1Rj

∥∥
L1(X )

.
1

µ(δ−kB)

∥∥m1Rj

∥∥
Lq(X )

[
µ
(
δ−jB

)] 1
q′(6.13)

.
1

µ(δ−kB)
δjǫ‖1B‖

−1
Lϕ(X )

[
µ
(
δ−jB

)] 1
q
[
µ
(
δ−jB

)] 1
q′

. δjǫδ−(j−k)ω‖1B‖
−1
Lϕ(X ) =: C̃3δ

jǫδ−(j−k)ω‖1B‖
−1
Lϕ(X ),

where C̃3 is a fixed positive constant.
By (6.13), we obtain
∥∥∥∥∥

∞∑

k=0

∞∑

j=k

bk,j

∥∥∥∥∥
L∞(X )

≤
∞∑

k=0

∞∑

j=k

‖bk,j‖L∞(X ) .
∞∑

k=0

∞∑

j=k

δjǫδ−(j−k)ω‖1B‖
−1
Lϕ(X )

. ‖1B‖
−1
Lϕ(X )

∞∑

k=0

δkǫ
∞∑

j=k

δ(j−k)(ǫ−ω) . ‖1B‖
−1
Lϕ(X ) <∞,

which further implies that
∑∞

k=0

∑∞
j=k bk,j converges in L∞(X ) and hence in (G̊η

0 (̺, ϑ))
′.

From (6.13) again, it follows that δ−jǫ

C̃3
δ(j−k)ω ‖1B‖Lϕ(X)

‖1
δ−kB

‖Lϕ(X)
is a (ϕ,∞)-atom. Mean-

while, by ǫ ∈ (ω q(ϕ)
i(ϕ)

,∞), we know that there exist q0 ∈ (q(ϕ),∞) and p0 ∈ (0, i(ϕ))

such that ǫ ∈ (ω q0
p0
,∞), which also implies that ϕ ∈ Aq0(X ) and ϕ is of uniformly

lower type p0.
From the convergences of both

∑∞
k=0Mk and

∑∞
k=0

∑∞
j=k bk,j, (6.12) and (6.10),

we deduce that

m =
∞∑

k=0

Mk +
∞∑

k=0

∞∑

j=k

bj,k

converges in (Gη
0 (̺, ϑ))

′. By these, the above claim and Lemma 2.6(iv), we conclude
that, for any λ ∈ (0,∞),

∞∑

k=0

ϕ
(
δ−kB, λ ‖Mk‖Lq̃

ϕ(δ−kB)

)
+

∞∑

k=0

∞∑

j=k

ϕ
(
δ−kB, λ ‖bk,j‖L∞(X )

)
(6.14)

.
∞∑

k=0

ϕ
(
δ−kB, λδkǫ‖1B‖

−1
Lϕ(X )

)
+

∞∑

k=0

∞∑

j=k

ϕ
(
δ−kB, λδ−(j−k)ωδjǫ‖1B‖

−1
Lϕ(X )

)
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.
∞∑

k=0

δ−kωq0δkp0ǫϕ
(
B, λ‖1B‖

−1
Lϕ(X )

)
+

∞∑

k=0

∞∑

j=k

δ−kωq0δ−(j−k)ωp0δjp0ǫϕ
(
B, λ‖1B‖

−1
Lϕ(X )

)

∼
∞∑

k=0

δ
kp0(ǫ−ω

q0
p0

)
ϕ
(
B, λ‖1B‖

−1
Lϕ(X )

)

+

∞∑

k=0

δ
kp0(ǫ−ω

q0
p0

)
∞∑

j=k

δ(j−k)(ǫ−ω)p0ϕ
(
B, λ‖1B‖

−1
Lϕ(X )

)

. ϕ
(
B, λ‖1B‖

−1
Lϕ(X )

)
.

Let f ∈ Hϕ,q,ǫ
mol (X ). We know that there exist numbers {λj}

∞
j=1 ⊂ C and a

sequence {mj}
∞
j=1 of (ϕ, q, ǫ)-molecules such that

f =

∞∑

j=1

λjmj in (Gη
0 (̺, ϑ))

′

and

‖f‖Hϕ,q,ǫ
mol (X ) ∼ Λq({λjmj}

∞
j=1).(6.15)

Then, by the above arguments, we find that, for any j ∈ N, there exist a sequence
{aj,k}k∈N of (ϕ, q)-atoms and numbers {µj,k}k∈N ⊂ C such that mj =

∑∞
k=0 µj,kaj,k

in (Gη
0 (̺, ϑ))

′. Thus, we have

f =

∞∑

j=1

∞∑

k=0

λjµj,kaj,k in
(
G̊η
0 (̺, ϑ)

)′
,

which, together with Lemma 2.8(i), (6.14) and (6.15), further implies that

‖f‖Hϕ
at(X ) . Λq

(
{λjµj,kaj,k}

∞
j,k=1

)
. Λq

(
{λjmj}

∞
j=1

)
∼ ‖f‖Hϕ,q,ǫ

mol (X ).

This finishes the proof of Hϕ,q,ǫ
mol (X ) ⊂ Hϕ

at(X ) and hence of Theorem 6.8. �

6.3. Atomic characterizations of Hϕ(X ). In this section, we aim to obtain
the atomic characterizations of Hϕ(X ).

The following notion of homogeneous atomic Musielak–Orlicz Hardy spaces is
taken from [21].

Definition 6.9. (i) Let (ϕ, q) be admissible as in Definition 5.2 and ̺, ϑ ∈

(ω [ q(ϕ)
p

− 1], η). The homogeneous atomic Musielak–Orlicz Hardy space

H̊ϕ,q
at (X ) is defined in the same way asHϕ,q

at (X ) in Definition 5.2 with (Gη
0 (̺, ϑ))

′

replaced by (G̊η
0 (̺, ϑ))

′.
(ii) Let q ∈ (1,∞), s ∈ Z+ and ǫ ∈ (0,∞). The homogeneous molecular Musielak–

Orlicz Hardy space H̊ϕ,q,ǫ
mol (X ) is defined in the same way as Hϕ,q,ǫ

mol (X ) in Def-

inition 6.7 with (Gη
0 (̺, ϑ))

′ replaced by (G̊η
0 (̺, ϑ))

′.

Then we introduce notions of adapted atomic Musielak–Orlicz Hardy spaces,
which are generalized from the Euclidean case in [18] to any space of homogeneous
type.

Definition 6.10. (I) Let (ϕ, q) be admissible as in Definition 5.2 and ̺, ϑ ∈

(ω[ q(ϕ)
p

− 1], η). A function a ∈ Lq(X ) is called an adapted (ϕ, q)A-atom
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supported in a ball B if Definition 5.2(iii) holds true and, instead of (i) and
(ii) of Definition 5.2, a satisfies
(I)1 supp a ⊂ B;

(I)2 ‖a‖Lq(X ) ≤
|B|1/q

‖1B‖Lϕ(X)
.

(II) The adapted homogeneous atomic Musielak–Orlicz Hardy space H̊ϕ,q
at,A(X ) is

defined to be the set of all f ∈ (G̊η
0 (̺, ϑ))

′ satisfying that there exist a sequence
{aj}j∈N of some (ϕ, q)A-atoms supported, respectively, in balls {Bj}j∈N and
{λj}j∈N ⊂ C such that

∞∑

j=1

ϕ

(
Bj,

|λj|

‖1Bj
‖Lϕ(X )

)
<∞

and f =
∑∞

j=1 λjaj in (G̊η
0 (̺, ϑ))

′. Moreover, let

Λ̃q

(
{λjaj}

∞
j=1

)
:= inf

{
λ ∈ (0,∞) :

∞∑

j=1

ϕ

(
Bj,

|λj|

λ‖1Bj
‖Lϕ(X )

)
≤ 1

}
(6.16)

and then define

‖f‖H̊ϕ,q
at,A(X ) := inf

{
Λ̃q

(
{λjaj}

∞
j=1

)}
,

where the last infimum is taken over all decompositions of f as above.
(III) The adapted atomic Musielak–Orlicz Hardy space Hϕ,q

at,A(X ) is defined similar

to H̊ϕ,q
at,A(X ) but with the distribution (G̊η

0 (̺, ϑ))
′ replaced by (Gη

0 (̺, ϑ))
′.

Now, we show that Hϕ,q
at,A(X ) and H̊ϕ,q

at,A(X ) coincide, respectively, with Hϕ,q
at (X )

and H̊ϕ,q
at (X ), which are generalizations of the Euclidean case in [18, Theorem 2.12]

to any space of homogeneous type.

Theorem 6.11. Suppose that (ϕ, q) is admissible as in Definition 5.2, and ̺, ϑ ∈

(ω[ q(ϕ)
p

− 1], η) with q(ϕ) as in (3.16). Then

(i) Hϕ,q
at,A(X ) = Hϕ,q

at (X ) with equivalent quasi-norms;

(ii) H̊ϕ,q
at,A(X ) = H̊ϕ,q

at (X ) with equivalent quasi-norms.

Proof. We only prove (i), because the proof of (ii) is similar. To show (i), we
notice that any (ϕ,∞)A-atom in Definition 6.10 is the same as a (ϕ,∞)-atom in
Definition 5.2 and is also a (ϕ, q)A-atom in Definition 6.10. Thus, by Remark 5.5, we
have

Hϕ,q
at (X ) = Hϕ,∞

at (X ) = Hϕ,∞
at,A (X ) ⊂ Hϕ,q

at,A(X ).

On another hand, observe that any (ϕ, q)A-atom in Definition 6.10 is also a
(ϕ, q, ǫ)-molecule in Definition 6.7, which, combined with Theorem 6.8, further im-
plies that Hϕ,q

at,A(X ) ⊂ Hϕ,q,ǫ
mol (X ) = Hϕ,q

at (X ). This finishes the proof of Theo-
rem 6.11. �

The following relationship between Hϕ,q
at (X ) and H̊ϕ,q

at (X ) is a generalization of
the corresponding results on Hardy spaces Hp(X ) in [21, Theorem 5.4] [in this case,
ϕ is the same as in (4.2)].

Proposition 6.12. Suppose that (ϕ, q) is admissible as in Definition 5.2 and

̺, ϑ ∈ (ω[ q(ϕ)
p

− 1], η). Then H̊ϕ,q
at (X ) = Hϕ,q

at (X ) with equivalent (quasi-)norms.

More precisely, for any f ∈ Hϕ,q
at (X ), the restriction of f on (G̊η

0 (̺, ϑ))
′ belongs to
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H̊ϕ,q
at (X ); Conversely, for any f ∈ H̊ϕ,q

at (X ), there exists a unique f̃ ∈ Hϕ,q
at (X ) such

that f̃ = f in (G̊η
0 (̺, ϑ))

′.

Before proving Proposition 6.12, we need to establish the following auxiliary
lemma.

Lemma 6.13. There exists a positive constant C such that, for any sequence
{λj}j∈N ⊂ C and for any sequence {aj}j∈N of (ϕ, q)-atoms supported, respectively,
in balls {Bj}j∈N,

∞∑

j=1

|λj| ≤ CΛ̃q

(
{λjaj}j∈N

)
,

where Λ̃q is as in (6.16).

Proof. Let λ :=
∑∞

j=1 |λj|. By the uniformly upper-type 1 property of ϕ and

Lemma 2.8(ii), we have

∞∑

j=1

ˆ

Bj

ϕ

(
x,

|λj|

λ‖1Bj
‖Lϕ(X )

)
dµ(x) &

∞∑

j=1

|λj|

λ

ˆ

Bj

ϕ

(
x,

1

‖1Bj
‖Lϕ(X )

)
dµ(x)

∼
∞∑

j=1

|λj|

λ
∼ 1,

which implies that

∞∑

j=1

|λj| . Λ̃q

(
{λjaj}j∈N

)
.

This finishes the proof of Lemma 6.13 �

We are now ready to prove Proposition 6.12.

Proof of Proposition 6.12. By (Gη
0 (̺, ϑ))

′ ⊂ (G̊η
0 (̺, ϑ))

′ with ̺, ϑ ∈ (ω[ q(ϕ)
p
−1], η),

we easily obtain Hϕ,q
at (X ) ⊂ H̊ϕ,q

at (X ). Thus, it suffices to show that H̊ϕ,q
at (X ) ⊂

Hϕ,q
at (X ). Indeed, let f ∈ H̊ϕ,q

at (X ). Then, by Definition 6.9, we know that f ∈
(G̊η

0 (̺, ϑ))
′ and there exist a sequence {aj}j∈N of (ϕ, q)-atoms supported, respectively,

in balls {Bj}j∈N as in Definition 5.2, and numbers {λj}j∈N ⊂ C such that

f =

∞∑

j=1

λjaj in
(
G̊η
0 (̺, ϑ)

)′

and

Λ̃q

(
{λjaj}j∈N

)
. ‖f‖H̊ϕ,q

at,A(X ),

which, combined with Theorem 6.11(ii), implies that

Λ̃q

(
{λjaj}j∈N

)
. ‖f‖H̊ϕ,q

at (X ).(6.17)

Now, for any h ∈ Gη
0 (̺, ϑ), define

〈
f̃ , h

〉
:=

∞∑

j=1

λj 〈aj , h〉 .
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From Lemmas 4.9 and 6.13, Theorem 5.4 and the fact that ‖aj‖Hϕ,q
at (X ) . 1 and

(6.17), it follows that

∣∣∣
〈
f̃ , h

〉∣∣∣ ≤
∞∑

j=1

|λj | |〈aj, h〉| .
∞∑

j=1

|λj| ‖h‖Gη
0 (̺,ϑ)

‖aj‖H∗,ϕ(X )

∼
∞∑

j=1

|λj | ‖h‖Gη
0 (̺,ϑ)

‖aj‖Hϕ,q
at (X ) .

∞∑

j=1

|λj| ‖h‖Gη
0 (̺,ϑ)

. ‖h‖Gη
0 (̺,ϑ)

Λ̃q

(
{λjaj}j∈N

)
. ‖h‖Gη

0 (̺,ϑ)
‖f‖H̊ϕ,q

at (X ).

This shows that f̃ ∈ (Gη
0 (̺, ϑ))

′ and f̃ =
∑∞

j=1 λjaj in (Gη
0 (̺, ϑ))

′. Moreover, f̃ = f

in (G̊η
0 (̺, ϑ))

′, f̃ ∈ H∗,ϕ(X ) and
∥∥∥f̃
∥∥∥
Hϕ,q

at (X )
. ‖f‖H̊ϕ,q

at (X ).

Then we are left to show the uniqueness of the extension f̃ of f . Indeed, suppose

that there exists another extension of f , say, g̃ ∈ Hϕ,q
at (X ). Then g̃ = f̃ on (G̊η

0 (̺, ϑ))
′,

which, together with [21, Lemma 5.2], implies that f̃ − g̃ is a constant, denoted by

C̃. If C̃ 6= 0, then it contradicts to the fact that no non-zero constant belongs to

Hϕ
θ (X ) = Hϕ,q

at (X ). Therefore, C̃ = 0, which further implies that f̃ ∈ Hϕ,q
at (X ) is the

unique extension of f . This finishes the proof of Proposition 6.12. �

Remark 6.14. Let ϕ, q and ǫ be as in Theorem 6.8. From the proof of Theo-
rem 6.8, it follows that H̊ϕ,q,ǫ

mol (X ) = H̊ϕ,q
at (X ) with equivalent quasi-norms.

Now, we state the main result of this subsection, which is a generalization of the
corresponding results on Hardy spaces Hp(X ) in [27, Theorem 5.9] [in this case, ϕ is
the same as in (4.2)].

Theorem 6.15. Assume that (ϕ, q) is admissible as in Definition 5.2 and ̺, ϑ ∈

(ω[ q(ϕ)
p

− 1], η) with q(ϕ) ∈ [1, p(η+ω)
ω

) as in (3.16). Then, as subspaces of (G̊η
0 (̺, ϑ))

′,

Hϕ(X ) and H̊ϕ,q
at (X ) coincide with equivalent (quasi-)norms.

Proof. By Theorem 6.11(ii), we have H̊ϕ,q
at (X ) = H̊ϕ,q

at,A(X ) with equivalent

(quasi-)norms. Thus, we first show that H̊ϕ,q
at (X ) = H̊ϕ,q

at,A(X ) ⊂ Hϕ(X ). Fix f ∈

H̊ϕ,q
at,A(X ). Then, by Definition 6.10, we know that there exist sequences {λj}j∈N ⊂ C

and {aj}j∈N of adapted (ϕ, q)A-atoms supported, respectively, in balls {Bj}j∈N :=
{B(xj, rj)}j∈N with xj ∈ X and rj ∈ (0,∞) for any j ∈ N as in Definition 6.10, such

that f =
∑∞

j=1 λjaj in (G̊η
0 (̺, ϑ))

′ with ̺, ϑ ∈ (ω[ q(ϕ)
p

− 1], η), and

Λ̃q

(
{λjaj}j∈N

)
. ‖f‖H̊ϕ,q

at,A(X ).

Let θ ∈ (0,∞). We aim to show that

‖Sθ(f)‖Lϕ(X ) . max
{
θ−

ω
2 , θ(1+q)ω+η

}
‖f‖H̊ϕ,q

at,A(X ).(6.18)

To this end, by the proof of [27, Proposition 5.6], it suffices to prove that, for any
θ ∈ [1,∞),

‖Sθ(f)‖Lϕ(X ) . θ(1+q)ω+η‖f‖H̊ϕ,q
at,A(X ).
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Indeed, we observe that

Sθ(f) ≤
∞∑

j=1

Sθ(λjaj)14A2
0θBj

+

∞∑

j=1

Sθ(λjaj)1(4A2
0θBj)∁

=: I + II.

To estimate I, by some standard arguments, we reduce the proof to showing
that, for any (ϕ, q)A-atom a supported in a ball B := B(xB , rB) with xB ∈ X and
rB ∈ (0,∞), and λ ∈ C,

A :=

ˆ

4A2
0θB

ϕ (x, Sθ(λa)(x)) dµ(x) . θ(1+q)ω+ηϕ

(
B,

|λ|

‖1B‖Lϕ(X )

)
.

To this end, since ϕ is of uniformly upper type 1 and of uniformly lower type p, it
follows that

A . ‖1B‖Lϕ(X )

ˆ

4A2
0θB

ϕ

(
x,

λ

‖1B‖Lϕ(X )

)
Sθ(a)(x) dµ(x)

+ ‖1B‖
p
Lϕ(X )

ˆ

4A2
0θB

ϕ

(
x,

λ

‖1B‖Lϕ(X )

)
[Sθ(a)(x)]

p dµ(x) =: A1 +A2.

Now, we start to estimate A1. Choose q ∈ [2,∞) such that q′ < r(ϕ) with r(ϕ)
as in (6.9). Thus, ϕ ∈ RHq′(X ). Moreover, from the boundedness of Sθ on Lq(X )
(see, for instance, the proof of [25, Proposition 2.17]), we deduce that

‖Sθ (a)‖Lq(X ) . θω ‖a‖Lq(X ) . θω
[µ(Bj)]

1/q

‖1Bj
‖Lϕ(X )

,

which, combined with the Hölder inequality, ϕ ∈ RHq′(X ) and Lemma 2.6(iv),
implies that

A1 . ‖1B‖Lϕ(X ) ‖Sθ(a)‖Lq(X )





ˆ

4A2
0θB

[
ϕ

(
x,

|λ|

‖1B‖Lϕ(X )

)]q′
dµ(x)





1/q′

. θω ‖1B‖Lϕ(X )

[µ(B)]1/q

‖1Bj
‖Lϕ(X )

[µ(B)]−1/qϕ

(
4A2

0θB,
|λ|

‖1B‖Lϕ(X )

)

. θ(1+q)ωϕ

(
B,

|λ|

‖1B‖Lϕ(X )

)
.

To deal with A2, we first observe that q/p ≥ q and hence q′ ≥ (q/p)′, which,
together with Lemma 2.6(ii), implies that RHq′(X ) ⊂ RH(q/p)′(X ). By this, the
Hölder inequality and Lemma 2.6(iv), we conclude that

A2 . ‖1B‖
p
Lϕ(X ) ‖Sθ(a)‖

p
Lq(X )





ˆ

4A2
0θB

[
ϕ

(
x,

|λ|

‖1B‖Lϕ(X )

)](q/p)′
dµ(x)





1/(q/p)′

. θωp ‖1B‖
p
Lϕ(X )

[µ(B)]p/q

‖1Bj
‖pLϕ(X )

[µ(B)]−p/qϕ

(
4A2

0θB,
|λ|

‖1B‖Lϕ(X )

)

. θ(1+q)ωϕ

(
B,

|λ|

‖1B‖Lϕ(X )

)
,
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which, combined with the estimate of A1, further implies that

A . A1 +A2 . θ(1+q)ωϕ

(
B,

|λ|

‖1B‖Lϕ(X )

)
.

Now, we turn to estimate II. From an argument similar to that used in the proof
of [27, Proposition 5.6] and (1.4), we deduce that, for any x ∈ (4A2

0θB)∁,

Sθ(a)(x) . θω+η µ(B)

‖1B‖Lϕ(X )

[
r

d(x, xB)

]η
1

V (x, xB)
. θω+η 1

‖1B‖Lϕ(X )

[
µ(B)

V (x, xB)

] η
ω
+1

. θω+η [M(1B)(x)]
η
ω
+1

‖1B‖Lϕ(X )

.

This, together with Theorem 6.6, further implies that

‖II‖Lϕ(X ) . θω+η

∥∥∥∥∥

∞∑

j=1

|λj |
[M(1Bj

)]
η
ω
+1

‖1Bj
‖Lϕ(X )

∥∥∥∥∥
Lϕ(X )

∼ θω+η

∥∥∥∥∥∥∥

∞∑

j=1


M


|λj |

ω
ω+η

1Bj

‖1Bj
‖

ω
ω+η

Lϕ(X )






η
ω
+1
∥∥∥∥∥∥∥
Lϕ(X )

∼ θω+η

∥∥∥∥∥∥∥∥





∞∑

j=1


M


|λj|

ω
ω+η

1Bj

‖1Bj
‖

ω
ω+η

Lϕ(X )






η
ω
+1




ω
ω+η

∥∥∥∥∥∥∥∥

ω+η
ω

Lϕ̃(X )

. θω+η

∥∥∥∥∥∥

{
∞∑

j=1

|λj |
1Bj

‖1Bj
‖Lϕ(X )

} ω
ω+η

∥∥∥∥∥∥

ω+η
ω

Lϕ̃(X )

∼ θω+η

∥∥∥∥∥

∞∑

j=1

|λj|
1Bj

‖1Bj
‖Lϕ(X )

∥∥∥∥∥
Lϕ(X )

. θω+ηΛ̃q

(
{λjaj}j∈N

)
. θω+η‖f‖H̊ϕ,q

at,A(X ).

From the estimates of I and II, we deduce that

‖Sθ(f)‖Lϕ(X ) . ‖I‖Lϕ(X ) + ‖II‖Lϕ(X ) . θω+η‖f‖H̊ϕ,q
at,A(X ),

which implies (6.18) and hence shows H̊ϕ,q
at (X ) →֒ Hϕ(X ). This is the desired con-

clusion.
Let q and ǫ be as in Theorem 6.8. Then we show that Hϕ(X ) ⊂ H̊ϕ,q,ǫ

mol (X ) =

H̊ϕ,q
at (X ). Suppose that f ∈ (G̊η

0 (̺, ϑ))
′ belongs to Hϕ(X ). By Theorem 6.3, without

loss of generality, we may choose the exp-ATI {Dk}k∈Z as in Remark 4.4(i). Denote
by D the set of all dyadic cubes. For any k ∈ Z, define Ωk := {x ∈ X : S(f)(x) > 2k}
and

Dk :=

{
Q ∈ D : µ (Q ∩ Ωk) >

1

2
µ(Q) and µ (Q ∩ Ωk+1) ≤

1

2
µ(Q)

}
.

Obviously, for any Q ∈ D, there exists a unique k ∈ Z such that Q ∈ Dk. Denote by
{Qj

τ,k}τ∈Ij,k the set of all maximal cubes in Dk at level j ∈ Z, where Ij,k ⊂ Aj . The

center of Qj
τ,k is denoted by zjτ,k. Then

D =
⋃

j,k∈Z

⋃

τ∈Ij,k

{
Q ∈ Dk : Q ⊂ Qj

τ,k

}
.(6.19)
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Hereafter, we let DQ := Dℓ when Q := Qℓ+1
β for some ℓ ∈ Z and β ∈ Aℓ+1. We now

show that

f =
∑

ℓ∈Z

DℓDℓf =
∑

k∈Z

∑

j∈Z

∑

τ∈Ij,k

λjτ,kb
j
τ,k,(6.20)

where all the equalities hold true in (G̊η
0 (̺, ϑ))

′,

λjτ,k := 2k‖1Qj
τ,k
‖Lϕ(X )(6.21)

and

bjτ,k(·) :=
1

λjτ,k

∑

{Q∈Dk, Q⊂Qj
τ,k}

ˆ

Q

DQ(·, y)DQf(y) dµ(y).

Before proving (6.20), we first claim that bjτ,k is a positive harmless constant
multiple of a (ϕ, q, ǫ0)-molecule, where ǫ0 is determined later, related to the ball
Bj

τ,k := B(zjτ,k, 4A
2
0δ

j−1) as in Definition 6.7. Indeed, for any Q ∈ Dk and Q ∈

Qj
τ,k, assume that Q := Qℓ+1

α for some ℓ ∈ Z and α ∈ Aℓ+1. By the proof of [27,
Proposition 5.7], we know that, for any y ∈ Q,

µ
(
B
(
y, δℓ

)
∩
[
Qj

τ,k \ Ωk+1

])
& Vδℓ(y).

From this, the Fubini–Tonelli theorem, Vδℓ(x) ∼ Vδℓ(y) for any x, y ∈ X with
d(x, y) < δℓ, and the Hölder inequality, we deduce that, for any h ∈ Lq′(X ) with
‖h‖Lq′(X ) ≤ 1,

∣∣∣∣
ˆ

X

bjτ,k(x)h(x) dµ(x)

∣∣∣∣(6.22)

≤
1

λjτ,k

∑

{Q∈Dk, Q⊂Qj
τ,k}

ˆ

Q

|DQf(y)|
∣∣D∗

Qh(y)
∣∣ dµ(y)

.
1

λjτ,k

∑

{Q∈Dk, Q⊂Qj
τ,k}

ˆ

Q

µ(B(y, δℓ) ∩ [Qj
τ,k \ Ωk+1])

Vδℓ(y)
|DQf(y)|

∣∣D∗
Qh(y)

∣∣ dµ(y)

∼
1

λjτ,k

∞∑

ℓ=j−1

∑

α∈Aℓ+1

∑

{Qℓ+1
α ∈Dk, Qℓ+1

α ⊂Qj
τ,k}

ˆ

Qℓ+1
α

µ(B(y, δℓ) ∩ [Qj
τ,k \ Ωk+1])

Vδℓ(y)

· |Dℓf(y)| |D
∗
ℓh(y)| dµ(y)

.
1

λjτ,k

∞∑

ℓ=j−1

ˆ

Qj
τ,k

µ(B(y, δℓ) ∩ [Qj
τ,k \ Ωk+1])

Vδℓ(y)
|Dℓf(y)| |D

∗
ℓh(y)| dµ(y)

∼
1

λjτ,k

∞∑

ℓ=j−1

ˆ

Qj
τ,k

ˆ

X

1B(y,δℓ)(x)1Qj
τ,k\Ωk+1

(x)
dµ(x)

Vδℓ(x)
|Dℓf(y)| |D

∗
ℓh(y)| dµ(y)

∼
1

λjτ,k

ˆ

Qj
τ,k\Ωk+1

∞∑

ℓ=j−1

ˆ

Qj
τ,k∩B(x,δℓ)

|Dℓf(y)| |D
∗
ℓh(y)|

dµ(y)

Vδℓ(x)
dµ(x)
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.
1

λjτ,k

ˆ

Qj
τ,k\Ωk+1

∞∑

ℓ=j−1

[
ˆ

B(x,δℓ)

|Dℓf(y)|
2 dµ(y)

Vδℓ(x)

]1/2 [ˆ

B(x,δℓ)

|D∗
ℓh(y)|

2 dµ(y)

Vδℓ(x)

]1/2
dµ(x)

.
1

λjτ,k

ˆ

Qj
τ,k\Ωk+1

[
∞∑

ℓ=j−1

ˆ

B(x,δℓ)

|Dℓf(y)|
2 dµ(y)

Vδℓ(x)

]1/2

·

[
∞∑

ℓ=j−1

ˆ

B(x,δℓ)

|D∗
ℓh(y)|

2 dµ(y)

Vδℓ(x)

]1/2
dµ(x)

.
1

λjτ,k

{
ˆ

Qj
τ,k\Ωk+1

[S(f)(x)]q dµ(x)

}1/q{
ˆ

Qj
τ,k\Ωk+1

[
S̃(h)(x)

]q′
dµ(x)

}1/q′

.
2k

λjτ,k

[
µ
(
Qj

τ,k

)]1/q ∥∥∥S̃(h)
∥∥∥
Lq′ (X )

,

where, for any x ∈ X ,

S̃(h)(x) :=

[
∞∑

ℓ=−∞

ˆ

B(x,δℓ)

|D∗
ℓh(y)|

2 dµ(y)

Vδℓ(x)

]1/2

and D∗
ℓ is the adjoint operator on L2(X ) of Dℓ for any ℓ ∈ Z. By the proof of [27,

Theorem 5.10], we conclude that∥∥∥S̃(h)
∥∥∥
Lq′(X )

. ‖g̃(h)‖Lq′ (X ) ,

where g̃(h) := [
∑

ℓ∈Z |D∗
ℓh|

2]1/2. Following the arguments used in the proof of [27,
Lemma 5.8], we know that g̃ is bounded on L2(X ), which, combined with the theory
of vector-valued Calderón–Zygmund operators (see, for instance, [22]), implies that
g̃ is bounded on Lq′(X ). Therefore, we have

∣∣∣∣
ˆ

X

bjτ,k(x)h(x) dµ(x)

∣∣∣∣ .
[µ(Qj

τ,k)]
1/q

‖1Qj
τ,k
‖Lϕ(X )

‖h‖Lq′(X ) .
[µ(Qj

τ,k)]
1/q

‖1Qj
τ,k
‖Lϕ(X )

.

Taking the supremum over all h ∈ Lq′(X ) with ‖h‖Lq′ (X ) ≤ 1, we obtain

∥∥bjτ,k
∥∥
Lq(X )

.
[µ(Qj

τ,k)]
1/q

‖1Qj
τ,k
‖Lϕ(X )

,

which, together with some arguments similar to those used in the proof of [27, Propo-

sition 5.7], further implies that there exists ǫ0 ∈ (ω[ q(ϕ)
p

− 1], ̺) such that

∥∥∥bjτ,k1Um(Bj
τ,k)

∥∥∥
Lq′(X )

. δmǫ0

[
µ(Bj

τ,k)

µ(δ−mBj
τ,k)

]1/2
[µ(Bj

τ,k)]
1/q

‖1Bj
τ,k
‖Lϕ(X )

(6.23)

. δmǫ0
[µ(δ−mBj

τ,k)]
1/q

‖1Bj
τ,k
‖Lϕ(X )

.

Thus, bjτ,k is a positive harmless constant multiple of a (ϕ, q, ǫ0)-molecule related to

the ball Bj
τ,k := B(zjτ,k, 4A

2
0δ

j−1) as in Definition 6.7. This finishes the proof of the
above claim.
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Moreover, by (6.23), (6.21), Lemma 2.6(iv) and some arguments similar to those
used in the proof of [35, Lemma 5.4], we have

∑

k∈Z

∑

j∈Z

∑

τ∈Ij,k

ϕ

(
Bj

τ,k,
|λjτ,k|

‖1Bj
τ,k
‖Lϕ(X )‖S(f)‖Lϕ(X )

)

.
∑

k∈Z

∑

j∈Z

∑

τ∈Ij,k

ϕ

(
Qj

τ,k,
|λjτ,k|

‖1Qj
τ,k
‖Lϕ(X )‖S(f)‖Lϕ(X )

)

.
∑

k∈Z

∑

j∈Z

∑

τ∈Ij,k

ϕ

(
Qj

τ,k,
2k

‖S(f)‖Lϕ(X )

)

.
∑

k∈Z

∑

j∈Z

∑

τ∈Ij,k

ϕ

(
Qj

τ,k ∩ Ωk,
2k

‖S(f)‖Lϕ(X )

)[
µ(Qj

τ,k)

µ(Qj
τ,k ∩ Ωk)

]p0

.
∑

k∈Z

ϕ




⋃

j∈Z

⋃

τ∈Ij,k

Qj
τ,k


 ∩ Ωk,

2k

‖S(f)‖Lϕ(X )




.
∑

k∈Z

ϕ

(
Ωk,

2k

‖S(f)‖Lϕ(X )

)
.

ˆ

X

ϕ

(
x,

S(f)

‖S(f)‖Lϕ(X )

)
dµ(x) ∼ 1,

which implies that

Λq

({
λjτ,kb

j
τ,k

}
j,τ,k

)
. ‖S(f)‖Lϕ(X ),(6.24)

where Λq is as in (6.8).
Then we begin to prove (6.20). To this end, we need to show that

∑

k∈Z

∑

j∈Z

∑

τ∈Ij,k

λjτ,kb
j
τ,k

converges in (Gη
0 (̺, ϑ))

′ and hence in (G̊η
0 (̺, ϑ))

′, because G̊η
0 (̺, ϑ) ⊂ Gη

0 (̺, ϑ). Indeed,
let {EN}N∈N be an increasing sequence of finite subset of E := {(k, j, τ) : k, j ∈
Z, τ ∈ Ij,k} with E =

⋃
N∈N EN . For any N, M ∈ N with N > M , by the above

claim, Lemma 4.9, Theorem 6.8 and (6.24), we conclude that, for any h ∈ Gη
0 (̺, ϑ),∑

(k,j,τ)∈E

∣∣λjτ,k
∣∣ ∣∣〈bjτ,k, h

〉∣∣ .
∑

(k,j,τ)∈E

∣∣λjτ,k
∣∣ ∥∥bjτ,k

∥∥
H∗,ϕ(X )

‖h‖Gη
0 (̺,ϑ)

.
∑

(k,j,τ)∈E

∣∣λjτ,k
∣∣ ‖h‖Gη

0 (̺,ϑ)
. Λq

({
λjτ,kb

j
τ,k

}
j,τ,k

)
‖h‖Gη

0 (̺,ϑ)

. ‖S(f)‖Lϕ(X )‖h‖Gη
0 (̺,ϑ)

<∞,

which further implies that
∣∣∣∣∣∣

〈
∑

{(k,j,τ)∈EN\EM}

λjτ,kb
j
τ,k, h

〉∣∣∣∣∣∣
≤

∑

{(k,j,τ)∈EN\EM}

∣∣λjτ,k
∣∣ ∣∣〈bjτ,k, h〉

∣∣→ 0 as M → ∞.

Thus, {
∑

(k,j,τ)∈EN
λjτ,kb

j
τ,k}N∈N is a Cauchy sequence in (Gη

0 (̺, ϑ))
′, which, combined

with the completion of (Gη
0 (̺, ϑ))

′, implies that
∑

(k,j,τ)∈EN
λjτ,kb

j
τ,k converges to some

f̃ ∈ (Gη
0 (̺, ϑ))

′. That is,
∑

k∈Z

∑
j∈Z

∑
τ∈Ij,k

λjτ,kb
j
τ,k converges in (Gη

0 (̺, ϑ))
′.
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By [24, Corollary 3.5], to prove (6.20), it suffices to show that, for any k̃ ∈ Z and

β̃ ∈ Gk̃ with Gk̃ as in (4.1) with k replaced by k̃,

〈
f, ψk̃

β̃

〉
=

〈
∑

ℓ∈Z

DℓDℓf, ψ
k̃
β̃

〉
=

〈
∑

k∈Z

∑

j∈Z

∑

τ∈Ij,k

λjτ,kb
j
τ,k, ψ

k̃
β̃

〉
=
〈
f̃ , ψk̃

β̃

〉
,(6.25)

where {ψk̃
β̃
}k̃∈Z, β̃∈G

k̃
is as in Theorem 4.3.

Let {IN}N∈N be an increasing sequence of finite subset of I := {Q ∈ Dk, Q ⊂
Qj

τ,k} with I =
⋃

N∈N IN . From the proof of (6.22), we deduce that, for any

h ∈ L2(X ) with ‖h‖L2(X ) = 1,
∑

Q∈I

|〈DQDQf, h〉| . 2k
[
µ
(
Qj

τ,k

)]1/q ∥∥∥S̃(h)
∥∥∥
Lq′(X )

. 2k
[
µ
(
Qj

τ,k

)]1/q
<∞,

which further implies that, for any N, M ∈ N with N > M
∣∣∣∣∣∣

〈
∑

Q∈IN\IM

DQDQf, h

〉∣∣∣∣∣∣
≤

∑

Q∈IN\IM

|〈DQDQf, h〉| → 0 as M → ∞.

Thus, by the completion of L2(X ) and (L2(X ))∗ = L2(X ), where (L2(X ))∗ denotes
the dual space of L2(X ), we obtain

∑

{Q∈Dk, Q⊂Qj
τ,k}

ˆ

Q

DQ(·, y)DQf(y) dµ(y)

converges in L2(X ), which, together with D∗
ℓ−1(x, y) = Dℓ−1(y, x) for any ℓ ∈ Z and

(x, y) ∈ X × X , implies that
〈
bjτ,k, ψ

k̃
β̃

〉
=

1

λjτ,k

∑

{Q∈Dk, Q⊂Qj
τ,k}

ˆ

Q

〈
D∗

Q(·, y), ψ
k̃
β̃

〉
DQf(y) dµ(y)(6.26)

=
1

λjτ,k

∞∑

ℓ=j

∑

β∈Aℓ

∑

{Qℓ
β∈Dk, Qℓ

β⊂Qj
τ,k}

ˆ

Qℓ
β

〈
Dℓ−1(y, ·), ψ

k̃
β̃

〉
Dℓf(y) dµ(y),

where, for any k ∈ Z, Dk(·, ·) is as in Remark 4.4(i) and D∗
k(·, ·) denotes the kernel

of the adjoint operator D∗
k of Dk on L2(X ).

On another hand, by the orthogonality of {ψk̃
β̃
}k̃∈Z, β̃∈G

k̃
, we conclude that, for

any y ∈ X ,

〈
Dℓ−1(y, ·), ψ

k̃
β̃

〉
=

{
0, when ℓ− 1 6= k̃,

ψk̃
β̃
(y), when ℓ− 1 = k̃,

which, combined with (6.26), implies that, if k̃ < j−1, then 〈bjτ,k, ψ
k̃
β̃
〉 = 0; if k̃ ≥ j−1,

then
〈
bjτ,k, ψ

k̃
β̃

〉
=

1

λjτ,k

∑

β∈A
k̃+1

∑

{Qk̃+1
β ∈Dk, Qk̃+1

β ⊂Qj
τ,k}

ˆ

Qk̃+1
β

ψk̃
β̃
(y)Dk̃f(y) dµ(y).(6.27)

From (6.19), (6.27), the disjointness of {Qj
τ,k}τ∈Ij, k for any fixed j, k ∈ Z, the

disjointness of {Dk}k∈Z, Lemma 4.1(iii) and the orthogonality of {ψk̃
β̃
}k̃∈Z, β̃∈G

k̃
, it
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follows that

〈
f̃ , ψk̃

β̃

〉
=
∑

k∈Z

k̃+1∑

j=−∞

∑

τ∈Ij,k

∑

β∈A
k̃+1

∑

{Qk̃+1
β ∈Dk, Qk̃+1

β ⊂Qj
τ,k}

ˆ

Qk̃+1
β

ψk̃
β̃
(y)Dk̃f(y) dµ(y)

=
∑

β∈A
k̃+1

ˆ

Qk̃+1
β

ψk̃
β̃
(y)Dk̃f(y) dµ(y)

=
〈
Dk̃f, ψ

k̃
β̃

〉
=
∑

β∈Gk

〈
f, ψk

β

〉 〈
ψk
β, ψ

k̃
β̃

〉
=
〈
f, ψk̃

β̃

〉
.

This finishes the proof of (6.25) and hence of (6.20).
In the end, by (6.24), Proposition 6.12 and Theorem 6.8, we have

‖f‖H̊ϕ,q
at (X ) ∼ ‖f‖Hϕ,q

at (X ) ∼ ‖f‖Hϕ,q,ǫ
mol (X ) . Λq

({
λjτ,kb

j
τ,k

}
j,τ,k

)
. ‖S(f)‖Lϕ(X ).

This finishes the proof of Hϕ(X ) ⊂ H̊ϕ,q
at (X ) and hence of Theorem 6.15. �

6.4. Littlewood–Paley function characterizations of H
ϕ(X ). In this

subsection, we establish several characterizations of Hϕ(X ), respectively, in terms of
the Lusin area functions with apertures, the Littlewood–Paley g-functions and the
Littlewood–Paley g∗λ-functions, which is a generalization of the corresponding results
on Hardy spaces Hp(X ) in [27, Theorem 5.10] [in this case, ϕ is the same as in (4.2)].

Theorem 6.16. Let ϕ be a growth function and ̺, ϑ ∈ (ω[ q(ϕ)
p

− 1], η) with

q(ϕ) < p(ω+η)
ω

as in (3.16). Assume that θ ∈ (0,∞) and λ ∈ (ω[1 + 2q(ϕ)
p

],∞). Then,

for any f ∈ (G̊η
0 (̺, ϑ))

′, it holds true that

‖f‖Hϕ(X ) ∼ ‖Sθ(f)‖Lϕ(X ) ∼ ‖g∗λ(f)‖Lϕ(X ) ∼ ‖g(f)‖Lϕ(X ),(6.28)

provided that any one of (6.28) is finite, with all positive equivalence constants
independent of f .

Proof. Let f ∈ (G̊η
0 (̺, ϑ))

′ with ̺, ϑ ∈ (ω[ q(ϕ)
p

− 1], η). Let Sθ(f), g
∗
λ(f) and g(f)

be defined, respectively, as in (6.1), (6.3) and (6.2) with {Qk}k∈Z being an exp-ATI,

where θ ∈ (0,∞) and λ ∈ (ω[1 + 2q(ϕ)
p

],∞).

Let (ϕ, q) be admissible as in Definition 5.2. We first show that ‖Sθ(f)‖Lϕ(X ) ∼
‖f‖Hϕ(X ). From (6.18) and Theorem 6.15, we deduce that

‖Sθ(f)‖Lϕ(X ) . ‖f‖H̊ϕ,q
at (X ) ∼ ‖f‖Hϕ(X ).

Conversely, without loss of generality, we may assume that ‖Sθ(f)‖Lϕ(X ) < ∞.

By the proof of Hϕ(X ) ⊂ H̊ϕ,2
at (X ) in Theorem 6.15, we know that f =

∑∞
j=1 λjaj in

(G̊η
0 (̺, ϑ))

′ with a sequence {aj}
∞
j=1 of adapted (ϕ, q)A-atoms and numbers {λj}

∞
j=1 ⊂

C such that

Λq

(
{λjaj}j∈N

)
. ‖Sθ(f)‖Lϕ(X ) ,

which, together with Theorem 6.15, further implies that

‖f‖Hϕ(X ) = ‖S(f)‖Lϕ(X ) ∼ ‖f‖H̊ϕ,q
at (X ) . Λq

(
{λjaj}j∈N

)
. ‖Sθ(f)‖Lϕ(X ) .

Therefore, we obtain ‖f‖Hϕ(X ) ∼ ‖Sθ(f)‖Lϕ(X ).
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Then we show that ‖S(f)‖Lϕ(X ) ∼ ‖g∗λ(f)‖Lϕ(X ). Notice that

S(f) . g∗λ(f) .
∞∑

j=1

2
j(ω−λ)

2 S2j (f)

(see, for instance, the proof of [27, Theorem 5.10]), which, combined with (6.18) and
Theorem 6.15, implies that

‖S(f)‖pLϕ(X ) . ‖g∗λ(f)‖
p
Lϕ(X ) .

∞∑

j=1

2
j(ω−λ)

2
p ‖S2j(f)‖

p
Lϕ(X )

.
∞∑

j=1

2
j(ω−λ)

2
p‖f‖p

H̊ϕ,q
at (X )

. ‖f‖p
H̊ϕ,q

at (X )
∼ ‖S(f)‖pLϕ(X ).

This shows that ‖S(f)‖pLϕ(X ) ∼ ‖g∗λ(f)‖
p
Lϕ(X ).

Now, we prove ‖g(f)‖Lϕ(X ) ∼ ‖f‖Hϕ(X ). Following the proof of (6.18), we easily
have

‖g(f)‖Lϕ(X ) . ‖f‖H̊ϕ,q
at (X ) ∼ ‖f‖Hϕ(X ).

To finish the proof of Theorem 6.16, we still need to show that ‖f‖Hϕ(X ) . ‖g(f)‖Lϕ(X ).
Indeed, by the proof of [27, Theorem 5.10] with the same notation as therein, via
choosing r and ˜̺ such that r ∈ ( ω

ω+˜̺
, p
q(ϕ)

), we conclude that, for any x ∈ X ,

[S(f)(x)]2 .
∑

k′∈Z


M


 ∑

α′∈Ak′

N(k′,α′)∑

m′=1

∣∣∣Qk′f
(
yk

′,m′

α′

)∣∣∣
r

1
Qk′,m′

α′


 (x)




2
r

,

which, together with Theorem 6.6, further implies that

‖f‖Hϕ(X ) = ‖[S(f)]r‖
1
r

Lϕ̃(X )

.

∥∥∥∥∥∥∥∥





∑

k′∈Z


M


 ∑

α′∈Ak′

N(k′,α′)∑

m′=1

∣∣∣Qk′f
(
yk

′,m′

α′

)∣∣∣
r

1
Qk′,m′

α′






2
r





r
2

∥∥∥∥∥∥∥∥

1
r

Lϕ̃(X )

.

∥∥∥∥∥∥∥∥





∑

k∈Z


 ∑

α′∈Ak′

N(k′,α′)∑

m′=1

∣∣∣Qk′f
(
yk

′,m′

α′

)∣∣∣
r

1
Qk′,m′

α′




2
r





r
2

∥∥∥∥∥∥∥∥

1
r

Lϕ̃(X )

∼

∥∥∥∥∥∥∥


∑

k′∈Z

∑

α′∈Ak′

N(k′,α′)∑

m′=1

∣∣∣Qk′f
(
yk

′,m′

α′

)∣∣∣
2

1
Qk′,m′

α′




1
2

∥∥∥∥∥∥∥
Lϕ(X )

,

where ϕ̃(x, t) := ϕ(x, t1/r) for any (x, t) ∈ X × [0,∞) is of uniformly lower type

p/r ∈ (q(ϕ),∞). From this and the arbitrariness of yk
′,m′

α′ , it follows that

‖f‖Hϕ(X ) .

∥∥∥∥∥∥∥


∑

k∈Z

∑

α′∈Ak

N(k′,α′)∑

m′=1

inf
z∈Qk′(y

k′,m′

α′ )

|Qk′f(z)|
2 1

Qk′,m′

α′




1
2

∥∥∥∥∥∥∥
Lϕ(X )

. ‖g(f)‖Lϕ(X ),

which completes the proof of ‖f‖Hϕ(X ) . ‖g(f)‖Lϕ(X ) and hence of Theorem 6.16. �
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7. Finite atomic characterizations

In this section, we obtain a finite atomic characterization of Hϕ(X ) and also give
an improved version in case q <∞.

7.1. Finite atomic characterizations with uniformly locally dominated

convergence conditions. In this subsection, we obtain a finite atomic characteri-
zation of Hϕ(X ) with uniformly locally dominated convergence conditions.

First, we need to introduce the following uniformly locally dominated convergence
condition on ϕ, which is a generalization of the corresponding Euclidean case in [35]
to any space of homogeneous type.

Definition 7.1. A growth function ϕ is said to satisfy the uniformly locally
dominated convergence condition if the following holds true: LetK ⊂ X be a bounded
set and f a measurable function on X such that limm→∞ fm(x) = f(x) for almost
every x ∈ X . If there exists a non-negative measurable function g such that |fm(x)| ≤
g(x) for almost every x ∈ X and

sup
t∈(0,∞)

ˆ

K

g(x)
ϕ(x, t)

´

K
ϕ(y, t) dµ(y)

dµ(x) <∞,

then

lim
m→∞

sup
t∈(0,∞)

ˆ

K

|fm(x)− f(x)|
ϕ(x, t)

´

K
ϕ(y, t) dµ(y)

dµ(x) = 0.

We first recall some notions and notation from [35, Section 2.4]. Recall that a
quasi-Banach space B is a complete vector space equipped with a quasi-norm ‖ · ‖B
which is nonnegative, non-degenerate (namely, ‖f‖B = 0 if and only if f = 0)
and homogeneous, and satisfies the quasi-triangle inequality, namely, there exists a
positive constant κ ∈ [1,∞) such that, for any f, g ∈ B, ‖f + g‖B ≤ κ(‖f‖B + ‖g‖B).

Let γ ∈ (0, 1] and m ∈ N. A quasi-Banach space Bγ with the quasi-norm ‖ · ‖Bγ

is called a γ-quasi-Banach space if there exists a positive constant κ ∈ [1,∞) such
that, for any m ∈ N and {fj}

m
j=1 ⊂ Bγ ,

∥∥∥∥∥

m∑

j=1

fj

∥∥∥∥∥

γ

Bγ

≤ κ

m∑

j=1

‖fj‖
γ
Bγ
.

Similarly to the Euclidean case, we know that, when ϕ is of uniformly lower type
p ∈ (0, 1], Hϕ(X ) and Lϕ(X ) are p-quasi-Banach spaces.

For every given γ-quasi-Banach space Bγ with γ ∈ (0, 1] and a linear space Y , an
operator T from Y to Bγ is said to be Bγ-sublinear if there exists a positive constant
κ̃ ∈ [1,∞) such that

(i) for any f, g ∈ Y , ‖T (f)− T (g)‖Bγ ≤ κ̃‖T (f − g)‖Bγ ;
(ii) for any m ∈ N, {λj}

m
j=1 ⊂ C and {fj}

m
j=1 ⊂ Y ,

∥∥∥∥∥T
(

m∑

j=1

λjfj

)∥∥∥∥∥

γ

Bγ

≤ κ̃

m∑

j=1

|λj|
γ ‖T (fj)‖

γ
Bγ
.

The main result of this section is stated as follows. Let UC(X ) be the set of all
uniformly continuous functions on X .
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Theorem 7.2. Let ϕ be a growth function as in Definition 2.5, (ϕ, q) be admis-
sible as in Definition 5.2 and ϕ satisfy the uniformly locally dominated convergence
condition as in Definition 7.1. Then

(i) If q ∈ (q(ϕ),∞), then ‖ · ‖Hϕ,q
fin (X ) and ‖ · ‖Hϕ(X ) are equivalent quasi-norms

on Hϕ,q
fin (X );

(ii) ‖ · ‖Hϕ,∞
fin (X ) and ‖ · ‖Hϕ(X ) are equivalent quasi-norms on Hϕ,∞

fin (X ) ∩UC(X );

(iii) Hϕ,∞
fin (X ) ∩UC(X ) is a dense subspace of Hϕ(X ).

Proof. We first show (i). Let q ∈ (q(ϕ),∞). By Theorems 6.15 and 5.4, and
Proposition 6.12, we know that Hϕ(X ) and H∗,ϕ(X ) coincide with equivalent quasi-
norms and, for any f ∈ Hϕ(X ),

‖f‖Hϕ(X ) ∼ ‖f‖H̊ϕ,q
at (X ) ∼ ‖f‖Hϕ,q

at (X ) ∼ ‖f‖H∗,ϕ(X ).(7.1)

Thus, to show (i), it suffices to prove that, for any f ∈ Hϕ,q
fin (X ),

‖f‖Hϕ,q
fin (X ) . ‖f‖H∗,ϕ(X ).

By the homogeneity of the quasi-norm of H∗,ϕ(X ), without loss of generality, we
may assume that ‖f‖H∗,ϕ(X ) = 1.

Obviously, for any f ∈ Hϕ,q
fin (X ), f ∈ Lq

ϕ(·,1)(X )∩H∗,ϕ(X ) and
´

X
f(x) dµ(x) = 0.

By the atomic characterization in Part II of the proof of Theorem 5.4, namely, the
proof of H∗,ϕ(X ) ⊂ Hϕ,q

at (X ) (with the same notation as therein),

f =
∑

j∈Z

∑

k∈Ij

λjka
j
k =

∑

j∈Z

∑

k∈Ij

hjk =
∑

j∈Z

hj

converges both in (Gη
0 (̺, ϑ))

′ and almost everywhere on X . Here and hereafter, hj ,

hjk, λ
j
k and ajk are as in (5.13) and (5.15).

From f ∈ Hϕ,q
fin (X ), we deduce that there exists a ball B(x1, R) with x1 ∈ X

and R ∈ (0,∞) such that supp f ⊂ B(x1, R). In the remainder of this proof, let

B̃ := B(x1, 16A
4
0R). Now, we claim that, for any x ∈ (B̃)∁,

f ⋆(x) ≤ c1‖1B̃‖
−1
Lϕ(X )(7.2)

for some fixed positive constant c1 independent of f and x, where f ⋆ is as in (5.4).
Suppose that ϕ ∈ (Gη

0 (̺, ϑ))
′ with ‖ϕ‖G(x,r,̺,ϑ) ≤ 1 for some r ∈ (0,∞). By the proof

of [27, (7.1)], we know that, for any y ∈ B(x1, d(x, x1)),

|〈f, ϕ〉| . f ∗(y),

where f ∗ is as in (4.3), and hence, by (3.19), for any x ∈ (B̃)∁,

f ⋆(x) . inf
y∈B(x1,R)

f ∗(y) . ‖1B(x1,R)‖
−1
Lϕ(X )‖f

∗‖Lϕ(X ) ∼ ‖1B̃‖
−1
Lϕ(X )‖f‖H∗,ϕ(X )

=: c1‖1B̃‖
−1
Lϕ(X )

for some fixed positive constant c1 independent of f and x, which completes the proof
of the above claim.

Moreover, let

j̃ := max
{
j ∈ Z : 2j ≤ c1‖1B̃‖

−1
Lϕ(X )

}
.(7.3)
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Then, by the atomic characterization in Part II of the proof of Theorem 5.4, namely,
the proof of H∗,ϕ(X ) ⊂ Hϕ,q

at (X ), we know that

h :=
∑

j≤j̃

∑

k∈Ij

hjk and ℓ :=
∑

j>j̃

∑

k∈Ij

hjk

converge both in (Gη
0 (̺, ϑ))

′ and almost everywhere on X , where {hjk}j∈Z,k∈Ij are

the same as in (5.13) and, indeed, hjk for any i ∈ Z and k ∈ Ij is a multiple of a
(ϕ,∞)-atom as in Definition 5.2. Thus, f = h+ ℓ and, by the above claim (7.2), we

conclude that, if j > j̃, then

Ωj :=
{
x ∈ X : f ⋆(x) > 2j

}
⊂ B̃,

which, combined with supp f ⊂ B(x1, R), further implies that supp h ⊂ B̃. Now,
we show that h is a multiple of a (ϕ,∞)-atom as in Definition 5.2. Indeed, we
recall some results from Part II of the proof of Theorem 5.4, namely, the proof of
H∗,ϕ(X ) ⊂ Hϕ,q

at (X ), that
∥∥hjk
∥∥
L∞(X )

. 2j, supp hjk ⊂ Bj
k := B

(
xjk, 16A

4
0r

j
k

)
⊂ Ωj(7.4)

and
∑

j∈Ik

1B(xj
k ,16A

4
0r

j
k)
. 1.

Therefore, we have

‖h‖L∞(X ) ≤
∑

j≤j̃

‖hj‖L∞(X ) .
∑

j≤j̃

2j . ‖1B̃‖
−1
Lϕ(X ).

Thus, to prove that h is a multiple of a (ϕ,∞)-atom, it suffices to show that
´

X
h(x) dµ(x) = 0. To this end, we first need to prove that f is a multiple of a

classical (1, q̃)-atom as in [10, p. 591] for some q̃ ∈ (1, q
q(ϕ)

). Let q̃ ∈ (1, q
q(ϕ)

). Then

ϕ ∈ Aq/q̃(X ) and hence
[

1

V (x1, R)

ˆ

B(x1,R)

|f(x)|q̃ dµ(x)

]1/q̃

≤

[
1

ϕ(B(x1, R), 1)

ˆ

B(x1,R)

|f(x)|qϕ(x, 1) dµ(x)

]1/q
<∞

by Lemma 2.6(iii) when q ∈ (q(ϕ),∞). From this and
´

X
f(x) dµ(x) = 0, it follows

that f is a multiple of a classical (1, q̃)-atom and hence f ∗ ∈ L1(X ).
Moreover, by (7.4), for any x ∈ X , we have

∑

j>j̃

∑

k∈Ij

∣∣hjk(x)
∣∣(7.5)

.
∑

j>j̃

2j
∑

k∈Ij

1Bj
k
(x) .

∑

j>j̃

2j1Ωj (x) ∼
∑

j>j̃

2j
∞∑

m=j

1Ωm\Ωm+1(x)

∼
∞∑

m=j̃+1

m∑

j=j̃+1

2j1Ωm\Ωm+1(x) ∼
∞∑

m=j̃+1

2m1Ωm\Ωm+1(x)

∼ f ∗(x)
∞∑

m=j̃+1

1Ωm\Ωm+1(x) ∼ f ∗(x)1Ωj̃+1(x) . f ∗(x)1Ωj (x) ∈ L1(X ),
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which, together with the Lebesgue dominated convergence theorem, implies that
ˆ

X

ℓ(x) dµ(x) =
∑

j>j̃

∑

k∈Ij

ˆ

X

hjk(x) dµ(x) = 0.

Moreover, by this and
´

X
f(x) dµ(x) = 0, we obtain

ˆ

X

h(x) dµ(x) =

ˆ

X

f(x) dµ(x)−

ˆ

X

ℓ(x) dµ(x) = 0,

which further implies that h is a multiple of a (ϕ,∞)-atom as in Definition 5.2.
Now, we deal with ℓ. For any N ∈ N, let

FN :=
{
(k, j) : j ∈ Z, k ∈ Ij , j > j̃, |k|+ |j| ≤ N

}
and ℓN :=

∑

(k,j)∈FN

hjk.

Then ‖ℓN‖Hϕ,q
fin (X ) ≤ Λ({hjk}(k,j)∈FN

) . 1. We then claim that, for any ǫ ∈ (0,∞),

there exists N ∈ N such that ε−1(ℓ − ℓN) is a (ϕ, q)-atom supported in the ball B̃

and ‖ℓ− ℓN‖Hϕ,q
fin (X ) < ε. Indeed, observe that, for any j > j̃,

supp (ℓ− ℓN) ⊂ Ωj ⊂ B̃ and

ˆ

X

[ℓ(x)− ℓN(x)] dµ(x) = 0.

To prove the above claim, it suffices to show that limN→∞ ‖ℓ − ℓN‖Lq
ϕ(B̃) = 0. To

this end, by f ∈ Lq
ϕ(B̃), f ∗ . M(f) (see, for instance, [21, Proposition 3.9]) and

Lemma 2.6(v), we conclude that f ∗ ∈ Lq
ϕ(B̃), which, combined with (7.5) and the

uniformly locally dominated convergence condition as in Definition 7.1, further im-
plies that limN→∞ ‖ℓ− ℓN‖Lq

ϕ(B̃) = 0. This shows the above claim.

Furthermore, for any ε ∈ (0,∞), we choose N ∈ N such that ‖ℓN −ℓ‖Hϕ,q
fin (X ) < ǫ.

Thus, f = h+ ℓN + (ℓ− ℓN) is a finite linear combination of both (ϕ,∞)-atoms and
(ϕ, q)-atoms and

‖f‖Hϕ,q
fin (X ) . ‖h‖Hϕ,q

fin (X ) + ‖ℓN‖Hϕ,q
fin (X ) + ‖ℓ− ℓN‖Hϕ,q

fin (X ) . 1,

which completes the proof of (i).
To show (ii), by Theorems 6.15 and 5.4, and Proposition 6.12, we know that

Hϕ(X ) and Hϕ,∞
at (X ) coincide with equivalent quasi-norms and, for any f ∈ Hϕ(X ),

‖f‖Hϕ(X ) ∼ ‖f‖H̊ϕ,q
at (X ) ∼ ‖f‖Hϕ,q

at (X ) ∼ ‖f‖Hϕ,∞
at (X ).(7.6)

Thus, to show (ii), it suffices to prove that, for any f ∈ Hϕ,∞
fin (X ) ∩ UC(X ),

‖f‖Hϕ,∞
fin (X ) . ‖f‖Hϕ,∞

at (X ).

By the homogeneity of the quasi-norm of H∗,ϕ(X ), without loss of generality, we
may assume that ‖f‖Hϕ,∞

at (X ) = 1. We use some arguments from the proof of [27,
Theorem 7.1].

Since f ∈ Hϕ,∞
fin (X ) ∩ UC(X ), it follows that f is bounded. Thus, there exists a

positive integer
˜̃
j > j̃ such that Ωj = ∅ for any integer j >

˜̃
j. Consequently,

ℓ =
∑

j̃<j≤
˜̃
j

∑

k

hjk,
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where ℓ and {hjk}j∈Z, k∈Ij are the same as in the proof of (i). By f ∈ UC(X ), we
obtain, for any ǫ ∈ (0,∞), there exists σ ∈ (0,∞) such that, if d(x, y) ≤ σ, then
|f(x)− f(y)| < ǫ. Write ℓ := ℓσ1 + ℓσ2 with

ℓσ1 :=
∑

(j,k)∈G1

hjk and ℓσ2 :=
∑

(j,k)∈G2

hjk,

where

G1 :=
{
(k, j) : j ∈ Z, k ∈ Ij, 12A

3
0r

j
k ≥ σ, j̃ < j ≤

˜̃
j
}

and

G2 :=
{
(k, j) : j ∈ Z, k ∈ Ij, 12A

3
0r

j
k < σ, j̃ < j ≤

˜̃
j
}
.

Notice that Ωj is bounded for any j ∈ (j̃,
˜̃
j], which, together with [27, Proposi-

tion 4.4(vi)], implies that ℓσ1 is a finite linear combination of (ϕ,∞)-atoms as in
Definition 5.2 and ‖ℓσ1‖Hϕ,∞

fin (X ) ≤ Λ∞({hjk}(k,j)∈G1
) . 1.

For ℓσ2 , from the proof of [27, Theorem 7.1], we deduce that supp ℓσ2 ⊂ B̃,
´

X
ℓσ2 (x) dµ(x) = 0 and

‖ℓσ2‖L∞(X ) . ǫ.

Thus, ℓσ2 is a multiple of a (ϕ,∞)-atom as in Definition 5.2. This proves that
‖ℓσ2‖Hϕ,∞

fin (X ) . 1 and hence

‖f‖Hϕ,∞
fin (X ) . ‖h‖Hϕ,q

fin (X ) + ‖ℓσ1‖Hϕ,∞
fin (X ) + ‖ℓσ2‖Hϕ,q

fin (X ) . 1,

which completes the proof of (ii).
Finally, to prove (iii), let q ∈ (q(ϕ),∞) and a be any (ϕ,∞)-atom supported in

B(z, r) with z ∈ X and r ∈ (0,∞). By (7.6) and the proof of [27, Theorem 7.1(iii)]
(with the same notation as therein), we know that, to show (iii), it suffices to show
that

lim
k→∞

‖Ska− a‖Lq
ϕ(B(z,2A0r)) = 0.

Let q̃ ∈ (1,∞) satisfy q̃
q
> [r(ϕ)]′ > 1. Then ( q̃

q
)′ < r(ϕ) and hence ϕ ∈ RH( q̃

q
)′(X ).

By this and the Hölder inequality, we conclude that, for any t ∈ (0,∞),

1

ϕ(B(z, 2A0r), t)

ˆ

B(z,2A0r)

|Ska(x)− a(x)|q ϕ(x, t) dµ(x)

≤
1

ϕ(B(z, 2A0r), t)

[
ˆ

B(z,2A0r)

|Ska(x)− a(x)|q̃ dµ(x)

] q
q̃

·

{
ˆ

B(z,2A0r)

[ϕ(x, t)](
q̃
q
)′ dµ(x)

}1/( q̃
q
)′

.
1

ϕ(B(z, 2A0r), t)
‖Ska− a‖q

Lq̃(B(z,2A0r))
[V (z, 2A0r)]

1/( q̃
q
)′−1 ϕ (B(z, 2A0r), t)

∼ [V (z, 2A0r)]
− q

q̃ ‖Ska− a‖q
Lq̃(B(z,2A0r))

,

which, combined with [26, Proposition 2.7(iv)], further implies that, as k → ∞,

‖Ska− a‖Lq
ϕ(B(z,2A0r))

. [V (z, 2A0r)]
− q

q̃ ‖Ska− a‖q
Lq̃(B(z,2A0r))

→ 0.

This finishes the proof of (iii) and hence of Theorem 7.2. �
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As an application, we formulate some criteria for the boundedness of quasi-
Banach valued sublinear operators on Hϕ(X ), whose proofs are similar to that of
[35, Theorem 3.5]; the details are omitted.

Theorem 7.3. Let ϕ be a growth function satisfying the uniformly locally dom-
inated convergence condition as in Definition 7.1. Let (ϕ, q) be admissible as in
Definition 5.2 and ϕ of uniformly upper type γ ∈ (0, 1]. Suppose that Bγ is a γ-
quasi-Banach space and one of the following statements hold true:

(i) q ∈ (q(ϕ),∞) and T : Hϕ,q
fin (X ) → Bγ is a Bγ-sublinear operator such that

sup{‖Ta‖Bγ : a is a (ϕ, q)− atom} <∞;

(ii) T is a Bγ-sublinear operator defined on continuous (ϕ,∞)-atoms such that

sup{‖Ta‖Bγ : a is a continuous (ϕ,∞)− atom} <∞.

Then T can be uniquely extended to a bounded Bγ-sublinear operator from Hϕ(X )
into Bγ .

7.2. Finite atomic characterizations without having recourse to uni-

formly locally dominated convergence conditions. This subsection is devoted
to a partial improvement of finite atomic characterizations obtained in Section 7.1 by
removing the uniformly locally dominated convergence condition as in Definition 7.1
in case q <∞.

By some arguments similar to those used in the proof of the Euclidean case in
[7, Lemma 3.6] and (7.1), we immediately obtain the following result; the details are
omitted.

Lemma 7.4. Let ϕ be a growth function, m(ϕ) ≤ 0 and r ∈ (q(ϕ)[r(ϕ)]′,∞],
where m(ϕ), q(ϕ) and r(ϕ) are, respectively, as in (3.15), (3.16) and (6.9). Then the
space

Lr
b,0(X ) :=

{
f ∈ Lr(X ) : f has bounded support and

ˆ

X

f(x) dµ(x) = 0

}

is dense in Hϕ(X ).

Now, we extend the Euclidean case in [7, Theorem 3.7] (see also [45, Theorem
4.2] for the anisotropic Euclidean case) to any space of homogeneous type (see Re-
mark 1.1).

Theorem 7.5. Let ϕ be a growth function, m(ϕ) ≤ 0 and r ∈ (q(ϕ)[r(ϕ)]′,∞],
where m(ϕ), q(ϕ) and r(ϕ) are, respectively, as in (3.15), (3.16) and (6.9). Then, for
any q ∈ (q(ϕ), r

[r(ϕ)]′
) and f ∈ Lr

b,0(X ), there exist a finite sequence {aj}
N
j=1 (N ∈ N)

of (ϕ, q)-atoms as in Definition 5.2 and numbers {λj}
N
j=1 ⊂ C such that

f =
N∑

j=1

λjaj .

Moreover, there exists a positive constant C such that, for any f ∈ Lr
b,0(X ) with the

decomposition as above,

Λq

(
{λjaj}

N
j=1

)
≤ C‖f‖Hϕ(X ).

Proof. Let q ∈ (q(ϕ), r
[r(ϕ)]′

). Then ( r
q
)′ ∈ (1, r(ϕ)) and hence ϕ ∈ RH( r

q
)′(X ).

For any f ∈ Lr
b,0(X ), there exists a ball B := B(x1, R), with x1 ∈ X and R ∈ (0,∞),
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such that supp f ⊂ B. By the Hölder inequality and ϕ ∈ RH( r
q
)′(X ), we know that,

for any t ∈ (0,∞),

1

ϕ(B, t)

ˆ

B

|f(x)|qϕ(x, t) dµ(x)(7.7)

≤
1

ϕ(B, t)

[
ˆ

B

[ϕ(x, t)](
r
q
)′ dµ(x)

]1/( r
q
)′ [ˆ

B

|f(x)|r dµ(x)

]q/r

. [µ(B)]−q/r

[
ˆ

B

|f(x)|r dµ(x)

]q/r
<∞,

which, together with Lemma 7.4, further implies that f ∈ H∗,ϕ(X ) ∩ Lq
ϕ(B).

Following the proof of Theorem 7.2(i), with the same notation as therein, we
know that

f =
∑

j∈Z

∑

k∈Ij

hjk =
∑

j≤j̃

∑

k∈Ij

hjk +
∑

j>j̃

∑

k∈Ij

hjk =: h + ℓ

converges both in (Gη
0 (̺, ϑ))

′ and almost everywhere on X , where j̃ is as in (7.3), hjk
is a multiple of a (ϕ,∞)-atom as in Definition 5.2 for any j ∈ Z and k ∈ Ij , h is

a multiple of a (ϕ,∞)-atom supported in the ball B̃ := B(x1, 16A0R), f
∗ ∈ L1(X )

and, for any x ∈ X ,
∑

j>j̃

∑

k∈Ij

∣∣hjk(x)
∣∣ . f ∗(x)1Ωj (x) ∈ L1(X ).(7.8)

For any N ∈ N, let

FN :=
{
(k, j) : j ∈ Z, k ∈ Ij , j > j̃, |k|+ |j| ≤ N

}
and ℓN :=

∑

(k,j)∈FN

hjk.

Since f ∈ Lr(X ), then, from [27, Theorem 3.4(ii)], we deduce that f ∗ ∈ Lr(X ). By
this, (7.8) and the Lebesgue dominated convergence theorem, we conclude that

lim
N→∞

‖ℓN − ℓ‖Lr(X ) = 0,

which, combined with (7.7) and supp (ℓ) ∪ supp (ℓ− ℓN ) ⊂ B̃, further implies that

‖ℓN − ℓ‖Lq
ϕ(B̃) ≤

[
µ
(
B̃
)]− 1

r
‖ℓN − ℓ‖Lr(B̃) → 0, as N → ∞.

This shows that, for any given ε ∈ (0, 1), there exists N ∈ N such that ε−1(ℓ− ℓN)

is a (ϕ, q)-atom supported in the ball B̃, which implies that f = h+ ℓN + (ℓ− ℓN) is
a finite linear combination of (ϕ,∞)-atoms and (ϕ, q)-atoms and

Λq

({
h, ℓ− ℓN , h

j
k

}
(k,j)∈FN

)
. ‖f‖H∗,ϕ(X ).

This, together with (7.1), then finishes the proof of Theorem 7.5. �

As an easy consequence of Theorem 7.5, we obtain the following result, which
improves the result in Theorem 7.2(i) by removing the uniformly dominated conver-
gence condition as in Definition 7.1; the details are omitted.

Corollary 7.6. Let ϕ, r and q be as in Theorem 7.5. Then ‖ · ‖Hϕ,q
fin (X ) and

‖ · ‖Hϕ(X ) are two equivalent quasi-norms on Lr
b,0(X ).
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As an application, we formulate an improved criterion for the boundedness of
quasi-Banach valued sublinear operators on Hϕ(X ) in case q < ∞, whose proof is
similar to that of the Euclidean case in [35, Theorem 3.5]; the details are omitted.

Theorem 7.7. Let ϕ be a growth function of the uniformly upper type γ ∈ (0, 1],
m(ϕ) ≤ 0 and q ∈ (q(ϕ),∞), where m(ϕ) and q(ϕ) are, respectively, as in (3.15)
and (3.16). Suppose that Bγ is a γ-quasi-Banach space. If T : Hϕ,q

fin (X ) → Bγ is a
Bγ-sublinear operator such that

sup{‖Ta‖Bγ : a is a (ϕ, q)-atom} <∞,

then there exists a unique bounded Bγ-sublinear operator T̃ from Hϕ(X ) into Bγ

which extends T on L∞
b,0(X ).

Remark 7.8. (i) Theorem 7.7 improves the corresponding result in Theo-
rem 7.3(i) by removing the uniformly locally dominated convergence condi-
tion as in Definition 7.1, which has wider applications. Observe that The-
orem 7.3(i) is just a simple corollary of Theorem 7.2(i) and, moreover, the
proofs of (ii) and (iii) of Theorem 7.2 need to use the proof of Theorem 7.2(i)
which is also of independent interest.

(ii) But, in the case q = ∞, it is still unclear whether or not the uniformly locally
dominated convergence condition in Theorem 7.3(ii) can be removed.

8. Dual of Hϕ(X )

In this section, we show that the dual space ofHϕ(X ) is just the space BMOϕ(X ).
Now, we state the following main result of this section, which is a generalization

of the corresponding results on Hardy spaces Hp(X ) in [10, Theorem B] [in this case,
ϕ is the same as in (4.2)].

Theorem 8.1. Let ϕ be a growth function as in Definition 2.5 satisfying m(ϕ) ≤
0 and q ∈ (q(ϕ),∞], where m(ϕ) and q(ϕ) are respectively as in (3.15) and (3.16).
Then the dual space, (Hϕ(X ))∗, of Hϕ(X ) is BMOϕ(X ) in the following sense:

(i) Suppose that b ∈ BMOϕ(X ). Then the linear functional

Lb : f → Lb(f) :=

ˆ

X

f(x)b(x) dµ(x),

initially defined for any f ∈ Hϕ,q
fin (X ), has a bounded linear extension to

Hϕ(X ).
(ii) Conversely, every continuous linear functional on Hϕ(X ) arises as in (i) with

a unique b ∈ BMOϕ(X ). Moreover, ‖b‖BMOϕ(X ) ∼ ‖Lb‖(Hϕ(X ))′ , where the
positive equivalence constants are independent of b.

Before proving Theorem 8.1, we first state the following lemma which is similar
to the Euclidean case in [35, Lemma 4.4] and we omit its proof here.

Lemma 8.2. Let (ϕ, q) be admissible as in Definition 5.2 and N ∈ N ∪ {∞}.
Then there exists a positive constant C such that, for any finite sequence {bj}

N
j=1 of

multiples of (ϕ, q)-atoms,

N∑

j=1

‖b‖Lq
ϕ(Bj)‖1Bj

‖Lϕ(X ) ≤ CΛ
(
{bj}

N
j=1

)
.
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Now, we start to prove Theorem 8.1.

Proof of Theorem 8.1. To prove BMOϕ(X ) = Lipϕ,1(X ) ⊂ (Hϕ(X ))∗, by
Theorem 3.4 and (7.1), it suffices to show that Lipϕ,q′(X ) ⊂ (Hϕ,q

at (X ))∗, where
q ∈ (q(ϕ),∞) with q(ϕ) as in (3.16).

Let g ∈ Lipϕ,q′(X ) and a be a (ϕ, q)-atom supported in a ball B ⊂ X as in
Definition 5.2. Then, by the vanishing moment and the size conditions of a, together
with the Hölder inequality and ϕ(B, ‖1B‖

−1
Lϕ(X )) = 1, we conclude that

∣∣∣∣
ˆ

X

a(x)g(x) dµ(x)

∣∣∣∣(8.1)

=

∣∣∣∣
ˆ

X

a(x)[g(x)−mB(g)] dµ(x)

∣∣∣∣

≤

ˆ

X

|a(x)|
[
ϕ
(
x, ‖1B‖

−1
Lϕ(X )

)]1/q
[
|g(x)−mB(g)|

ϕ(x, ‖1B‖
−1
Lϕ(X ))

]

·
[
ϕ
(
x, ‖1B‖

−1
Lϕ(X )

)]1/q′
dµ(x)

≤ ‖a‖Lq
ϕ(B)

ˆ

X

[
|g(x)−mB(g)|

ϕ(x, ‖1B‖
−1
Lϕ(X ))

]q′
ϕ
(
x, ‖1B‖

−1
Lϕ(X )

)
dµ(x)

≤
1

‖1B‖Lϕ(X )

ˆ

X

[
|g(x)−mB(g)|

ϕ(x, ‖1B‖
−1
Lϕ(X ))

]q′
ϕ
(
x, ‖1B‖

−1
Lϕ(X )

)
dµ(x) = ‖g‖Lipϕ,q′ (X ).

Now, for any f ∈ Hϕ,q
fin (X ) = Lq

b,0(X ), by Definition 5.2, we know that there exists a
finite sequence {bj}

m
j=1 of multiplies of (ϕ, q)-atoms supported, respectively, in balls

{Bj}j∈N such that f :=
∑m

j=1 bj and Λ({bj}
m
j=1) . ‖f‖Hϕ,q

fin (X ). From this, (8.1),
Lemma 8.2 and Theorem 7.2, we deduce that
∣∣∣∣
ˆ

X

f(x)g(x) dµ(x)

∣∣∣∣ ≤
m∑

j=1

‖b‖Lq
ϕ(Bj )‖1Bj

‖Lϕ(X )‖g‖Lipϕ,q′ (X ) . Λq({bj}
m
j=1)‖g‖Lipϕ,q′ (X )

. ‖f‖Hϕ,q
fin (X )‖g‖Lipϕ,q′ (X ) ∼ ‖f‖Hϕ,q

at (X )‖g‖Lipϕ,q′ (X ),

which, combined with the fact that Lq
b,0(X ) is dense in Hϕ(X ) (see Lemma 7.4),

Theorem 7.6 and a standard density argument, further completes the proof of (i).
To prove (ii), let L ∈ (Hϕ(X ))∗ = (Hϕ,q

at (X ))∗ [see (7.1)]. For any ball B ⊂ X
and q ∈ (q(ϕ),∞], let

Lq
ϕ,0(B) :=

{
f ∈ Lq

ϕ(B) :

ˆ

X

f(x) dµ(x) = 0

}
.

Obviously, Lq
ϕ,0(B) ⊂ Hϕ(X ) and, for any f ∈ Lq

ϕ,0(B), a := ‖1B‖
−1
Lϕ(X )‖f‖

−1
Lq
ϕ(B)

f is

a (ϕ, q)-atom supported in B and

‖f‖Hϕ,q
at (X ) ≤ ‖1B‖Lϕ(X )‖f‖Lq

ϕ(B),

which further implies that, for any L ∈ (Hϕ,q
at (X ))∗ and f ∈ Lq

ϕ,0(B),

|Lf | ≤ ‖L‖(Hϕ,q
at (X ))∗‖f‖Hϕ,q

at (X ).

Thus, L is a bounded linear functional on Lq
ϕ,0(B). From the Hahn–Banach theorem

(see, for instance, [54, p. 77, Corollary 1]), it follows that L can be linearly boundedly
extended to the whole space Lq

ϕ(B) without increasing its norm, which, together
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with the Lebesgue–Radon–Nikodym theorem (see, for instance, [14, Theorem 3.8]),
we conclude that there exists h ∈ L1(B) := {f ∈ L1(X ) : supp f ⊂ B} such that,
for any f ∈ Lq

ϕ,0(B),

L(f) =

ˆ

X

f(x)h(x) dµ(x).

We now choose an increasing sequence {Bj}j∈N of balls such that B1 ⊂ B2 ⊂ · · · ⊂
Bj ⊂ · · · and

⋃∞
j=1Bj = X . From the above arguments, we deduce that there exists

a sequence {hj}j∈N of measurable functions such that, for any j ∈ N, hj ∈ L1(Bj)
and, for any f ∈ Lq

ϕ,0(Bj),

L(f) =

ˆ

X

f(x)hj(x) dµ(x).(8.2)

Therefore, for any f ∈ Lq
ϕ,0(B1),
ˆ

B1

f(x)[h1(x)− h2(x)] dµ(x) = 0,

which, combined with the fact that g − mB1(g) ∈ Lq
ϕ,0(B1) for any g ∈ Lq

ϕ(B1),
further implies that, for any g ∈ Lq

ϕ(B1),
ˆ

B1

[g(x)−mB1(g)][h1(x)− h2(x)] dµ(x) = 0,

here and hereafter, mB1(g) denotes the mean of g on B1 as in (2.3) with f and B
replaced, respectively, by g and B1 here.

Observe that, for any ball B and f, g ∈ Lq
ϕ(B),

ˆ

B

mB(g)[h1(x)− h2(x)] dµ(x) =

ˆ

B

g(x)mB(h1 − h2) dµ(x).

Thus, for any g ∈ Lq
ϕ(B1),

ˆ

B1

g(x)[h1(x)− h2(x)−mB1(h1 − h2)] dµ(x) = 0,

which further shows that, for µ-almost every x ∈ B1,

h1(x)− h2(x) = mB1(h1 − h2).

Let h̃1 := h1 and, for any j ∈ N,

h̃j+1 := hj+1 +mBj

(
h̃j − hj+1

)
.

Then the sequence {h̃j}j∈N satisfies that, for µ-almost every x ∈ Bj , h̃j+1(x) = h̃j(x)

and h̃j ∈ L1(Bj). Let b be a measurable function satisfying that, if x ∈ Bj, then

b(x) = h̃j(x). To finish the proof of Theorem 8.1(ii), it still needs to show that
b ∈ Lipϕ,1(X ) and, for any f ∈ Hϕ,q

fin (X ),

L(f) =

ˆ

X

f(x)b(x) dµ(x).

Indeed, for any f ∈ Hϕ,q
fin (X ), we easily know that there exists j ∈ N such that

supp f ⊂ Bj . Thus, f ∈ Lq
ϕ,0(Bj), which, together with (8.2), further implies that

L(f) =

ˆ

X

f(x)b(x) dµ(x).
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Furthermore, for any ball B ⊂ X , let f := sign(b−mB(b)), where sign(·) denotes
the sign function, and

a :=
1

2
‖1B‖

−1
Lϕ(X )[f −mB(f)]1B.

Then a is a (ϕ, q)-atom supported in B and

1

‖1B‖Lϕ(X )

ˆ

B

|b(x)−mB(b)| dµ(x) =
1

‖1B‖Lϕ(X )

∣∣∣∣
ˆ

B

[b(x)−mB(b)]f(x) dµ(x)

∣∣∣∣

=
1

‖1B‖Lϕ(X )

∣∣∣∣
ˆ

B

[f(x)−mB(f)]b(x) dµ(x)

∣∣∣∣
. L(a) . ‖L‖(Hϕ,q

at (X ))∗‖a‖Hϕ,q
at (X ) . ‖L‖(Hϕ,q

at (X ))∗ ,

which further implies that b ∈ Lipϕ,1(X ) and

‖b‖Lipϕ,1(X ) . ‖L‖(Hϕ,q
at (X ))∗ .

This finishes the proof of (ii) and hence of Theorem 8.1. �

9. Boundedness of Calderón–Zygmund operators

In this section, we establish the boundedness of Calderón–Zygmund operators
from Hϕ(X ) into Lϕ(X ) or from Hϕ(X ) to itself, respectively. To this end, we first
recall the following notion of Calderón–Zygmund operators from [9] (see also [2, 11]).

Definition 9.1. A function K ∈ L1
loc ({X × X}\{(x, x) : x ∈ X}) is called a

Calderón–Zygmund kernel if there exists a positive constant C(K), depending on K,
such that

(i) for any x, y ∈ X with x 6= y,

(9.1) |K(x, y)| ≤ C(K)
1

V (x, y)
;

(ii) there exists a positive constant s ∈ (0, 1], depending on K, such that
(ii)1 for any x, x̃, y ∈ X with d(x, y) ≥ 2A0d(x, x̃) > 0,

(9.2) |K(x, y)−K(x̃, y)| ≤ C(K)

[
d(x, x̃)

d(x, y)

]s
1

V (x, y)
;

(ii)2 for any x, x̃, y ∈ X with d(x, y) ≥ 2A0d(y, ỹ) > 0,

(9.3) |K(x, y)−K(x, ỹ)| ≤ C(K)

[
d(y, ỹ)

d(x, y)

]s
1

V (x, y)
,

where A0 is the same as in (1.2).

Let C(X ) denote the space of all continuous functions on X and s ∈ (0, 1]. Recall
that the space Cs

b (X ) is defined by setting

Cs
b (X ) := {f ∈ Cs(X ) : f has bounded support} ,

where the space Cs(X ) is defined by setting

Cs(X ) :=
{
f ∈ C(X ) : ‖f‖Cs(X ) <∞

}

with

‖f‖Cs(X ) := ‖f‖L∞(X ) + sup
{x, y∈X : x 6=y}

|f(x)− f(y)|

[d(x, y)]s
.
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We equip Cs
b (X ) with the strict inductive limit topology (see, for instance, [50, p. 273]

and [26, p. 23]). Moreover, the dual space (Cs
b (X ))′ is defined to be the set of all linear

functionals on Cs
b (X ) equipped with the weak-∗ topology.

Let T : Cs
b (X ) → (Cs

b (X ))′ be a linear continuous operator. Then T is called a
Calderón–Zygmund operator with the kernel K satisfying (9.1), (9.2) and (9.3) if, for
any f ∈ Cs

b (X ),

(9.4) Tf(x) :=

ˆ

X

K(x, y)f(y) dµ(y), ∀ x ∈ ( supp f)∁.

Then we state the main result of this section as follows.

Theorem 9.2. Let ω be as in (1.4) and s ∈ (0, 1] as in Definition 9.1. Suppose

that ϕ is a growth function as in Definition 2.5 with q(ϕ) < p(s+ω)
ω

, where p ∈ (0, 1]
is as in Definition 2.5(iii) and q(ϕ) as in (3.16), and that T is a Calderón–Zygmund
operator as in (9.4) which is bounded on L2(X ).

(i) Then there exists a positive constant C such that, for any f ∈ Hϕ(X ), Tf ∈
Lϕ(X ) and ‖Tf‖Lϕ(X ) ≤ C‖f‖Hϕ(X ).

(ii) If we further assume that T ∗1 = 0, then there exists a positive constant C̃

such that, for any f ∈ Hϕ(X ), Tf ∈ Hϕ(X ) and ‖Tf‖Hϕ
at(X ) ≤ C̃‖f‖Hϕ(X ).

Proof. Choose r ∈ [2,∞) such that r′ < r(ϕ). Let (ϕ, q) be admissible as
in Definition 5.2 and a a (ϕ, q)-atom with q ∈ (rq(ϕ),∞), supported in the ball
B0 := B(x0, r0) for some x0 ∈ X and r0 ∈ (0,∞) as in Definition 5.2.

We first prove (i). By Theorem 7.7, it suffices to show that ‖Ta‖Lϕ(X ) . 1.
Indeed, we write

‖Ta‖Lϕ(X ) . ‖12A0B0Ta‖Lϕ(X ) +
∥∥∥1(2A0B0)∁

Ta
∥∥∥
Lϕ(X )

=: I + II.

For I, by the boundedness of T on Lr(X ), we know that

‖Ta‖Lr(X ) . ‖a‖Lr(X ).(9.5)

Meanwhile, from q
r
∈ (q(ϕ),∞), it follows that ϕ ∈ A q

r
(X ), which, combined with

Lemma 2.6(iii), implies that

{
1

µ(B0)

ˆ

B0

|a(x)|r dµ(x)

}1/r

.

{
1

ϕ(B0, t)

ˆ

B0

|a(x)|qϕ(x, t) dµ(x)

}1/q

. ‖a‖Lq
ϕ(X ) .

1

‖1B0‖Lϕ(X )

.

By this and (9.5), we conclude that

‖Ta‖Lr(X ) . ‖a‖Lr(X ) .
[µ(B0)]

1/r

‖1B0‖Lϕ(X )
,(9.6)

which, together with the arguments used in the estimation of A in the proof of
Theorem 6.15, we conclude that

ˆ

2A0B

ϕ (x, T (λa)(x)) dµ(x) . ϕ

(
B,

|λ|

‖1B‖Lϕ(X )

)
.

This further shows that I . 1.
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To estimate II, from
´

X
a(y) dµ(y) = 0, (9.3), the Hölder inequality and (9.6), we

deduce that, for any x ∈ (2A0B0)
∁,

|Ta(x)| =

∣∣∣∣
ˆ

X

[K(x, y)−K (x, x0)] a(y) dµ(y)

∣∣∣∣(9.7)

≤

ˆ

X

|K(x, y)−K (x, x0)| |a(y)| dµ(y)

.

ˆ

B0

[
d(y, x0)

d(x, x0)

]s
1

V (x, x0)
|a(y)| dµ(y)

.

[
r0

d(x, x0)

]s
1

V (x, x0)
‖a‖L1(X )

.

[
r0

d(x, x0)

]s
1

V (x, x0)
‖a‖Lr(X )[µ(B0)]

1
r′

.

[
r0

d(x, x0)

]s
1

V (x, x0)

µ(B0)

‖1B0‖Lϕ(X )

.

[
µ(B0)

V (x, x0)

] s
ω
+1

1

‖1B0‖Lϕ(X )

.
[M(1B0)(x)]

s
ω
+1

‖1B0‖Lϕ(X )

,

which, combined with Theorem 4.11 and q(ϕ) < p(s+ω)
ω

, further implies that

II .

∥∥∥∥∥∥∥


M


 1B0

‖1B0‖
ω

ω+s

Lϕ(X )






s
ω
+1
∥∥∥∥∥∥∥
Lϕ(X )

∼

∥∥∥∥∥∥
M


 1B0

‖1B0‖
ω

ω+s

Lϕ(X )



∥∥∥∥∥∥

ω+s
ω

Lϕ̃(X )

.

∥∥∥∥∥∥
1B0

‖1B0‖
ω

ω+s

Lϕ(X )

∥∥∥∥∥∥

ω+s
ω

Lϕ̃(X )

∼

∥∥∥∥
1B0

‖1B0‖Lϕ(X )

∥∥∥∥
Lϕ(X )

∼ 1,

where, for any x ∈ X and t ∈ (0,∞), ϕ̃(x, t) := ϕ(x, t
s+ω
ω ) is of uniformly lower type

p(s+ω)
ω

.
Combining the estimates of I and II, we have

‖Ta‖Lϕ(X ) . I + II . 1,

which completes the proof of (i).
Now, we show (ii). Similarly to (i), by Theorem 7.7, we only need to prove that

‖Ta‖Hϕ
at(X ) . 1. Indeed, we show that Ta is a (ϕ, r, s)-molecule related to the ball

2A0B0 as in Definition 6.7. To this end, we write

Ta =
∞∑

j=0

1Uj(2A0B0)Ta,

where U0(2A0B0) :=2A0B0 and, for any j ∈ N, Uj(2A0B0) := δ−j2A0B0\δ
−j+12A0B0.

From (9.6) and some arguments similar to those used in the proof of [43, Theorem 2.7],
it follows that

‖Ta‖Lr(X ) .
[µ(B0)]

1/r

‖1B0‖Lϕ(X )

.
[µ(2A0B0)]

1/r

‖12A0B0‖Lϕ(X )

.
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Moreover, by the proof of (9.7) and some arguments similar to those used in the
proof of [43, Theorem 2.7], we know that, for any x ∈ (2A0B0)

∁,

|Ta(x)| .

[
r0

d(x, x0)

]s
1

V (x, x0)

µ(B0)

‖1B0‖Lϕ(X )

.

[
r0

d(x, x0)

]s
1

V (x, x0)

µ(2A0B0)

‖12A0B0‖Lϕ(X )

,

which further implies that, for any j ∈ N,

‖Ta‖Lr(Uj(2A0B0))

.

{
ˆ

δ−j2A0B0\δ−j+12A0B0

[
r0

d(x, x0)

]rs
1

[V (x, x0)]r
dµ(x)

} 1
r µ(2A0B0)

‖12A0B0‖Lϕ(X )

. δjs
[µ(δ−j2A0B0)]

1/r

V (x0, δ−j+12A0r0)

µ(2A0B0)

‖12A0B0‖Lϕ(X )
. δjs

[µ(δ−j2A0B0)]
1/r

‖12A0B0‖Lϕ(X )
.

On another hand, by T ∗1 = 0, we immediately obtain
´

X
Ta(x) dµ(x) = 0. Thus,

Ta is a harmless positive constant multiple of a (ϕ, r, s)-molecule related to the ball
2A0B0, which, together with Theorem 6.8, further implies that

‖Ta‖Hϕ
at(X ) ∼ ‖Ta‖Hϕ,r,s

mol (X ) . 1.

This finishes the proof of (ii) and hence of Theorem 9.2. �

Remark 9.3. Let all the notation be the same as in Theorem 9.2. We point

out that the condition q(ϕ) < p(s+ω)
ω

in Theorem 9.2 is sharp in the sense that, if

ϕ(x, t) := tp for any (x, t) ∈ X × [0,∞), then q(ϕ) = 1 and hence q(ϕ) < p(s+ω)
ω

if and only if p > ω
s+ω

, which returns to the classical case (see, for instance, [47,

Theorem 3.4]).

10. Class of pointwise multipliers for BMO(X )

In this section, we establish a new characterization of PWM(BMO(X )), namely,
the set of all pointwise multipliers of the space BMO(X ).

It was known by [31, p. 1925] that ϕ in (2.4) satisfies ωq(ϕ) < (ω+1)i(ϕ). More
precisely, ϕ ∈ A1(X ) and, for almost every fixed x ∈ X , ϕ(x, ·) is concave with
i(ϕ) = 1.

The following definition of log-atoms on X is a variant of log-atoms in the Eu-
clidean case from [35, Section 7].

Definition 10.1. A measurable function a is called a log-atom if it satisfies the
following three conditions:

(i) supp a ⊂ B for some ball B in X ;
(ii) ‖a‖L∞(X ) ≤ 1

µ(B)
[log(e + 1

µ(B)
) + supx∈B log(e + d(x0, x))] with x0 as in Re-

mark 2.10;
(iii)
´

X
a(x) dµ(x) = 0.

We first show the following technical proposition, which is a generalization of the
Euclidean case in [35, Proposition 7.1] to any space of homogeneous type. In what
follows, we always let ϕ be as in (2.4).

Proposition 10.2. There exists a positive constant C̃ such that, if f is a (ϕ,∞)-

atom as in Definition 5.2 [resp., log-atom as in Definition 10.1], then C̃−1f is a
log-atom [resp., (ϕ,∞)-atom].
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Proof. Let f be a (ϕ,∞)-atom supported in a ball B ⊂ X . We first show that
1
4
f is a log-atom. Indeed, to this end, it suffices to show that 1

4
f satisfies Definition

10.1(ii). Observe that

4

[
log

(
e+

1

µ(B)

)
+ sup

x∈B
log (e + d(x0, x))

] [
log

(
e+

4

µ(B)

{
log

(
e +

1

µ(B)

)

+ sup
x∈B

log (e+ d(x0, x))

})
+ sup

x∈B
log (e+ d(x0, x))

]−1

≥ 1.

By this, we conclude that
ˆ

B

ϕ

(
x,

4

µ(B)

[
log

(
e +

1

µ(B)

)
+ sup

x∈B
log (e+ d(x0, x))

])
dµ(x) ≥ 1,

which implies that∥∥∥∥
1

4
f

∥∥∥∥
L∞(X )

≤
1

4
‖1B‖

−1
Lϕ(X ) ≤

1

4

4

µ(B)

[
log

(
e+

1

µ(B)

)
+ sup

x∈B
log (e + d(x0, x))

]

=
1

µ(B)

[
log

(
e+

1

µ(B)

)
+ sup

x∈B
log (e+ d(x0, x))

]
.

This is the desired conclusion.
On another hand, let f be a log-atom. Then we prove that f is a multiple of a

(ϕ,∞)-atom. We also observe that
[
log

(
e+

1

µ(B)

)
+ sup

x∈B
log (e+ d(x0, x))

] [
log

(
e+

1

µ(B)

{
log

(
e+

1

µ(B)

)

+ sup
x∈B

log (e+ d(x0, x))

})
+ sup

x∈B
log (e+ d(x0, x))

]−1

≤ 1.

By this and ϕ ∈ A1(X ), we find that
ˆ

B

ϕ

(
x,

1

µ(B)

[
log

(
e+

1

µ(B)

)
+ sup

x∈B
log (e+ d(x0, x))

])
dµ(x) . 1,

which implies that

‖f‖L∞(X ) ≤
1

µ(B)

[
log

(
e+

1

µ(B)

)
+ sup

x∈B
log (e + d(x0, x))

]
. ‖1B‖

−1
Lϕ(X ).

This finishes the proof of Proposition 10.2. �

The following definition of weighted BMO spaces is taken from [52].

Definition 10.3. Let BMOφ(X ) be the space of all f ∈ L1
loc (X ) such that, for

any a ∈ X and r ∈ (0,∞),

MOφ(f, B(a, r)) :=
1

φ(a, r)

1

V (a, r)

ˆ

B(a,r)

∣∣f(x)−mB(a,r)(f)
∣∣ dµ(x) <∞,

where φ(a, r) := 1
log(d(x0,a)+r+1/r)

and

mB(a,r)(f) :=
1

µ(B(a, r))

ˆ

B(a,r)

f(y) dµ(y).

For any f ∈ L1
loc (X ), let ‖f‖BMOφ(X ) := sup{a∈X , r∈(0,∞)}MOφ(f, B(a, r)) and

‖f‖bmoφ(X ) := ‖f‖BMOφ(X ) + |mB(x0,1)(f)|,

where x0 is as in (2.4).
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In what follows, we need the following Ahlfors n-regular condition on the measure
µ, namely, there exists n ∈ (0,∞) such that, for any ball B(x, r) with x ∈ X and
r ∈ (0,∞),

V (x, r) ∼ rn,(10.1)

where the positive equivalence constants are independent of x and r.
The following result is a generalization of the corresponding Euclidean case in

[35, Proposition 7.2].

Proposition 10.4. Assume that µ satisfies the Ahlfors n-regular condition (10.1).
For any f ∈ BMOφ(X ), it holds true that

‖f‖BMOφ(X )

∼ sup
B : ball

1

µ(B)

[
log

(
e+

1

µ(B)

)
+ sup

x∈B
log (e+ d(x0, x))

]
ˆ

B

|f(x)−mB(f)| dµ(x) <∞

with the positive equivalence constants independent of f .

Proof. It suffices to show that, for any ball B := B(a, r) with a ∈ X and
r ∈ (0,∞),

log

(
d(x0, a) + r +

1

r

)
∼ log

(
e+

1

µ(B)

)
+ sup

x∈B
log(e+ d(x0, x)).

We first show that

log

(
e+

1

µ(B)

)
+ sup

x∈B
log(e + d(x0, x)) . log

(
d(x0, a) + r +

1

r

)
.

Indeed, by (10.1), we have

log

(
e +

1

µ(B)

)
∼ log

(
e+

1

rn

)
. log

(
e+

1

r

)
. log

(
d(x0, a) + r +

1

r

)

and we also observe that

sup
x∈B

log(e+ d(x0, x)) ≤ log (e+ A0d(x0, a) + A0r) . log

(
d(x0, a) + r +

1

r

)
,

which implies the desired conclusion.
Conversely, we show that

log

(
d(x0, a) + r +

1

r

)
. log

(
e+

1

µ(B)

)
+ sup

x∈B
log(e+ d(x0, x)).

It is easy to see that (X , d, µ) with µ satisfying (10.1) is an RD-space, which further
implies that there exists a constant a0 ∈ (1,∞) such that, for any a ∈ X and
r ∈ (0,∞), B(a, r)\B(a, r

a0
) 6= ∅. Thus, we are able to choose y0 ∈ B(a, r)\B(a, r

a0
).

Therefore, we have
r

a0
≤ d(y0, a) < r.(10.2)

We further consider the following two cases.
Case (i) r ∈ (0, 1]. In this case, by (10.1), we obtain

log

(
d(x0, a) + r +

1

r

)
≤ log

(
d(x0, a) +

2

r

)
. log

(
e +

1

r

)
+ log(e+ d(x0, a))

. log

(
e+

1

µ(B)

)
+ sup

x∈B
log(e+ d(x0, x)).
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Case (ii) r ∈ (1,∞). In this case, by (10.2), we have

log

(
d(x0, a) + r +

1

r

)
≤ log (d(x0, a) + 2r) . log (e+ d(x0, a) + d(y0, a))

. sup
x∈B

log(e+ d(x0, x)),

which then completes the proof of Proposition 10.4. �

The following corollary gives an equivalent characterization of the BMOlog(X )
norm.

Corollary 10.5. Let µ satisfy the Ahlfors n-regular condition (10.1). Then both
BMOlog(X ) and BMOφ(X ) coincide with equivalent norms.

Proof. Let ϕ be as in (2.4). It was shown by [31, Remark 4.1(iii)] that, for any
ball B,

‖1B‖Lϕ(X ) ∼
µ(B)

log(e+ 1
µ(B)

) + supx∈B log(e + d(x0, x))
,

which, combined with Proposition 10.4, immediately completes the proof of Corol-
lary 10.5. �

Now, we state the main result of this section as follows, which is a generalization
of the corresponding Euclidean case in [35, Theorem 3.3].

Theorem 10.6. Assume that µ satisfies the Ahlfors n-regular condition (10.1).
The set of pointwise multipliers for BMO(X ), denoted by PWM(BMO(X )), is the
dual space of L1(X ) +H∗,ϕ(X ), where ϕ is as in (2.4).

Proof. From [52, Example 2.8], it follows that PWM(BMO(X )) = [L∞(X ) ∩
BMOϕ(X )]. Thus, we only need to prove that [L∞(X ) ∩ BMOϕ(X )] = (L1(X ) +
H∗,ϕ(X ))∗.

From Propositions 10.2 and 10.4, Corollary 10.5 and some arguments similar to
those used in the proof of [35, Theorem 3.3], we deduce that the above conclusion
obviously holds true, which completes the proof of Theorem 10.6. �
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